

TEST REPORT

Product 10.1-inch central control screen

Trade mark **KANDI TOP101** Model/Type reference

Serial Number N/A

Report Number EED32O81396701

FCC ID : 2A8M8-TOP101 Date of Issue : Oct. 18, 2022

Test Standards : 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

SC Autosports, LLC 8050 Forest Lane Dallas, TX 75243

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

ERNATIO

Report Seal

Firever. Lo

Frazer Li Lavon Ma Reviewed by:

Tom Chen

Date:

Oct. 18, 2022

Aaron Ma

Check No.: 9624060922

Report No.: EED32O81396701

Content

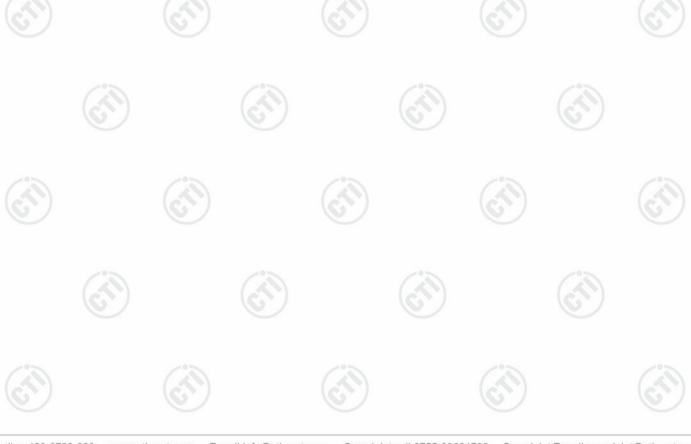
1 COVER PAGE	 1
2 CONTENT2	
3 VERSION	 3
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION	
6 EQUIPMENT LIST	9
7 TEST RESULTS AND MEASUREMENT DATA	12
7.1 ANTENNA REQUIREMENT 7.2 MAXIMUM CONDUCTED OUTPUT POWER 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENSITY 7.5 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 7.6 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	13 14 15
8 APPENDIX A	 28
9 PHOTOGRAPHS OF TEST SETUP	 29
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	31

Report No.: EED32O81396701

3 Version

Version No.	Date	Description	9
00	Oct. 18, 2022	Original	
			/ S
((2)	(60)	(67)

Report No. : EED32O81396701 Page 4 of 45


4 Test Summary

+ rest buillinary		(48)	
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	
		1 4 7 7 1	

Remark:

N/A:The product is powered by DC 12.0V.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	SC Autosports, LLC			
Address of Applicant:	8050 Forest Lane Dallas,TX 75243			
Manufacturer:	SC Autosports, LLC	C°>	/-	7
Address of Manufacturer:	8050 Forest Lane Dallas,TX 75243	(25)	(2)	14
Factory:	SC Autosports, LLC		6	
Address of Factory:	8050 Forest Lane Dallas,TX 75243			

5.2 General Description of EUT

Product Name:	10.1-inch central control screen			
Model No.:	TOP101		(0)	
Trade mark:	KANDI			
Product Type:	Fix Location			
Operation Frequency:	2402MHz~2480MHz			
Modulation Type:	GFSK	6.		6.
Transfer Rate:	☑1Mbps □2Mbps			
Number of Channel:	40			
Antenna Type:	Internal antenna			
Antenna Gain:	1.5dBi		(0,)	
Power Supply:	DC 12.0V			
Test Voltage:	DC 12.0V			-
Sample Received Date:	Sep. 21, 2022			
Sample tested Date:	Sep. 21, 2022 to Sep. 26, 2022	(6.)		(0.

Report No.: EED32O81396701 Page 6 of 45

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	EUT Test Software Settings:						
Software:	RF test	(6	(7)	(6.57)			
EUT Power Grade:	Default(Po selected)	Default(Power level is built-in set parameters and cannot be changed and selected)					
Use test software to transmitting of the E	set the lowest frequenc	cy, the middle freque	ncy and the highest	frequency keep			
Test Mode	Modulation	Rate	Channel	Frequency(MHz)			
Mode a	GFSK	1Mbps	CH0	2402			
Mode b	GFSK	1Mbps	CH19	2440			
Mode c	GFSK	1Mbps	CH39	2480			

Report No.: EED32O81396701 Page 7 of 45

5.4 Test Environment

0	perating Environment						
R	adiated Spurious Emis	ssions:					
Te	emperature:	22~25.0 °C	(41)		(41)		(41)
/ н	umidity:	50~55 % RH	0		(0)		(0)
At	tmospheric Pressure:	1010mbar					
C	onducted Emissions:						
Te	emperature:	22~25.0 °C		(3)		(20)	
Н	umidity:	50~55 % RH		(0,)		(0,	
At	tmospheric Pressure:	1010mbar					
R	F Conducted:						
Te	emperature:	22~25.0 °C	(3)				
Н	umidity:	50~55 % RH	(6,7,2)		(6,7,2)		(6,7)
At	tmospheric Pressure:	1010mbar					

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

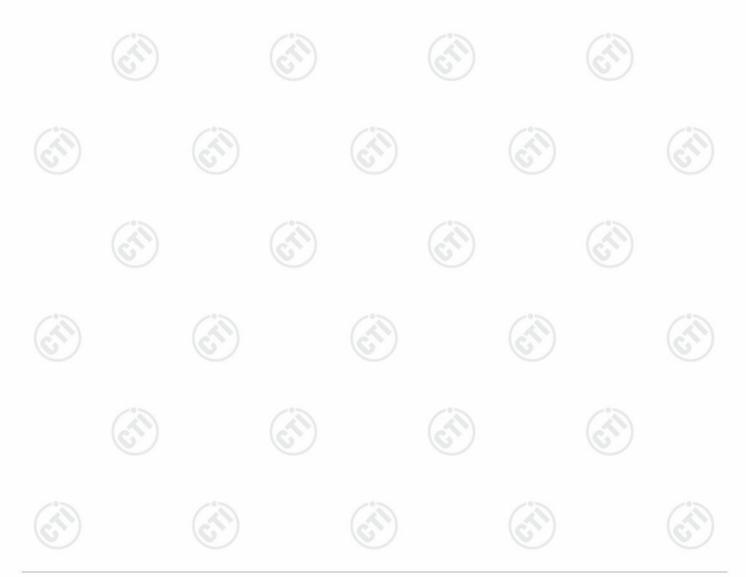
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

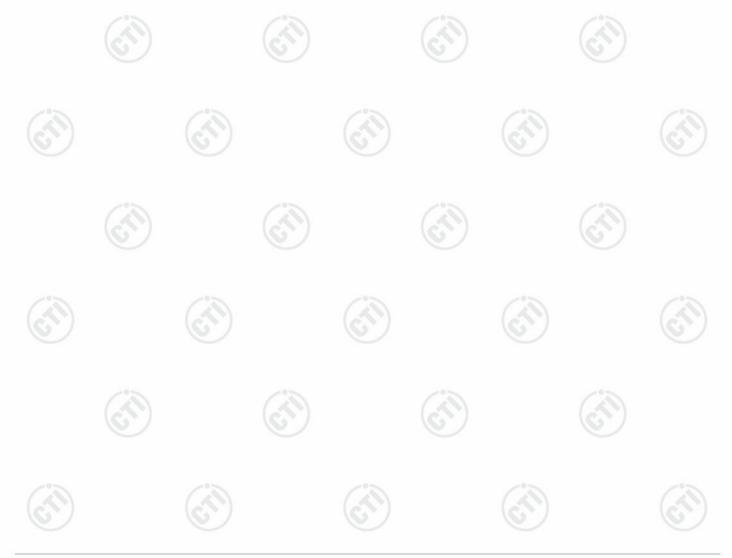


5.7 Measurement Uncertainty (95% confidence levels, k=2)

	177.7	185.75		
No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE neuror conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-40GHz)		
	6	3.3dB (9kHz-30MHz)		
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
PE		3.4dB (18GHz-40GHz)		
37	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Report No. : EED32O81396701 Page 9 of 45

6 Equipment List


RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022	
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022	
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023	
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022	
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022	
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022	
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(6	9	

Page 10 of 45 Report No.: EED32O81396701

	3M Semi-an	echoic Chamber (2)	- Radiated distu	ırbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
Multi device Controller	maturo	NCD/070/10711112	(3)	/3	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

Report No.: EED32O81396701 Page 11 of 45

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3	(C.)	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	<u> </u>	7(3)
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>	70.
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	<i></i>
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	- 6	/
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u></u>	-(3)
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u></u>	(6)

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

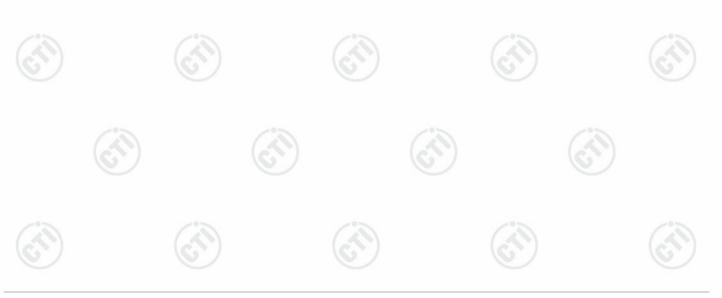
The antenna is integral antenna. The best case gain of the antenna is 1.5dBi.

7.2 Maximum Conducted Output Power

10.0	1047	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power Supply Table RF test System System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	/°>
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix BLE	

7.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	(cit)
	Control Computer Power Supply Attenuator Instrument Table RF test System France Supply Attenuator Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix BLE

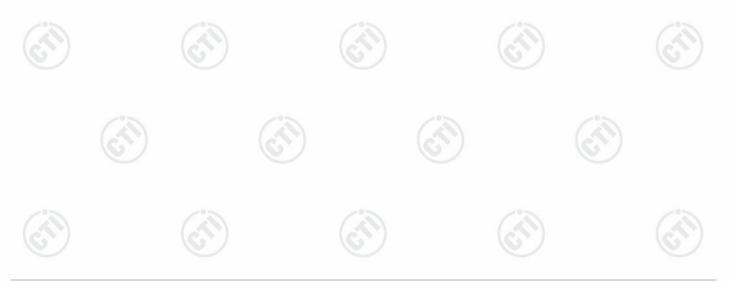


7.4 Maximum Power Spectral Density

100	103							
Test Requirement:	47 CFR Part 15C Section 15.247 (e	e)						
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013						
Test Setup:								
	Control Composition Power Supply TEMPERATURE CABNET Table	RF test System Instrument						
	Remark: Offset=Cable loss+ attenu	uation factor.						
Test Procedure:	within the RBW.	S bandwidth.						
Limit:	≤8.00dBm/3kHz							
Test Mode:	Refer to clause 5.3							
Test Results:	Refer to Appendix BLE							

7.5 Band Edge measurements and Conducted Spurious Emission

16.	
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Computer Control Computer Power pooft Table RF test System System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix BLE



7.6 Radiated Spurious Emission & Restricted bands

160.00	100		100		180,0	
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	ber)	-51			
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	lz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	lz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	lz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
	Above 1GHz		Peak	1MHz	3MHz	Peak
			Peak	1MHz	10kHz	Average
Limit:	l Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/05	300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30
	1.705MHz-30MHz		30	-	-6	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	10	200	46.0	Quasi-peak	3
	960MHz-1GHz		500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the expeak emission level radius.	20c equip	dB above the oment under t	maximum est. This p	permitted av	erage emission

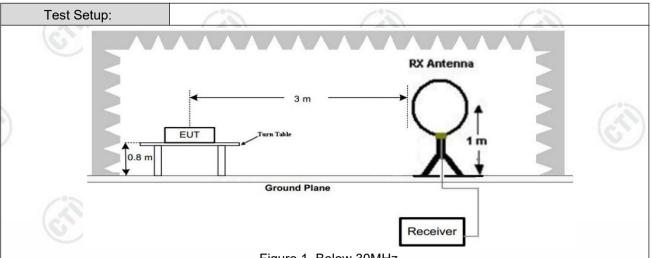
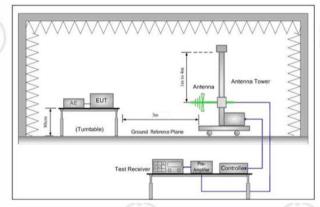



Figure 1. Below 30MHz

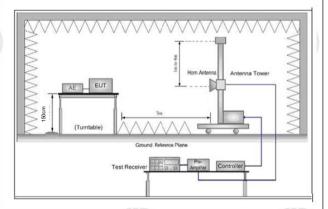


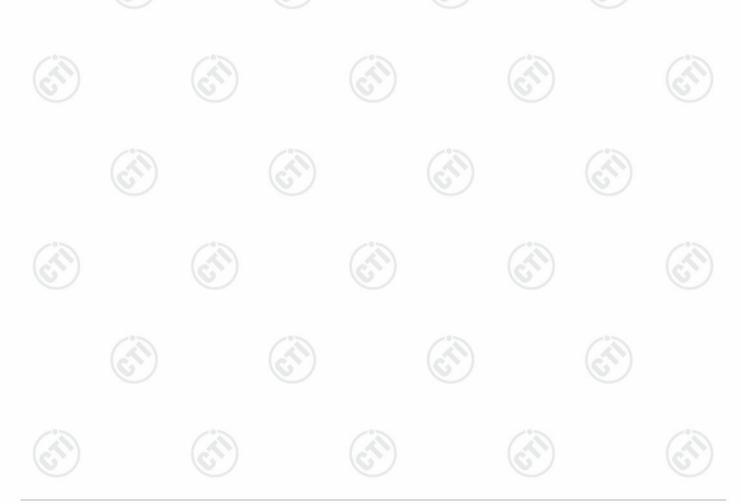
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

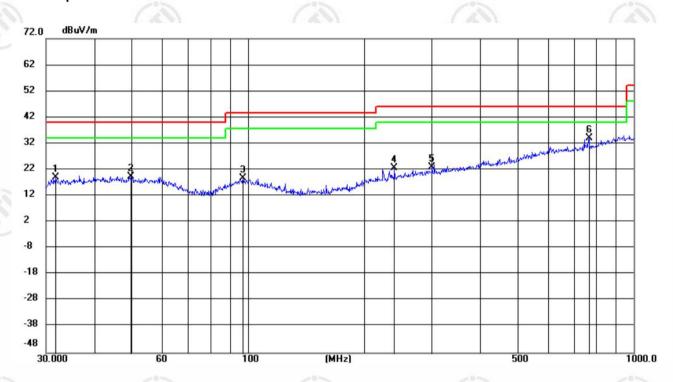
Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32O81396701 Page 19 of 45

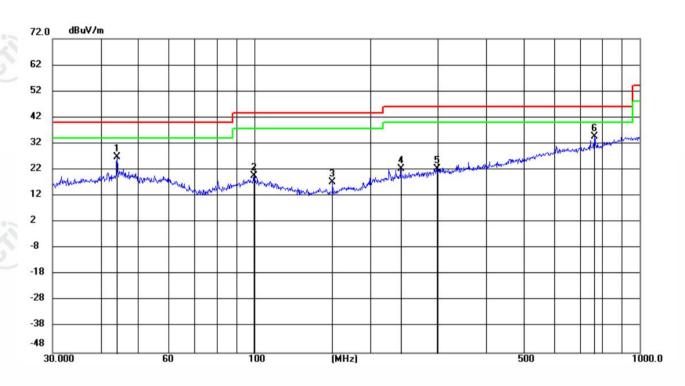
Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



Radiated Spurious Emission below 1GHz:

Horizontal:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	31.7312	6.07	13.07	19.14	40.00	-20.86	QP	200	161	
2	49.7066	5.07	14.28	19.35	40.00	-20.65	QP	200	39	
3	97.1148	4.96	13.65	18.61	43.50	-24.89	QP	200	60	
4	239.9873	7.45	15.17	22.62	46.00	-23.38	QP	100	258	
5	300.3672	5.58	17.26	22.84	46.00	-23.16	QP	200	4	
6 *	766.0571	8.23	25.83	34.06	46.00	-11.94	QP	200	4	



Vertical:

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
44.1202	12.28	14.43	26.71	40.00	-13.29	QP	100	30	
99.8777	5.52	14.03	19.55	43.50	-23.95	QP	200	269	
159.7844	7.28	9.83	17.11	43.50	-26.39	QP	100	202	
239.9874	7.13	15.17	22.30	46.00	-23.70	QP	100	39	
297.2241	5.20	17.15	22.35	46.00	-23.65	QP	200	356	
763.3757	8.99	25.78	34.77	46.00	-11.23	QP	200	356	
	MHz 44.1202 99.8777 159.7844 239.9874 297.2241	Freq. Level MHz dBuV 44.1202 12.28 99.8777 5.52 159.7844 7.28 239.9874 7.13 297.2241 5.20	Freq. Level Factor MHz dBuV dB 44.1202 12.28 14.43 99.8777 5.52 14.03 159.7844 7.28 9.83 239.9874 7.13 15.17 297.2241 5.20 17.15	Freq. Level Factor ment MHz dBuV dB dBuV/m 44.1202 12.28 14.43 26.71 99.8777 5.52 14.03 19.55 159.7844 7.28 9.83 17.11 239.9874 7.13 15.17 22.30 297.2241 5.20 17.15 22.35	Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 44.1202 12.28 14.43 26.71 40.00 99.8777 5.52 14.03 19.55 43.50 159.7844 7.28 9.83 17.11 43.50 239.9874 7.13 15.17 22.30 46.00 297.2241 5.20 17.15 22.35 46.00	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 44.1202 12.28 14.43 26.71 40.00 -13.29 99.8777 5.52 14.03 19.55 43.50 -23.95 159.7844 7.28 9.83 17.11 43.50 -26.39 239.9874 7.13 15.17 22.30 46.00 -23.70 297.2241 5.20 17.15 22.35 46.00 -23.65	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 44.1202 12.28 14.43 26.71 40.00 -13.29 QP 99.8777 5.52 14.03 19.55 43.50 -23.95 QP 159.7844 7.28 9.83 17.11 43.50 -26.39 QP 239.9874 7.13 15.17 22.30 46.00 -23.70 QP 297.2241 5.20 17.15 22.35 46.00 -23.65 QP	Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 44.1202 12.28 14.43 26.71 40.00 -13.29 QP 100 99.8777 5.52 14.03 19.55 43.50 -23.95 QP 200 159.7844 7.28 9.83 17.11 43.50 -26.39 QP 100 239.9874 7.13 15.17 22.30 46.00 -23.70 QP 100 297.2241 5.20 17.15 22.35 46.00 -23.65 QP 200	Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 44.1202 12.28 14.43 26.71 40.00 -13.29 QP 100 30 99.8777 5.52 14.03 19.55 43.50 -23.95 QP 200 269 159.7844 7.28 9.83 17.11 43.50 -26.39 QP 100 202 239.9874 7.13 15.17 22.30 46.00 -23.70 QP 100 39 297.2241 5.20 17.15 22.35 46.00 -23.65 QP 200 356

Radiated Spurious Emission above 1GHz:

Mode:			BLE GFSK Tra	nsmitting	Channel:		2402 MHz		
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1326.6327	1.15	40.69	41.84	74.00	32.16	Pass	Н	PK
2	1984.8985	4.47	39.76	44.23	74.00	29.77	Pass	Н	PK
3	4804.1203	-16.23	57.71	41.48	74.00	32.52	Pass	Н	PK
4	6373.2249	-12.88	53.41	40.53	74.00	33.47	Pass	Н	PK
5	9190.4127	-7.96	50.98	43.02	74.00	30.98	Pass	Н	PK
6	12648.6432	-4.49	51.32	46.83	74.00	27.17	Pass	Н	PK
7	1145.6146	0.83	40.88	41.71	74.00	32.29	Pass	V	PK
8	1860.0860	3.73	39.45	43.18	74.00	30.82	Pass	V	PK
9	3333.0222	-19.93	60.00	40.07	74.00	33.93	Pass	V	PK
10	4803.1202	-16.23	56.16	39.93	74.00	34.07	Pass	V	PK
11	6327.2218	-12.90	53.70	40.80	74.00	33.20	Pass	V	PK
12	9763.4509	-7.50	51.13	43.63	74.00	30.37	Pass	V	PK

Мо	de:	1	BLE GFSK Trai	nsmitting		Channel:		2440 MHz	
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1295.2295	1.05	41.17	42.22	74.00	31.78	Pass	Н	PK
2	1996.6997	4.53	39.18	43.71	74.00	30.29	Pass	Н	PK
3	3747.0498	-19.60	57.71	38.11	74.00	35.89	Pass	Н	PK
4	4912.1275	-16.15	54.73	38.58	74.00	35.42	Pass	Н	PK
5	6315.2210	-12.91	53.05	40.14	74.00	33.86	Pass	Н	PK
6	9868.4579	-7.17	50.45	43.28	74.00	30.72	Pass	Н	PK
7	1133.6134	0.83	41.48	42.31	74.00	31.69	Pass	V	PK
8	1738.8739	3.07	40.30	43.37	74.00	30.63	Pass	V	PK
9	3336.0224	-19.94	62.42	42.48	74.00	31.52	Pass	V	PK
10	5768.1845	-13.68	52.60	38.92	74.00	35.08	Pass	V	PK
11	7710.3140	-11.08	51.36	40.28	74.00	33.72	Pass	V	PK
12	10850.5234	-6.30	50.61	44.31	74.00	29.69	Pass	V	PK

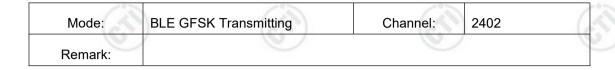


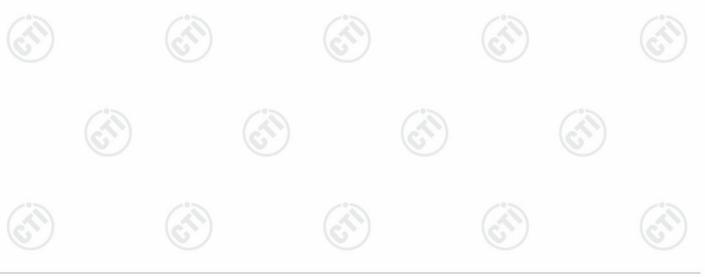
Report No.: EED32O81396701 Page 23 of 45

200				100		50%				
N	Mode:			BLE GFSK Trai	nsmitting	Channel:		2480 MHz	1	
ı	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1220.4220	0.85	40.56	41.41	74.00	32.59	Pass	Н	PK
	2	2079.1079	4.81	39.48	44.29	74.00	29.71	Pass	Н	PK
	3	4960.1307	-15.97	54.87	38.90	74.00	35.10	Pass	Н	PK
	4	7827.3218	-11.25	52.53	41.28	74.00	32.72	Pass	Н	PK
	5	11098.5399	-6.20	51.42	45.22	74.00	28.78	Pass	Н	PK
	6	14372.7582	0.77	47.99	48.76	74.00	25.24	Pass	Н	PK
	7	1180.6181	0.81	41.36	42.17	74.00	31.83	Pass	V	PK
	8	1984.0984	4.47	40.33	44.80	74.00	29.20	Pass	V	PK
	9	3327.0218	-19.91	61.49	41.58	74.00	32.42	Pass	V	PK
	10	5616.1744	-14.21	53.15	38.94	74.00	35.06	Pass	V	PK
	11	9204.4136	-7.88	51.33	43.45	74.00	30.55	Pass	V	PK
6	12	12500.6334	-4.83	50.45	45.62	74.00	28.38	Pass	V	PK

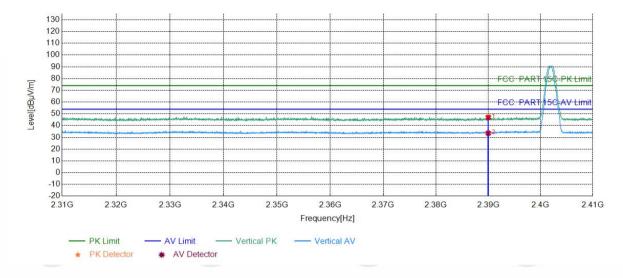
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

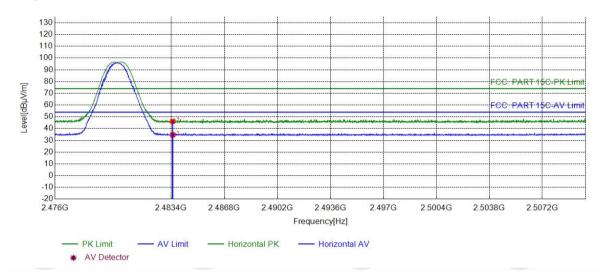



Restricted bands:

Test plot as follows:

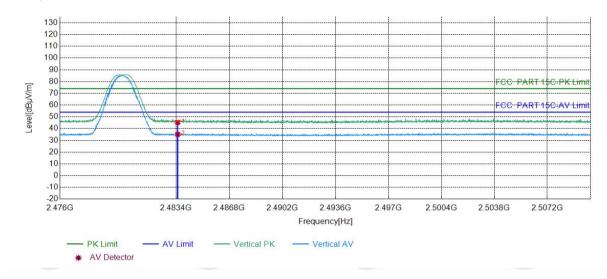

	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
Ī	1	2390.0000	5.77	39.63	45.40	74.00	28.60	PASS	Horizontal	PK		
	2	2390.0000	5.77	28.27	34.04	54.00	19.96	PASS	Horizontal	AV		

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	70	-0-	


Su	Suspected List											
N	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark		
IN	O	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]					
1	1	2390.0000	5.77	41.21	46.98	74.00	27.02	PASS	Vertical	PK		
2	2	2390.0000	5.77	27.77	33.54	54.00	20.46	PASS	Vertical	AV		

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	705		

S	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	2483.5000	6.57	39.66	46.23	74.00	27.77	PASS	Horizontal	PK		
	2	2483.5000	6.57	28.12	34.69	54.00	19.31	PASS	Horizontal	AV		



	DI E OFOIC Town in:	011	0400
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:			

Test Graph

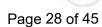
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	38.71	45.28	74.00	28.72	PASS	Vertical	PK		
2	2483.5000	6.57	28.54	35.11	54.00	18.89	PASS	Vertical	AV		

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

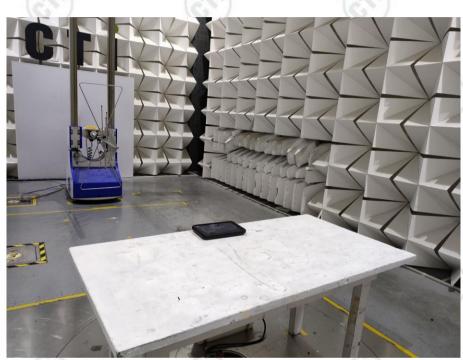
Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



Appendix A

Refer to Appendix: Bluetooth LE of EED32O81396701

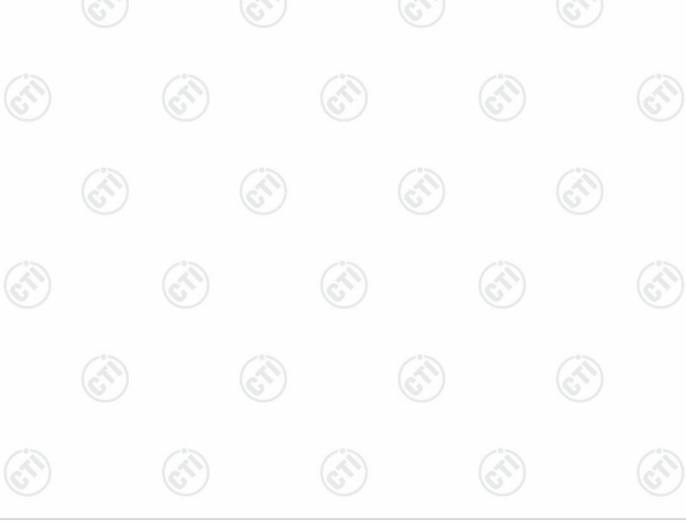


Report No. : EED32O81396701 Page 29 of 45

9 PHOTOGRAPHS OF TEST SETUP

Test model No.: TOP101

Radiated spurious emission Test Setup-1(Below 1GHz)


Radiated spurious emission Test Setup-2(Above 1GHz)

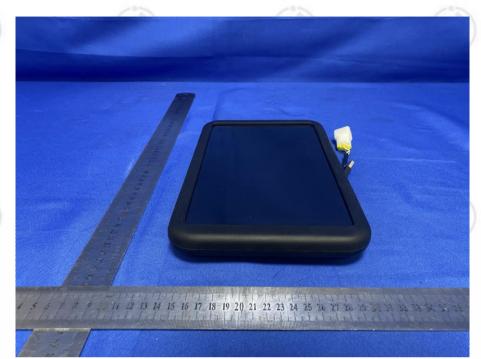
Page 30 of 45 Report No.: EED32O81396701

Radiated spurious emission Test Setup-3(Above 1GHz)
There are absorbing materials under the ground.

Page 31 of 45 Report No.: EED32O81396701

10 PHOTOGRAPHS OF EUT Constructional Details

Test model No.: TOP101

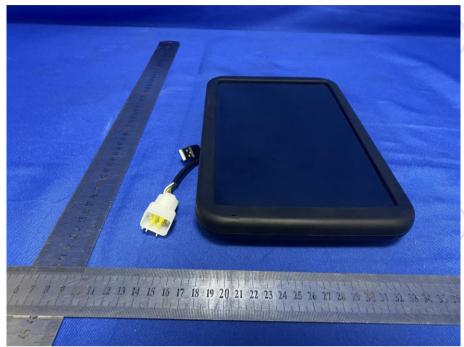


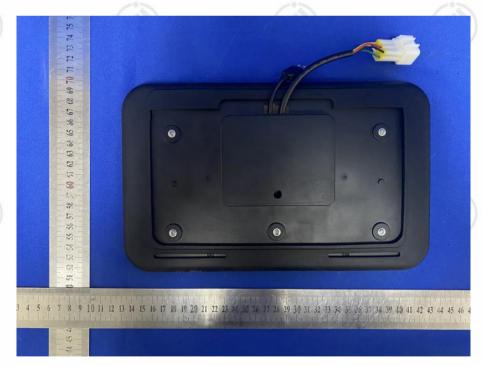
View of Product-1

Report No.: EED32O81396701 Page 32 of 45

View of Product-3

View of Product-4

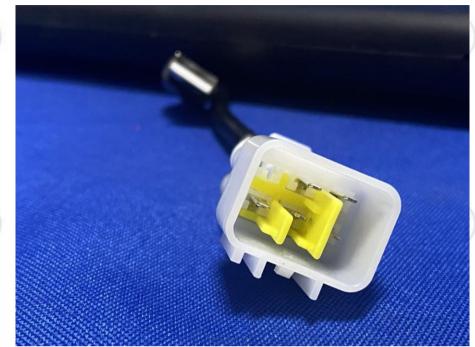


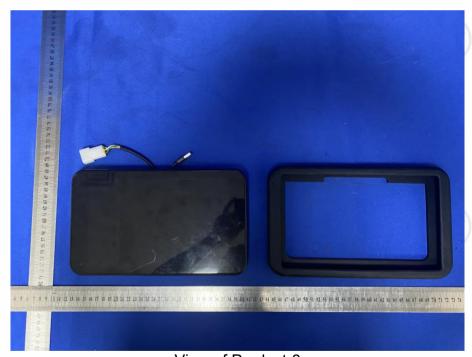


Report No.: EED32O81396701 Page 33 of 45

View of Product-5

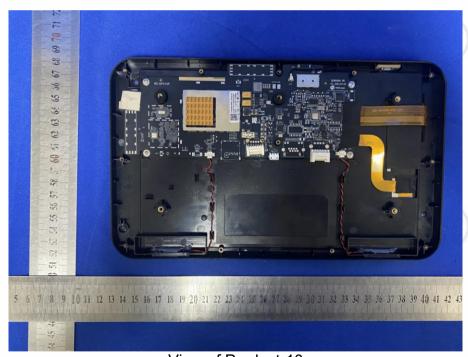
View of Product-6





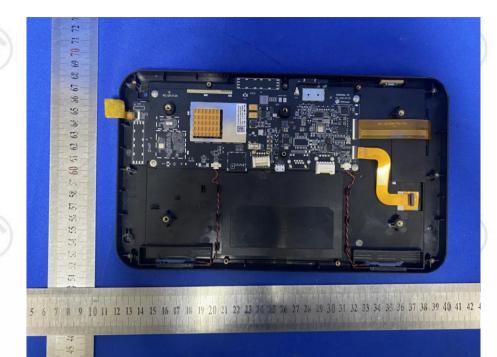
View of Product-7

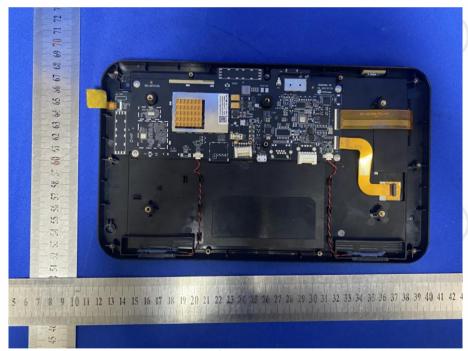
View of Product-8



View of Product-9

View of Product-10

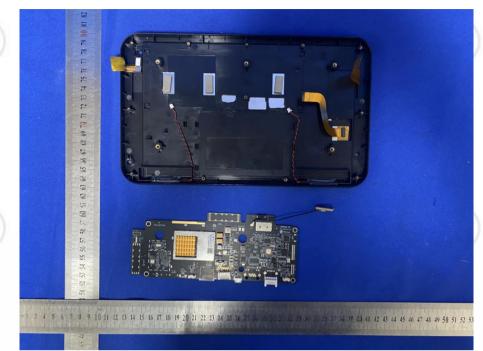


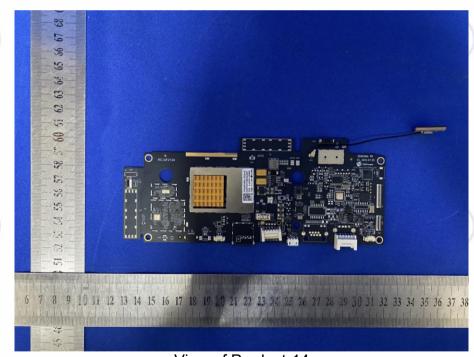


Report No.: EED32O81396701

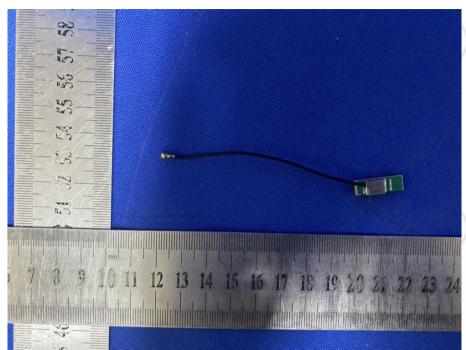
View of Product-11

View of Product-12



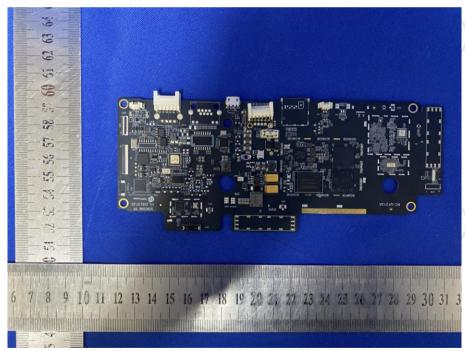


View of Product-13



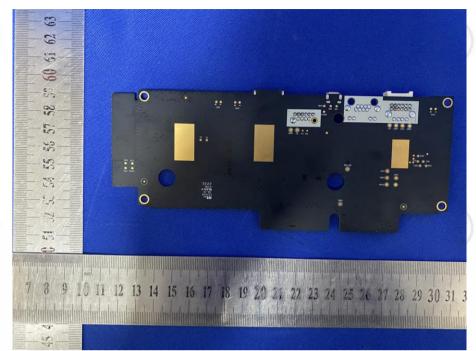
View of Product-14

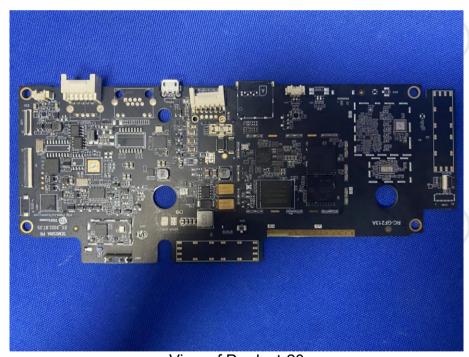
View of Product-15


Page 39 of 45

View of Product-17

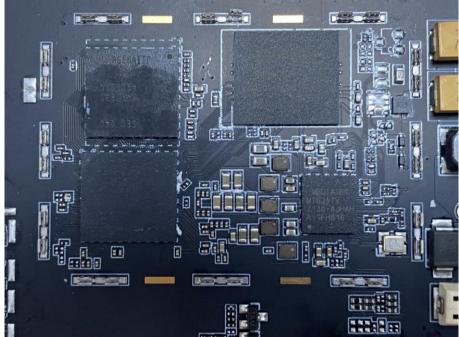
View of Product-18

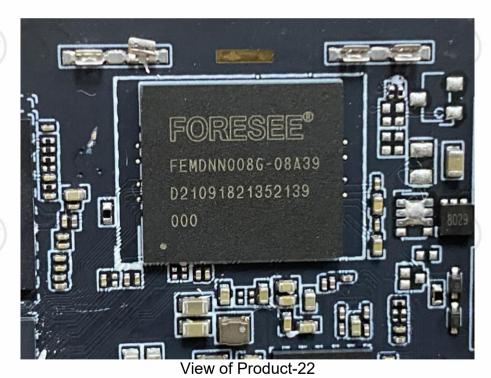




View of Product-19

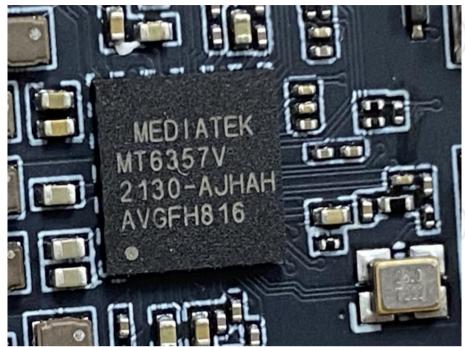
View of Product-20

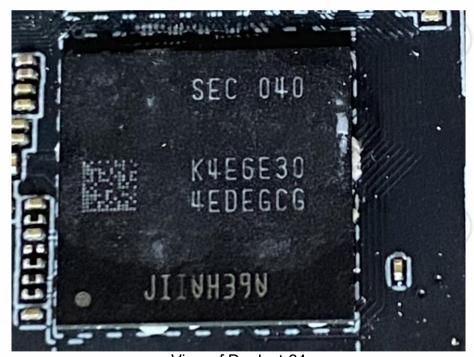




Report No.: EED32O81396701

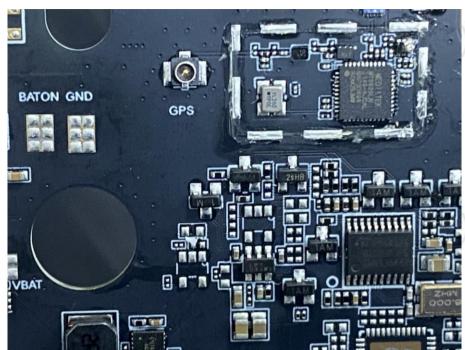
View of Product-21

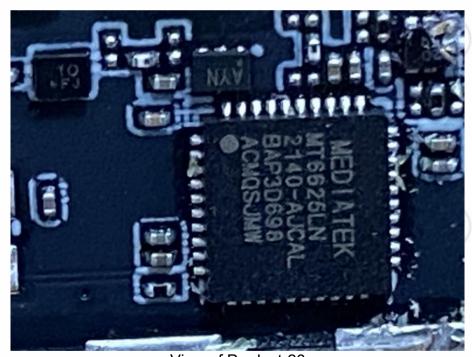




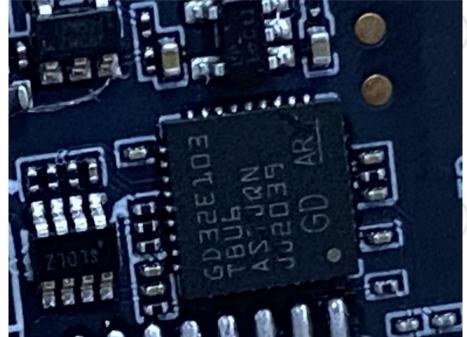
View of Product-23

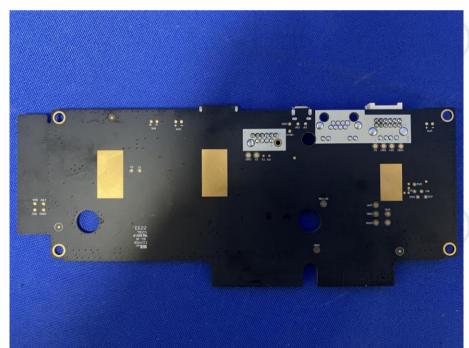
View of Product-24





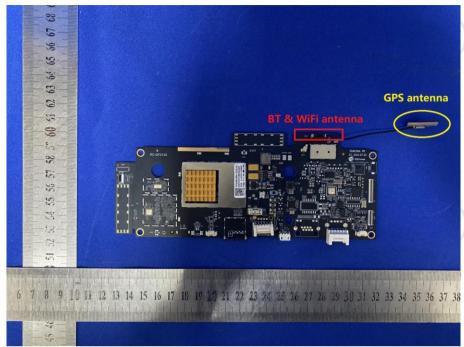
View of Product-26

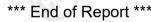


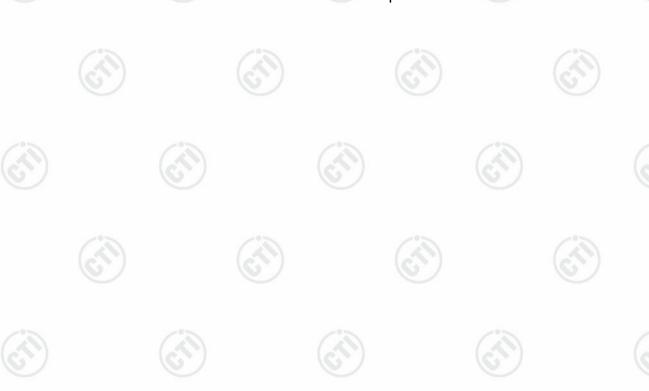

Report No.: EED32O81396701

View of Product-27

View of Product-28






Report No.: EED32O81396701 Page 45 of 45

View of Product-29

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

