

FCC Test Report

Application No.:	DNT241282R1725-4112
Applicant:	Jinhua Gordon Sports Co., Ltd.
Address of	Fenghuang Mountain industrial functional area, Tongqin Town, Wuyi County,
Applicant:	Jinhua, China
EUT Description:	Music Boxing Machine
Model No.:	MBT-03
FCC ID:	2BGMC-MBT-03
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
Trade Mark:	
	47 CFR FCC Part 2, Subpart J
Standards:	47 CFR Part 15, Subpart C
	ANSI C63.10: 2013
Date of Receipt:	2024/6/13
Date of Test:	2024/6/14 to 2024/6/15
Date of Issue:	2024/6/15
Test Result:	PASS

Prepared By: Reviewed By: Approved By:

Wayne . Jon (Testing Engineer) (Project Engineer) (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Date: June 15, 2024 Page: 2 / 65

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Jun.15, 2024	Valid	Original Report

1

Report No.: DNT241282R1725-4112

Date: June 15, 2024

Page: 3 / 65

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious	15.247(d);	ANSI C63.10 (2013)	Clause 3.9	PASS
emissions	15.205/15.209	ANSI 003.10 (2013)	Clause 5.5	
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	NA

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: June 15, 2024

Page: 4 / 65

Contents

1	Test S	ummary	
2	Genera	al Information	5
	2.1	Test Location	5
	2.2	General Description of EUT	6
	2.3	Channel List	7
	2.4	Test Environment and Mode	8
	2.5	Power Setting of Test Software	9
	2.6	Description of Support Units	9
	2.7	Test Facility	9
	2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
	2.9	Equipment List	11
	2.10	Assistant equipment used for test	12
3	Test re	esults and Measurement Data	13
	3.1	Antenna Requirement	13
	3.2	20dB Emission Bandwidth	14
	3.3	Conducted Output Power	
	3.4	Carrier Frequencies Separationy	16
	3.5	Dwell Time	17
	3.6	Hopping Channel Number	
	3.7	Band-edge for RF Conducted Emissions	19
	3.8	RF Conducted Spurious Emissions	
	3.9	Radiated Spurious Emissions	
	3.10	Restricted bands around fundamental frequency	29
	3.11	AC Power Line Conducted Emissions	33
4	Appen	dix	
	Append	dix A: 20dB Emission Bandwidth	
	Append	dix B: Maximum conducted output power	
	Append	dix C: Carrier frequency separation	43
	Append	dix D: Dwell Time	45
	Append	dix F: Number of hopping channels	46
	Append	dix F: Band edge measurements	
	Append	dix F: Conducted Spurious Emission	56

Date: June 15, 2024

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date: June 15, 2024

Page: 6/65

2.2 General Description of EUT

Manufacturer:	Jinhua Gordon Sports Co., Ltd.		
Address of Manufacturer:	Fenghuang Mountain industrial functional area, Tongqin Town, Wuyi County, Jinhua, China		
Test EUT Description:	Music Boxing Machine		
Model No.:	MBT-03		
Additional Model(s):			
Chip Type:	AC6969D		
Serial number:	PR241282R1725		
Power Supply:	DC 3.7V From Battery		
Charging Voltage:	DC 5V		
Trade Mark:			
Hardware Version:	V1.0		
Software Version:	V1.0		
Operation Frequency:	2402 MHz to 2480 MHz		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK		
Sample Type:	Portable Device, Module, Mobile Device		
Antenna Type:	□ External, ⊠ Integrated		
Antenna Ports:	🛛 Ant 1, 🗌 Ant 2, 🗌 Ant 3		
Antonno Coin*:	Provided by applicant		
Antenna Gain*:	-0.58dBi		
	Provided by applicant		
RF Cable*: 0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~40) 1.8dB(4.4~6GHz);			

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: June 15, 2024

Page: 7 / 65

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
2 3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz)	

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: June 15, 2024 F

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	101.0~101.30 KPa			
Test mode:				
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

Page: 9/65 Date: June 15, 2024

2.5 Power Setting of Test Software

Software Name	\mathcal{O}	FCC_assist_1.0.2.2	O, O , O
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π/4-DQPSK Setting	10	10	10
8DPSK	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Date: June 15, 2024

Page: 10 / 65

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
$\langle \rangle$	O O O O O O	± 4.8dB (Below 1GHz)
0	De dista d Envisoien	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
\mathcal{A}	h h h h h	± 5.02dB (Above 18GHz)

2.9 Equipment List

	For Connec	ct EUT Anten	na Terminal ⁻	Test	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

	Test Equipment for Conducted Emission						
Description	Description Manufacturer Model Serial Number Cal Date Due Date						
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23		
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23		
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23		

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z) 💫
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: June 15, 2024

Page: 12/65

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

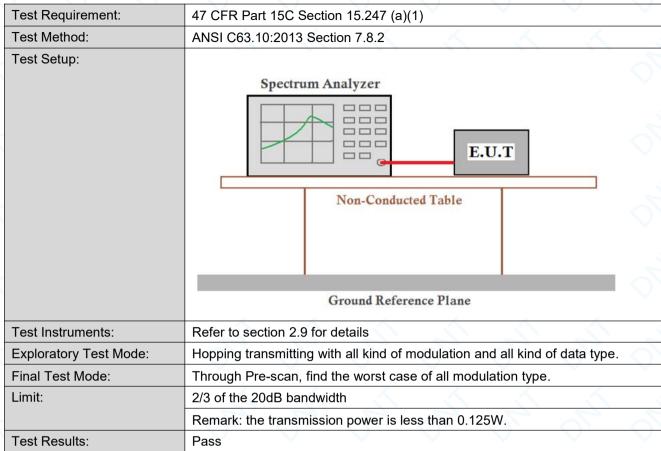
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

3.2 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.7
	ANSI C03. 10.2013 Section 7.0.7
Test Setup:	Spectrum Analyzer
	E.U.T
	Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	NA
Test Results:	Pass

The detailed test data see: Appendix A


3.3 Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.5
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	
	Through Pre-scan, find the worst case of all modulation type.
Limit:	(20.97dBm) 125mW
Test Results:	Pass

The detailed test data see: Appendix B

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.4	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	0, 0, 0,
	Ground Reference Plane	
Instruments Used:	Refer to section 2.9 for details	\bigcirc
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.	
Limit:	0.4 Second	<
Test Results:	Pass	~

The detailed test data see: Appendix D

Date: June 15, 2024

Page: 18 / 65

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	\sim
Test Method:	ANSI C63.10:2013 Section 7.8.3	1
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	10 10 10
	Ground Reference Plane	~
Instruments Used:	Refer to section 2.9 for details	2 2
Test Mode:	Hopping transmitting with all kind of modulation	
Limit:	At least 15 channels	~
Test Results:	Pass	7 - 2

The detailed test data see: Appendix E

Date: June 15, 2024

3.7 Band-edge for RF Conducted Emissions

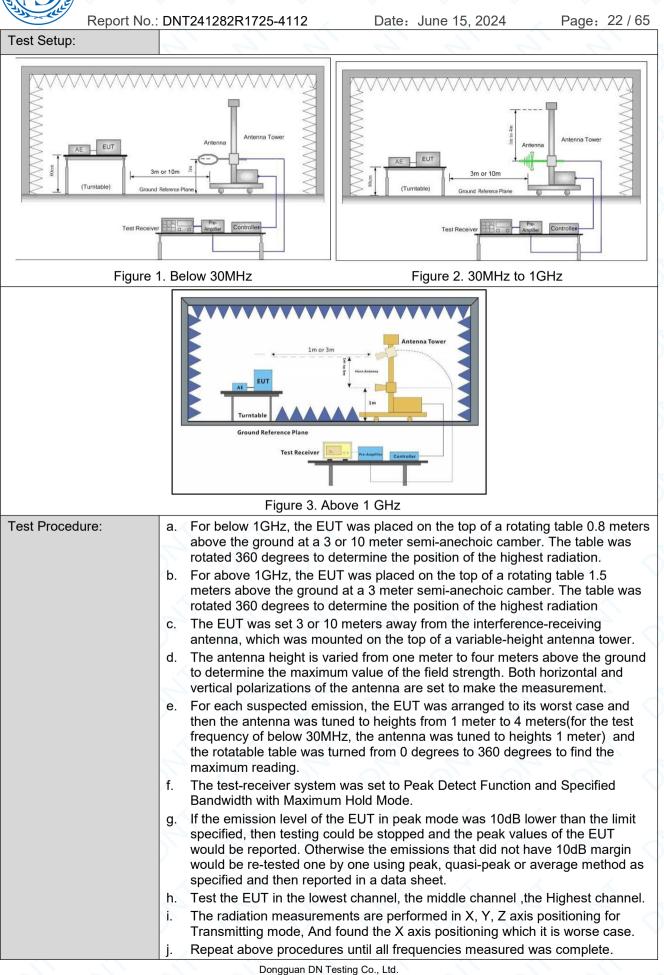
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix F

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

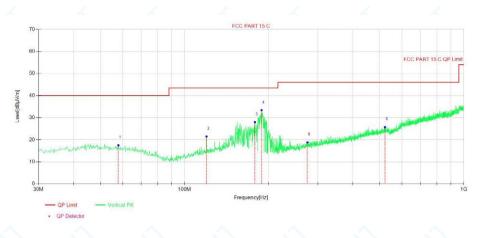
The detailed test data see: Appendix G


Date: June 15, 2024

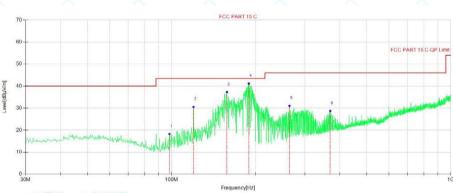
Page: 21/65

3.9 Radiated Spurious Emissions

Frequency MHz-0.090MHz MHz-0.090MHz MHz-0.110MHz MHz-0.490MHz MHz-0.490MHz 0MHz -30MHz	3m or 10m (Semi-A Detector Peak Average Quasi-peak Peak Average	Anechoic Cha RBW 10kHz 10kHz 10kHz 10kHz 10kHz 10kHz	amber) VBW 30kHz 30kHz 30kHz 30kHz 30kHz	Remark Peak Average Quasi-peak
Frequency MHz-0.090MHz MHz-0.090MHz MHz-0.110MHz MHz-0.490MHz MHz-0.490MHz 0MHz -30MHz	Detector Peak Average Quasi-peak Peak Average	RBW 10kHz 10kHz 10kHz 10kHz	VBW 30kHz 30kHz 30kHz	Peak Average
MHz-0.090MHz MHz-0.090MHz MHz-0.110MHz MHz-0.490MHz MHz-0.490MHz 0MHz -30MHz	Peak Average Quasi-peak Peak Average	10kHz 10kHz 10kHz 10kHz	30kHz 30kHz 30kHz	Peak Average
MHz-0.090MHz MHz-0.110MHz MHz-0.490MHz MHz-0.490MHz 0MHz -30MHz	Average Quasi-peak Peak Average	10kHz 10kHz 10kHz	30kHz 30kHz	Average
MHz-0.110MHz MHz-0.490MHz MHz-0.490MHz 0MHz -30MHz	Quasi-peak Peak Average	10kHz 10kHz	30kHz	
MHz-0.490MHz MHz-0.490MHz 0MHz -30MHz	Peak Average	10kHz		Quasi-peak
MHz-0.490MHz 0MHz -30MHz	Average		30kHz	
0MHz -30MHz	.	10kHz		Peak
\rightarrow			30kHz	Average
	Quasi-peak	10kHz	30kHz	Quasi-peak
)MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Peak	1MHz	3MHz	Peak
bove 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average
~	1	$\langle \langle \rangle$	≥1/T (DC<0.98)	$\langle \langle \cdot \rangle$
Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
MHz-0.490MHz	2400/F(kHz)	- 🔨	~	300
MHz-1.705MHz	24000/F(kHz)		~~`	30
5MHz-30MHz	30	<u> </u>	\sim -	30
MHz-88MHz	100	40.0	Quasi-peak	3
MHz-216MHz	150	43.5	Quasi-peak	3
MHz-960MHz	200	46.0	Quasi-peak	3
0MHz-1GHz	500	54.0	Quasi-peak	3
bove 1GHz	500	54.0	Average	3
	ons is 20dB above	bove 1GHz Frequency MHz-0.490MHz 2400/F(kHz) MHz-1.705MHz 24000/F(kHz) MHz-30MHz 30 MHz-88MHz 100 MHz-88MHz 100 MHz-216MHz 150 MHz-960MHz 200 0MHz-1GHz 500 bove 1GHz 500 k: 15.35(b),Unless otherwise specified ons is 20dB above the maximum period	bove 1GHzField strength (microvolt/meter)Limit (dBuV/m)FrequencyField strength (microvolt/meter)Limit (dBuV/m)MHz-0.490MHz2400/F(kHz)-MHz-1.705MHz24000/F(kHz)-05MHz-30MHz30-05MHz-30MHz30-05MHz-30MHz10040.0MHz-216MHz15043.5MHz-960MHz20046.00MHz-1GHz50054.0bove 1GHz50054.0k: 15.35(b),Unless otherwise specified, the limit of	bove 1GHz $(DC \ge 0.98)$ $\ge 1/T$ $(DC < 0.98)$ FrequencyField strength (microvolt/meter)Limit (dBuV/m)RemarkMHz-0.490MHz2400/F(kHz)MHz-1.705MHz24000/F(kHz)05MHz-30MHz3005MHz-30MHz3005MHz-30MHz10040.0Quasi-peakMHz-1.705MHz20046.0Quasi-peakMHz-960MHz20046.0Quasi-peak0MHz-1GHz50054.0Quasi-peakbove 1GHz50054.0Averagek: 15.35(b),Unless otherwise specified, the limit on peak radio froms is 20dB above the maximum permitted average emission limit



Report No.:	DNT241282R1725-4112 Date: June 15, 2024 Page: 23 / 65
Test Configuration:	Measurements Below 1000MHz • RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 1000 MHz • RBW = 1 MHz • VBW \ge 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above 1000MHz • RBW = 1 MHz • VBW \ge 10 Hz, when duty cycle is no less than 98 percent. • VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass


Test data For 30-1000MHz

Vertical:

	NO.	Freq. [MHz]	Reading Level	Correct Factor	Result Level	Limit [dBµV/	Margin [dB]	Height [cm]	Angle [°]	Remark
ł	1	57.94	[dBµV] 26.00	[dB/m] -8.55	[dBµV/m] 17.45	m] 40.00	22.55	100	221	QP
-	2	119.83	31.78	-0.33	21.48	43.50	22.02	200	221	QP
	3	178.63	37.15	-9.16	27.99	43.50	15.51	200	51	QP
f	4	188.72	43.81	-10.39	33.42	43.50	10.08	200	25	QP
									-	
	5	275.45	26.55	-7.74	18.81	46.00	27.19	200	310	QP
	6	521.88	26.89	-1.18	25.71	46.00	20.29	100	57	QP

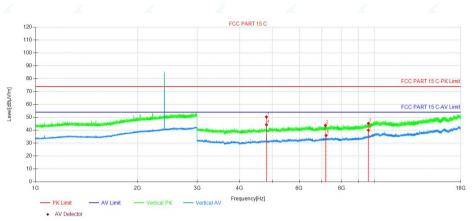
Horizontal :

_	- QP Limit	- Horizontal	P
•	QP Detector		

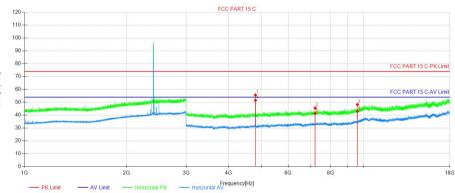
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	98.30	31.15	-12.88	18.27	43.50	25.23	200	150	QP
2	119.83	40.84	-10.30	30.54	43.50	12.96	200	297	QP
3	157.87	45.08	-7.79	37.29	43.50	6.21	200	355	QP
4	189.11	51.61	-10.43	41.18	43.50	2.32	200	297	QP
5	264.39	39.43	-8.38	31.05	46.00	14.95	100	130	QP
6	370.15	33.87	-5.16	28.71	46.00	17.06	100	2	QP

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China


 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date: June 15, 2024


For above 1GHz DH5 2402MHz

Vertical:

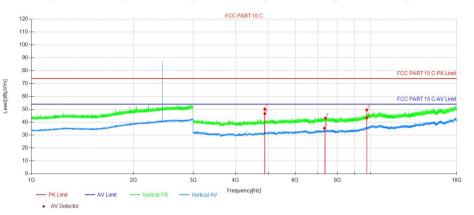
Reading Correct Result Heigh Freq. Limit Margin Angle NO. Factor Level Remark Level t [MHz] [dBµV/m] [dB] [°] [dBµV] [dB/m] [dBµV/m] [cm] 1 4803.84 54.94 -4.61 50.33 74.00 23.67 150 279 Peak 2 7176.20 45.73 -1.83 43.90 74.00 30.10 150 57 Peak 74.00 3 9607.83 44.47 0.87 45.34 28.66 150 138 Peak 4 4804.59 48.94 -4.61 44.33 54.00 9.67 150 279 AV 5 -1.76 7206.96 37.77 36.01 54.00 17.99 150 72 AV 40.04 6 9608.58 39.16 0.88 54.00 126 AV 13.96 150

Horizontal:

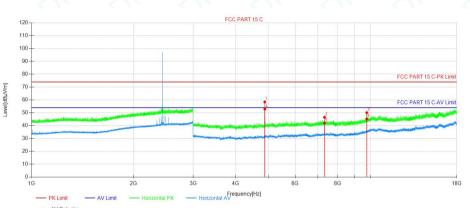
AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.84	60.28	-4.61	55.67	74.00	18.33	150	355	Peak
2	7206.21	47.31	-1.76	45.55	74.00	28.45	150	70	Peak
3	9607.83	47.32	0.87	48.19	74.00	25.81	150	42	Peak
4	4804.59	56.15	-4.61	51.54	54.00	2.46	150	355	AV
5	7206.96	43.07	-1.76	41.31	54.00	12.69	150	70	AV
6	9608.58	42.11	0.88	42.99	54.00	11.01	150	42	AV

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

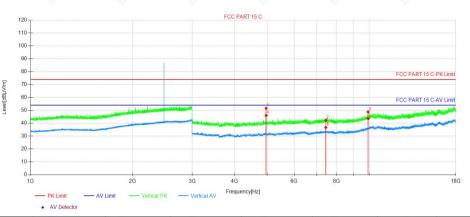
 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com


DH5 2441MHz

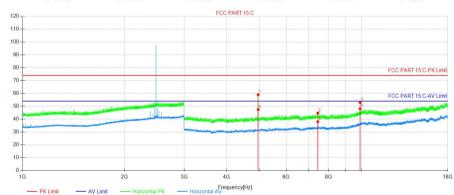
Vertical:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4881.84	55.01	-4.72	50.29	74.00	23.71	150	290	Peak
\mathbf{i}	2	7371.96	44.50	-1.37	43.13	74.00	30.87	150	182	Peak
	3	9764.58	47.89	1.64	49.53	74.00	24.47	150	73	Peak
	4	4882.59	51.37	-4.72	46.65	54.00	7.35	150	277	AV
	5	7323.96	36.89	-1.49	35.40	54.00	18.60	150	59	AV
	6	9764.58	41.78	1.64	43.42	54.00	10.58	150	73	AV

Horizontal:



		 AV Detector 							
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4881.84	63.13	-4.72	58.41	74.00	15.59	150	83	Peak
2	7323.21	48.02	-1.49	46.53	74.00	27.47	150	71	Peak
3	9763.83	48.42	1.64	50.06	74.00	23.94	150	140	Peak
4	4882.59	57.59	-4.72	52.87	54.00	1.13	150	83	AV
5	7323.96	43.57	-1.49	42.08	54.00	11.92	150	71	AV
6	9764.58	43.58	1.64	45.22	54.00	8.78	150	15	AV


DH5 2480MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	56.43	-4.86	51.57	74.00	22.43	150	243	Peak
2	7440.97	43.60	-1.34	42.26	74.00	31.74	150	200	Peak
3	9920.59	46.46	2.27	48.73	74.00	25.27	150	75	Peak
4	4960.59	50.94	-4.86	46.08	54.00	7.92	150	243	AV
5	7440.97	38.05	-1.34	36.71	54.00	17.29	150	61	AV
6	9920.59	41.28	2.27	43.55	54.00	10.45	150	61	AV

Horizontal:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	63.86	-4.86	59.00	74.00	15.00	150	84	Peak
2	7440.22	46.02	-1.34	44.68	74.00	29.32	150	97	Peak
3	9919.84	50.68	2.26	52.94	74.00	21.06	150	126	Peak
4	4960.59	52.36	-4.86	47.50	54.00	6.50	150	84	AV
5	7440.97	39.30	-1.34	37.96	54.00	16.04	150	70	AV
6	9920.59	45.80	2.27	48.07	54.00	5.93	150	126	AV

Note:

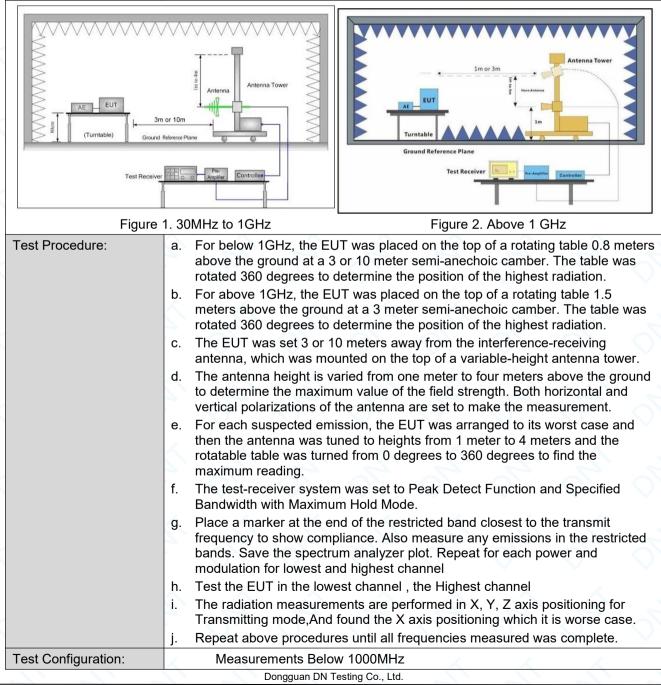
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test,DH5 is the worst case, only the worst case was reported.


Date: June 15, 2024 Page: 29 / 65

3.10 Restricted bands around fundamental frequency

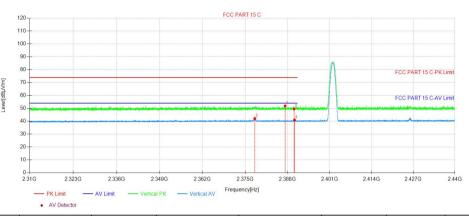
Report No.: DNT241282R1725-4112

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	
Test Method:	ANSI C63.10: 2013 Section	11.12	
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic C	Chamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Above 1GHz	54.0	Average Value
	Above IGH2	74.0	Peak Value

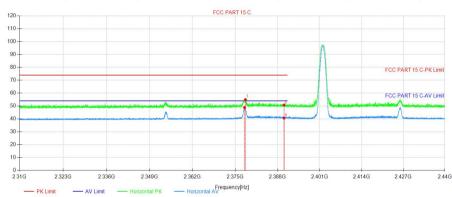
Test Setup:

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com



1	Report No.: D	NT241282R1725-4112	Date: June 15, 2024	Page: 30 / 65
<		 RBW = 120 kHz VBW = 300 kHz Detector = Peak 	5° 5° 5	
<		 Trace mode = max Peak Measurements RBW = 1 MHz VBW ≥ 3 MHz 		
		 Detector = Peak Sweep time = auto Trace mode = max 	hold	
		Average Measuremer • RBW = 1 MHz		percent.
<		minimum transmission duration over w	duty cycle is less than 98 perce hich the transmitter is on and is I for the tested mode of operati	s transmitting at its
	Exploratory Test Mode:	Transmitting with all kind of n Transmitting mode.	nodulations, data rates.	\circ \circ
<	Final Test Mode:	Pretest the EUT Transmitting Through Pre-scan, find the E type. Only the worst case is record	DH5 of data type is the worst ca	ase of all modulation
	Instruments Used:	Refer to section 2.9 for detai	ls	
	Test Results:	Pass	N 7 7	


Test Date DH5 2402MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2387.27	52.66	-0.80	51.86	74.00	22.14	150	259	Peak
2	2390.01	50.31	-0.80	49.51	74.00	24.49	150	224	Peak
3	2377.98	42.95	-0.84	42.11	54.00	11.89	150	67	AV
4	2390.17	41.70	-0.80	40.90	54.00	13.10	150	124	AV

Horizontal:

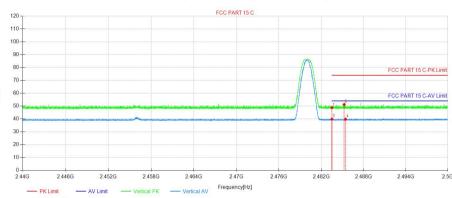
AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2378.16	55.80	-0.84	54.96	74.00	19.04	150	10	Peak
2	2390.01	51.52	-0.80	50.72	74.00	23.28	150	112	Peak
3	2377.89	49.69	-0.84	48.85	54.00	5.15	150	102	AV
4	2390.01	41.42	-0.80	40.62	54.00	13.38	150	0	AV

Dongguan DN Testing Co., Ltd.

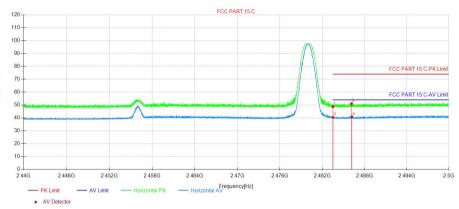
 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com


 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

DH5 2480MHz



AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	2483.51	49.04	-0.29	48.75	74.00	25.25	150	186	Peak
Υ	2	2485.25	51.52	-0.27	51.25	74.00	22.75	150	163	Peak
	3	2483.51	40.19	-0.29	39.90	54.00	14.10	150	152	AV
	4	2485.43	40.13	-0.27	39.86	54.00	14.14	150	302	AV

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	48.91	-0.29	48.62	74.00	25.38	150	94	Peak
2	2486.14	51.26	-0.27	50.99	74.00	23.01	150	357	Peak
3	2483.50	40.76	-0.29	40.47	54.00	13.53	150	5	AV
4	2486.18	41.09	-0.27	40.82	54.00	13.18	150	94	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test,DH5 is the worst case. only the worst case was reported.

Date: June 15, 2024

Page: 33 / 65

Test Requirement:	47 CFR Part 15C Section 15	5.207				
Test Method:	ANSI C63.10: 2013		R 70 7			
Test Frequency Range:	150kHz to 30MHz					
Limit:		🖌 🔪 Limit ((dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarit	nm of the frequency.				
est Procedure:	 The mains terminal disturoom. The EUT was connected Impedance Stabilization Net impedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip was single LISN provided the rate 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground 4) The test was performed work the EUT shall be 0.4 m from vertical ground reference plane. The LISN 1 unit under test and bonded 1 mounted on top of the ground 10 mounted on top of the ground 10 mounted on top of the ground 10 mounted 10 mount	to AC power source thr work) which provides a es of all other units of th bonded to the ground r e LISN 1 for the unit bei as used to connect mul- ing of the LISN was not aced upon a non-metall for floor-standing arrar und reference plane, with a vertical ground re on the vertical ground re ane was bonded to the h was placed 0.8 m from o a ground reference pl	rough a LISN 1 (Line $50\Omega/50\mu$ H + 5Ω linear e EUT were connected reference ng measured. A tiple power cables to a exceeded. ic table 0.8m above the ngement, the EUT was ference plane. The rear reference plane. The norizontal ground the boundary of the ane for LISNs			
	between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 2013 on conducted measurement.					
Test Setup:						
	Shielding Room		Test Receiver			

3.11 AC Power Line Conducted Emissions

Report No.: DNT2	41282R1725-4112 Date: June 15, 2024 Page: 34 / 65						
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.						
	Charge + Transmitting mode.						
Final Test Mode:	Through Pre-scan, find the the worst case.						
Instruments Used:	Refer to section 2.9 for details						
Test Results:	N/A						

Note: The prototype automatically enters the shutdown state when charging, and the wireless function cannot work at this time.

Date: June 15, 2024

Page: 35 / 65

4 Appendix

Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Test Mode Antenna		20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.041	2401.481	2402.522	<u> </u>	
DH5	Ant1	2441	1.062	2440.466	2441.528		
		2480	1.047	2479.478	2480.525		
	Ant1	2402	1.332	2401.337	2402.669		>
2DH5		2441	1.341	2440.340	2441.681		
		2480	1.353	2479.334	2480.687	<u> </u>	
		2402	1.311	2401.349	2402.660		
3DH5	Ant1	2441	1.305	2440.352	2441.657		
		2480	1.308	2479.349	2480.657		

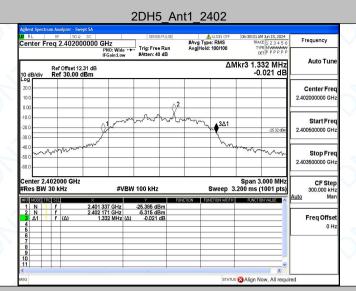
Page: 36 / 65

Test Graphs

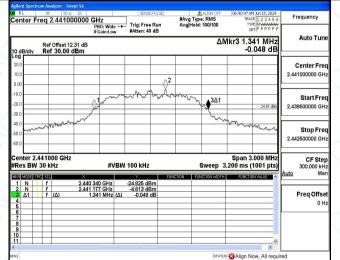
		H5_Ant	t1_2402		
Agilent Spectrum Analyzer - Swep X RL RF 50 ຂ Center Freq 2.402000	DC D000 GHz PN0: Wide +++ Ti	ig: Free Run Atten: 40 dB	ALIGN OFF #Avg Type: RMS Avg Hold: 100/100	06:27:22 AM Jun 15, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	Frequency
Ref Offset 12.3 10 dB/div Ref 30.00 d			ΔΝ	1kr3 1.041 MHz -0.395 dB	Auto Tune
20.0 10.0 0.00		2			Center Fred 2.402000000 GH;
20.0	1 mm	pontur	×~~~∳3∆1	-25.11 dBn	Start Free 2.400500000 GH
40.0 50.0			- When the second secon	www.www.wyw	Stop Free 2.403500000 GH
Center 2.402000 GHz Res BW 30 kHz	#VBW 10		Sweep 3	Span 3.000 MHz .200 ms (1001 pts)	CF Ste 300.000 kH <u>Auto</u> Ma
1 N 1 f 2 N 1 f 3 Δ1 1 f (Δ) 4 5 6		.341 dBm .111 dBm -0.395 dB		s	Freq Offse
7 8 9 10 11					
sg lisg		- A.	STATUS	Align Now, All requi	red

DH5_Ant1_2441

GHz PNO: Wide → Trig: Free Run IFGain:Low #Atten: 40 dB	Avg]Hold: 100/100	TYPE MWWWWW DET P P P P P Mkr3 1.062 MHz	Auto Tune
		-0.104 dB	
^2			Center Fre 2.441000000 GH
Anger marking	3∆1	-24.07 Obin	Start Fre 2.439500000 GH
		and the second second	Stop Fre 2.442500000 GH
#VBW 100 kHz	•	,	CF Ste 300.000 kH Auto Ma
466 GHz 24.247 dBm 127 GHz 4.065 dBm 562 MHz (Δ) -0.104 dB	PUNCTION PUNCTION WIDTH		Freq Offse 0 H
1	#VBW 100 kHz	#VBW 100 kHz Sweep 3 66 GHz 24247 8m 40004000 14004000000	1


DH5_Ant1_2480

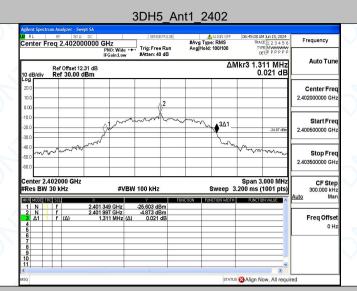
	rum Analyzer - Swi					
Center F	RF 50 Ω req 2.48000		SENSE:PULSE	ALIGN OFF #Avg Type: RMS Avg Hold: 100/100	06:34:58 AM Jun 15, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div	Ref Offset 12 Ref 30.00 (IFGain:Low	#Atten: 40 dB		DET P P P P P P Mkr3 1.047 MHz -0.136 dB	Auto Tune
20.0 10.0						Center Freq 2.480000000 GHz
10.0 20.0 30.0		Ju mar	www.	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	-23.63 dBn	Start Freq 2.478500000 GHz
40.0 50.0	winner with				- Mumm	Stop Freq 2.481500000 GHz
enter 2. Res BW	480000 GHz 30 kHz	#VE	3W 100 kHz	Sweep 3	Span 3.000 MHz 3.200 ms (1001 pts)	CF Step 300.000 kHz Auto Man
AKE MODE T 1 N 2 2 N 3 3 Δ1 4 5 6 6 7 8 9 9 10 11	FC SCL f	X 2.479 478 GHz 2.479 844 GHz 1.047 MHz (-23.695 dBm -3.633 dBm			Freq Offset
G				STATU	s 🔀 Align Now, All requi	red



Date: June 15, 2024

Page: 37 / 65

2DH5_Ant1_2441


2DH5_Ant1_2480

	rum Analyzer - Swe								
Center F	RF 50 Ω req 2.48000	00000 GHz	SEN Wide ↔ Trig: Fre	e Run	#Avg Typ AvalHold		TRAC	1 Jun 15, 2024 E 1 2 3 4 5 6 E MWWWWW	Frequency
10 dB/div	Ref Offset 12 Ref 30.00 (IFGain .31 dB					1kr3 1.3	53 MHz .031 dB	Auto Tune
20.0 10.0				^2					Center Freq 2.480000000 GHz
-10.0 -20.0 -30.0		14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~L.	and the second s	v.€ ^{3∆1}		-24.79 oBn	Start Freq 2.478500000 GHz
-40.0 -50.0	more						mon	hnn	Stop Freq 2.481500000 GHz
#Res BW			#VBW 100 kH				.200 ms (. ,	CF Step 300.000 kHz Auto Man
Note π 1 N 2 N 3 Δ1 4 5 6 7 7 8 9 10 11 1	FC SCL f f f	× 2.479 334 GI 2.480 177 GI 1.353 M	Hz -4.786 c	Bm Bm		ACTION WIDTH	FUNCTIO		Freq Offset
MSG						STATUS	🛛 🕄 Align N	ow, All requi	red

Date: June 15, 2024

Page: 38/65

3DH5_Ant1_2441

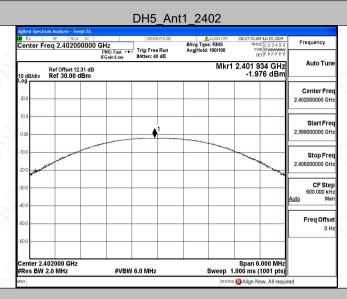
	DC DC	SENSE:PULSE	ALIGN OFF	05:47:51 AM Jun 15, 2024	Frequency
Center Freq 2.441	PNO: Wide Tri		#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P	Frequency
Ref Offset 10 dB/div Ref 30.0	12.31 dB		ΔN	1kr3 1.305 MHz -0.095 dB	Auto Tune
-og 200 10.0					Center Free 2.441000000 GH
0.00	- Armer	And man	∽∽€3∆1	-24.86 oBm	Start Free 2.439500000 GH
40.0 50.0 60.0				and a stand when the stand when	Stop Fred 2.442500000 GH;
Center 2.441000 GH Res BW 30 kHz	łz #VBW 100) kHz		Span 3.000 MHz .200 ms (1001 pts)	CF Step 300.000 kH Auto Mar
	2.440 352 GHz -24.	911 dBm			
1 N 1 f 2 N 1 f 3 Δ1 1 f (Δ) 4 5	2.440 985 GHz -4.	863 dBm 0.095 dB			
2 N 1 f 3 Δ1 1 f (Δ) 4	2.440 985 GHz -4.	863 dBm			Freq Offset 0 Hz

3DH5_Ant1_2480

Agilent Spectr											
Center F	RF req 2	50 Ω 2.48000	0000 GH	Z		e Run		ALIGN OFF Type: RMS old: 100/100	TRA	M Jun 15, 2024 CE 1 2 3 4 5 6 PE MWWWWW	Frequency
10 dB/div		Offset 12. f 30.00 c	IFC 31 dB	Sain:Low	#Atten: 4	0 dB			Mkr3 1.3	08 MHz .338 dB	Auto Tune
20.0 10.0											Center Freq 2.480000000 GHz
-10.0 -20.0 -30.0			, A	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hom	~~~~	J~3∆1		-25.03 dBm	Start Freq 2.478500000 GHz
-40.0 -50.0 -60.0		m Mm	,						hor	mum	Stop Freq 2.481500000 GHz
Center 2. #Res BW				#VE	W 100 kH:			Sweep 🗄	Span 3 3.200 ms	.000 MHz 1001 pts)	CF Step 300.000 kHz Auto Man
MACH MODE TI 1 N 1 2 N 1 3 Δ1 1 4 5 6 7 6 9 10 11	f	(Δ)	× 2.479 344 2.479 85 1.30		-25,438 d -5.033 d 1) 0.338	Bm Bm	JNCTION	FUNCTION WIDTH			Auto Man Freq Offset 0 Hz
5G								STAT	us 🔞 Align N	low, All requi	red

Date: June 15, 2024

Page: 39/65


Appendix B: Maximum conducted output power

Test Result						
Test Mode	Antenna	Antenna Freq(MHz) Conducted Peak Powert[dBm]		Conducted Limit[dBm]	Verdict	
		2402	-1.98	≤20.97	PASS	
DH5	Ant1	2441	-1.01	≤20.97	PASS	
		2480	-0.85	≤20.97	PASS	
		2402	-1.18	≤20.97	PASS	
2DH5	Ant1	2441	-0.32	≤20.97	PASS	
		2480	-0.17	≤20.97	PASS	
		2402	-0.78	≤20.97	PASS	
3DH5	Ant1	2441	0.08	≤20.97	PASS	
		2480	0.31	≤20.97	PASS	

Page: 40 / 65

Test Graphs

DH5_Ant1_2441

RL RF 50 Ω DC Center Freq 2.441000000	SENSE:PULSE	#Avg Type: RMS	06:33:17 AM Jun 15, 2024 TRACE 1 2 3 4 5 6	Frequency
261161 1164 2.44 100000	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB	Avg Hold: 100/100	TYPE MWWWWW DET P P P P P	
Ref Offset 12.31 dB 10 dB/div Ref 30.00 dBm		Mkr1	2.440 766 GHz -1.009 dBm	Auto Tur
20.0				Center Fre 2.441000000 GF
0.00	● ¹			Start Fro 2.438000000 GI
20.0 Herekowania and a second			and the state of t	Stop Fro 2.444000000 GI
40.0				CF Ste 600.000 kl <u>Auto</u> M
50.0				Freq Offs 01
60.0				
Center 2.441000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep	Span 6.000 MHz 1.000 ms (1001 pts)	

DH5_Ant1_2480

	Analyzer - Swept SA		SENSE:PULSE		IGN OFF	35:14 AM Jun 15, 2024	1
enter Frec	2.480000000	GHz PNO: Fast ↔	Trig: Free Run	#Avg Type: Avg Hold: 10		TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div R	ef Offset 12.31 dB ef 30.00 dBm	IFGain:Low	#Atten: 40 dB	in growth		ост РРРРРР 179 928 GHz -0.849 dBm	Auto Tun
20.0							Center Fre 2.480000000 GH
0.00			∳ ¹				Start Fre 2.477000000 GH
10.0 20.0 Wantuladination						Market and a second	Stop Fre 2.483000000 GH
10.0							CF Ste 600.000 kH Auto Ma
50.0							Freq Offs 0 H
60.0							
Center 2.480 #Res BW 2.0		#VBW	6.0 MHz	S		pan 6.000 MHz) ms (1001 pts)	
ISG					STATUS 🔞	Align Now, All requi	red

Date: June 15, 2024

Page: 41/65

gilent Spectrum Analyzer - Swep RL RF 50 Ω Center Freq 2.402000	DC 1000 GHz PN0: Fast +-	SENSE:PULSE	ALIGN OFF #Avg Type: RMS Avg Hold: 100/100	06:38:17 AM Jun 15, J TRACE 1 2 3 TYPE MWWW DET P P P	456 Frequency
Ref Offset 12.3 0 dB/div Ref 30.00 dE		#Atten: 40 dB	Mkr	1 2.402 018 G -1.184 di	Hz Auto Tur
20.0					Center Fre 2.402000000 GF
0.00		1			Start Fr 2.399000000 G
10.0				Maran Barray V. Marale Litty	Stop Fr 2.405000000 G
40.0					CF Sto 600.000 k Auto M
50.0					Freq Offs 0
60.0					
Center 2.402000 GHz Res BW 2.0 MHz	#VB	N 6.0 MHz	Sweep	Span 6.000 M 1.000 ms (1001	

2DH5_Ant1_2441

XI RL	RF 50 Ω DC		SENSE:PULSE	ALIGN OFF	06:41:03 AM Jun 15, 2024	Frequency
Center Fre	q 2.44100000	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TYPE MWWWWWW DET P P P P P	Trequency
	tef Offset 12.31 dB Ref 30.00 dBm			Mkr1	2.440 772 GHz -0.318 dBm	Auto Tune
20.0						Center Free 2.441000000 GH
0.00			•1			Start Free 2.438000000 GH:
-10.0	and the second				and a second	Stop Fred 2.444000000 GH:
-30.0						CF Step 600.000 kH Auto Mar
-50.0						Freq Offse 0 H
-60.0	1000 GHz				Span 6.000 MHz	
#Res BW 2.		#VBW	6.0 MHz	Sweep	1.000 ms (1001 pts)	

2DH5_Ant1_2480

	trum Analyzer - Swep								
Center	RF 50 Q	DOOD GHz		SE:PULSE	#Avg Type		TRAC	4 Jun 15, 2024 16 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 12.3 Ref 30.00 dl	IFGain 81 dB	Fast ↔ Trig:Fre Low #Atten:		Avg Hold:		2.480 0	24 GHz 73 dBm	Auto Tune
20.0									Center Freq 2.480000000 GHz
10.0 0.00		maria		● ¹					Start Freq 2.477000000 GHz
-10.0	Walness and the second second	-					advant a	Ward Wald	Stop Freq 2.483000000 GHz
-30.0									CF Step 600.000 kHz <u>Auto</u> Man
-50.0									Freq Offset 0 Hz
-60.0	2.480000 GHz						Snan 6	.000 MHz	
	V 2.0 MHz		#VBW 6.0 MH	z		Sweep 1		1001 pts)	
MSG						STATU	🛚 🔀 Align N	ow, All requi	red