

## FCC CFR47 PART 25

### **CERTIFICATION TEST REPORT**

## FOR

## Multi Path Blue Force Tracker

## MODEL NUMBER : mBFT17

## FCC ID: 2AL3AHDJC-1701

## REPORT NUMBER: 4787927807-E3V1

ISSUE DATE: JUN 02, 2017

Prepared for HYUNDAI J-COMM. CO., LTD. 27, Sagimakgol-ro 105beon-gil, Jungwon-gu, Seongnam-Si, GYEONGGI-DO, 13201, KOREA

> Prepared by UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433



### **Revision History**

| Rev. | v. Issue<br>Date | Revisions     | Revised By  |
|------|------------------|---------------|-------------|
| V1   | 06/02/17         | Initial issue | Junwhan Lee |

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 2 of 20

# TABLE OF CONTENTS

| 1.  | AT                           | TESTATION OF TEST RESULTS 4                                             |   |
|-----|------------------------------|-------------------------------------------------------------------------|---|
| 2.  | TES                          | ST METHODOLOGY                                                          |   |
| 3.  | FAG                          | CILITIES AND ACCREDITATION5                                             |   |
| 4.  | CA                           | LIBRATION AND UNCERTAINTY                                               |   |
| 4   | 4.1.                         | MEASURING INSTRUMENT CALIBRATION 5                                      |   |
| 4   | 4.2.                         | SAMPLE CALCULATION                                                      |   |
| 2   | 4.3.                         | MEASUREMENT UNCERTAINTY 6                                               |   |
| 5.  | EQ                           | UIPMENT UNDER TEST                                                      |   |
| Ę   | 5.1.                         | DESCRIPTION OF EUT                                                      | , |
| Ę   | 5.2.                         | MAXIMUM OUTPUT POWER7                                                   | , |
| Ę   | 5.3.                         | DESCRIPTION OF AVAILABLE ANTENNAS                                       | • |
| Ę   | 5.4.                         | DESCRIPTION OF TEST SETUP 8                                             |   |
| 6.  | TES                          | ST AND MEASUREMENT EQUIPMENT10                                          |   |
| 7.  | RE                           | FERENCE MEASUREMENT RESULTS11                                           |   |
| 7   | 7.1.                         | OUTPUT POWER11                                                          |   |
| 8.  | SUI                          | MMARY TABLE12                                                           |   |
| 9.  | RA                           | DIATED TEST RESULTS13                                                   |   |
| g   | 9. <i>1.</i><br>9.1.<br>9.1. |                                                                         |   |
| g   | 9.2.<br>9.2.                 | FIELD STRENGTH OF SPURIOUS RADIATION15<br>1. SPURIOUS RADIATION PLOTS16 |   |
| 10. | S                            | ETUP PHOTOS                                                             |   |

Pass

## **1. ATTESTATION OF TEST RESULTS**

|                  | STANDARD                                   | TEST RESULTS |
|------------------|--------------------------------------------|--------------|
|                  | APPLICABLE STANDARDS                       |              |
| DATE TESTED:     | MAR 28, 2017 – JUN 02, 2017                |              |
| SERIAL NUMBER:   | 0001, 0002 (RADIATED);<br>0001 (CONDUCTED) |              |
| MODEL NUMBER:    | mBFT17                                     |              |
| EUT DESCRIPTION: | Multi Path Blue Force Tracker              |              |
| COMPANY NAME:    | HYUNDAI J-COMM. CO., LTD.                  |              |

FCC PART 25

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Korea, Ltd. By:

Dark

SungGil Park Suwon Lab Engineer UL Korea, Ltd.

Tested By:

Junwhan Lee Suwon Lab Engineer UL Korea, Ltd.

Page 4 of 20

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This superturbed was the superduced execution full, without the written executed of LIL. Korea, Ltd.

This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 25
- 2. FCC CFR 47 Part 2
- 3. ANSI TIA-603-D
- 4. KDB 971168 D01 Power Meas License Digital Systems v02r02

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 218 Maeyeong-ro |  |
|-----------------|--|
| Chamber 1       |  |
| 🛛 Chamber 2     |  |

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at <u>http://www.iasonline.org/PDF/TL/TL-637.pdf</u>.

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

## 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss( between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss( between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

Page 5 of 20

## **4.3. MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | 2.32 dB     |
| Radiated Disturbance, Below 1GHz      | 4.14 dB     |
| Radiated Disturbance, Above 1 GHz     | 5.97 dB     |

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 20

# 5. EQUIPMENT UNDER TEST

### 5.1. DESCRIPTION OF EUT

The EUT is a Multi Path Blue Force Tracker.

This test report addresses the Satellite communication operational mode.

## 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum radiated EIRP output powers as follows:

| Part 25                  |           |          |  |  |  |
|--------------------------|-----------|----------|--|--|--|
| Frequency Range Radiated |           |          |  |  |  |
| [MHz]                    | Avg [dBm] | Avg [mW] |  |  |  |
| 1616~1626                | 36.36     | 4325.14  |  |  |  |

## 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a external antenna for the [List the bands supported] with a maximum peak gain as follow:

| Frequency (MHz) | Peak Gain (dBi) |
|-----------------|-----------------|
| 1616-1626 MHz   | 2               |

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 7 of 20

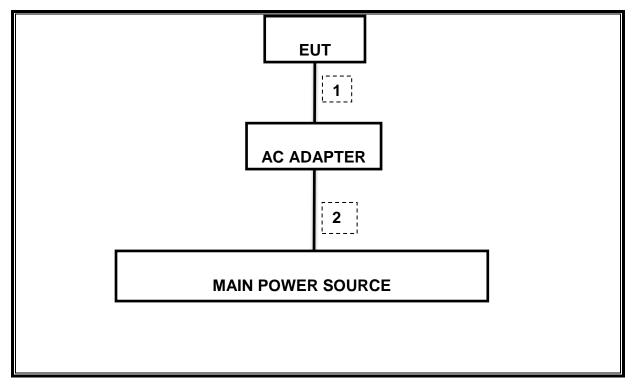
## 5.4. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List |                                           |            |               |        |  |  |  |
|------------------------|-------------------------------------------|------------|---------------|--------|--|--|--|
| Description            | Manufacturer                              | Model      | Serial Number | FCC ID |  |  |  |
| Charger                | Shenzhen lianyunda<br>Electronic co., Ltd | LYD0505000 | N.A           | N/A    |  |  |  |

### I/O CABLES

|             | I/O Cable List |                         |                   |            |                     |         |  |  |
|-------------|----------------|-------------------------|-------------------|------------|---------------------|---------|--|--|
| Cable<br>No |                | # of identical<br>ports | Connector<br>Type | Cable Type | Cable<br>Length (m) | Remarks |  |  |
| 1           | DC Power       | 1                       | 2-PIN             | Shielded   | 1 m                 | N/A     |  |  |
| 2           | AC Power       | 2                       | AC                | Shielded   | 1.1 m               | N/A     |  |  |


### TEST SETUP

The EUT is a stand-alone unit during the tests. Test software exercised the EUT to enable BLE mode.

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 8 of 20

### SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)



 Page 9 01 20

 UL Korea, Ltd. Suwon Laboratory
 FORM ID: FCC\_22/24/27

 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea
 TEL: (031) 337-9902
 FAX: (031) 213-5433

 UL Korea, Ltd. Confidential

 This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 9 of 20

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List                   |               |                        |            |          |  |
|---------------------------------------|---------------|------------------------|------------|----------|--|
| Description                           | Manufacturer  | Model                  | S/N        | Cal Due  |  |
| Antenna, Tuned Dipole<br>400~1000 MHz | ETS           | 3121D DB4              | 00164753   | 07-28-17 |  |
| Antenna, Horn, 40 GHz                 | ETS           | 3116C                  | 00166155   | 11-30-17 |  |
| Antenna, Horn, 40 GHz                 | ETS           | 3116C-PA               | 00168841   | 12-15-17 |  |
| Antenna, Bilog, 30MHz-1GHz            | SCHWARZBECK   | VULB9163               | 750        | 10-14-18 |  |
| Antenna, Bilog, 30MHz-1GHz            | SCHWARZBECK   | VULB9163               | 845        | 11-24-17 |  |
| Antenna, Horn, 18 GHz                 | ETS           | 3115                   | 00167211   | 10-14-18 |  |
| Antenna, Horn, 18 GHz                 | ETS           | 3117                   | 00168724   | 06-17-17 |  |
| Antenna, Horn, 18 GHz                 | ETS           | 3117                   | 00168717   | 06-17-17 |  |
| Preamplifier, 1000 MHz                | Sonoma        | 310N                   | 341282     | 08-17-17 |  |
| Preamplifier, 1000 MHz                | Sonoma        | 310N                   | 351741     | 08-16-17 |  |
| Preamplifier                          | ETS           | 3115-PA                | 00167475   | 08-17-17 |  |
| Preamplifier, 18 GHz                  | Miteq         | AFS42-00101800-25-S-42 | 1896138    | 08-16-17 |  |
| Spectrum Analyzer, 44 GHz             | Agilent / HP  | N9030A                 | MY54170614 | 08-17-17 |  |
| Spectrum Analyzer, 44 GHz             | Agilent / HP  | N9030A                 | MY54490312 | 03-09-18 |  |
| EMI Test Receive, 40 GHz              | R&S           | ESU40                  | 100439     | 08-17-17 |  |
| EMI Test Receive, 40 GHz              | R&S           | ESU40                  | 100457     | 08-16-17 |  |
| High Pass Filter 1.2GHz               | Micro-Tronics | HPM50108-02            | G005       | 08-17-17 |  |
| High Pass Filter 1.2GHz               | Micro-Tronics | HPM50108-02            | G006       | 08-17-17 |  |
| High Pass Filter 2.8GHz               | Micro-Tronics | HPM50111-02            | 010        | 08-17-17 |  |
| High Pass Filter 2.8GHz               | Micro-Tronics | HPM50111-02            | 011        | 08-17-17 |  |
| High Pass Filter 4GHz                 | Micro-Tronics | HPM50118-02            | G001       | 08-17-17 |  |
| High Pass Filter 4GHz                 | Micro-Tronics | HPM50118-02            | G002       | 08-17-17 |  |
| Attenuator                            | PASTERNACK    | PE7087-10              | A007       | 08-17-17 |  |
| Attenuator                            | PASTERNACK    | PE7087-10              | A006       | 08-17-17 |  |
| Attenuator                            | PASTERNACK    | PE7087-10              | A009       | 08-16-17 |  |

Page 10 of 20

# 7. REFERENCE MEASUREMENT RESULTS

## 7.1. OUTPUT POWER

### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss(3\* 10dB attenuator) was entered as an offset in the power meter to allow for direct reading of power. Duty cycle correction factor is already added to the average output power results.

#### Results

| Channel | Frequency   | Meas<br>Power |
|---------|-------------|---------------|
|         | [MHz]       | [dBm]         |
| Low     | 1616.020803 | 30.17         |
| Mid     | 1621.020803 | 31.34         |
| High    | 1625.979167 | 31.09         |
| Worst   |             | 31.34         |

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 11 of 20

# 8. SUMMARY TABLE

| FCC Part<br>Section | Test Description                                                                                                          | Test Limit                | Test Condition | Test Result | Note                      |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|-------------|---------------------------|
| 2.1049              | Occupied Band width                                                                                                       | N/A                       |                | N/P         | See module<br>test report |
| 25.202(f)           | Emission Limit                                                                                                            | See module<br>test report |                | N/P         | See module<br>test report |
| 25.216              | Limits on Emissions from Mobile<br>Earth stations for protection of<br>aeronautical Radionavigation-<br>Satellite Service | See module<br>test report | Conducted      | N/P         | See module<br>test report |
| 2.1047(d)           | Modulation charateristics                                                                                                 | N/A                       |                | N/P         | See module<br>test report |
| 25.202(d)<br>2.1055 | Frequency Stability                                                                                                       | 10 ppm                    |                | N/P         | See module<br>test report |
| 25.204(a)           | Equivalent Isotropic Radiated<br>Power                                                                                    | 40dBW(70dBm)              |                | Pass        | 36.36 dBm                 |
| 25.202(f)           | Emission Limit                                                                                                            | See the section 8.2       | Radiated       | Pass        | -26.5 dBm                 |

• N/P : Not performed

## - <u>NOTE</u>

All conducted test didn't performed because conducted output power of this device is in the module's conducted power tolerance range(30.7dBm ~ 32.7dBm). Also module was installed on this device as same condition with original approval condition.

Please refer to the original approval FCC Part 25 test report. (FCC ID : Q639603N, Document 75926443 Report05 Issue 2)

Page 12 of 20

# 9. RADIATED TEST RESULTS

## 9.1. RADIATED POWER (EIRP)

### RULE PART(S)

FCC: §2.1046, §25.204(a)

### **LIMITS**

25.204 - (a) In bands shared coequally with terrestrial radio communication services, the equivalent isotropically radiated power transmitted in any direction towards the horizon by an earth station, other than an ESV, operating in frequency bands between 1 and 15 GHz, shall not exceed the following limits except as provided for in paragraph (c) of this section:

+ 40 dBW in any 4 kHz band for  $\theta \leq 0^{\circ}$ 

+ 40 + 30 dBW in any 4 kHz band for  $0^{\circ} < \theta \le 5^{\circ}$ 

where  $\theta$  is the angle of elevation of the horizon viewed from the center of radiation of the antenna of the earth station and measured in degrees as positive above the horizontal plane and negative below it.

### TEST PROCEDURE

ANSI / TIA / EIA 603D Clause 2.2.17; ESU40 setting reference to 971168 D01 v02r02

For peak power measurement with a ESU40:

a) Set the RBW  $\geq$  OBW; b) Set VBW  $\geq$  3 × RBW; c) Set span  $\geq$  2 x RBW; d) Sweep time = auto couple; e) Detector = peak; f) Ensure that the number of measurement points  $\geq$  span/RBW; g) Trace mode = max hold;

For average power measurement with a ESU40:

a) Set span to at least 1.5 times the OBW; b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz; c) Set VBW  $\geq$  3 x RBW; d) Set number of points in sweep  $\geq$  2 × span / RBW; e) Sweep time = auto-couple; f) Detector = RMS (power averaging); g) Use free run trigger If burst duty cycle  $\geq$  98; h) Use trigger to capture bursts If burst duty cycle < 98; i) Trace average at least 100 traces in power averaging (*i.e.*, RMS) mode. j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function.

### TEST RESULTS

Page 13 of 20

### 9.1.1. ERP/EIRP Results

#### Satellite

| Mode      | Channel | f [[] [] -]  | ERP / EIRP |         |  |
|-----------|---------|--------------|------------|---------|--|
| Mode      | Channel | f [MHz]      | [dBm]      | [mW]    |  |
|           | 1       | 1616.0208033 | 32.43      | 1749.85 |  |
| Satellite | 121     | 1621.0208033 | 34.58      | 2870.78 |  |
|           | 240     | 1625.979167  | 36.36      | 4325.14 |  |

### 9.1.2. ERP/EIRP DATA

### Satellite

|                                                                                                     |                                                                                           | -                                                      |                                                                     | Substitution Me<br>von Laboratory                                       |                                                   |                                       |                                          |       |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|------------------------------------------|-------|--|
| Company:                                                                                            |                                                                                           | Hyundai J.comm                                         |                                                                     |                                                                         |                                                   |                                       |                                          |       |  |
| Project #:                                                                                          |                                                                                           | 4787927807                                             |                                                                     |                                                                         |                                                   |                                       |                                          |       |  |
| Date:                                                                                               |                                                                                           | 04-18-17                                               |                                                                     |                                                                         |                                                   |                                       |                                          |       |  |
| Test Engi                                                                                           | neer:                                                                                     | Chan Park                                              |                                                                     |                                                                         |                                                   |                                       |                                          |       |  |
| Configura                                                                                           |                                                                                           | EUT ONLY, Y Position                                   |                                                                     |                                                                         |                                                   |                                       |                                          |       |  |
| Mode:                                                                                               |                                                                                           | SATELLITE                                              |                                                                     |                                                                         |                                                   |                                       |                                          |       |  |
|                                                                                                     | : 3117[001687                                                                             | -                                                      |                                                                     | ables<br>A Cable Wareho                                                 | ouse                                              |                                       |                                          |       |  |
| Receiving<br>Substituti<br>f                                                                        | : 3117[001687<br>on: 3115[0016<br>SG reading                                              | 1451] Substi<br>Ant. Pol.                              | tution, 3m SM<br>Cable Loss                                         | A Cable Wareho<br>Antenna Gain                                          | EIRP                                              | Limit                                 | Margin                                   | Notes |  |
| Receiving<br>Substituti<br>f<br>MHz                                                                 | : 3117[001687<br>on: 3115[0016                                                            | 1451] Substi                                           | tution, 3m SM                                                       | A Cable Wareho                                                          |                                                   | Limit<br>(dBm)                        | Margin<br>(dB)                           | Notes |  |
| Receiving<br>Substituti<br>f<br>MHz<br>Low Ch                                                       | : 3117[001687<br>on: 3115[0016<br>SG reading<br>(dBm)                                     | 1451] Substi<br>Ant. Pol.<br>(H/V)                     | tution, 3m SM<br>Cable Loss<br>(dB)                                 | A Cable Wareho<br>Antenna Gain<br>(dBi)                                 | EIRP<br>(dBm)                                     | (dBm)                                 | (dB)                                     | Notes |  |
| Receiving<br>Substituti<br>f<br>MHz<br>Low Ch<br>1616.02                                            | : 3117[001687<br>on: 3115[0016<br>SG reading<br>(dBm)<br>24.77                            | 1451] Substi<br>Ant. Pol.<br>(H/V)<br>V                | tution, 3m SM<br>Cable Loss<br>(dB)<br>1.54                         | A Cable Wareho<br>Antenna Gain<br>(dBi)<br>9.20                         | EIRP<br>(dBm)<br>32.43                            | (dBm)<br>70.0                         | (dB)<br>-37.6                            | Notes |  |
| Receiving<br>Substituti<br>f<br><u>MHz</u><br>Low Ch                                                | : 3117[001687<br>on: 3115[0016<br>SG reading<br>(dBm)                                     | 1451] Substi<br>Ant. Pol.<br>(H/V)                     | tution, 3m SM<br>Cable Loss<br>(dB)                                 | A Cable Wareho<br>Antenna Gain<br>(dBi)                                 | EIRP<br>(dBm)                                     | (dBm)                                 | (dB)                                     | Notes |  |
| Receiving<br>Substituti<br>f<br>MHz<br>Low Ch<br>1616.02<br>1616.02                                 | : 3117[001687<br>on: 3115[0016<br>SG reading<br>(dBm)<br>24.77                            | 1451] Substi<br>Ant. Pol.<br>(H/V)<br>V                | tution, 3m SM<br>Cable Loss<br>(dB)<br>1.54                         | A Cable Wareho<br>Antenna Gain<br>(dBi)<br>9.20                         | EIRP<br>(dBm)<br>32.43                            | (dBm)<br>70.0                         | (dB)<br>-37.6                            | Notes |  |
| Receiving<br>Substituti<br>f<br>MHz<br>Low Ch<br>1616.02<br>1616.02<br>Mid Ch                       | : 3117[001687<br>on: 3115[0016<br>SG reading<br>(dBm)<br>24.77<br>24.77                   | 1451] Substi<br>Ant. Pol.<br>(H/V)<br>V<br>H           | tution, 3m SM<br>Cable Loss<br>(dB)<br>1.54<br>1.54                 | A Cable Wareho<br>Antenna Gain<br>(dBi)<br>9.20<br>9.20                 | EIRP<br>(dBm)<br>32.43<br>32.43                   | (dBm)<br>70.0<br>70.0                 | (dB)<br>-37.6<br>-37.6                   | Notes |  |
| Receiving<br>Substituti<br>f<br>MHz<br>Low Ch<br>1616.02<br>1616.02<br>Mid Ch<br>1621.02<br>High Ch | : 3117[001687<br>on: 3115[0016<br>SG reading<br>(dBm)<br>24.77<br>24.77<br>24.50<br>26.82 | 1451] Substi<br>Ant. Pol.<br>(H/V)<br>V<br>H<br>V<br>H | tution, 3m SM<br>Cable Loss<br>(dB)<br>1.54<br>1.54<br>1.55<br>1.55 | A Cable Wareho<br>Antenna Gain<br>(dBi)<br>9.20<br>9.20<br>9.31<br>9.31 | EIRP<br>(dBm)<br>32.43<br>32.43<br>32.26<br>34.58 | (dBm)<br>70.0<br>70.0<br>70.0<br>70.0 | (dB)<br>-37.6<br>-37.6<br>-37.7<br>-35.4 | Notes |  |
| Receiving<br>Substituti<br>f<br>MHz<br>Low Ch<br>1616.02<br>1616.02<br>Mid Ch<br>1621.02<br>1621.02 | : 3117[001687<br>on: 3115[0016<br>SG reading<br>(dBm)<br>24.77<br>24.77<br>24.50          | 1451] Substi<br>Ant. Pol.<br>(H/V)<br>V<br>H<br>V      | tution, 3m SM<br>Cable Loss<br>(dB)<br>1.54<br>1.54<br>1.55         | A Cable Wareho<br>Antenna Gain<br>(dBi)<br>9.20<br>9.20<br>9.31         | EIRP<br>(dBm)<br>32.43<br>32.43<br>32.26          | (dBm)<br>70.0<br>70.0<br>70.0         | (dB)<br>-37.6<br>-37.6<br>-37.7          | Notes |  |

Page 14 of 20

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

## 9.2. FIELD STRENGTH OF SPURIOUS RADIATION

### RULE PART(S)

FCC: §2.1053, §25.202(f)

### LIMIT

The average power of unwanted emissions shall be attenuated below the average output power, P(dBW), of the transmitter, as specified below:

- 1) 25 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 50%, up to and including 100% of the occupied bandwidth;
- 2) 35 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 100%, up to and including 250% of the occupied bandwidth;
- 3) 43 + 10 Log p (watts) in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 250% of the occupied bandwidth.

### TEST PROCEDURE

ANSI / TIA / EIA 603D Clause 2.2.12; ESU40 setting reference to 971168 D01 v02r02

For peak power measurement with a ESU40:

- a) Set the RBW = 100 KHz for emission below 1GHz and 1MHz for emissions above 1GHz
- b) Set VBW  $\geq$  3 × RBW;
- c) Set span  $\geq$  1.5 times the OBW;
- d) Sweep time = auto couple;
- e) Detector = peak ;
- f) Ensure that the number of measurement points  $\geq$  span/RBW;
- g) Trace mode = max hold;

### **RESULTS**

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 15 of 20

## 9.2.1. SPURIOUS RADIATION PLOTS

#### **Satellite**

|                                                                 | UL Korea, Ltd Suwon Laboratory<br>Above 1GHz High Frequency Substitution Measurement |                                                                                    |                         |              |            |                |                |                |       |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|--------------|------------|----------------|----------------|----------------|-------|--|
| Company<br>Project #<br>Date:<br>Test Eng<br>Configura<br>Mode: | ineer:<br>ation:                                                                     | Hyundai J.com<br>4787927807<br>04-19-17<br>Chan Park<br>EUT / AC Adaj<br>SATELLITE | nm<br>pter / Y Position |              |            |                |                |                |       |  |
|                                                                 |                                                                                      |                                                                                    |                         |              |            |                |                |                |       |  |
|                                                                 | Chamber                                                                              |                                                                                    |                         | nplifer      |            | Filter         |                |                | Limit |  |
| C                                                               | hamber 2                                                                             | •                                                                                  | AFS42                   | •            | Filt       | ter 1          | •              | Part 28        | 5 -   |  |
| f                                                               | SG reading                                                                           | Ant. Pol.                                                                          | Distance                | Preamp       | Filter     | EIRP           | Limit          | Delta          | Notes |  |
| GHz<br>Low Ch, 1                                                | (dBm)                                                                                | (H/V)                                                                              | (m)                     | (dB)         | (dB)       | (dBm)          | (dBm)          | (dB)           |       |  |
| 3.2320                                                          | 2.7                                                                                  | V                                                                                  | 3.0                     | 39.4         | 1.0        | -35.6          | -13.0          | -22.6          |       |  |
| 4.8480                                                          | 9.6                                                                                  | V                                                                                  | 3.0                     | 39.8         | 1.0        | -29.2          | -13.0          | -16.2          |       |  |
| 6.4640<br>8.0801                                                | 1.3<br>2.3                                                                           | V<br>V                                                                             | 3.0<br>3.0              | 39.9<br>39.1 | 1.0<br>1.0 | -37.6<br>-35.8 | -13.0<br>-13.0 | -24.6<br>-22.8 |       |  |
| 9.6961                                                          | 0.5                                                                                  | V                                                                                  | 3.0                     | 38.7         | 1.0        | -35.8          | -13.0          | -22.0          |       |  |
| 11.3121                                                         | -0.4                                                                                 | ٧                                                                                  | 3.0                     | 38.7         | 1.0        | -38.1          | -13.0          | -25.1          |       |  |
| 12.9282<br>14.5442                                              | 0.0                                                                                  | <u>v</u><br>v                                                                      | 3.0<br>3.0              | 40.0         | 1.0        | -39.0<br>-42.1 | -13.0<br>-13.0 | -26.0          |       |  |
| 3.2320                                                          | -2.0                                                                                 | V<br>H                                                                             | 3.0                     | 41.0<br>39.4 | 1.0<br>1.0 | -42.1          | -13.0<br>-13.0 | -29.1<br>-22.7 |       |  |
| 4.8480                                                          | 12.3                                                                                 | Н                                                                                  | 3.0                     | 39.8         | 1.0        | -26.5          | -13.0          | -13.5          |       |  |
| 6.4640                                                          | 3.3                                                                                  | Н                                                                                  | 3.0                     | 39.9         | 1.0        | -35.6          | -13.0          | -22.6          |       |  |
| 8.0801<br>9.6961                                                | 4.7                                                                                  | H                                                                                  | 3.0<br>3.0              | 39.1<br>38.7 | 1.0<br>1.0 | -33.4<br>-34.1 | -13.0<br>-13.0 | -20.4<br>-21.1 |       |  |
| 11.3121                                                         | -0.6                                                                                 | Н                                                                                  | 3.0                     | 38.7         | 1.0        | -34.1          | -13.0          | -21.1          |       |  |
| 12.9282                                                         | 1.7                                                                                  | Н                                                                                  | 3.0                     | 40.0         | 1.0        | -37.3          | -13.0          | -24.3          |       |  |
| 14.5442                                                         | -0.3                                                                                 | Н                                                                                  | 3.0                     | 41.0         | 1.0        | -40.3          | -13.0          | -27.3          |       |  |
| Mid Ch, 1                                                       |                                                                                      |                                                                                    |                         |              |            |                |                |                |       |  |
| 3.2420                                                          | 1.7                                                                                  | V                                                                                  | 3.0                     | 39.4         | 1.0        | -36.7          | -13.0          | -23.7          |       |  |
| 4.8630<br>6.4840                                                | 8.2<br>8.2                                                                           | V<br>V                                                                             | 3.0<br>3.0              | 39.8<br>39.9 | 1.0<br>1.0 | -30.6<br>-30.6 | -13.0<br>-13.0 | -17.6<br>-17.6 |       |  |
| 8.1051                                                          | 8.1                                                                                  | V                                                                                  | 3.0                     | 39.1         | 1.0        | -30.0          | -13.0          | -17.0          |       |  |
| 9.7261                                                          | -0.8                                                                                 | V                                                                                  | 3.0                     | 38.6         | 1.0        | -38.4          | -13.0          | -25.4          |       |  |
| 11.3471                                                         | 2.4                                                                                  | V                                                                                  | 3.0                     | 38.7         | 1.0        | -35.3          | -13.0          | -22.3          |       |  |
| 12.9682<br>14.5892                                              | -3.3                                                                                 | V<br>V                                                                             | 3.0<br>3.0              | 40.0<br>41.0 | 1.0<br>1.0 | -42.3<br>-42.1 | -13.0<br>-12.0 | -29.3<br>-30.1 |       |  |
| 3.2420                                                          | -2.0                                                                                 | V<br>H                                                                             | 3.0                     | 39.4         | 1.0        | -42.1          | -12.0          | -30.1          |       |  |
| 4.8630                                                          | 11.7                                                                                 | Н                                                                                  | 3.0                     | 39.8         | 1.0        | -27.1          | -13.0          | -14.1          |       |  |
| 6.4840                                                          | 9.7                                                                                  | Н                                                                                  | 3.0                     | 39.9         | 1.0        | -29.1          | -13.0          | -16.1          |       |  |
| 8.1051<br>9.7261                                                | 6.9<br>0.8                                                                           | H                                                                                  | 3.0<br>3.0              | 39.1<br>38.6 | 1.0<br>1.0 | -31.2<br>-36.8 | -13.0<br>-13.0 | -18.2<br>-23.8 |       |  |
| 9.7261                                                          | 2.4                                                                                  | H                                                                                  | 3.0                     | 38.0         | 1.0        | -30.8          | -13.0          | -23.8          |       |  |
| 12.9682                                                         | -2.9                                                                                 | Н                                                                                  | 3.0                     | 40.0         | 1.0        | -41.9          | -13.0          | -28.9          |       |  |
| 14.5892                                                         | -1.0                                                                                 | H                                                                                  | 3.0                     | 41.0         | 1.0        | -41.0          | -13.0          | -28.0          |       |  |
| High Ch, 1                                                      | 625.98MHz                                                                            |                                                                                    |                         |              |            |                |                |                |       |  |
| 3.2519                                                          | 0.2                                                                                  | V                                                                                  | 3.0                     | 39.4         | 1.0        | -38.2          | -13.0          | -25.2          |       |  |
| 4.8779                                                          | 6.4                                                                                  | V                                                                                  | 3.0                     | 39.8         | 1.0        | -32.4          | -13.0          | -19.4          |       |  |
| 6.5039<br>8.1299                                                | 9.5<br>6.4                                                                           | V<br>V                                                                             | 3.0<br>3.0              | 39.8<br>39.1 | 1.0<br>1.0 | -29.4<br>-31.7 | -13.0<br>-13.0 | -16.4<br>-18.7 |       |  |
| 9.7559                                                          | 2.3                                                                                  | V                                                                                  | 3.0                     | 38.6         | 1.0        | -35.4          | -13.0          | -10.7          |       |  |
| 11.3819                                                         | -4.4                                                                                 | ٧                                                                                  | 3.0                     | 38.8         | 1.0        | -42.2          | -13.0          | -29.2          |       |  |
| 13.0078                                                         | -2.4                                                                                 | V                                                                                  | 3.0                     | 40.0         | 1.0        | -41.4          | -13.0          | -28.4          |       |  |
| 14.6338<br>3.2519                                               | -2.1<br>0.5                                                                          | V<br>H                                                                             | 3.0<br>3.0              | 41.1<br>39.4 | 1.0<br>1.0 | -42.2<br>-37.9 | -12.0<br>-13.0 | -30.2<br>-24.9 |       |  |
| 4.8779                                                          | 8.0                                                                                  | H                                                                                  | 3.0                     | 39.4         | 1.0        | -37.9          | -13.0          | -24.9          |       |  |
| 6.5039                                                          | 8.2                                                                                  | Н                                                                                  | 3.0                     | 39.8         | 1.0        | -30.6          | -13.0          | -17.6          |       |  |
|                                                                 | 5.2                                                                                  | Н                                                                                  | 3.0                     | <b>39.1</b>  | 1.0        | -33.0          | -13.0          | -20.0          |       |  |
| 8.1299                                                          | 0.0                                                                                  | н                                                                                  | 3.0                     | 38.6         | 1.0        | -36.7<br>-40.0 | -13.0<br>-13.0 | -23.7<br>-27.0 |       |  |
| 9.7559                                                          | 0.9                                                                                  |                                                                                    | 2 0                     | 20 0         |            |                |                |                |       |  |
|                                                                 | -2.2<br>-1.6                                                                         | H                                                                                  | 3.0<br>3.0              | 38.8<br>40.0 | 1.0<br>1.0 | -40.6          | -13.0          | -27.6          |       |  |

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential