

Certificate #6613.01

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	Shenzhen Jimi IoT Co., Ltd.	
Address:	3-4/F, Block A, Building #7, Shenzhen International Innovation Valley, Dashi 1st Road, Nanshan District, Shenzhen, Guangdong, China	

Manufacturer or	Shenzhen Jimi IoT Co., Ltd.	
Supplier:		
Address:	3-4/F, Block A, Building #7, Shenzhen International Innovation Valley, Dashi 1st	
Address.	Road, Nanshan District, Shenzhen, Guangdong, China	
Product:	Global container monitoring terminal	
Brand Name:	JimiloT	
Model Name:	LL306R	
Model Name.	LL306Pro	
FCC ID:	2AMLF-LL306R	
Date of tests:	Mar. 10, 2025 ~ Apr. 03, 2025	

The tests have been carried out according to the requirements of the following standard:

ANSI C63.10-2020

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Prepared by Hanwen Xu	Approved by Peibo Sun
Engineer / Mobile Department	Manager / Mobile Department
Ru Hannen	Simpei bo
Date: Apr. 03, 2025	Date: Apr. 03, 2025

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/temms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

REL	RELEASE CONTROL RECORD5			
1.	SUMM	ARY OF TEST RESU	JLTS	6
1.1	MEAS	SUREMENT UNCER	TAINTY	7
2	GENER	RAL INFORMATION		8
2.1	GENE	ERAL DESCRIPTION	OF EUT	8
2.2	DESC	CRIPTION OF TEST I	MODES	10
	2.2.1	CONFIGURATION	OF SYSTEM UNDER TEST	11
	2.2.2	TEST MODE APPL	CABILITY AND TESTED CHANNEL DETAIL	11
2.3	DUTY	CYCLE OF TEST S	IGNAL	14
2.4	GENE	ERAL DESCRIPTION	OF APPLIED STANDARDS	14
2.5	DESC	CRIPTION OF SUPPO	ORT UNITS	15
3	TEST 1	TYPES AND RESUL	rs	16
3.1	CON	DUCTED EMISSION	MEASUREMENT	16
	3.1.1	LIMITS OF CONDU	CTED EMISSION MEASUREMENT	16
	3.1.2	TEST INSTRUMEN	TS	17
	3.1.3	TEST PROCEDURI	ES	18
	3.1.4	DEVIATION FROM	TEST STANDARD	18
	3.1.5	TEST SETUP		19
	3.1.6	EUT OPERATING O	CONDITIONS	19
	3.1.7	TEST RESULTS		20
3.2	2 RADIATED EMISSION MEASUREMENT22			
	3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT			
	3.2.2	TEST INSTRUMEN	TS	23
	3.2.3	TEST PROCEDURI	ES	24
	3.2.4	DEVIATION FROM	TEST STANDARD	24
	3.2.5	TEST SETUP		25
	3.2.6	EUT OPERATING O	CONDITIONS	26
	3.2.7 TEST RESULTS			
3.3	6 DB	BANDWIDTH MEAS	UREMENT	51
	3.3.1	LIMITS OF 6DB BA	NDWIDTH MEASUREMENT	51
	3.3.2 TEST INSTRUMENTS			
	3.3.3	3.3 TEST PROCEDURE		
	3.3.4	3.4 DEVIATION FROM TEST STANDARD53		
	3.3.5			
	3.3.6 EUT OPERATING CONDITIONS			
	3.3.7	TEST RESULTS		53
3.4	CONI	DUCTED OUTPUT P	OWER	54
	-	ers High Technology	Tower N, Innovation Center, 88 Zuyi Road, High-tech District,	Tel: +86 (0557)
(Sı	(Suzhou) Co., Ltd. Suzhou City, Anhui Province 368 1008			

VEN	3.4.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	54
	3.4.2	TEST SETUP	54
	3.4.3	TEST INSTRUMENTS	54
	3.4.4	TEST PROCEDURES	54
	3.4.5	DEVIATION FROM TEST STANDARD	54
	3.4.6	EUT OPERATING CONDITIONS	54
	3.4.7	TEST RESULTS	55
	3.4.7.1	MAXIMUM PEAK OUTPUT POWER	55
	3.4.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	56
3.5	POW	ER SPECTRAL DENSITY MEASUREMENT	57
	3.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	57
	3.5.2	TEST SETUP	57
	3.5.3	TEST INSTRUMENTS	57
	3.5.4	TEST PROCEDURE	57
	3.5.5	DEVIATION FROM TEST STANDARD	57
	3.5.6	EUT OPERATING CONDITION	57
	3.5.7	TEST RESULTS	58
3.6	OUT	OF BAND EMISSION MEASUREMENT	59
	3.6.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	59
	3.6.2	TEST SETUP	59
	3.6.3	TEST INSTRUMENTS	59
	3.6.4	TEST PROCEDURE	59
	3.6.5	DEVIATION FROM TEST STANDARD	60
	3.6.6	EUT OPERATING CONDITION	60
	3.6.7	TEST RESULTS	60
3.7	ANTE	NNA REQUIREMENTS	
	3.7.1	STANDARD APPLICABLE	61
	3.7.2	ANTENNA CONNECTED CONSTRUCTION	61
	3.7.3	ANTENNA GAIN	61
4	РНОТО	OGRAPHS OF THE TEST CONFIGURATION	62
5	MODIF	ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT I	BY THE LAB
	63		
6	APPEN	IDIX B:BLE	64
DT:	S BAND	WIDTH	64
	TEST F	RESULT	64
	TEST (GRAPHS	64
API	PENDIX	: OCCUPIED CHANNEL BANDWIDTH	66
	TEST F	RESULT	66
Ηι	ıarui 7laye	ers High Technology Tower N, Innovation Center, 88 Zuyi Road, High-tech District,	Tel: +86 (0557)

TEST GRAPHS	66
APPENDIX : MAXIMUM CONDUCTED OUTPUT POWER	68
TEST RESULT PEAK	68
APPENDIX : MAXIMUM POWER SPECTRAL DENSITY	69
TEST RESULT	69
TEST GRAPHS	69
APPENDIX : BAND EDGE MEASUREMENTS	71
TEST RESULT	71
TEST GRAPHS	71
APPENDIX : CONDUCTED SPURIOUS EMISSION	72
TEST RESULT	72
TEST GRAPHS	72
APPENDIX : DUTY CYCLE	76
TEST RESULT	76
TEST GRAPHS	77

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-QSZ2503050113RF06	Original release	Apr. 03, 2025

1. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	TEST LAB*
15.207	AC Power Conducted Emission	Compliance	А
15.205 15.209	Radiated Emissions	Compliance	А
15.247(d)	Out of band Emission Measurement	Compliance	А
15.247(a)(2)	6dB bandwidth	Compliance	Α
15.247(b)	Conducted Output power	Compliance	Α
15.247(e)	Power Spectral Density	Compliance	А
15.203	Antenna Requirement	Compliance	А

Note: Except RSE and AC Power Conducted Emission, other data please refer to Appendix B.

*Test Lab Information Reference

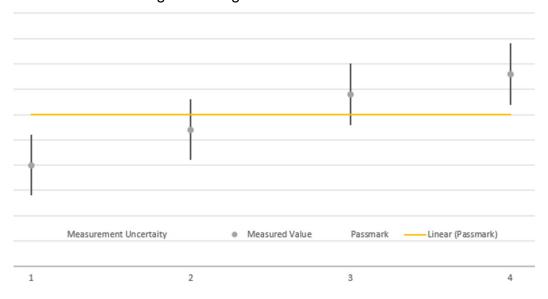
Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Global container monitoring terminal	
BRAND NAME*	JimiloT	
MODEL NAME*	LL306R LL306Pro	
NOMINAL VOLTAGE*	3.7Vdc(Battery) 5Vdc(Adapter)	
MODULATION *	BLE GFSK	
TRANSMISSION RATE*	BT_LE: 1 Mbps	
OPERATING FREQUENCY	2402-2480MHz for BT-LE	
MAX. OUTPUT POWER	BT-LE: 7.06mW (Maximum)	
ANTENNA GAIN*	BLE 1.1dBi for Ant 1 1.31dBi for Ant 2	
ANTENNA TYPE*	BLE PIFA Antenna for Ant 1 Dipole Antenna for Ant 1	
HW VERSION*	CT10R_MB_V1.0	
SW VERSION*	LL306_LL306_WAAP_XQGL_V1.0_240517.1101	
I/O PORTS*	Refer to user's manual	
CABLE SUPPLIED*	N/A	

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the
- 3. The EUT incorporates a SISO function. Physically, the EUT has only one RF Conducted port and dual antennas transmit.

MODULATION MODE	TX/RX FUNCTION
BT_LE(1MHz)	2Tx/2RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 5. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.
- 6. To meet different market demands, LL306R and LL306Pro differ only in model names, with all other aspects being identical.

7. List of Accessory:

ACCESSORIES	Brand	MODEL / SPECIFICATION
	11/4	Modle Name : 122960L
Internal battery	N/A	Power Rating:5Vdc, 2Ah
Fortennal battan.	NIA	KR301_S_GO01_F010
External battery	N/A	Power Rating : 5Vdc, 2Ah

2.2 DESCRIPTION OF TEST MODES

	BT-LE						
CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photographs of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on Y axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLIC	ABLE TO		MODE		
MODE	RE<1G	RE≥1G	PLC	APCM	WODE		
-	V	V	√	√			

Where

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
BT-LE	0 to 39	19	GFSK	1

RADIATED EMISSION TEST (ABOVE 1GHz):

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 - ☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
BT-LE	0 to 39	0,19, 39	GFSK	1.0

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
BT-LE	0 to 39	0,19, 39	GFSK	1.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
BT-LE	0 to 39	0,19, 39	GFSK	1.0

	TEST CONDITION						
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY				
RE<1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu				
RE≥1G	23deg. C, 70%RH	C 5V By Adapter	Hanwen Xu				
PLC 25deg. C, 52%RH		C 5V By Adapter	Hanwen Xu				
APCM	25deg. C, 60%RH	DC 3.7V By Battery	Hanwen Xu				

2.3 DUTY CYCLE OF TEST SIGNAL

Please Refer to Appendix B Of this test report..

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2020

Note:

- 1. All test items have been performed and recorded as per the above standards.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	Thinkpad E14	SL10W47313	N/A
2	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Unshielded, Detachable, 1.0m;

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBμV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

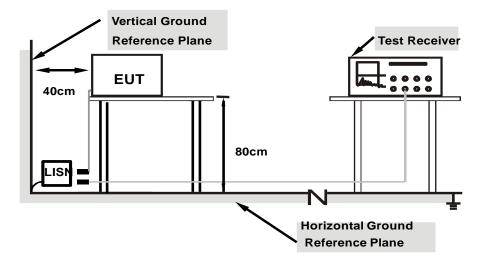
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Feb.24,24	Feb.23,26	
ELEKTRA test	Rohde&Schwarz	ELEKTRA	NIA	N1/A	N1/A	
software	RondeaSchwarz	ELENIKA	NA	N/A	N/A	
LISN network	Rohde&Schwarz	ENV216	102640	Feb.16,24	Feb.15,26	
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,26	
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,26	

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

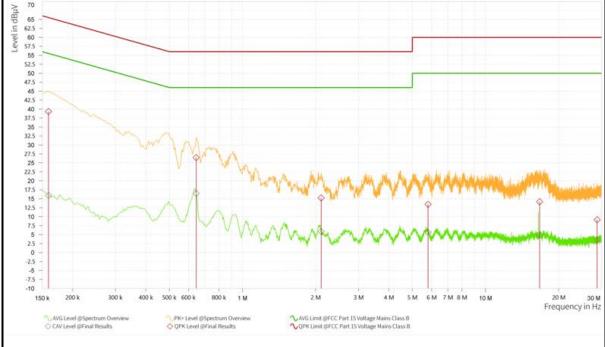
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

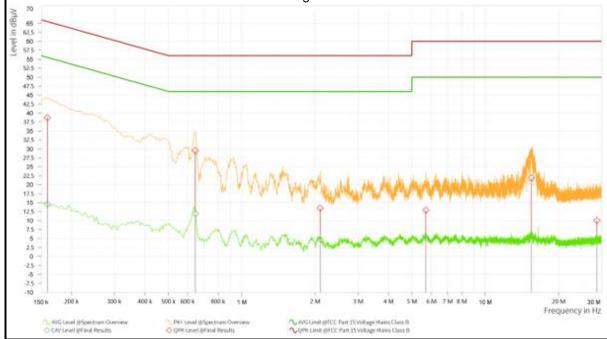

3.1.7 TEST RESULTS

CONDUCTED WORST-CASE DATA									
Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz						
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH						
Tested By	Hanwen Xu								

Rg	Frequency [MHz]	QPK Level [dBμV]	QPK Limit [dBμV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.159	39.31	65.52	26.21	15.95	55.52	39.57	12.47	L1	9.000
1	0.645	26.48	56.00	29.52	16.51	46.00	29.49	11.74	L1	9.000
1	2.108	15.22	56.00	40.78	5.87	46.00	40.13	11.76	L1	9.000
1	5.802	13.41	60.00	46.59	5.65	50.00	44.35	11.80	L1	9.000
1	16.706	14.16	60.00	45.84	4.89	50.00	45.11	11.85	L1	9.000
1	28.788	9.14	60.00	50.86	3.52	50.00	46.48	11.91	L1	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



Fred	Frequency Range 150KHz ~ 30MHz						Detector Function & Resolution Bandwidth			Quasi-Peak (QP) / Average (AV), 9 kHz			
Input Power 1120Vac 60Hz					Environmental Conditions 26deg. C, 51%RH				RH				
Tested By Hanwen Xu													
Rg	Frequency [MHz]	Le	PK evel ΒμV]	QPK Limit [dBμV]	QPK Margin [dB]	Le	AV evel βμV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	C	orrection [dB]	Line	Meas. BW [kHz]
1	0.159	38	3.71	65.52	26.81	14	1.58	55.52	40.94		12.17	N	9.000
1	0.645	29	9.49	56.00	26.51	11	.96	46.00	34.04		12.75	N	9.000
1	2.099	13	3.45	56.00	42.55	4	.78	46.00	41.22		12.74	N	9.000
1	5.708	12	2.89	60.00	47.11	5	.29	50.00	44.71		12.76	N	9.000
1	15.473	21	L.89	60.00	38.11	5	.87	50.00	44.13		12.83	N	9.000
1	28.761	10	0.05	60.00	49.95	4	.41	50.00	45.59		12.89	N	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)		
0.009 ~ 0.490	2400/F(kHz)	300		
0.490 ~ 1.705	24000/F(kHz)	30		
1.705 ~ 30.0	30	30		
30 ~ 88	100	3		
88 ~ 216	150	3		
216 ~ 960	200	3		
Above 960	500	3		

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

3.2.2 IE31 IN31					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26
Pre-Amplifier	R&S	SCU08F1	101028	Sep.15,24	Sep.14,26
Signal Generator	R&S	SMB100A	182185	Feb.15,24	Feb.14,26
One Fully an ealer's			HRSW-SZ-		
3m Fully-anechoic	TDK	9m*6m*6m	EMC-	Nov.25,22	Nov.24,25
Chamber			01Chamber		
00			HRSW-SZ-		
3m Semi-anechoic	TDK	9m*6m*6m	EMC-	Nov.25,22	Nov.24,25
Chamber			02Chamber		
EMI TEST Receiver	R&S	ESW44	101973	Feb.24,24	Feb.23,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Feb.27,24	Feb.26,26
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.21,24	Aug.20,26
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.22,24	Feb.21,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.26,24	Jun.25,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-	D.C.	HF290-NMNM-	NI/A	NI/A	NI/A
AMI18843A(CABLE)	R&S	7.00M	N/A	N/A	N/A
TMC-	D00	HF290-NMNM-	N1/A	21/4	N1/A
AMI18843A(CABLE)	R&S	4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,26
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,26

NOTE:

- 1. The calibration interval of the above test instruments is 12/ 24 / 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

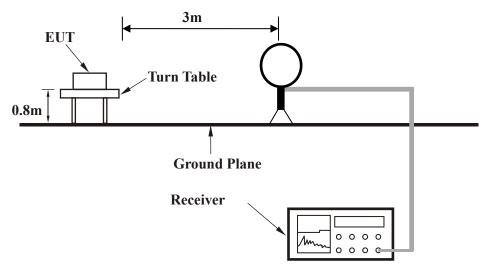
Tel: +86 (0557) 368 1008

3.2.3 TEST PROCEDURES

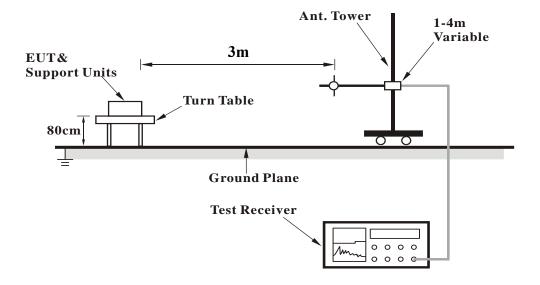
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

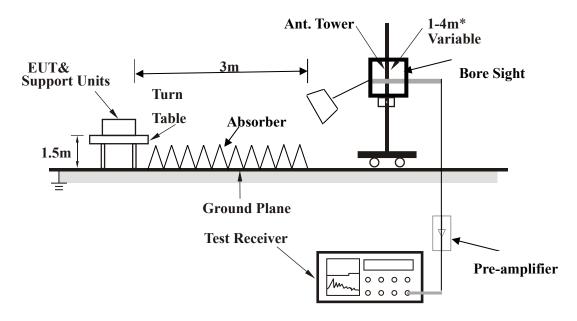

3.2.4 DEVIATION FROM TEST STANDARD

No deviation



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

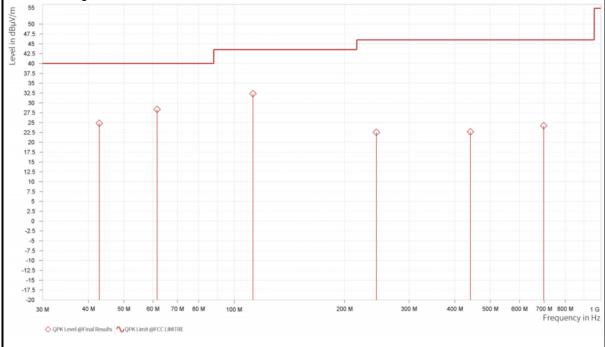
For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA


NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BT-LE_INT (1MHz)									
CHANNEL	TX Channel 19	DETECTOR	Ougoi Poek (OD)						
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)						

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]		
1	42.853	24.85	40.00	15.15	-9.17	Η	359	2.00	120.000		
1	61.622	28.35	40.00	11.65	-10.80	Η	219.7	2.00	120.000		
1	112.499	32.35	43.50	11.15	-11.34	Η	359	2.00	120.000		
1	244.273	22.53	46.00	23.47	-7.94	Η	219.7	2.00	120.000		
1	440.795	22.66	46.00	23.34	-2.29	Н	78.6	2.00	120.000		
1	698.864	24.18	46.00	21.82	-0.73	Н	359	1.00	120.000		

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.

CHA	ANNEL		TX	Channel 1	9		DETEC	TOR		Quasi-Peak (QP)		
FRE	QUENCY R	ANGE	301	MHz ~ 1GH	lz	1	FUNCT	ΓΙΟΝ		Qua	SI-I Cak (G	(i)
		ANTE	NN	A POLARI	TY & TE	ST D	ISTAN	CE: VERTICA	AL A	T 3 M		
Rg	Frequency [MHz]	-		QPK Limit [dBμV/m]	QPK Margin [dB]		ection dB]	Polarization		muth eg]	Antenna Height [m]	Meas. BW [kHz]
1	33.250	30.84	1	40.00	9.16	-13	3.80	V	14	0.3	1.00	120.000
1	54.784	22.33	3	40.00	17.67	-1	0.82	V	14	0.3	1.00	120.000
1	105.757	20.04	1	43.50	23.46	-1	0.73	V		1	2.00	120.000
1	240.539	24.61	l	46.00	21.39	-9	0.02	V		5	1.00	120.000
1	485.900	21.06	ô	46.00	24.94	-2	2.92	V	79	9.8	2.00	120.000
1	869.632	25.89	9	46.00	20.11	1	.73	V	21	9.7	2.00	120.000
m/VμdB ni l	15											
37 32 27 22 22	25 - 25 - 20 - 25 -	*						*		*		*
-2 -2 -3 -4 -12 -12 -17	100											

50 M 60 M 70 M 80 M

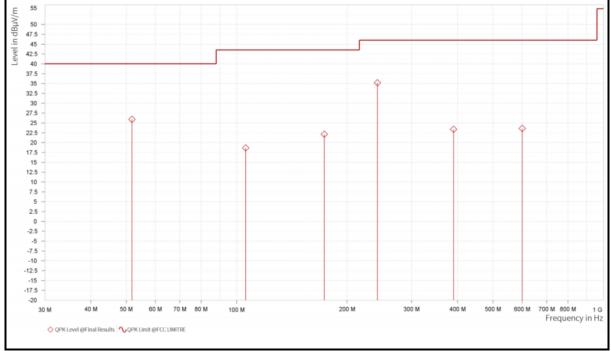
♦ QPK Level @Final Results | **QPK** Limit @FCC LIMITRE

100 M

200 M

600 M 700 M 800 M

00 M 800 M 1 G Frequency in Hz

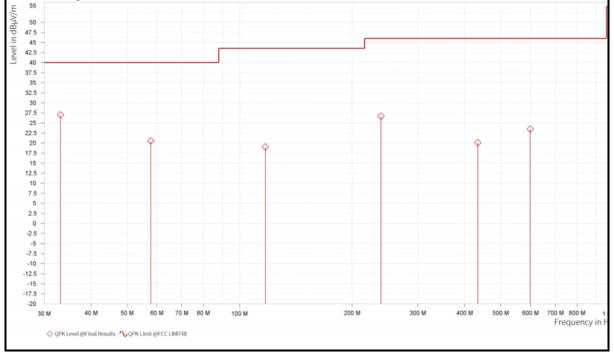


VERTIAS									
BT-LE_EXT (1MHz)									
CHANNEL	TX Channel 19	DETECTOR	Ougai Book (OD)						
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)						

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]		
1	51.777	25.89	40.00	14.11	-9.00	Н	134.3	1.00	120.000		
1	105.757	18.64	43.50	24.86	-10.73	Н	1	1.00	120.000		
1	173.221	22.09	43.50	21.41	-13.15	Н	84.5	2.00	120.000		
1	241.897	35.19	46.00	10.81	-8.14	Н	4.9	1.00	120.000		
1	390.016	23.36	46.00	22.64	-3.08	Н	134.3	1.00	120.000		
1	600.457	23.56	46.00	22.44	-1.38	Н	355.7	2.00	120.000		

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
 - 2. Margin value = Limit value- Emission level.


CHANNEL	TX Channel 19	DETECTOR	0 : 0 ! (00)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]			
1	33.153	26.99	40.00	13.01	-13.81	V	359	1.00	120.000			
1	57.839	20.51	40.00	19.49	-11.71	V	135.5	1.00	120.000			
1	117.300	19.01	43.50	24.49	-11.57	V	135.5	1.00	120.000			
1	238.938	26.65	46.00	19.35	-9.16	V	1	2.00	120.000			
1	434.248	20.07	46.00	25.93	-2.76	V	225.5	2.00	120.000			
1	599.293	23.46	46.00	22.54	-2.21	V	1	1.00	120.000			

REMARKS:

1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor

ABOVE 1GHz WORST-CASE DATA

Note:

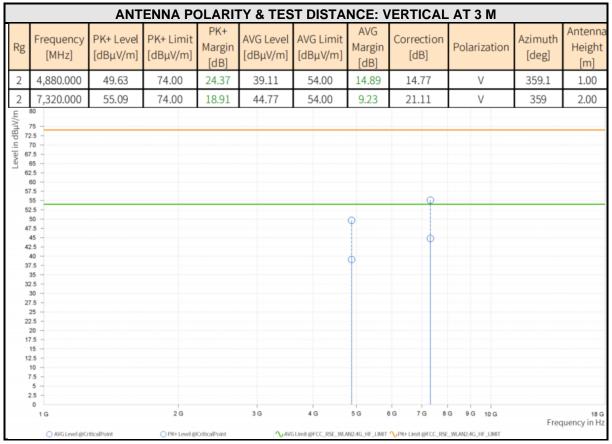
- 1. For radiated emissions testing, the full testing range of different modes have been scanned, only the worst case harmonic data is reported in the sheet.
- 2. All other emissions were greater than 20dB below the limit was not recorded

				В	T-LE_IN1	(1MHz)			
СНА	NNEL		TX C	Channel 0	DETECTOR		Peak (PK)		
RE	REQUENCY RANGE 1GHz ~ 25GHz FUNCTION Average (AV							')	
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
Rg	2,365.000 47.		evel //m]	The state of the s	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,365.000	47.05		74.00	26.95	6.48	Н	357.4	1.00
5	2,395.000	45.58		74.00	28,42	6.52	Н	191.7	1.00
5	2,402.000	94.31				6.53	Н	4.8	1.00
97.5 92.5 92.5 90.87.5 85.82.5 80.77.5 75.75 72.5 60.57.5 50.5 52.5 52.5 45.4 42.5 42.5 40.37.5 37.5						Q.			P
32.5 30 27.5 25 22.5 20	31 G 2.315 G 2.320 G	2.325 G 2.3	330 G 2.33	35 G 2.340 G 2.345 G	2.350 G 2.355 G	2360 G 2365 G 2370	G 2375 G 2380 G 238	5 G 2 390 G 2 395 G	2.400 G 2. Frequency ir

Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,392.000	31.59	54.00	22.41	6.52	Н	139	1.00
5	2,395.000	31.56	54.00	22.44	6.52	Ι	139	1.00
5	2,402.000	80.28			6.53	Н	4.9	1.00
E / 120 / 12		2.325 G 2.330 G 2.33	5G 2340G 2345G	2350 G 2355 G	2300 G 2305 G 2370 G	2.375 G 2.380 G 2.385 G	2 390 G 2 395 G 2	400 G 2.41

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]			
5	2,358.000	46.60	74.00	27.40	6.47	٧	357.3	1.00			
5	2,395.000	46.11	74.00	27.89	6.52	V	355	2.00			
5	2,402.000	97.41			6.53	V	51.8	1.00			
95 92: 9: 90 87: 85 82: 82: 82: 77: 70 65: 65: 65: 65: 65: 65: 65: 65: 65: 65:					φ						

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
Rg	Frequency [MHz]	AVG Level [dBμV/m]		Margin		Polarization	Azimuth [deg]	Antenna Height [m]				
5	2,393.000	31.68	54.00	22.32	6.52	٧	45.8	1.00				
5	2,395.000	31.69	54.00	22.31	6.52	V	45.8	1.00				
5	2,402.000	82.32			6.53	V	45.8	1.00				
E/\ntitle 12 11 11 11 11 11 11 1	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			2 350 G 2 355 G		G 2375 G 2380 G 2385	G 2390 G 2395 G	2.400 G 2.41 Frequency in F				


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

СН	ANNEL		TX Ch	annel 1	19	DET	ECTOF	₹	Peak (F	Peak (PK)			
FRE	EQUENCY	RANGE	1GHz	~ 25GI	Нz	FUN	CTION		Averag	Average (AV)			
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
2	4,880.000	50.02	74.00	23.98	39.17	54.00	14.83	14.77	Н	1	2.00		
2	7,320.000	56.40	74.00	17.60	44.78	54.00	9.22	21.11	Н	1	1.00		
42 4 37. 3 32. 3 27. 2 22. 2 17. 1 12. 1 7.	.5 -						ф	φ					
	1 G		2 G		3 G	4 G	5 G	6G 7G 8	G 9G 10G	Fra	18 G quency in Hz		

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

СНА	NNEL		TX C	hannel 39		DETECTOR		Peak (PK)			
FRE	QUENCY RA	NGE	1GH	z ~ 25GHz		FUNCTION		Average (AV)			
	Α	NTENI	NA PO	DLARITY &	TEST DIS	STANCE: HO	RIZONTAL	AT 3 M			
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	Azimuth [deg]	Antenna Height [m]		
6	2,479.500	87.	49			6.81	Н	141.5	1.00		
6	2,483.500	45.	88	74.00	28.12	6.80	Н	1	1.00		
6	2,492.000	46.	98	74.00	27.02	6.80	Н	352.6	1.00		
111 100 100 100 100 100 100 100 100 100	5	76G 2.2	480 G	2.482 G 2.484 G	2.486 G	2.488 G 2.490 G	2.492 G 2.4	194 G 2 496 G	2498 G 25 G		
22	5	78 G 2	480 G	2.482 G 2.484 G	2.486 G	2.488 G 2.490 G	2.492 G 2.4		2.498 G Frequency		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]						
6	2,480.000	75.26			6.81	Ι	70.3	2.00						
6	2,483.500	31.66	54.00	22.34	6.80	Н	5.5	1.00						
6	2,493.000	31.74	54.00	22.26	6.80	Н	1	2.00						
ш/\л/п 117 1107 1107 1107 1107 1107 1107 1107	5		2.482 G 2.484 G	2.486 G	2.488 G 2.490 G	2.492 G 2.494 G		2.498 G 2.5 G Frequency in Hz						

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M													
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]					
6	2,480.250	91.97			6.81	٧	68.6	1.00					
6	2,483.500	46.21	74.00	27.79	6.80	V	359	1.00					
6	2,497.250	47.72	74.00	26.28	6.79	V	216.1	2.00					
922 6 87 87 8 8 822 8 8 777 7 7 7 7 7 7 7 7 7	155	8G 2480G	2.482 G 2.484 G	2.486 G	2488 G 2490 G	2.492 G 2.494 G	2.496 G	248G 25					

Rg [M] 6 2,48 6 2,48 6 2,48 6 2,48 175 120 175 125 175 185 185 185 185 185 185 185 185 185 18	' '	AVG Level [dBµV/m] 78.43 31.78 31.95	AVG Limit [dBµV/m] 54.00 54.00	AVG Margin [dB] 22.22 22.05	Correction [dB] 6.81 6.80 6.80	Polarization V V V	Azimuth [deg] 1 359 85.3	Antenna Height [m] 2.00 2.00 1.00
6 2,48 6 2,48 125 120 117.5 110 117.5 110 117.5 102.5 1	83.500	31.78			6.80	V	359	2.00
6 2,48 E 125 125 115 117.5 115 115 105 105 105 105 105 1	$\overline{}$					-	_	
E 125 120 120 120 120 120 125 120 125	89.000	31.95	54.00	22.05	6.80	V	85.3	1.00
120 - 120 -								
60 - 57.5 - 55.5 - 52.5 - 50.5 - 47.5 - 45 - 40 - 37.5 - 32.5 - 30 - 27.5 - 22.5 - 20 2 475 G				3 248 G	2.488 G 2.490 G	2492 G 2494	G 2496 G	2498 G 25 G

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

			В	T-LE_EX	Γ (1MHz)			
NNEL		TX C	Channel 0		DETECTOR		Peak (PK)	
QUENCY RA	NGE	1GH	z ~ 25GHz		FUNCTION		Average (AV)
A	NTENI	NA P	OLARITY &	TEST DIS	STANCE: HO	RIZONTAL A	T 3 M	
Frequency [MHz]			PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2,383.500	46.9	93	74.00	27.07	6.51	Н	226.8	2.00
2,390.000	45.8	83	74.00	28.17	6.52	Н	181.4	2.00
2,402.000	97.3	30			6.53	Н	42.3	1.00
						9		
	QUENCY RA Frequency [MHz] 2,383.500 2,390.000 2,402.000	PK+ L [dBμν 2,383.500 46.9 2,402.000 97.3	ANTENNA PO Frequency [MHz] PK+ Level [dBμV/m] 2,383.500 46.93 2,390.000 45.83 2,402.000 97.30	TX Channel 0 1GHz ~ 25GHz 25GHz	TX Channel 0 TX	Correction GB Correction Correction	TX Channel 0 DETECTOR FUNCTION	TX Channel 0 DETECTOR FUNCTION Average (AV AVERAGE IGHz ~ 25GHz FUNCTION Average (AV AVERAGE IGHz ~ 25GHz FUNCTION Average (AV AVERAGE IGHz ~ 25GHz FUNCTION Average (AV AVERAGE IGHz ~ 13 M

	Α	NTENNA PO	DLARITY &	TEST DIS	STANCE: HO	RIZONTAL AT	3 M	
Rg	Frequency [MHz]	AVG Level [dBμV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,385.000	31.53	54.00	22.47	6.51	Н	127.7	2.00
5	2,390.000	31.44	54.00	22.56	6.52	Н	274.2	1.00
5	2,402.000	82.74			6.53	Н	41.1	1.00
E / 12: 12: 12: 12: 12: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	2.325 G 2.330 G 2.3:		2.350 G 2.355 G		G 2.375 G 2.380 G 2.385 C	G 2390 G 2395 G	2.400 G 2.411 Frequency in H

		ANTENNA I	POLARITY 8	& TEST D	ISTANCE: V	ERTICAL AT 3	М	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,353.000	54.00	74.00	20.00	6.46	٧	41.1	1.00
5	2,390.000	47.66	74.00	26.34	6.52	V	359	1.00
5	2,402.500	94.59			6.53	V	133.2	1.00
ш/лія пі пот пі	5 - 5	2.325 G 2.330 G 2.3:		2350 G 2355 G		2375 G 2380 G 2385 G	2390 G 2395 G 2	400 G 2.41 G Frequency in Hz

		ANTENNA	POLARITY	& TEST [DISTANCE: V	ERTICAL AT	3 M	
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,386.000	31.56	54.00	22.44	6.51	V	177.8	2.00
5	2,390.000	31.43	54.00	22.57	6.52	V	177.8	2.00
5	2,402.000	79.86			6.53	V	135.5	1.00
E / 122 / 12		2.325 G 2.330 G 2.3	35 G 2.340 G 2.345 G	2 350 G 2 355 G	2360 G 2365 G 2370	G 2.375 G 2.380 G 2.385	3 2390 G 2.395 G	2400 G 241 Frequency in 1

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

Rg [MHz] [dBμV/m] [dBμV/m] Margin [dB] [dB] Polarization [deg] Height [m] [kH 1 51.777 25.89 40.00 14.11 -9.00 H 134.3 1.00 120.0 1 105.757 18.64 43.50 24.86 -10.73 H 1 1.00 120.0 1 173.221 22.09 43.50 21.41 -13.15 H 84.5 2.00 120.0 1 241.897 35.19 46.00 10.81 -8.14 H 4.9 1.00 120.0 1 390.016 23.36 46.00 22.64 -3.08 H 134.3 1.00 120.0	CHA	NNEL		TX Channel	19	DETE	CTOR	Pea	k (PK)			
Rg Frequency [MHz] QPK Level [dBμV/m] QPK Limit [dBμV/m] Correction [dB] Polarization Azimuth [deg] Antenna Height [m] Meas. [kH 1 51.777 25.89 40.00 14.11 -9.00 H 134.3 1.00 120.0 1 105.757 18.64 43.50 24.86 -10.73 H 1 1.00 120.0 1 173.221 22.09 43.50 21.41 -13.15 H 84.5 2.00 120.0 1 241.897 35.19 46.00 10.81 -8.14 H 4.9 1.00 120.0 1 390.016 23.36 46.00 22.64 -3.08 H 134.3 1.00 120.0 1 600.457 23.56 46.00 22.44 -1.38 H 355.7 2.00 120.0 23.35 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5	FRE	QUENCY R	ANGE	1GHz ~ 25G	Hz	FUNC	TION	Ave	Average (AV)			
Rg Frequency QPK Level			ANTENN	NA POLARIT	Y & TES	T DISTANC	E: HORIZON	TAL AT 3	М			
1 105.757 18.64 43.50 24.86 -10.73 H 1 1.00 120.0 1 173.221 22.09 43.50 21.41 -13.15 H 84.5 2.00 120.0 1 241.897 35.19 46.00 10.81 -8.14 H 4.9 1.00 120.0 1 390.016 23.36 46.00 22.64 -3.08 H 134.3 1.00 120.0 1 600.457 23.56 46.00 22.44 -1.38 H 355.7 2.00 120.0	Rg	, ,		-	Margin		Polarization		Height	Meas. BV [kHz]		
1 173.221 22.09 43.50 21.41 -13.15 H 84.5 2.00 120.0 1 241.897 35.19 46.00 10.81 -8.14 H 4.9 1.00 120.0 1 390.016 23.36 46.00 22.64 -3.08 H 134.3 1.00 120.0 1 600.457 23.56 46.00 22.44 -1.38 H 355.7 2.00 120.0	1	51.777	25.89	40.00	14.11	-9.00	Н	134.3	1.00	120.000		
1 241.897 35.19 46.00 10.81 -8.14 H 4.9 1.00 120.0 1 390.016 23.36 46.00 22.64 -3.08 H 134.3 1.00 120.0 1 600.457 23.56 46.00 22.44 -1.38 H 355.7 2.00 120.0	1	105.757	18.64	43.50	24.86	-10.73	Н	1	1.00	120.000		
1 390.016 23.36 46.00 22.64 -3.08 H 134.3 1.00 120.0 1 600.457 23.56 46.00 22.44 -1.38 H 355.7 2.00 120.0 Matter Ma	1	173.221	22.09	43.50	21.41	-13.15	Н	84.5	2.00	120.000		
1 600.457 23.56 46.00 22.44 -1.38 H 355.7 2.00 120.0	1	241.897	35.19	46.00	10.81	-8.14	Н	4.9	1.00	120.000		
S S S S S S S S S S	1	390.016	23.36	46.00	22.64	-3.08	Н	134.3	1.00	120.000		
SO	1	600.457	23.56	46.00	22.44	-1.38	Н	355.7	2.00	120.000		
-15 - -17.5 - -20	37, 33, 32, 77, 2, 22, 22, 17, 11, 12, 11, 7, 2, -2, -7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1	.55555555 -	*		*	*	*	\(\)	+			

Rg	Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. B [kHz]
1	33.153	26.99	40.00	13.01	-13.81	V	359	1.00	120.00
1	57.839	20.51	40.00	19.49	-11.71	V	135.5	1.00	120.00
1	117.300	19.01	43.50	24.49	-11.57	V	135.5	1.00	120.00
1	238.938	26.65	46.00	19.35	-9.16	٧	1	2.00	120.00
1	434.248	20.07	46.00	25.93	-2.76	V	225.5	2.00	120.00
1	599.293	23.46	46.00	22.54	-2.21	V	1	1.00	120.00
Fevel in dBµV/m 42:	5 -					J			
37.	5 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	•		φ		\$	Ŷ	•	

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2437MHz: Fundamental frequency.

СНА	NNEL		TX C	hannel 39		DETECTOR		Peak (PK)	
FRE	QUENCY RA	NGE	1GH	z ~ 25GHz		FUNCTION		Average (AV)
	Α	NTENI	NA PO	DLARITY &	TEST DIS	STANCE: HO	RIZONTAL /	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBμ\		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarizatio	Azimuth [deg]	Antenna Height [m]
6	2,480.000	95.	13			6.81	Н	355.1	2.00
6	2,483.500	51.	03	74.00	22.97	6.80	Η	76.2	2.00
6	2,484.000	57.	01	74.00	16.99	6.80	Н	76.2	2.00
110 105 102.		8G 2.	480 G	2.482 G 2.484 G	5 2486 G	248 G 2490	3 2492 G	2494 G 2499 G	2.496 G 2.5

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]						
6	2,480.000	80.40			6.81	Н	355.8	2.00						
6	2,483.500	31.79	54.00	22.21	6.80	Н	220.9	2.00						
6	2,491.000	31.82	54.00	22.18	6.80	Н	292.6	2.00						
E/\(\text{\pi}\) \(\text{Int}\) \(\t	5	B G 2.480 G	2.482 G 2.484 G	2.486 G	2488 G 2490 G	2492 G 2494 (G 2.496 G	2.498 G 2.5 G Frequency in Hz						

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
6	2,479.750	95.63			6.81	٧	359	2.00	
6	2,483.500	55.70	74.00	18.30	6.80	٧	349.4	1.00	
6	2,483.750	57.96	74.00	16.04	6.80	V	349.4	1.00	
E 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		G 2450 G	2.482 G 2.484 G	2.486 G	2485 G 2490 G	2.492 G 2.494 G	2.496 G	2486 G 25 G	

6 2,48 6 2,48	,	AVG Level [dBµV/m] 81.50 31.84 31.83		AVG Margin [dB] 22.16 22.17	Correction [dB] 6.81 6.80 6.80	Polarization V V V	Azimuth [deg] 359 359 0.9	Antenna Height [m] 2.00 2.00 2.00
6 2,48 6 2,49 E/125 1175 1175 1185 1195 100 - 975 102 5 100 - 975 95 92 5 90 87.5 95 92 5 90 87.5 95 97.5 97.5 98.5 82.5 82.5 82.5 83.5 84.5 85.5 86	3.500	31.84			6.80	V	359	2.00
6 2,49	$\overline{}$							
E 125 125 117 117 117 117 117 117	1.000	31.83	54.00	22.17	6.80	V	0.9	2.00
120 17.5 - 12.5								
55 52.5 - 50 - 47.5 - 45 - 42.5 - 40 - 37.5 - 35 - 32.5 - 30 - 27.5 - 25 - 25 - 20 -						Φ		

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

3.3 6 dB BANDWIDTH MEASUREMENT

3.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

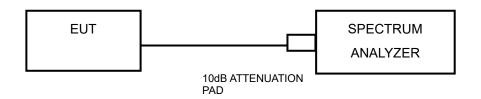
The minimum 6dB Bandwidth Measurement is 0.5 MHz.

3.3.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	R&S	ESW 44	101973	Feb.24,24	Feb.23,26
Open Switch and Control Unit	R&S	OSP-B157W8	100836	N/A	N/A
Hygrothermograph	DELI	20210528	SZ015	Sep.05,24	Sep.04,26
PC	LENOVO	E14	HRSW0024	N/A	N/A
CABLE	R&S	J12J103539- 00-1	SEP-03-20-069	Apr.27,24	Apr.26,26
CABLE	R&S	J12J103539- 00-1	SEP-03-20-070	Apr.27,24	Apr.26,26
Test Software	EMC32	EMC32	N/A	N/A	N/A
Power Meter	R&S	NRX	102380	Feb.15,24	Feb.14,26
Power Meter probe	R&S	NRP6A	102942	Feb.15,24	Feb.14,26

NOTE:

- 1. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.



3.3.3 TEST PROCEDURE

- 1. Set RBW = shall be in the range of 1% to 5% of the 0BW but not less than 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

No deviation.

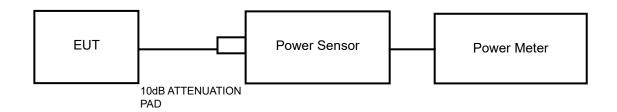
3.3.5 TEST SETUP

3.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.3.7 TEST RESULTS

Please Refer to Appendix B Of this test report..



3.4 CONDUCTED OUTPUT POWER

3.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

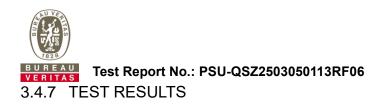
For systems using digital modulation in the 2400–2483.5 MHz band: 1 Watt (30dBm)

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.4.4 TEST PROCEDURES


A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

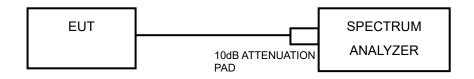
3.4.7.1 MAXIMUM PEAK OUTPUT POWER

Please Refer to Appendix B Of this test report..

3.4.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

Please Refer to Appendix B Of this test report..



3.5 POWER SPECTRAL DENSITY MEASUREMENT

3.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.5.4 TEST PROCEDURE

- 1. Set the span to 1.5 times the DTS bandwidth
- 2. Set the RBW = 3 kHz, VBW $\geq 3 \text{ x RBW}$, Detector = peak.
- 3. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.5.5 DEVIATION FROM TEST STANDARD

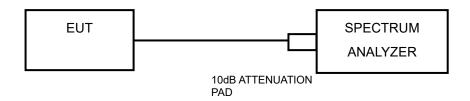
No deviation.

3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.5.7 TEST RESULTS

Please Refer to Appendix B Of this test report..



3.6 OUT OF BAND EMISSION MEASUREMENT

3.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.6.7 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

Please Refer to Appendix B Of this test report..

3.7 ANTENNA REQUIREMENTS

3.7.1 STANDARD APPLICABLE

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.7.2 ANTENNA CONNECTED CONSTRUCTION

An embedded-in antenna design is used.

3.7.3 ANTENNA GAIN

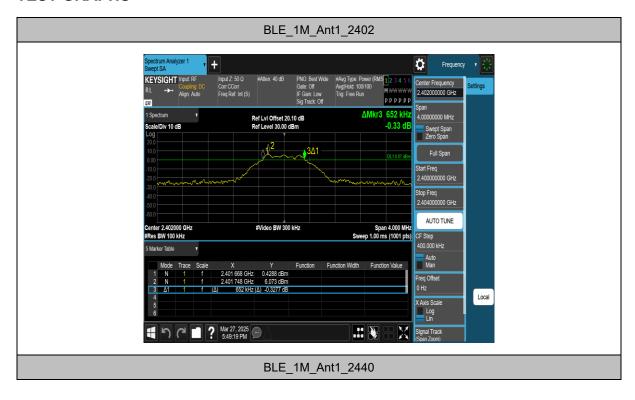
The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit and PSD limit.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.


6 APPENDIX B:BLE

DTS BANDWIDTH

TEST RESULT

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict	
		2402	0.652	2401.668	2402.320	0.5	PASS	
BLE_1M	Ant1	Ant1	2440	0.680	2439.648	2440.328	0.5	PASS
		2480	0.636	2479.672	2480.308	0.5	PASS	

TEST GRAPHS

APPENDIX: OCCUPIED CHANNEL BANDWIDTH

TEST RESULT

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.0670	2401.4681	2402.5351		
BLE_1M	Ant1	2440	1.0878	2439.4583	2440.5461		
		2480	1.0928	2479.4496	2480.5424		

TEST GRAPHS

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

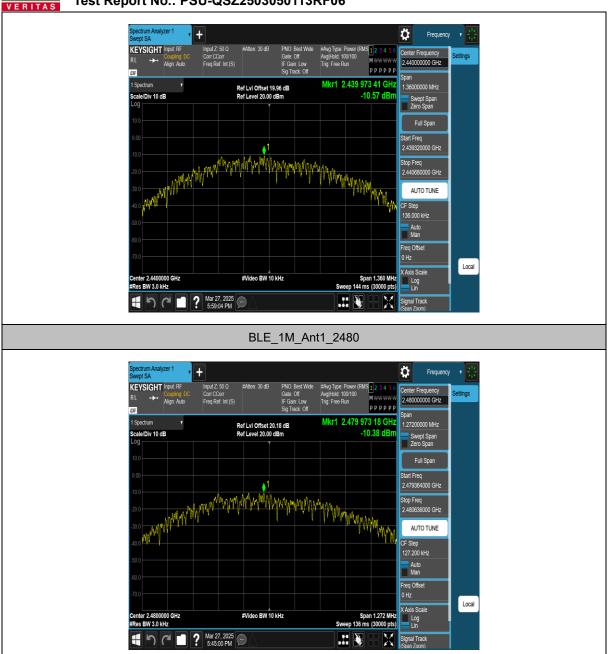
Tel: +86 (0557) 368 1008

APPENDIX: MAXIMUM CONDUCTED OUTPUT POWER

TEST RESULT PEAK

TestMo de	Antenn a	Chann el	Averag e power [dBm]	Peak pow er [dBm]	Peak pow er [mw]	Conduct ed Limit [dBm]	EIR P [dB m]	EIR P [mw	EIR P Limit [dB m]	Verdi ct	Powe r Settin g
		2402	3.21	7.18	5.22	≤30	8.49	7.06	≤36	PASS	Defult
BLE_1M	Ant1	2440	2.98	5.91	3.90	≤30	7.22	5.27	≤36	PASS	Defult
		2480	1.92	6.09	4.06	≤30	7.40	5.50	≤36	PASS	Defult
Note:EIRI	P=Peak P	ower+Gai	n								

APPENDIX: MAXIMUM POWER SPECTRAL DENSITY


TEST RESULT

TestMode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-9.06	≤8.00	PASS
BLE_1M	Ant1	2440	-10.57	≤8.00	PASS
		2480	-10.38	≤8.00	PASS

TEST GRAPHS

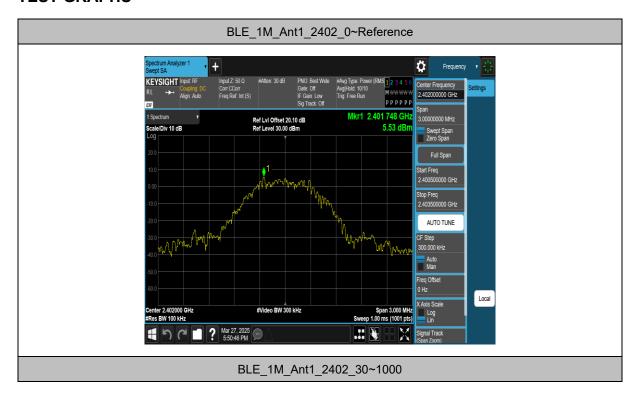


APPENDIX: BAND EDGE MEASUREMENTS

TEST RESULT

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
DIE 1M	A mtd	Low	2402	6.09	-30.88	≤-13.92	PASS
BLE_1M	Ant1	High	2480	4.85	-31.31	≤-15.15	PASS

TEST GRAPHS

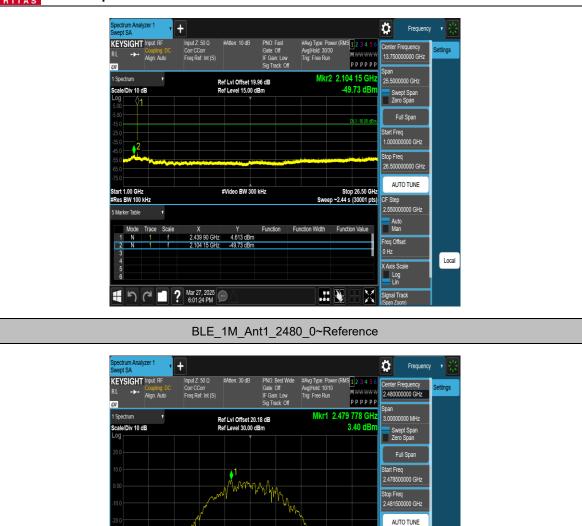


APPENDIX: CONDUCTED SPURIOUS EMISSION

TEST RESULT

TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
		2402	Reference	5.53	5.53		PASS
BLE_1M Ant			30~1000	5.53	-44.81	≤-14.47	PASS
			1000~26500	5.53	-49.63	≤-14.47	PASS
			Reference	3.92	3.92		PASS
	Ant1	2440	30~1000	3.92	-44.51	≤-16.08	PASS
			1000~26500	3.92	-49.73	≤-16.08	PASS
			Reference	3.40	3.40		PASS
		2480	30~1000	3.40	-44.76	≤-16.6	PASS
			1000~26500	3.40	-49.57	≤-16.6	PASS

TEST GRAPHS



BLE_1M_Ant1_2440_1000~26500

BLE_1M_Ant1_2480_30~1000

.# ₹

#Video BW 300 kHz

目りにする。 Mar 27, 2025 (5:45:30 PM

Local

APPENDIX: DUTY CYCLE

TEST RESULT

TestMode	Antonno	Antenna Frequency[MHz]		Period	Duty Cycle	Duty Cycle
restiviode	Antenna	Frequency[MHZ]	[ms]	[ms]	[%]	Factor[dB]
	Ant1	2402	0.42	0.63	66.67	1.76
BLE_1M		2440	0.41	0.62	66.13	1.80
		2480	0.42	0.63	66.67	1.76

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

TEST GRAPHS

--END--