FCC SAR TEST REPORT FCC ID : 2AP4W-ALITE Equipment : mPERS **Brand Name** : Belle Model Name : Belle X ATT Marketing Name : Belle X : Freeus, LLC **Applicant** 640 W 1100 S Suite 4, Ogden, Utah, United States 84404 Manufacturer : Wistron Corporation 21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C Standard : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** **IEEE 1528-2013** The product was received on Aug. 27, 2019 and testing was started from Sep. 04, 2019 and completed on Sep. 06, 2019. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Approved by: Cona Huang / Deputy Manager Gua Guang. SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: 886-3-327-3456 Page 1 of 37 FAX: 886-3-328-4978 Issued Date : Oct. 16, 2019 # **Table of Contents** | 1. Statement of Compliance | | |---|-----| | 2. Guidance Applied | | | 3. Equipment Under Test (EUT) Information | 5 | | 3.1 General Information | 5 | | 3.2 General LTE SAR Test and Reporting Considerations | 6 | | 4. RF Exposure Limits | 7 | | 4.1 Uncontrolled Environment | 7 | | 4.2 Controlled Environment | 7 | | 5. Specific Absorption Rate (SAR) | 8 | | 5.1 Introduction | 8 | | 5.2 SAR Definition | 8 | | 6. System Description and Setup | 9 | | 6.1 E-Field Probe | .10 | | 6.2 Data Acquisition Electronics (DAE) | .10 | | 6.3 Phantom | | | 6.4 Device Holder | .12 | | 7. Measurement Procedures | | | 7.1 Spatial Peak SAR Evaluation | | | 7.2 Power Reference Measurement | .14 | | 7.3 Area Scan | | | 7.4 Zoom Scan | | | 7.5 Volume Scan Procedures | | | 7.6 Power Drift Monitoring. | | | 8. Test Equipment List | | | 9. System Verification | | | 9.1 Tissue Simulating Liquids | | | 9.2 Tissue Verification | | | 9.3 System Performance Check Results | | | 10. Conducted RF Output Power (Unit: dBm) | .20 | | 11. Antenna Location | .28 | | 12. SAR Test Results | | | 12.1 Head SAR | | | 12.2 Body Worn Accessory SAR | | | 12.3 Extremity SAR | | | 12.4 Repeated SAR Measurement | | | 13. Simultaneous Transmission Analysis | | | 13.1 Head Exposure Conditions | | | 13.2 Body-Worn Accessory Exposure Conditions | | | 13.3 Extremity Exposure Conditions | | | 14. Uncertainty Assessment | | | 15. References | | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | | Appointed to 1001 Octob 1 Hotos | | # History of this test report Report No. : FA982310 | Report No. | Version | Description | Issued Date | |------------|---------|-------------------------|---------------| | FA982310 | 01 | Initial issue of report | Oct. 16, 2019 | TEL: 886-3-327-3456 Page 3 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Freeus**, **LLC**, **mPERS**, **Belle X ATT**, are as follows. Report No. : FA982310 | | | ŀ | Highest SAR Summar | Highest | Highest | | |--------------------|-------------------|---------------------------|-------------------------------|----------------------------|------------------------------|------------------------------| | Equipment
Class | Frequency
Band | Head
(Separation 10mm) | Body-worn
(Separation 0mm) | Extremity (Separation 0mm) | Simultaneous
Transmission | Simultaneous
Transmission | | | | 1g SAR (W/kg) | | 10g SAR (W/kg) | 1g SAR (W/kg) | 10g SAR (W/kg) | | | LTE Band 2 | 1.09 | 0.48 | 2.60 | | | | Licensed | LTE Band 4 | 1.32 | 0.40 | 2.33 | 1.36 | 2.64 | | | LTE Band 12 | 0.43 | 0.08 | 0.63 | | | | Date of Testing: | | | 201 | 9/9/4 ~ 2019/9/6 | | | Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Extremity 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications Reviewed by: <u>Jason Wang</u> Report Producer: <u>Daisy Peng</u> TEL: 886-3-327-3456 Page 4 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 2. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: **Report No. : FA982310** - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 # 3. Equipment Under Test (EUT) Information ## 3.1 General Information | Product Feature & Specification | | | | | |--|---|--|--|--| | Equipment Name | mPERS | | | | | Brand Name | Belle | | | | | Model Name | Belle X ATT | | | | | Marketing Name | Belle X | | | | | FCC ID | 2AP4W-ALITE | | | | | IMEI Code | 355972100013748 | | | | | Wireless Technology and
Frequency Range | LTE Band 2: 1850.7 MHz ~ 1909.3 MHz
LTE Band 4: 1710.7 MHz ~ 1754.3 MHz
LTE Band 12: 699.7 MHz ~ 715.3 MHz
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz | | | | | Mode | WLAN: 802.11b/g/n HT20 | | | | | HW Version | DVT2 | | | | | EUT Stage | Identical prototype | | | | TEL: 886-3-327-3456 Page 5 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 3.2 General LTE SAR Test and Reporting Considerations | | | | Sur | nmarized | necess | ary ite | ems addre | essed in KD | B 94 | 1225 | 5 D05 v02r | 05 | | | | |---|---------------|----------------|------------------|----------------|-----------------------|---------------------|-------------------------|--|------------|---------|-------------------------|----------------------|-----------|----------|----------------| | FC | C ID | | | 2 | AP4W-A | ALITE | | | | | | | | | | | Eq | quipment Name | | | | PERS | | | | | | | | | | | | Operating Frequency Range of each LTE transmission band | | | | | TE Band
TE Band | d 4: 17
d 12: 6 | 710.7 MHz
899.7 MHz | : ~ 1909.3 M
: ~ 1754.3 M
: ~ 715.3 MH | IHz
Iz | | | | | | | | Ch | annel Band | dwidth | | L | TE Band | d 04:1. | 4MHz, 3M | 1Hz, 5MHz,
1Hz, 5MHz,
1Hz, 5MHz, | 10MI | Hz, 1 | | | | | | | up | link modula | itions use | d | Q | PSK / 1 | 6QAM | 1 | | | | | | | | | | LT | E Voice / D | ata requir | ements | D | ata only | 1 | | | | | | | | | | | | | | | | Tabl | e 6.2.3 | 3-1: Maxir | num Power | Red | uctio | on (MPR) f | or Power C | lass 1, | 2 and | 3 | | | | | | | Modula | ition | | annel bandv | | | | | | MF | PR (dB) | | | | | | | | | 1.4
MHz | 3.0
MHz | | 5
Hz | 10
MHz | 15
MHz | 20
MHz | | | | 1 = | C MDD sor | manantlı. | المياط ما النباط | ooian | QPS | K | > 5 | > 4 | IVI | _ | > 12 | > 16 | > 18 | | ≤ 1 | | LT | L IVIPR per | manently | built-in by de | esign | 16 Q/ | | ≤ 5 | ≤ 4 | <u> </u> | _ | ≤ 12 | ≤ 16 | ≤ 18 | | ≤1 | | | | | | | 16 Q/ | | > 5 | > 4 | > | | > 12 | > 16 | > 18 | | ≤ 2 | | | | | | | 64 Q/ | AM. | ≤ 5 | ≤ 4 | ≤ | 8 | ≤ 12 | ≤ 16 | ≤ 18 | | ≤ 2 | | | | | | | 64 Q/ | | > 5 | > 4 | > | 8 | > 12 | > 16 | > 18 | | ≤ 3 | | | | | | | 256 Q | AM | | | | 2 | ≥ 1 | | | | ≤ 5 | | Sp | ectrum plot | ts for RB | configuration | m
ne | neasurer
ot includ | ment; t
ded in t | therefore,
the SAR r | | lots f | or ea | ich RB allo | cation and | offset c | onfigura | ation are | | | | | Transm | iission (H, | M, L) C | hanne | | rs and frequ | lenc | ies ir | n each LTE | band | | | | | | Bandwidth | 1 4 MU= | Randwid | th 3 MHz | Ran | dwidth | LTE Ba
5 MHz | nu ∠
Bandwidth | 10 1 | /ILI-z | Randwic | dth 15 MHz | Rong | dwidth (| 20 MHz | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. | | Freq.
(MHz) | Ch. # | Fre
(Ml | eq. | Ch. # | Freq.
(MHz) | Ch. | | Freq.
(MHz) | | L | 18607 | 1850.7 | 18615 | 1851.5 | 1862 | 25 | 1852.5 | 18650 | 18 | | 18675 | 1857.5 | 187 | 00 | 1860 | | М | 18900 | 1880 | 18900 | 1880 | 1890 | 00 | 1880 | 18900 | 18 | 80 | 18900 | 1880 | 189 | 00 | 1880 | | Н | 19193 | 1909.3 | 19185 | 1908.5 | 1917 | 75 | 1907.5 | 19150 | 19 | 05 | 19125 | 1902.5 | 191 | 00 | 1900 | | | | | | | | | LTE Ba | nd 4 | | | | | | | | | | Bandwidth | | Bandwid | th 3 MHz | Ban | dwidth | 5 MHz | Bandwidth | 10 N | ЛНz | Bandwid | th 15 MHz | Band | dwidth 2 | 20 MHz | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. | # | Freq.
(MHz) | Ch. # | Fre
(MI | | Ch. # | Freq.
(MHz) | Ch. | .# | Freq.
(MHz) | | L | 19957 | 1710.7 | 19965 | 1711.5 | | | 1717.5 | 200 | | 1720 | | | | | | | M | 20175 | 1732.5 | 20175 | 1732.5 | 201 | | 1732.5 | 20175 | 173
 | 20175 | 1732.5 | 201 | | 1732.5 | | Н | 20393 | 1754.3 | 20385 | 1753.5 | 203 | /5 | 1752.5 | 20350 | 17 | 50 | 20325 | 1747.5 | 203 | 00 | 1745 | | | | | | | | | LTE Bar | | | | | | | | | | | Ban | dwidth 1.4 | | Ba | andwidth | | | Ban | dwid | th 5 N | ИHz | Ва | ndwidth | 10 M⊦ | lz | | | | Ch. | # | Freq | . (MHz) | Ch. # | | Fre | eq. (MHz) | Ch. | # | Frea. | (2.41.1.) | | | | | CII. # | <u> </u> | cq. (IVII IZ) | 011. | | | | | | | | | | (MHz) | | | L | 23017 | | 699.7 | | 25 | | | | | | 701.5 | 2306 | 60 | | (MHz)
04 | | L
M
H | | ; | | | 95 | 70 | | | | | 701.5
707.5
713.5 | 2306
2309
2313 |)5 | 7
70 | , , | **Report No. : FA982310** TEL: 886-3-327-3456 Page 6 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 4. <u>RF Exposure Limits</u> ## 4.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA982310 #### 4.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. TEL: 886-3-327-3456 Page 7 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 5. Specific Absorption Rate (SAR) ## 5.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA982310 ### 5.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: 886-3-327-3456 Page 8 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 6. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA982310 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. TEL: 886-3-327-3456 Page 9 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 6.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <ES3DV3 Probe> | Construction | Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | | |---------------|---|--|--| | Frequency | 10 MHz – 4 GHz;
Linearity: ±0.2 dB (30 MHz – 4 GHz) | | | | | | | | | Directivity | ±0.2 dB in TSL (rotation around probe axis) | | | | | ±0.3 dB in TSL (rotation normal to probe axis) | | | | Dynamic Range | $5 \mu W/g - >100 \text{ mW/g}$; | | | | J | Linearity: ±0.2 dB | | | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | | | Tip diameter: 3.9 mm (body: 12 mm) | | | | | Distance from probe tip to dipole centers: 3.0 mm | | | **Report No.: FA982310** #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Frequency | 10 MHz – >6 GHz | | . , | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | ±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g – >100 mW/g | | | Linearity: ±0.2 dB (noise: typically <1 µW/g) | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 2.5 mm (body: 12 mm) | | | Typical distance from probe tip to dipole centers: 1 | | | mm | ### 6.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.1 Photo of DAE TEL: 886-3-327-3456 Page 10 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 6.3 Phantom #### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | |-------------------|---|-----| | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA982310 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|--| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully
compatible with standard and all known tissue simulating liquids. TEL: 886-3-327-3456 Page 11 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 6.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No. : FA982310 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones #### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops TEL: 886-3-327-3456 Page 12 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 7. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA982310 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 7.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g TEL: 886-3-327-3456 Page 13 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ### 7.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA982310 #### 7.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | | |--|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | | Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$ | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | TEL: 886-3-327-3456 Page 14 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ### 7.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA982310 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|--------------|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 1.5·∆z | Zoom(n-1) | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 7.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 7.6 Power Drift Monitoring All SAR
testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 886-3-327-3456 Page 15 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # 8. Test Equipment List | | | - // | 0.1111.1 | Calib | ration | |---------------|-------------------------------|-----------------|---------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 750MHz System Validation Kit | D750V3 | 1107 | Mar. 08, 2019 | Mar. 07, 2020 | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1068 | Nov. 19, 2018 | Nov. 18, 2019 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d041 | Sep. 11, 2018 | Sep. 10, 2019 | | SPEAG | Data Acquisition Electronics | DAE4 | 854 | May. 21, 2019 | May. 20, 2020 | | SPEAG | Data Acquisition Electronics | DAE3 | 360 | Oct. 29, 2018 | Oct. 28, 2019 | | SPEAG | Data Acquisition Electronics | DAE4 | 1326 | Sep. 18, 2018 | Sep. 17, 2019 | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3169 | May. 24, 2019 | May. 23, 2020 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3642 | Apr. 29, 2019 | Apr. 28, 2020 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3931 | Sep. 27, 2018 | Sep. 26, 2019 | | Anritsu | Radio Communication Analyzer | MT8820C | 6201381766 | Jun. 27, 2019 | Jun. 26, 2020 | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | Anritsu | Signal Generator | MG3710A | 6201502524 | Dec. 11, 2018 | Dec. 10, 2019 | | Agilent | ENA Network Analyzer | E5071C | MY46104758 | Sep. 19, 2018 | Sep. 18, 2019 | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Sep. 19, 2018 | Sep. 18, 2019 | | LINE SEIKI | Digital Thermometer | DTM3000-spezial | 2942 | Dec. 07, 2018 | Dec. 06, 2019 | | Anritsu | Power Meter | ML2495A | 1419002 | May. 29, 2019 | May. 28, 2020 | | Anritsu | Power Sensor | MA2411B | 1339124 | May. 29, 2019 | May. 28, 2020 | | Anritsu | Spectrum Analyzer | MS2830A | 6201396378 | Jun. 27, 2019 | Jun. 26, 2020 | | Mini-Circuits | Power Amplifier | ZVE-8G+ | 6382 | Aug. 12, 2019 | Aug. 11, 2020 | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 321501827 | Aug. 12, 2019 | Aug. 11, 2020 | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | Not | te 1 | | Woken | Attenuator 1 | WK0602-XX | N/A | Not | te 1 | | PE | Attenuator 2 | PE7005-10 | N/A | Not | te 1 | | PE | Attenuator 3 | PE7005- 3 | N/A | Not | te 1 | Report No.: FA982310 #### **General Note:** 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. TEL: 886-3-327-3456 Page 16 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 9. System Verification ## 9.1 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2. Fig 10.1Photo of Liquid Height for Head SAR Report No.: FA982310 Fig 10.2 Photo of Liquid Height for Body SAR TEL: 886-3-327-3456 Page 17 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 9.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. Report No.: FA982310 | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------| | | | | | For Head | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | For Body | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | |--------------------|---------------| | Water | 64~78% | | Mineral oil | 11~18% | | Emulsifiers | 9~15% | | Additives and Salt | 2~3% | ## <Tissue Dielectric Parameter Check Results> | 111334C | | | anicter of | | <u> </u> | | | | | | |--------------------|----------------|------------------------|---------------------|-----------------------------------|----------------------------|--|------------------|--------------------------------|-----------|----------| | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(℃) | Conductivity
(σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | | 750 | HSL | 22.3 | 0.888 | 42.540 | 0.89 | 41.90 | -0.22 | 1.53 | ±5 | 2019/9/6 | | 750 | MSL | 22.7 | 0.967 | 55.253 | 0.96 | 55.50 | 0.73 | -0.45 | ±5 | 2019/9/5 | | 1750 | HSL | 22.7 | 1.351 | 40.638 | 1.37 | 40.10 | -1.39 | 1.34 | ±5 | 2019/9/5 | | 1750 | HSL | 22.5 | 1.358 | 40.842 | 1.37 | 40.10 | -0.88 | 1.85 | ±5 | 2019/9/6 | | 1750 | MSL | 22.6 | 1.490 | 54.668 | 1.49 | 53.40 | 0.00 | 2.37 | ±5 | 2019/9/4 | | 1900 | HSL | 22.3 | 1.417 | 40.512 | 1.40 | 40.00 | 1.21 | 1.28 | ±5 | 2019/9/4 | | 1900 | HSL | 22.2 | 1.449 | 39.742 | 1.40 | 40.00 | 3.50 | -0.65 | ±5 | 2019/9/6 | | 1900 | MSL | 22.6 | 1.551 | 52.056 | 1.52 | 53.30 | 2.04 | -2.33 | ±5 | 2019/9/4 | TEL: 886-3-327-3456 Page 18 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 C SAR TEST REPORT Report No. : FA982310 ## 9.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |----------|--------------------|----------------|------------------------|---------------|-----------------|-------------|------------------------------|------------------------------|--------------------------------|------------------| | 2019/9/6 | 750 | HSL | 250 | D750V3-1107 | EX3DV4 - SN3931 | DAE4 Sn1326 | 2.19 | 8.32 | 8.76 | 5.29 | | 2019/9/5 | 750 | MSL | 250 | D750V3-1107 | EX3DV4 - SN3931 | DAE4 Sn1326 | 2.25 | 8.45 | 9.00 | 6.51 | | 2019/9/5 | 1750 | HSL | 250 | D1750V2-1068 | EX3DV4 - SN3931 | DAE4 Sn1326 | 9.20 | 37.10 | 36.80 | -0.81 | | 2019/9/6 | 1750 | HSL | 250 | D1750V2-1068 | EX3DV4 - SN3642 | DAE4 Sn854 | 9.52 | 37.10 | 38.08 | 2.64 | | 2019/9/4 | 1750 | MSL | 250 | D1750V2-1068 | EX3DV4 - SN3931 | DAE4 Sn1326 | 9.68 | 37.00 | 38.72 | 4.65 | | 2019/9/4 | 1900 | HSL | 250 | D1900V2-5d041 | ES3DV3 - SN3169 | DAE3 Sn360 | 10.10 | 40.20 | 40.40 | 0.50 | | 2019/9/6 | 1900 | HSL | 250 | D1900V2-5d041 | EX3DV4 - SN3931 | DAE4 Sn1326 | 10.70 | 40.20 | 42.80 | 6.47 | | 2019/9/4 | 1900 | MSL | 250 | D1900V2-5d041 | EX3DV4 - SN3931 | DAE4 Sn1326 | 10.20 | 40.20 | 40.80 | 1.49 | | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
10g SAR
(W/kg) | Targeted
10g SAR
(W/kg) | Normalized
10g SAR
(W/kg) | Deviation (%) | |----------|--------------------|----------------|------------------------|---------------|-----------------|-------------|-------------------------------|-------------------------------|---------------------------------|---------------| | 2019/9/5 | 750 | MSL | 250 | D750V3-1107 | EX3DV4 - SN3931 | DAE4 Sn1326 | 1.51 | 5.65 | 6.04 | 6.90 | | 2019/9/4 | 1750 | MSL | 250 | D1750V2-1068 | EX3DV4 - SN3931 | DAE4 Sn1326 | 5.26 | 19.60 | 21.04 | 7.35 | | 2019/9/4 | 1900 | MSL | 250 | D1900V2-5d041 | EX3DV4 - SN3931 | DAE4 Sn1326 | 5.32 | 21.50 | 21.28 | -1.02 | Fig 8.3.2 Setup Photo TEL: 886-3-327-3456 Page 19 of
37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 10. <u>Conducted RF Output Power (Unit: dBm)</u> #### <LTE Conducted Power> #### **General Note:** Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. Report No.: FA982310 - 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 8. For LTE B4 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. TEL: 886-3-327-3456 Page 20 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 #### <LTE Band 2> | <lte band<="" th=""><th></th><th></th><th></th><th>Power</th><th>Power</th><th>Power</th><th></th><th></th></lte> | | | | Power | Power | Power | | | |---|------------|----------|-----------|--------------------|-----------------------|---------------------|---------------|------| | BW [MHz] | Modulation | RB Size | RB Offset | Low
Ch. / Freq. | Middle
Ch. / Freq. | High
Ch. / Freg. | Tune-up limit | MPR | | | Cha | nnel | | 18700 | 18900 | 19100 | (dBm) | (dB) | | | Frequenc | | | 1860 | 1880 | 1900 | 1 | | | 20 | QPSK | 1 | 0 | 22.41 | 22.56 | 22.80 | | | | 20 | QPSK | 1 | 49 | 22.28 | 22.43 | 22.37 | 23 | 0 | | 20 | QPSK | 1 | 99 | 22.29 | 22.45 | 22.61 | | · · | | 20 | QPSK | 50 | 0 | 21.47 | 21.53 | 21.76 | | | | 20 | QPSK | 50 | 24 | 21.42 | 21.50 | 21.74 | _ | | | 20 | QPSK | 50 | 50 | 21.27 | 21.39 | 21.57 | 22 | 1 | | 20 | QPSK | 100 | 0 | 21.37 | 21.38 | 21.53 | - | | | | Cha | | | 18675 | 18900 | 19125 | Tune-up limit | MPR | | | Frequenc | | | 1857.5 | 1880 | 1902.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 22.20 | 22.24 | 22.54 | | | | 15 | QPSK | 1 | 37 | 22.39 | 22.32 | 22.62 | 23 | 0 | | 15 | QPSK | 1 | 74 | 22.35 | 22.51 | 22.61 | | | | 15 | QPSK | 36 | 0 | 21.44 | 21.39 | 21.65 | | | | 15 | QPSK | 36 | 20 | 21.39 | 21.41 | 21.74 | 22 | 1 | | 15 | QPSK | 36 | 39 | 21.34 | 21.49 | 21.76 | 1 | | | | Cha | nnel | | 18650 | 18900 | 19150 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1855 | 1880 | 1905 | (dBm) | (dB) | | 10 | QPSK | 1 | 0 | 22.41 | 22.14 | 22.60 | | | | 10 | QPSK | 1 | 25 | 22.53 | 22.60 | 22.69 | 23 | 0 | | 10 | QPSK | 1 | 49 | 22.47 | 22.54 | 22.40 | | | | 10 | QPSK | 25 | 0 | 21.34 | 21.38 | 21.62 | | | | 10 | QPSK | 25 | 12 | 21.46 | 21.49 | 21.71 | 22 | 1 | | 10 | QPSK | 25 | 25 | 21.44 | 21.52 | 21.67 | | | | 10 | 16QAM | 1 | 0 | 21.21 | 21.31 | 21.54 | | | | 10 | 16QAM | 1 | 25 | 21.53 | 21.36 | 21.74 | 22 | 1 | | 10 | 16QAM | 1 | 49 | 21.30 | 21.47 | 21.49 | | | | 10 | 16QAM | 25 | 0 | 20.49 | 20.51 | 20.76 | | | | 10 | 16QAM | 25 | 12 | 20.42 | 20.45 | 20.69 | 21 | 2 | | 10 | 16QAM | 25 | 25 | 20.41 | 20.36 | 20.63 | | | | | Cha | nnel | | 18625 | 18900 | 19175 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1852.5 | 1880 | 1907.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 21.98 | 22.36 | 22.74 | | | | 5 | QPSK | 1 | 12 | 22.32 | 22.54 | 22.76 | 23 | 0 | | 5 | QPSK | 1 | 24 | 22.06 | 22.40 | 22.56 | | | | 5 | QPSK | 12 | 0 | 21.16 | 21.27 | 21.69 | | | | 5 | QPSK | 12 | 7 | 21.26 | 21.29 | 21.74 | 22 | 1 | | 5 | QPSK | 12 | 13 | 21.35 | 21.43 | 21.73 | | ı | | 5 | QPSK | 25 | 0 | 21.22 | 21.40 | 21.74 | | | | 5 | 16QAM | 1 | 0 | 20.95 | 21.19 | 21.56 | | | | 5 | 16QAM | 1 | 12 | 21.09 | 21.28 | 21.29 | 22 | 1 | | 5 | 16QAM | 1 | 24 | 21.07 | 21.41 | 21.53 | | | | 5 | 16QAM | 12 | 0 | 20.07 | 20.43 | 20.57 | | | | 5 | 16QAM | 12 | 7 | 20.34 | 20.27 | 20.62 | 21 | 2 | | 5 | 16QAM | 12 | 13 | 20.32 | 20.25 | 20.81 | 21 | 2 | | 5 | 16QAM | 25 | 0 | 20.38 | 20.34 | 20.83 | | | TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 21 of 37 Issued Date : Oct. 16, 2019 Report No. : FA982310 | Section Sect | _ | | | | | | | | • | | |--|---|-----|----------|----------|----|--------|-------|--------|---------------|------| | 3 | | | Cha | nnel | | 18615 | 18900 | 19185 | Tune-up limit | MPR | | 3 | | | Frequenc | cy (MHz) | | 1851.5 | 1880 | 1908.5 | (dBm) | (dB) | | 3 QPSK 1 14 22.10 22.51 22.46 3 QPSK 8 0 21.22 21.41 21.71 3 QPSK 8 4 21.30 21.42 21.66 3 QPSK 8 7 21.41 21.44 21.70 3 QPSK 15 0 21.18 21.36 21.73 3 16QAM 1 0 21.05 21.13 21.61 3 16QAM 1 8 21.21 21.26 21.54 3 16QAM 8 0 20.35 20.46 20.52 3 16QAM 8 4 20.45 20.58 20.67 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) (dB) | | 3 | QPSK | 1 | 0 | 22.24 | 22.25 | 22.54 | | | | 3 QPSK 8 0 21.22 21.41 21.71 3 QPSK 8 4 21.30 21.42 21.66 3 QPSK 8 7 21.41 21.44 21.70 3 QPSK 15 0 21.18 21.36 21.73 3 16QAM 1 0 21.05 21.13 21.61 3 16QAM 1 8 21.21 21.26 21.54 3 16QAM 8 0 20.35 20.46 20.52 3 16QAM 8 0 20.35 20.46 20.52 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) Frequency (MHz) 1850.7 1880 1909.3 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 1 5 22.32 22.26 22.71 1.4 QPSK 3 0 22.32 22.26 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 0 21.18 21.29 21.79 | | 3 | QPSK | 1 | 8 | 22.33 | 22.41 | 22.63 | 23 | 0 | | 3 | | 3 | QPSK | 1 | 14 | 22.10 | 22.51 | 22.46 | | | | 3 | | 3 | QPSK | 8 | 0 | 21.22 | 21.41 | 21.71 | | | | 3 | | 3 | QPSK | 8 | 4 | 21.30 | 21.42 | 21.66 | 22 | 4 | | 3 16QAM 1 0 21.05 21.13 21.61 3 16QAM 1 8 21.21 21.26 21.54 3 16QAM 1 14 21.28 21.37 21.54 3 16QAM 8 0 20.35 20.46 20.52 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) Frequency (MHz) 1850.7 1880 1909.3 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 1 5 22.32 22.26 22.71 1.4 QPSK 3 0 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK
6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | QPSK | 8 | 7 | 21.41 | 21.44 | 21.70 | 22 | 1 | | 3 16QAM 1 8 21.21 21.26 21.54 22 1 3 16QAM 1 14 21.28 21.37 21.54 3 16QAM 8 0 20.35 20.46 20.52 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) (dB) Frequency (MHz) 1850.7 1880 1909.3 (dBm) (dB) 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 3 0 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.76 1.4 QPSK 3 1 22.15 22.32 22.76 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | QPSK | 15 | 0 | 21.18 | 21.36 | 21.73 | | | | 3 16QAM 1 14 21.28 21.37 21.54 3 16QAM 8 0 20.35 20.46 20.52 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) Frequency (MHz) 1850.7 1880 1909.3 (dBm) 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 3 0 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | 16QAM | 1 | 0 | 21.05 | 21.13 | 21.61 | | | | 3 16QAM 8 0 20.35 20.46 20.52 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) (dB) Frequency (MHz) 1850.7 1880 1909.3 (dBm) (dBm) 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 3 0 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.76 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | 16QAM | 1 | 8 | 21.21 | 21.26 | 21.54 | 22 | 1 | | 3 16QAM 8 4 20.45 20.58 20.67 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) (dB) Frequency (MHz) 1850.7 1880 1909.3 (dBm) 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.34 22.28 22.75 1.4 QPSK 3 0 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 3 3 22.27 22.33 22.76 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | 16QAM | 1 | 14 | 21.28 | 21.37 | 21.54 | | | | 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) (dB) Frequency (MHz) 1850.7 1880 1909.3 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 3 0 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | 16QAM | 8 | 0 | 20.35 | 20.46 | 20.52 | | | | 3 16QAM 8 7 20.61 20.41 20.75 3 16QAM 15 0 20.42 20.39 20.60 Channel 18607 18900 19193 Tune-up limit (dBm) (dB) Frequency (MHz) 1850.7 1880 1909.3 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 3 0 22.32 22.26 22.71 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 LGQAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | 16QAM | 8 | 4 | 20.45 | 20.58 | 20.67 | 24 | 2 | | Channel 18607 18900 19193 Tune-up limit (dBm) MPF (dB) 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 1 5 22.32 22.26 22.71 1.4 QPSK 3 0 22.32 22.26 22.73 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 3 | 16QAM | 8 | 7 | 20.61 | 20.41 | 20.75 | 21 | 2 | | Frequency (MHz) 1850.7 1880 1909.3 (dBm) (dBmm) | | 3 | 16QAM | 15 | 0 | 20.42 | 20.39 | 20.60 | | | | Frequency (MHz) 1850.7 1880 1909.3 (dBm) (dB) 1.4 QPSK 1 0 22.25 22.15 22.69 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 1 5 22.32 22.26 22.71 1.4 QPSK 3 0 22.32 22.26 22.73 1.4 QPSK 3 1 22.15 22.32 22.26 22.74 1.4 QPSK 3 3 22.27 22.33 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 3 3 22.27 22.33 22.76 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 22 1 | | | Cha | nnel | | 18607 | 18900 | 19193 | Tune-up limit | MPR | | 1.4 QPSK 1 3 22.44 22.28 22.75 1.4 QPSK 1 5 22.32 22.26 22.71 1.4 QPSK 3 0 22.32 22.26 22.73 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | | Frequenc | cy (MHz) | | 1850.7 | 1880 | 1909.3 | (dBm) | (dB) | | 1.4 QPSK 1 5 22.32 22.26 22.71 1.4 QPSK 3 0 22.32 22.26 22.73 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | QPSK | 1 | 0 | 22.25 | 22.15 | 22.69 | | | | 1.4 QPSK 3 0 22.32 22.26 22.73 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | QPSK | 1 | 3 | 22.44 | 22.28 | 22.75 | | | | 1.4 QPSK 3 0 22.32 22.26 22.73 1.4 QPSK 3 1 22.15 22.32 22.74 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | QPSK | 1 | 5 | 22.32 | 22.26 | 22.71 | 22 | 0 | | 1.4 QPSK 3 3 22.27 22.33 22.75 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | QPSK | 3 | 0 | 22.32 | 22.26 | 22.73 | 23 | U | | 1.4 QPSK 6 0 21.25 21.34 21.81 22 1 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | QPSK | 3 | 1 | 22.15 | 22.32 | 22.74 | | | | 1.4 16QAM 1 0 21.18 21.23 21.64 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | QPSK | 3 | 3 | 22.27 | 22.33 | 22.75 | | | | 1.4 16QAM 1 3 21.37 21.21 21.40 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | QPSK | 6 | 0 | 21.25 | 21.34 | 21.81 | 22 | 1 | | 1.4 16QAM 1 5 21.18 21.19 21.79 | | 1.4 | 16QAM | 1 | 0 | 21.18 | 21.23 | 21.64 | | | | 22 1 | | 1.4 | 16QAM | 1 | 3 | 21.37 | 21.21 | 21.40 | | | | 1.4 160AM 3 0 21.34 21.33 21.71 | | 1.4 | 16QAM | 1 | 5 | 21.18 | 21.19 | 21.79 | 22 | 1 | | 1.4 10QAW 21.34 21.33 21.71 | | 1.4 | 16QAM | 3 | 0 | 21.34 | 21.33 | 21.71 | 22 | ı | | 1.4 16QAM 3 1 21.51 21.40 21.73 | | 1.4 | 16QAM | 3 | 1 | 21.51 | 21.40 | 21.73 | | | | 1.4 16QAM 3 3 21.52 21.36 21.63 | | 1.4 | 16QAM | 3 | 3 | 21.52 | 21.36 | 21.63 | | | | 1.4 16QAM 6 0 20.35 20.28 20.75 21 2 | | 1.4 | 16QAM | 6 | 0 | 20.35 | 20.28 | 20.75 | 21 | 2 | Report No. : FA982310 TEL: 886-3-327-3456 Page 22 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 Report No. : FA982310 ### <LTE Band 4> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up
limit | MPR | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|------------------|------| | | Cha | nnel | | 20050 | 20175 | 20300 | (dBm) | (dB) | | | Frequen | cy (MHz) | | 1720 | 1732.5 | 1745 | | | | 20 | QPSK | 1 | 0 | 22.97 | 23.00 | 22.99 | | | | 20 | QPSK | 1 | 49 | 22.93 | 22.82 | 22.94 | 23 | 0 | | 20 | QPSK | 1 | 99 | 22.91 | 22.73 | 22.91 | | | | 20 | QPSK | 50 | 0 | 21.99 | 21.99 | 21.93 | | | | 20 | QPSK | 50 | 24 | 21.85 | 21.90 | 21.88 | 00 | 4 | | 20 | QPSK | 50 | 50 | 21.90 | 21.98 | 21.92 | 22 | 1 | | 20 | QPSK | 100 | 0 | 21.88 | 21.92 | 21.89 | | | | | Cha | nnel | | 20025 | 20175 | 20325 | Tune-up | MPR | | | Frequen | cy (MHz) | | 1717.5 | 1732.5 | 1747.5 | limit
(dBm) | (dB) | | 15 | QPSK | 1 | 0 | 22.74 | 22.63 | 22.88 | | | | 15 | QPSK | 1 | 37 | 22.98 | 22.95 | 22.88 | 23 | 0 | | 15 | QPSK | 1 | 74 | 22.76 | 22.83 | 22.88 | | | | 15 | QPSK | 36 | 0 | 21.95 | 21.87 | 21.94 | | | | 15 | QPSK | 36 | 20 | 21.91 | 21.90 | 21.96 | 22 | 1 | | 15 | QPSK | 36 | 39 | 21.88 | 21.95 | 21.91 | | | | | Cha | nnel | | 20000 | 20175 | 20350 | Tune-up | MPR | | | Frequen | cy (MHz) | | 1715 | 1732.5 | 1750 | limit
(dBm) | (dB) | | 10 | QPSK | 1 | 0 | 22.65 | 22.54 | 22.75 | (aBiii) | | | 10 | QPSK | 1 | 25 | 22.96 | 22.75 | 22.87 | 23 | 0 | | 10 | QPSK | 1 | 49 | 22.63 | 22.78 | 22.86 | | | | 10 | QPSK | 25 | 0 | 21.83 | 21.68 | 21.93 | | | | 10 | QPSK | 25 | 12 | 21.71 | 21.84 | 21.77 | 22 | 1 | | 10 | QPSK | 25 | 25 | 21.85 | 21.94 | 21.81 | | | | 10 | 16QAM | 1 | 0 | 21.85 | 21.86 | 21.90 | | | | 10 | 16QAM | 1 | 25 | 21.93 | 21.97 | 21.89 | 22 | 1 | | 10 | 16QAM | 1 | 49 | 21.82 | 21.80 | 21.93 | | | | 10 | 16QAM | 25 | 0 | 20.95 | 20.92 | 20.99 | | | | 10 | 16QAM | 25 | 12 | 20.88 | 20.89 | 21.00 | 21 | 2 | | 10 | 16QAM | 25 | 25 | 20.92 | 20.90 | 20.87 | | | | | Cha | | <u> </u> | 19975 | 20175 | 20375 | Tune-up | MPR | | | Frequen | cy (MHz) | | 1712.5 | 1732.5 | 1752.5 | limit
(dBm) | (dB) | | 5 | QPSK | 1 | 0 | 22.91 | 22.88 | 22.98 | (abiii) | | | 5 | QPSK | 1 | 12 | 22.94 | 22.92 | 22.87 | 23 | 0 | | 5 | QPSK | 1 | 24 | 22.98 | 22.89 | 22.95 | _ | | | 5 | QPSK | 12 | 0 | 22.00 | 21.97 | 21.82 | | | | 5 | QPSK | 12 | 7 | 21.98 | 21.92 | 21.90 | | | | 5 | QPSK | 12 | 13 | 21.97 | 21.94 | 21.95 | - 22 | 1 | | 5 | QPSK | 25 | 0 | 21.95 | 21.93 | 21.92 | | | | 5 | 16QAM | 1 | 0 | 21.81 | 21.95 | 21.93 | | | | 5 |
16QAM | 1 | 12 | 21.98 | 21.76 | 21.68 | 22 | 1 | | 5 | 16QAM | 1 | 24 | 21.92 | 21.82 | 21.74 | | | | 5 | 16QAM | 12 | 0 | 20.95 | 20.96 | 20.88 | | | | 5 | 16QAM | 12 | 7 | 20.97 | 20.93 | 20.76 | | | | 5 | 16QAM | 12 | 13 | 20.95 | 20.89 | 20.70 | 21 | 2 | | 5 | 16QAM | 25 | 0 | 21.00 | 20.97 | 20.78 | | | TEL: 886-3-327-3456 Page 23 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 | | Cha | nnel | | 19965 | 20175 | 20385 | Tune-up | MPR | |-----|---------|----------|----|--------|--------|--------|----------------|------| | | Frequen | cy (MHz) | | 1711.5 | 1732.5 | 1753.5 | limit
(dBm) | (dB) | | 3 | QPSK | 1 | 0 | 22.74 | 22.73 | 22.80 | | | | 3 | QPSK | 1 | 8 | 22.98 | 22.94 | 22.99 | 23 | 0 | | 3 | QPSK | 1 | 14 | 22.49 | 22.88 | 22.91 | | | | 3 | QPSK | 8 | 0 | 21.90 | 21.92 | 21.95 | | | | 3 | QPSK | 8 | 4 | 21.86 | 21.98 | 21.90 | 22 | 4 | | 3 | QPSK | 8 | 7 | 21.97 | 21.94 | 21.99 | 22 | 1 | | 3 | QPSK | 15 | 0 | 21.97 | 21.91 | 21.93 | | | | 3 | 16QAM | 1 | 0 | 21.66 | 21.67 | 21.92 | | | | 3 | 16QAM | 1 | 8 | 21.65 | 21.69 | 21.78 | 22 | 1 | | 3 | 16QAM | 1 | 14 | 21.58 | 21.78 | 21.88 | | | | 3 | 16QAM | 8 | 0 | 20.93 | 20.89 | 20.93 | | | | 3 | 16QAM | 8 | 4 | 20.89 | 20.95 | 20.86 | 21 | 2 | | 3 | 16QAM | 8 | 7 | 20.94 | 20.90 | 20.96 | 21 | 2 | | 3 | 16QAM | 15 | 0 | 20.78 | 20.96 | 20.98 | | | | | Cha | nnel | | 19957 | 20175 | 20393 | Tune-up | MPR | | | Frequen | cy (MHz) | | 1710.7 | 1732.5 | 1754.3 | limit
(dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 22.88 | 22.77 | 22.81 | | | | 1.4 | QPSK | 1 | 3 | 22.96 | 22.87 | 22.95 | | | | 1.4 | QPSK | 1 | 5 | 22.61 | 22.92 | 22.77 | 23 | 0 | | 1.4 | QPSK | 3 | 0 | 22.76 | 22.89 | 22.98 | 23 | U | | 1.4 | QPSK | 3 | 1 | 22.96 | 22.93 | 22.92 | | | | 1.4 | QPSK | 3 | 3 | 22.99 | 22.92 | 22.98 | | | | 1.4 | QPSK | 6 | 0 | 21.88 | 21.89 | 21.94 | 22 | 1 | | 1.4 | 16QAM | 1 | 0 | 21.86 | 21.76 | 21.79 | | | | 1.4 | 16QAM | 1 | 3 | 21.99 | 21.89 | 21.84 | | | | 1.4 | 16QAM | 1 | 5 | 21.97 | 21.67 | 21.98 | 22 | 1 | | 1.4 | 16QAM | 3 | 0 | 21.88 | 21.83 | 21.95 | | 1 | | 1.4 | 16QAM | 3 | 1 | 21.82 | 21.88 | 21.92 | | | | 1.4 | 16QAM | 3 | 3 | 21.92 | 21.97 | 21.86 | | | | 1.4 | 16QAM | 6 | 0 | 20.99 | 20.89 | 20.91 | 21 | 2 | Report No. : FA982310 TEL: 886-3-327-3456 Page 24 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 <LTE Band 12> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | MPR | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|------------------------|-------------| | | Cha | nnel | | 23060 | 23095 | 23130 | (dBm) | (dB) | | | Frequenc | | | 704 | 707.5 | 711 | | | | 10 | QPSK | 1 | 0 | 23.78 | 24.00 | 23.94 | | | | 10 | QPSK | 1 | 25 | 23.26 | 23.59 | 23.38 | 24 | 0 | | 10 | QPSK | 1 | 49 | 23.31 | 23.80 | 23.53 | _ | | | 10 | QPSK | 25 | 0 | 22.62 | 22.78 | 22.87 | | | | 10 | QPSK | 25 | 12 | 22.50 | 22.76 | 22.78 | _ | | | 10 | QPSK | 25 | 25 | 22.61 | 22.57 | 22.84 | 23 | 1 | | 10 | QPSK | 50 | 0 | 22.63 | 22.88 | 22.78 | _ | | | 10 | 16QAM | 1 | 0 | 22.38 | 22.46 | 22.56 | | | | 10 | 16QAM | 1 | 25 | 22.62 | 22.73 | 22.80 | 23 | 1 | | 10 | 16QAM | 1 | 49 | 22.49 | 22.68 | 22.70 | | | | 10 | 16QAM | 25 | 0 | 21.57 | 21.71 | 21.90 | | | | 10 | 16QAM | 25 | 12 | 21.75 | 21.76 | 21.83 | 22 | 2 | | 10 | 16QAM | 25 | 25 | 21.81 | 21.85 | 21.89 | | | | | Cha | | | 23035 | 23095 | 23155 | Tune-up limit | MPR | | | Frequence | | | 701.5 | 707.5 | 713.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 23.24 | 23.62 | 23.40 | | · · · · · | | 5 | QPSK | 1 | 12 | 23.47 | 23.94 | 23.95 | 24 | 0 | | 5 | QPSK | 1 | 24 | 23.37 | 23.93 | 23.70 | | Ŭ | | 5 | QPSK | 12 | 0 | 22.67 | 22.70 | 22.68 | | | | 5 | QPSK | 12 | 7 | 22.75 | 22.86 | 22.71 | 23 | 1 | | 5 | QPSK | 12 | 13 | 22.75 | 22.81 | 22.79 | | | | 5 | 16QAM | 1 | 0 | 22.48 | 22.47 | 22.49 | | | | 5 | 16QAM | 1 | 12 | 22.63 | 22.85 | 22.49 | 23 | 1 | | 5 | 16QAM | 1 | 24 | 22.44 | 22.59 | 22.68 | 23 | ' | | 5
 | 16QAM | 12 | 0 | 21.54 | 21.69 | 21.74 | | | | 5 | 16QAM | 12 | 7 | 21.54 | 21.83 | 21.74 | 22 | 2 | | | | | | | | | - 22 | 2 | | 5 | 16QAM | 12 | 13 | 21.47 | 21.87 | 21.71 | | | | | Cha | | | 23025 | 23095 | 23165 | Tune-up limit
(dBm) | MPR
(dB) | | | Frequenc | | | 700.5 | 707.5 | 714.5 | (аВП) | (ab) | | 3 | QPSK | 1 | 0 | 23.73 | 23.89 | 23.98 | | 0 | | 3 | QPSK | 1 | 8 | 23.66 | 23.88 | 23.97 | 24 | 0 | | 3 | QPSK | 1 | 14 | 23.48 | 23.88 | 23.99 | | | | 3 | QPSK | 8 | 0 | 22.70 | 22.84 | 22.90 | _ | | | 3 | QPSK | 8 | 4 | 22.82 | 22.96 | 22.90 | 23 | 1 | | 3 | QPSK | 8 | 7 | 22.66 | 22.82 | 23.00 | | | | 3 | 16QAM | 1 | 0 | 22.53 | 22.68 | 22.77 | | | | 3 | 16QAM | 1 | 8 | 22.50 | 22.53 | 22.73 | 23 | 1 | | 3 | 16QAM | 1 | 14 | 22.51 | 22.70 | 22.91 | | | | 3 | 16QAM | 8 | 0 | 21.71 | 21.94 | 21.91 | _ | | | 3 | 16QAM | 8 | 4 | 21.82 | 22.00 | 21.90 | 22 | 2 | | 3 | 16QAM | 8 | 7 | 21.84 | 22.00 | 21.97 | | _ | | 3 | 16QAM | 15 | 0 | 21.79 | 21.89 | 21.89 | | | | | Cha | | | 23017 | 23095 | 23173 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 699.7 | 707.5 | 715.3 | (dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 23.70 | 23.83 | 23.93 | 24 | 0 | TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 25 of 37 Issued Date : Oct. 16, 2019 Report No. : FA982310 | 1.4 | QPSK | 1 | 3 | 23.50 | 23.78 | 23.98 | | | |-----|-------|---|---|-------|-------|-------|----|---| | 1.4 | QPSK | 1 | 5 | 23.47 | 23.74 | 23.80 | | | | 1.4 | QPSK | 3 | 0 | 22.64 | 22.64 | 22.96 | | | | 1.4 | QPSK | 3 | 1 | 22.82 | 22.84 | 23.01 | | | | 1.4 | QPSK | 3 | 3 | 22.52 | 22.66 | 22.96 | | | | 1.4 | QPSK | 6 | 0 | 22.55 | 22.72 | 23.00 | 23 | 1 | | 1.4 | 16QAM | 1 | 0 | 22.46 | 22.57 | 22.76 | | | | 1.4 | 16QAM | 1 | 3 | 22.38 | 22.41 | 22.69 | | | | 1.4 | 16QAM | 1 | 5 | 22.33 | 22.68 | 22.83 | 23 | 1 | | 1.4 | 16QAM | 3 | 0 | 21.61 | 21.76 | 22.01 | 23 | ' | | 1.4 | 16QAM | 3 | 1 | 21.64 | 22.04 | 22.02 | | | | 1.4 | 16QAM | 3 | 3 | 21.77 | 21.94 | 21.92 | | | | 1.4 | 16QAM | 6 | 0 | 21.60 | 21.80 | 21.88 | 22 | 2 | Report No. : FA982310 TEL: 886-3-327-3456 Page 26 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ### <WLAN Conducted Power> #### <2.4GHz WLAN > | | Mode | Channel | Frequency
(MHz) | Tune-Up
Limit | |-------------|-------------------|---------|--------------------|------------------| | | | 1 | 2412 | 3.00 | | | 802.11b 1Mbps | 6 | 2437 | 3.00 | | 2.4GHz WLAN | | 11 | 2462 | 3.00 | | 2.4GHZ WLAN | | 1 | 2412 | 3.00 | | | 802.11g 6Mbps | 6 | 2437 | 3.00 | | | | 11 | 2462 | 3.00 | | | | 1 | 2412 | 2.00 | | | 802.11n-HT20 MCS0 | 6 | 2437 | 2.00 | | | | 11 | 2462 | 3.00 | Report No.: FA982310 #### Note: 1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | ٧ | VLAN Max Power
(dBm) | Exposure Position | Separation Distance (mm) | Frequency (GHz) | exclusion
thresholds | Exclusion Limit | SAR Testing | |---|-------------------------|-------------------|--------------------------|-----------------|-------------------------|-----------------|-------------| | | 3 | Head | 10 | 2.62 | 0.31 | 3 | No | | | 3 | Body-worn | < 5 | 2.62 | 0.63 | 3 | No | | | 3 | Extremity | < 5 | 2.62 | 0.63 | 7.5 | No | TEL: 886-3-327-3456 Page 27 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 11. Antenna Location Front View TEL: 886-3-327-3456 Page 28 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 12. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. **Report No.: FA982310** - b. For WWAN Head and Extremity condition: Reported SAR(W/kg)= Measured SAR(W/kg) * Tune-up Scaling Factor - c. For WWAN Body-worn condition: Reported SAR(W/kg)= Measured SAR(W/kg) * Tune-up Scaling Factor * Transmission Scaling Factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 4. According to the SAR analysis exhibit, LTE B2/B4/B12 maximum tune-up power scaled down with the transmission factor is applied in body-worn reported SAR calculation. #### LTE Note: - 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations
and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 6. For LTE B12 / B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. TEL: 886-3-327-3456 Page 29 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 12.1 <u>Head SAR</u> ## <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 10mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.14 | 0.992 | 1.039 | | 01 | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 10mm | 18700 | 1860 | 22.41 | 23.00 | 1.146 | 0.08 | 0.952 | 1.091 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 10mm | 18900 | 1880 | 22.56 | 23.00 | 1.107 | -0.04 | 0.939 | 1.039 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 10mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 0.12 | 0.811 | 0.857 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 10mm | 18700 | 1860 | 21.47 | 22.00 | 1.130 | 0.09 | 0.778 | 0.879 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 10mm | 18900 | 1880 | 21.53 | 22.00 | 1.114 | -0.06 | 0.715 | 0.797 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Bottom Side | 10mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.09 | 0.116 | 0.121 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Bottom Side | 10mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 0.03 | 0.091 | 0.096 | | 02 | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 10mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.14 | 1.320 | 1.320 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 10mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 0.05 | 1.190 | 1.193 | | | LTE Band 4 | 20M | QPSK | 100 | 0 | Front | 10mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 0.05 | 0.878 | 0.880 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Bottom Side | 10mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | -0.13 | 0.077 | 0.077 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Bottom Side | 10mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | -0.09 | 0.053 | 0.053 | | 03 | LTE Band 12 | 10M | QPSK | 1 | 0 | Front | 10mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | -0.09 | 0.434 | 0.434 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Front | 10mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | -0.12 | 0.350 | 0.368 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Bottom Side | 10mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 0.15 | 0.057 | 0.057 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Bottom Side | 10mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | -0.16 | 0.040 | 0.042 | Report No. : FA982310 TEL: 886-3-327-3456 Page 30 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 12.2 Body Worn Accessory SAR ## <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Transmission
Cycle
% | Transmission
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|----------------------------|-----------------------------------|------------------------|------------------------------|------------------------------| | 04 | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 8.1 | 0.081 | -0.06 | 5.770 | 0.483 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 18700 | 1860 | 22.41 | 23.00 | 1.146 | 8.1 | 0.081 | 0.12 | 5.150 | 0.472 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 18900 | 1880 | 22.56 | 23.00 | 1.107 | 8.1 | 0.081 | -0.13 | 4.870 | 0.431 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 8.1 | 0.081 | 0.07 | 4.460 | 0.377 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 8.1 | 0.081 | 0.07 | 4.460 | 0.377 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 0mm | 18700 | 1860 | 21.47 | 22.00 | 1.130 | 8.1 | 0.081 | 0.13 | 4.120 | 0.372 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Back | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 8.1 | 0.081 | -0.16 | 3.260 | 0.273 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Back | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 8.1 | 0.081 | 0.03 | 2.620 | 0.222 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Left Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 8.1 | 0.081 | 0.18 | 3.810 | 0.319 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Left Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 8.1 | 0.081 | 0.16 | 3.120 | 0.264 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Right Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 8.1 | 0.081 | 0.13 | 0.648 | 0.054 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Right Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 8.1 | 0.081 | 0.19 | 0.500 | 0.042 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Top Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 8.1 | 0.081 | 0.09 | 4.810 | 0.403 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Top Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 8.1 | 0.081 | 0.11 | 3.930 | 0.332 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Bottom Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 8.1 | 0.081 | -0.11 | 0.294 | 0.025 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Bottom Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 8.1 | 0.081 | -0.04 | 0.225 | 0.019 | | 05 | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 8.1 | 0.081 | 0.13 | 5.030 | 0.402 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 8.1 | 0.081 | -0.14 | 3.830 | 0.307 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Back | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 8.1 | 0.081 | 0.04 | 3.210 | 0.257 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Back | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 8.1 | 0.081 | -0.1 | 2.510 | 0.201 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Left Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 8.1 | 0.081 | -0.12 | 4.230 | 0.338 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 8.1 | 0.081 | -0.18 | 3.340 | 0.268 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Right Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 8.1 | 0.081 | 0.19 | 0.587 | 0.047 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 8.1 | 0.081 | 0.09 | 0.398 | 0.032 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Top Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 8.1 | 0.081 | 0.15 | 2.550 | 0.204 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Top Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 8.1 | 0.081 | 0 | 1.530 | 0.123 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Bottom Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 8.1 | 0.081 | -0.11 | 0.162 | 0.013 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Bottom Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 8.1 | 0.081 | -0.04 | 0.129 | 0.010 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Front | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 8.1 | 0.081 | -0.16 | 0.974 | 0.078 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Front | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 8.1 | 0.081 | -0.09 | 0.762 | 0.064 | | 06 | LTE Band 12 | 10M | QPSK | 1 | 0 | Back | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 8.1 | 0.081 | 0.1 | 0.982 | 0.079 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Back | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 8.1 | 0.081 | 0.13 | 0.893 | 0.075 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Left Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 8.1 | 0.081 | -0.15 | 0.979 | 0.078 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Left Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 8.1 | 0.081 | -0.14 | 0.656 | 0.055 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Right Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 8.1 | 0.081 | -0.17 | 0.922 | 0.074 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Right Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 8.1 | 0.081 | 0.16 | 0.459 | 0.039 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Top Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 8.1 | 0.081 | 0.16 | 0.525 | 0.042 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Top Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 8.1 | 0.081 | -0.07 | 0.490 | 0.041 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Bottom Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 8.1 | 0.081 | -0.12 | 0.354 | 0.028 | | |
LTE Band 12 | 10M | QPSK | 25 | 0 | Bottom Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 8.1 | 0.081 | -0.18 | 0.265 | 0.022 | **Report No. : FA982310** TEL: 886-3-327-3456 Page 31 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 # 12.3 Extremity SAR ## <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|-------------------------------|-------------------------------| | | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.06 | 2.470 | 2.586 | | 07 | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 18700 | 1860 | 22.41 | 23.00 | 1.146 | 0.12 | 2.270 | 2.600 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 18900 | 1880 | 22.56 | 23.00 | 1.107 | -0.13 | 2.110 | 2.335 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 0.07 | 1.920 | 2.029 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 0mm | 18700 | 1860 | 21.47 | 22.00 | 1.130 | 0.13 | 1.760 | 1.988 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Front | 0mm | 18900 | 1880 | 21.53 | 22.00 | 1.114 | -0.05 | 1.560 | 1.738 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Back | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.16 | 1.730 | 1.812 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Back | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 0.03 | 1.380 | 1.458 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Left Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 0.18 | 1.670 | 1.749 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Left Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 0.16 | 1.350 | 1.427 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Right Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 0.13 | 0.311 | 0.326 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Right Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 0.19 | 0.241 | 0.255 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Top Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | 0.09 | 1.850 | 1.937 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Top Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | 0.11 | 1.480 | 1.564 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Bottom Side | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.11 | 0.159 | 0.166 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Bottom Side | 0mm | 19100 | 1900 | 21.76 | 22.00 | 1.057 | -0.04 | 0.124 | 0.131 | | 08 | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.13 | 2.330 | 2.330 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | -0.14 | 1.760 | 1.764 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Back | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.04 | 1.930 | 1.930 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Back | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | -0.1 | 1.330 | 1.333 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Left Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | -0.12 | 1.850 | 1.850 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | -0.18 | 1.460 | 1.463 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Right Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.19 | 0.296 | 0.296 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 0.09 | 0.192 | 0.192 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Top Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.15 | 0.950 | 0.950 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Top Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | 0 | 0.571 | 0.572 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Bottom Side | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | -0.11 | 0.082 | 0.082 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Bottom Side | 0mm | 20175 | 1732.5 | 21.99 | 22.00 | 1.002 | -0.04 | 0.053 | 0.053 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Front | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | -0.16 | 0.539 | 0.539 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Front | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | -0.09 | 0.436 | 0.459 | | 09 | LTE Band 12 | 10M | QPSK | 1 | 0 | Back | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 0.1 | 0.634 | 0.634 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Back | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 0.13 | 0.571 | 0.601 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Left Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | -0.15 | 0.463 | 0.463 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Left Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | -0.14 | 0.310 | 0.326 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Right Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | -0.17 | 0.273 | 0.273 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Right Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | 0.16 | 0.149 | 0.157 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Top Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | 0.16 | 0.178 | 0.178 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Top Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | -0.07 | 0.145 | 0.153 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Bottom Side | 0mm | 23095 | 707.5 | 24.00 | 24.00 | 1.000 | -0.12 | 0.129 | 0.129 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Bottom Side | 0mm | 23095 | 707.5 | 22.78 | 23.00 | 1.052 | -0.18 | 0.101 | 0.106 | Report No. : FA982310 TEL: 886-3-327-3456 Page 32 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ### 12.4 Repeated SAR Measurement | No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|-------|------------------------------| | 1st | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 10mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.14 | 0.992 | - | 1.039 | | 2nd | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 10mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.06 | 0.947 | 1.05 | 0.992 | | 1st | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 10mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.14 | 1.320 | - | 1.320 | | 2nd | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 10mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.16 | 1.220 | 1.08 | 1.220 | Report No.: FA982310 | No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
10g SAR
(W/kg) | | Reported
10g SAR
(W/kg) | |-----|------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|-------|---------------------------|------------------------------|------------------------|-------------------------------|------|-------------------------------| | 1st | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.06 | 2.470 | - | 2.586 | | 2nd | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0mm | 19100 | 1900 | 22.80 | 23.00 | 1.047 | -0.15 | 2.380 | 1.04 | 2.492 | | 1st | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | 0.13 | 2.330 | - | 2.330 | | 2nd | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 0mm | 20175 | 1732.5 | 23.00 | 23.00 | 1.000 | -0.1 | 2.290 | 1.02 | 2.290 | #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. Per KDB 865664 D01v01r04, if the extremity repeated SAR is necessary, the same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. - 4. The ratio is the difference in percentage between original and repeated measured SAR. - 5. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. TEL: 886-3-327-3456 Page 33 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ### 13. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | Head | Body-worn | Extremity | |-----|--|------|-----------|-----------| | 1. | WWAN + WLAN2.4GHz | Yes | Yes | Yes | #### **General Note:** - 1. All licensed modes share the same antenna part and cannot transmit simultaneously - 2. The Scaled SAR summation is calculated based on the same configuration and test position. - 3. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. **Report No.: FA982310** - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - For simultaneous
transmission analysis, WLAN SAR is estimated per KDB 447498 D01v06 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. | WLAN | Exposure Position | Head | Body worn | Extremity | |-----------|----------------------|------------|------------|------------| | Max Power | Test separation | 10 mm | 0 mm | 0 mm | | 3 dBm | Estimated SAR (W/kg) | 0.043 W/kg | 0.086 W/kg | 0.035 W/kg | TEL: 886-3-327-3456 Page 34 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 13.1 Head Exposure Conditions | WWAI | N Band | Exposure Position | 1
WWAN
1g SAR
(W/kg) | 2
2.4GHz WLAN
Estimated
1g SAR
(W/kg) | 1+2
Summed
1g SAR (W/kg) | |------|-------------|-------------------|-------------------------------|---|--------------------------------| | | LTE Dand 0 | Front | 1.091 | 0.043 | 1.134 | | | LTE Band 2 | Bottom Side | 0.121 | 0.043 | 0.164 | | LTE | LTE Band 4 | Front | 1.320 | 0.043 | 1.363 | | LIE | LIE Banu 4 | Bottom Side | 0.077 | 0.043 | 0.120 | | | LTE Band 12 | Front | 0.434 | 0.043 | 0.477 | | | LIE BANG 12 | Bottom Side | 0.057 | 0.043 | 0.100 | **Report No. : FA982310** # 13.2 Body-Worn Accessory Exposure Conditions | | | | 1 | 2 | | |--------|--------------|--------------------|------------------|-------------------------------|-------------------------| | 10000 | I Decid | Formation Basilian | WWAN | 2.4GHz WLAN | 1+2 | | vvvvar | N Band | Exposure Position | 1g SAR
(W/kg) | Estimated
1g SAR
(W/kg) | Summed
1g SAR (W/kg) | | | | Front | 0.483 | 0.086 | 0.569 | | | | Back | 0.273 | 0.086 | 0.359 | | | LTE Band 2 | Left side | 0.319 | 0.086 | 0.405 | | | LIE Dallu Z | Right side | 0.054 | 0.086 | 0.140 | | | | Top side | 0.403 | 0.086 | 0.489 | | | | Bottom side | 0.025 | 0.086 | 0.111 | | | | Front | 0.402 | 0.086 | 0.488 | | | | Back | 0.257 | 0.086 | 0.343 | | LTE | LTE Band 4 | Left side | 0.338 | 0.086 | 0.424 | | LIE | LIE Dallu 4 | Right side | 0.047 | 0.086 | 0.133 | | | | Top side | 0.204 | 0.086 | 0.290 | | | | Bottom side | 0.013 | 0.086 | 0.099 | | | | Front | 0.078 | 0.086 | 0.164 | | | | Back | 0.079 | 0.086 | 0.165 | | | LTE Band 12 | Left side | 0.078 | 0.086 | 0.164 | | | LIE Dallu 12 | Right side | 0.074 | 0.086 | 0.160 | | | | | 0.042 | 0.086 | 0.128 | | | | Bottom side | 0.028 | 0.086 | 0.114 | TEL: 886-3-327-3456 Page 35 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 13.3 Extremity Exposure Conditions | WWAN Band | | Exposure Position | 1 | 2 | 1+2
Summed
10g SAR (W/kg) | |-----------|---------------|-------------------|-------------------|--------------------------------|---------------------------------| | | | | WWAN | 2.4GHz WLAN | | | | | | 10g SAR
(W/kg) | Estimated
10g SAR
(W/kg) | | | LTE | LTE Band 2_E | Front | 2.600 | 0.035 | 2.635 | | | | Back | 1.812 | 0.035 | 1.847 | | | | Left side | 1.749 | 0.035 | 1.784 | | | | Right side | 0.326 | 0.035 | 0.361 | | | | Top side | 1.937 | 0.035 | 1.972 | | | | Bottom side | 0.166 | 0.035 | 0.201 | | | LTE Band 4_E | Front | 2.330 | 0.035 | 2.365 | | | | Back | 1.930 | 0.035 | 1.965 | | | | Left side | 1.850 | 0.035 | 1.885 | | | | Right side | 0.296 | 0.035 | 0.331 | | | | Top side | 0.950 | 0.035 | 0.985 | | | | Bottom side | 0.082 | 0.035 | 0.117 | | | LTE Band 12_E | Front | 0.539 | 0.035 | 0.574 | | | | Back | 0.634 | 0.035 | 0.669 | | | | Left side | 0.463 | 0.035 | 0.498 | | | | Right side | 0.273 | 0.035 | 0.308 | | | | Top side | 0.178 | 0.035 | 0.213 | | | | Bottom side | 0.129 | 0.035 | 0.164 | **Report No. : FA982310** Test Engineer: Bevis Chang, Tom Jiang, Carter Jhuang and Randy Lin TEL: 886-3-327-3456 Page 36 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019 ## 14. Uncertainty Assessment Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\le 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report. Report No.: FA982310 ## 15. References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [8] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015 - [9] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. TEL: 886-3-327-3456 Page 37 of 37 FAX: 886-3-328-4978 Issued Date: Oct. 16, 2019