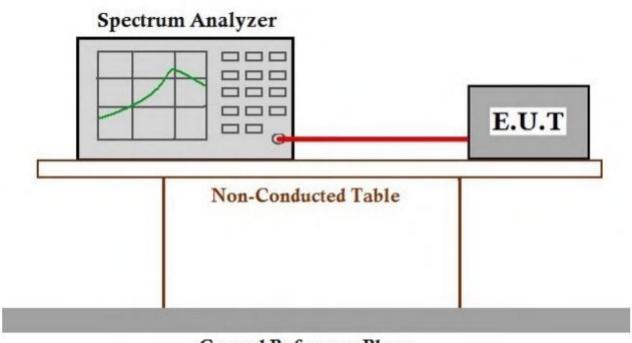


Report No.: CQASZ20240801757E-04


Appendix E): Frequency Stability

Test Requirement 47 CFR Part 15, Subpart C 15.407 (g)

Test Method: ANSI C63.10 (2013) Section 6.8

Limit:The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

Test Setup Diagram

Ground Reference Plane

Report No.: CQASZ20240801757E-04

Measurement Data

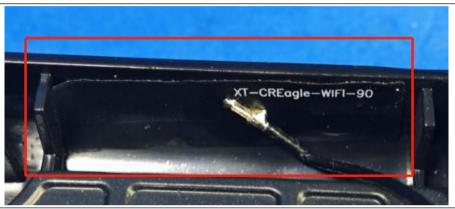
	Frequency S	tability Versus Temp.	
	Operating F	requency: 5240 MHz	
Temp		Deviation	Frequency Drift
(℃)	Volta ge	(Hz)	(ppm)
50		-76900.00	-14.675573
40		-76900.00	-14.675573
30		-76900.00	-14.675573
20		-76900.00	-14.675573
10	VN	-76900.00	-14.675573
0		-76900.00	-14.675573
-10		-76900.00	-14.675573
-20		-76900.00	-14.675573

	Frequency Stability							
Operating Frequency: 5210 MHz								
<u>_</u>		Deviation	Frequency Drift					
Temp.	Volta ge	(Hz)	(ppm)					
	VL	-76900.00	-14.760077					
TN	VN	-76900.00	-14.760077					
	VH	-76900.00	-14.760077					

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

Report No.: CQASZ20240801757E-04

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Report No.: CQASZ20240801757E-04

Appendix G): Operation in the absence of information to the transmit

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signal ling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Operation in the absence of information to the transmit

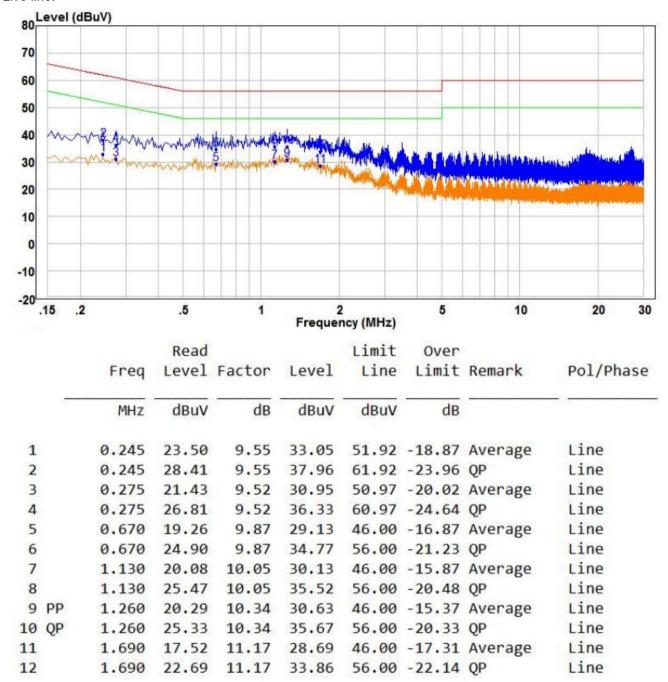
While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (manufacturer declare)

Report No.: CQASZ20240801757E-04

Appendix H): AC Power Line Conducted Emission

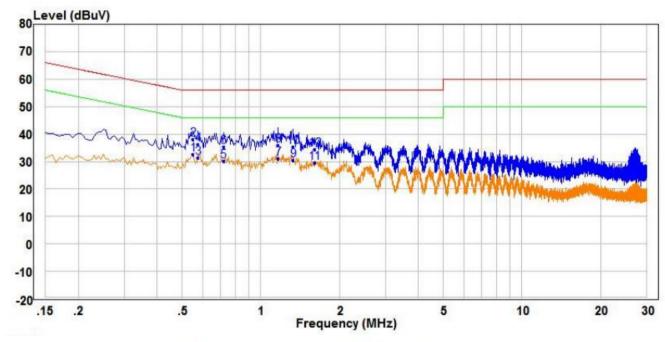
Appendix 11). A	o i ower Line oonat		<u> </u>			
Test Procedure:	Test frequency range :150KHz 1)The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a exceeded. 3)The tabletop EUT was place reference plane. And for flo horizontal ground reference 4) The test was performed wi EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane f plane. This distance was b All other units of the EUT a LISN 2. 5) In order to find the maximu all of the interface cable conducted measurement.	nce voltage test was con AC power source through the provides a 50Ω/50μ units of the EUT were ground reference plane and A multiple socket of single LISN provided the dupon a non-metallic poor-standing arrangement are plane, with a vertical ground reference to the horizontal ground associated equipment and associated equipment memission, the relative	ough a LISN 1 (Line IH + 5Ω linear impedented to a seconnected to a secon	Impedance dance. The nd LISN 2, the LISN 1 to connect was not the ground aced on the rear of the ical ground. The LISN onded to a reference d the EUT. m from the ipment and		
Limit:	[[[]	Limit (d	 ΒμV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
* The limit decreases linearly with the logarithm of the frequency in the MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency						

Measurement Data

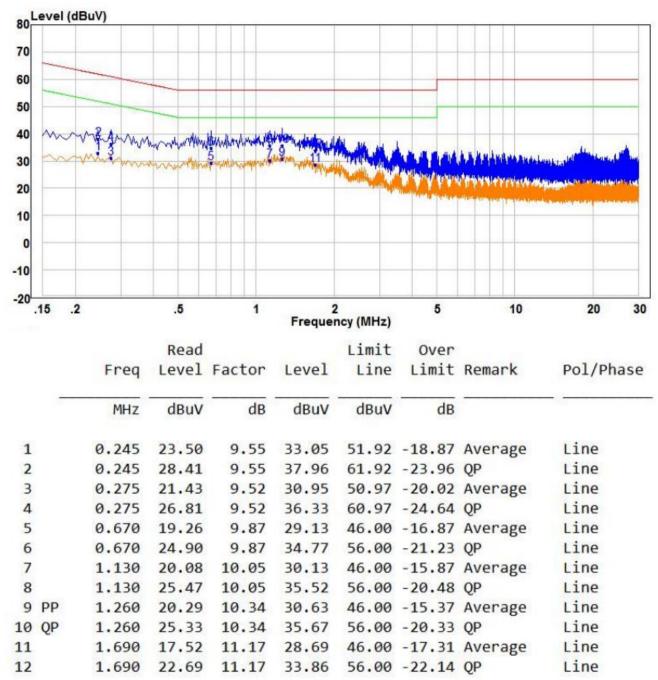

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

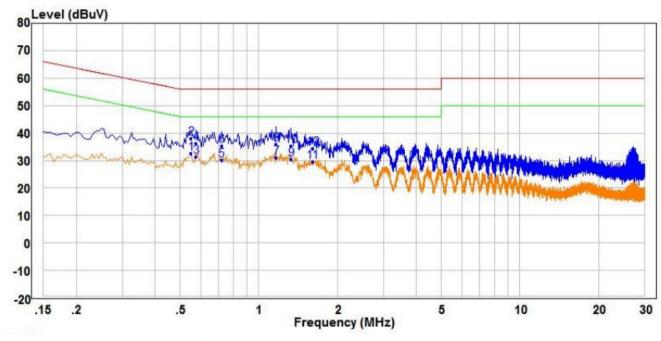
U-NII-1


Live line:

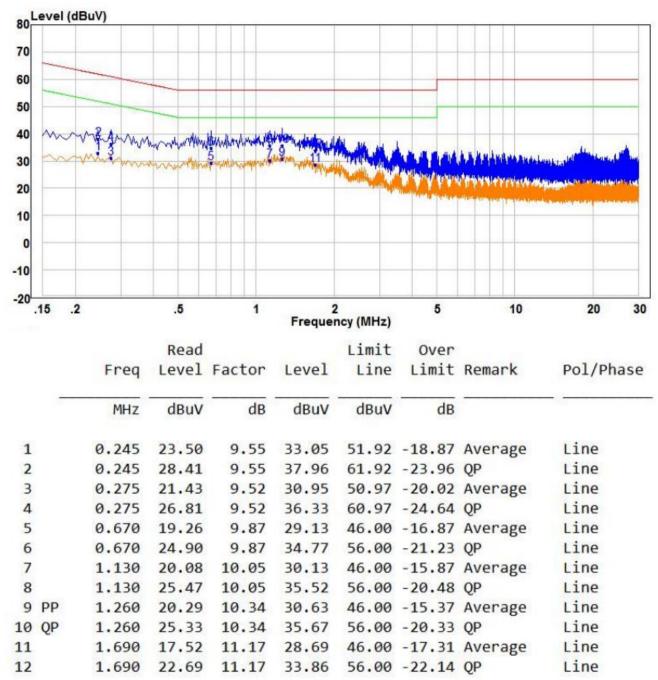
Neutral line:


			Read			Limit	Over		
		Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	2	MHz	dBuV	dB	dBuV	dBuV	dB	-	
1	PP	0.550	22.83	9.75	32.58	46.00	-13.42	Average	Neutral
2	QP	0.550	28.21	9.75	37.96	56.00	-18.04	QP	Neutral
3		0.575	21.55	9.78	31.33	46.00	-14.67	Average	Neutral
4		0.575	26.47	9.78	36.25	56.00	-19.75	QP	Neutral
5		0.720	20.13	9.89	30.02	46.00	-15.98	Average	Neutral
6		0.720	25.31	9.89	35.20	56.00	-20.80	QP	Neutral
7		1.165	21.30	9.71	31.01	46.00	-14.99	Average	Neutral
8		1.165	26.35	9.71	36.06	56.00	-19.94	QP	Neutral
9		1.330	20.68	9.72	30.40	46.00	-15.60	Average	Neutral
10		1.330	25.52	9.72	35.24	56.00	-20.76	QP	Neutral
11		1.605	19.69	9.73	29.42	46.00	-16.58	Average	Neutral
12		1.605	24.69	9.73	34.42	56.00	-21.58	OP	Neutral

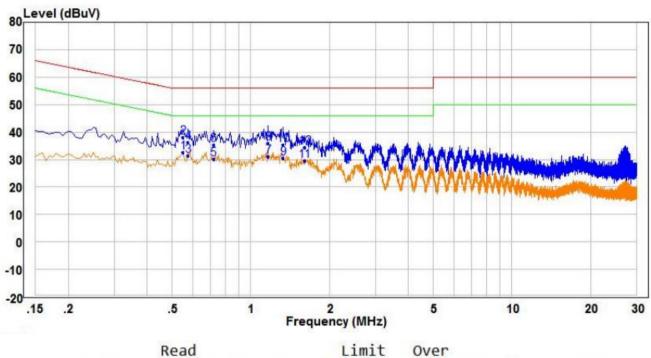
U-NII-2A


Live line:

Neutral line:


			Read			Limit	Over		
		Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	2	MHz	dBuV	dB	dBuV	dBuV	dB	-	
1	PP	0.550	22.83	9.75	32.58	46.00	-13.42	Average	Neutral
2	QP	0.550	28.21	9.75	37.96	56.00	-18.04	QP	Neutral
3		0.575	21.55	9.78	31.33	46.00	-14.67	Average	Neutral
4		0.575	26.47	9.78	36.25	56.00	-19.75	QP	Neutral
5		0.720	20.13	9.89	30.02	46.00	-15.98	Average	Neutral
6		0.720	25.31	9.89	35.20	56.00	-20.80	QP	Neutral
7		1.165	21.30	9.71	31.01	46.00	-14.99	Average	Neutral
8		1.165	26.35	9.71	36.06	56.00	-19.94	QP	Neutral
9		1.330	20.68	9.72	30.40	46.00	-15.60	Average	Neutral
10		1.330	25.52	9.72	35.24	56.00	-20.76	QP	Neutral
11		1.605	19.69	9.73	29.42	46.00	-16.58	Average	Neutral
12		1.605	24.69	9.73	34.42	56.00	-21.58	OP	Neutral

U-NII-3


Live line:

Neutral line:

			Read			Limit	Over		
		Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
		MHZ	dBuV	dB	dBuV	dBuV	dB	-	
1	PP	0.550	22.83	9.75	32.58	46.00	-13.42	Average	Neutral
2	QP	0.550	28.21	9.75	37.96	56.00	-18.04	QP	Neutral
3		0.575	21.55	9.78	31.33	46.00	-14.67	Average	Neutral
4		0.575	26.47	9.78	36.25	56.00	-19.75	QP	Neutral
5		0.720	20.13	9.89	30.02	46.00	-15.98	Average	Neutral
6		0.720	25.31	9.89	35.20	56.00	-20.80	QP	Neutral
7		1.165	21.30	9.71	31.01	46.00	-14.99	Average	Neutral
8		1.165	26.35	9.71	36.06	56.00	-19.94	QP	Neutral
9		1.330	20.68	9.72	30.40	46.00	-15.60	Average	Neutral
10		1.330	25.52	9.72	35.24	56.00	-20.76	QP	Neutral
11		1.605	19.69	9.73	29.42	46.00	-16.58	Average	Neutral
12		1.605	24.69	9.73	34.42	56.00	-21.58	QP	Neutral

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A_5240 is the worst case, only the worst data recorded in the report.

Report No.: CQASZ20240801757E-04

Appendix I): Restricted bands around fundamental frequency (Radiated Emission)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. The antenna height is determine the maximum polarizations of the antenna was turned was turned from 0 deg. e. The test-receiver systems and width with Maximum f. Place a marker at the effrequency to show combands. Save the spector for lowest and highest. Above 1GHz test procedum g. Different between above to fully Anechoic Chammetre (Above 18GHz to the EUT in the lotation in Test the EUT in the lotation measure Transmitting mode, and j. Repeat above procedum.	on the top of a rote choic camber. The of the highest race ters away from the pof a variable-he varied from one removalue of the field are set to not a rees to 360 degrees to 360 degrees to 360 degreem was set to Peaum Hold Mode. The pliance and of the restrict appliance. Also me rum analyzer plot channel the distance is 1 rowest channel, the ments are perford found the X axis.	e table wardiation. The interference ight antermeter to foold strength nake the nake the nake the food and commenter to be a sure any to the commenter and the Highest med in X, is positionic diation.	ence-receinna tower. our meters o	rs above the groad of the strain of the restrict of the strain of the st	whic und t ertical d thei ble ted ulatio
Limit:	Frequency	Limit (dBµV/n			mark	
	30MHz-88MHz	40.0		· ·	eak Value	
	88MHz-216MHz	43.5		· ·	eak Value	
	216MHz-960MHz	46.0		· ·	eak Value	
	960MHz-1GHz	54.0		· ·	eak Value	
	Above 1GHz	54.0	54.0 Average Value			
	,	74.0			Value	

Report No.: CQASZ20240801757E-04

Test plot as follows:

Worse case	mode:	802.11a(6Mbps)		Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	53.32	-3.63	49.69	74	-24.31	peak	Н
5150.00	36.05	-3.63	32.42	54	-21.58	AVG	Н
5150.00	50.62	-3.63	46.99	74	-27.01	peak	V
5150.00	37.85	-3.63	34.22	54	-19.78	AVG	V

Worse case r	mode:	802.11a(6Mbps)		Test channel:		64	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	56.14	-3.59	52.55	74	-21.45	peak	Н
5350.00	39.90	-3.59	36.31	54	-17.69	AVG	Н
5350.00	52.16	-3.59	48.57	74	-25.43	peak	V
5350.00	35.61	-3.59	32.02	54	-21.98	AVG	V

Worse case	mode:	802.11a(6Mbps)		Test channel:		149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	52.14	-3.44	48.70	74	-25.30	peak	Н
5725	37.71	-3.44	34.27	54	-19.73	AV	Н
5725	50.17	-3.44	46.73	74	-27.27	peak	V
5725	35.46	-3.44	32.02	54	-21.98	AV	V

Worse case i	mode:	802.11a(6Mbps)	802.11a(6Mbps)		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	52.35	-3.42	48.93	74	-25.07	peak	Н
5850	36.30	-3.42	32.88	54	-21.12	AV	Н
5850	50.23	-3.42	46.81	74	-27.19	peak	V
5850	35.98	-3.42	32.56	54	-21.44	AV	V

Worse case i	mode:	802.11n(HT20)(6.5MI	720)(6.5Mbps) Test channel:		el:	36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	52.79	-3.63	49.16	74	-24.84	peak	Н
5150.00	36.39	-3.63	32.76	54	-21.24	AVG	Н
5150.00	51.51	-3.63	47.88	74	-26.12	peak	V
5150.00	37.35	-3.63	33.72	54	-20.28	AVG	V

Worse case	mode:	802.11n(HT20)(6.5MI	11n(HT20)(6.5Mbps) Test channel:		64		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	55.59	-3.59	52.00	74	-22.00	peak	Н
5350.00	39.29	-3.59	35.70	54	-18.30	AVG	Н
5350.00	52.08	-3.59	48.49	74	-25.51	peak	V
5350.00	35.76	-3.59	32.17	54	-21.83	AVG	V

Worse case	mode:	802.11n(HT20)(6.5M	bps)	Test channel:		149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
5725	52.10	-3.44	48.66	74	-25.34	peak	Н
5725	37.35	-3.44	33.91	54	-20.09	AV	Н
5725	48.91	-3.44	45.47	74	-28.53	peak	V
5725	36.50	-3.44	33.06	54	-20.94	AV	V

Worse case	mode:	802.11n(HT20)(6.5M	bps)	Test channel:		165	·
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
5850	52.87	-3.42	49.45	74	-24.55	peak	Н
5850	36.46	-3.42	33.04	54	-20.96	AV	Н
5850	48.96	-3.42	45.54	74	-28.46	peak	V
5850	35.83	-3.42	32.41	54	-21.59	AV	V

Worse case	mode:	802.11n(HT40)(13.5N	802.11n(HT40)(13.5Mbps) Test channel:			38	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150	54.07	-3.63	50.44	74	-23.56	peak	Н
5150	36.68	-3.63	33.05	54	-20.95	AVG	Н
5150	51.07	-3.63	47.44	74	-26.56	peak	V
5150	38.69	-3.63	35.06	54	-18.94	AVG	V

Worse case	mode:	802.11n(HT40)(13.5N	/lbps)	Test channel: 62		62		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5350.00	55.94	-3.59	52.35	74	-21.65	peak	Н	
5350.00	38.18	-3.59	34.59	54	-19.41	AVG	Н	
5350.00	52.16	-3.59	48.57	74	-25.43	peak	V	
5350.00	35.49	-3.59	31.90	54	-22.10	AVG	V	

Worse case	mode:	802.11n(HT40)(13.5Mbps) Test channel: 1		151			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	51.94	-3.44	48.50	74	-25.50	peak	Н
5725	36.10	-3.44	32.66	54	-21.34	AV	Н
5725	50.11	-3.44	46.67	74	-27.33	peak	V
5725	36.24	-3.44	32.80	54	-21.20	AV	V

Worse case	mode:	802.11n(HT40)(13.5N	/lbps)	Test chann	el:	159	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	53.90	-3.42	50.48	74	-23.52	peak	Н
5850	37.22	-3.42	33.80	54	-20.20	AV	Н
5850	49.59	-3.42	46.17	74	-27.83	peak	V
5850	35.01	-3.42	31.59	54	-22.41	AV	V

Worse case	mode:	802.11ac(HT20)(6.5M	1bps)	Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
5150.00	53.21	-3.63	49.58	74	-24.42	peak	Н
5150.00	36.36	-3.63	32.73	54	-21.27	AVG	Н
5150.00	50.52	-3.63	46.89	74	-27.11	peak	V
5150.00	37.60	-3.63	33.97	54	-20.03	AVG	V

Worse case	mode:	802.11ac(HT20)(6.5Mbps) Test channel:		el:	64		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	55.42	-3.59	51.83	74	-22.17	peak	Н
5350.00	38.26	-3.59	34.67	54	-19.33	AVG	Н
5350.00	50.36	-3.59	46.77	74	-27.23	peak	V
5350.00	35.81	-3.59	32.22	54	-21.78	AVG	V

Worse case	mode:	802.11ac(HT20)(6.5N	ac(HT20)(6.5Mbps) Test chan		el:	149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	52.33	-3.44	48.89	74	-25.11	peak	Н
5725	37.93	-3.44	34.49	54	-19.51	AV	Н
5725	49.00	-3.44	45.56	74	-28.44	peak	V
5725	35.28	-3.44	31.84	54	-22.16	AV	V

Worse case	mode:	802.11ac(HT20)(6.5Mbps) Test channel:		165			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	52.76	-3.42	49.34	74	-24.66	peak	Н
5850	37.66	-3.42	34.24	54	-19.76	AV	Н
5850	48.34	-3.42	44.92	74	-29.08	peak	V
5850	35.79	-3.42	32.37	54	-21.63	AV	V

Worse case	mode:	802.11ac(VHT40)(13	.5Mbps)	Test chann	el:	38	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
5150.00	52.26	-3.63	48.63	74	-25.37	peak	Н
5150.00	37.30	-3.63	33.67	54	-20.33	AVG	Н
5150.00	51.16	-3.63	47.53	74	-26.47	peak	V
5150.00	38.71	-3.63	35.08	54	-18.92	AVG	V

Worse case	mode:	802.11ac(VHT40)(13.5Mbps)		Test channel:		62	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	56.12	-3.59	52.53	74	-21.47	peak	Н
5350.00	38.12	-3.59	34.53	54	-19.47	AVG	Н
5350.00	50.52	-3.59	46.93	74	-27.07	peak	V
5350.00	35.72	-3.59	32.13	54	-21.87	AVG	V

Worse case	mode:	802.11ac(VHT40)(13.5Mbps)		Test channel:		151	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	51.75	-3.44	48.31	74	-25.69	peak	Н
5725	36.57	-3.44	33.13	54	-20.87	AV	Н
5725	49.39	-3.44	45.95	74	-28.05	peak	V
5725	35.48	-3.44	32.04	54	-21.96	AV	V

Worse case	mode:	802.11ac(VHT40)(13.5Mbps)		Test channel:		159	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
5850	53.32	-3.42	49.90	74	-24.10	Туре	Н
5850	36.87	-3.42	33.45	54	-20.55	AV	Н
5850	50.23	-3.42	46.81	74	-27.19	peak	V
5850	36.15	-3.42	32.73	54	-21.27	AV	V

Worse case mode:	802.11ac(VHT80)(29.3Mbps)	Test channel:	58
------------------	---------------------------	---------------	----

Report No.: CQASZ20240801757E-04

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	52.98	-3.63	49.35	74	-24.65	peak	Н
5150.00	37.22	-3.63	33.59	54	-20.41	AVG	Н
5150.00	51.99	-3.63	48.36	74	-25.64	peak	V
5150.00	38.16	-3.63	34.53	54	-19.47	AVG	V
5350.00	55.05	-3.59	51.46	74	-22.54	peak	Н
5350.00	38.43	-3.59	34.84	54	-19.16	AVG	Н
5350.00	51.09	-3.59	47.50	74	-26.50	peak	V
5350.00	36.00	-3.59	32.41	54	-21.59	AVG	V

Worse case	Worse case mode: 802.11ac(\		9.3Mbps) Test channel:		el:	155	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	52.25	-3.44	48.81	74	-25.19	peak	Н
5725	37.97	-3.44	34.53	54	-19.47	AV	Н
5725	48.66	-3.44	45.22	74	-28.78	peak	V
5725	35.61	-3.44	32.17	54	-21.83	AV	V
5850	53.40	-3.42	49.98	74	-24.02	peak	Н
5850	37.95	-3.42	34.53	54	-19.47	AV	Н
5850	49.98	-3.42	46.56	74	-27.44	peak	V
5850	36.66	-3.42	33.24	54	-20.76	AV	V

Note

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, Only the worst case is recorded in the report.

²⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20240801757E-04

Appendix J): Radiated Spurious Emissions

Receiver Setup:

_				
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

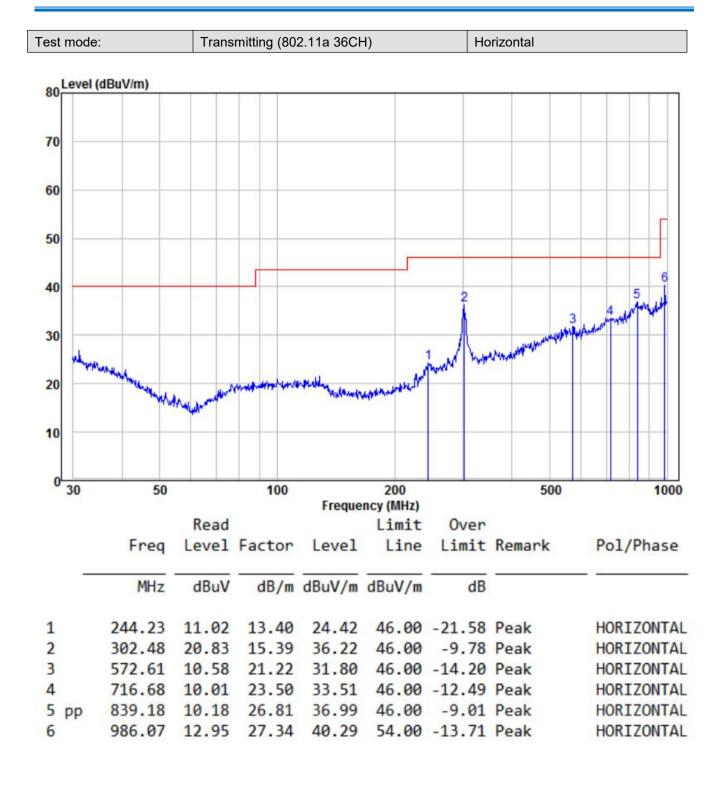
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel .the middle channel .the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

:		:1.
ш	m	HT.

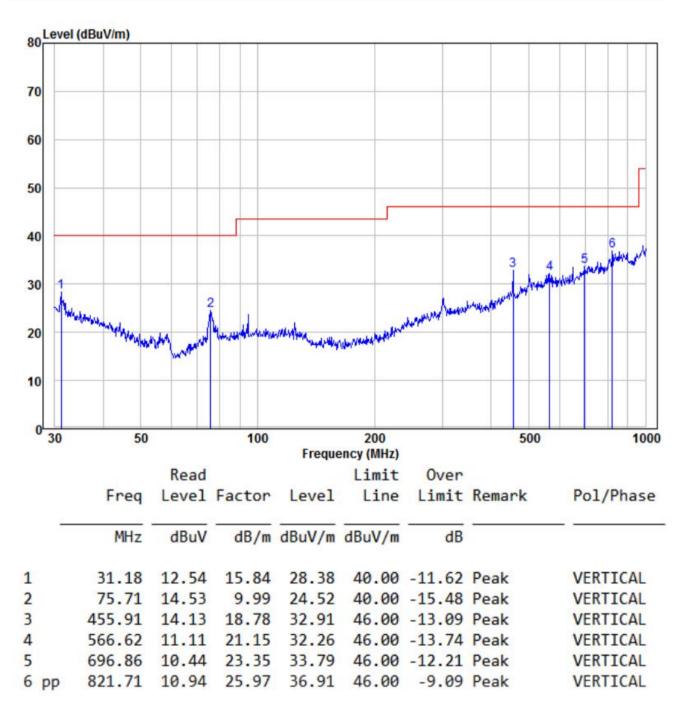
Frequency	Field strength (microvolt/meter)	Limit (dBµV/cm)	Remark	Measurement distance (cm)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

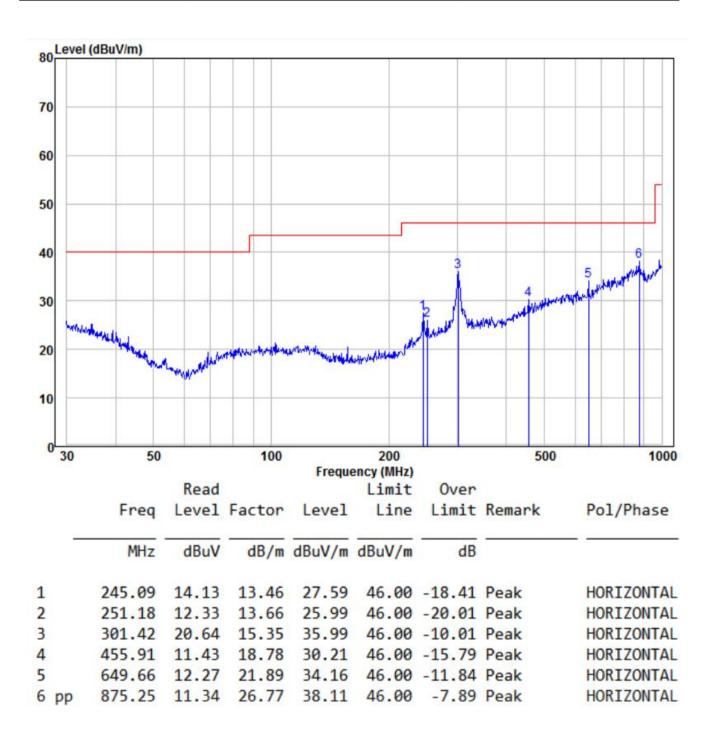
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test result: PASS

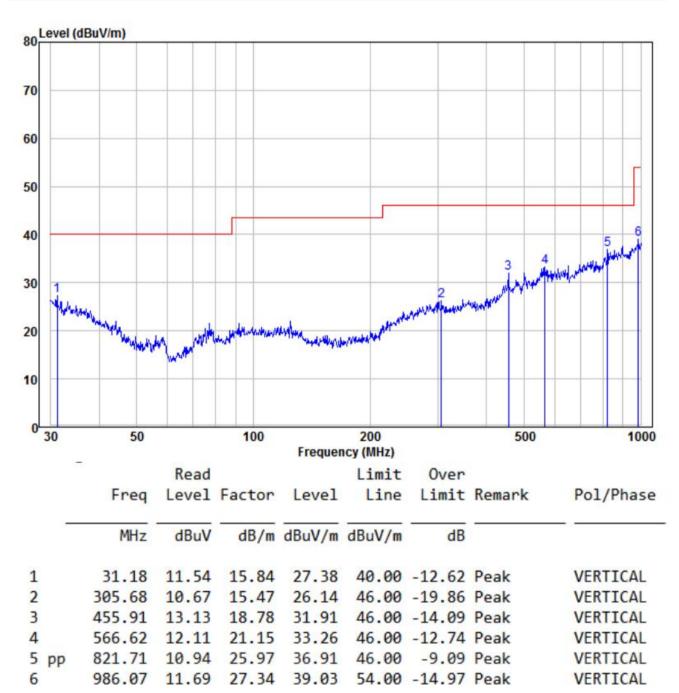


Test Data: Radiated Emission below 1GHz

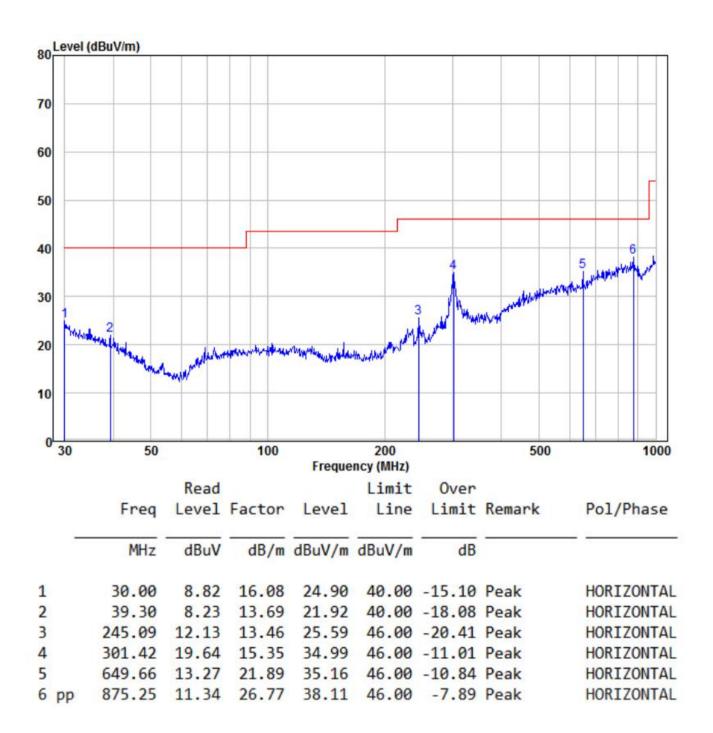

	30MHz~1GHz							
Test mod	de:	Trans	mitting (80	2.11a 36Cl	H)	Vertica	I	
80 Lev	el (dBuV/m)							
70								
60								
50								
40								6
30	N.	1				2 Hardhard Hadaral	almental and make	Salve Market Market Market
20	three or market ways !	Johnson John	- deptendent	and the same of the same of	Washington about	Hap North and the		
10								
0 30	50		100	Freque	200 ncy (MHz)		500	1000
		Read			Limit	Over		
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1	75.98	15.90	10.05	25.95	40.00	-14.05	Peak	VERTICAL
2	301.42	12.00	15.35	27.35		-18.65		VERTICAL
3	455.91	13.78	18.78	32.56		-13.44		VERTICAL
4	501.18	12.62	20.31	32.93		-13.07		VERTICAL
5	649.66	12.13	21.89	34.02	46.00	-11.98	Peak	VERTICAL
6 pp	887.61	10.37	26.73	37.10	46.00	-8.90	Peak	VERTICAL



30MHz~1GHz		
Test mode:	Transmitting (802.11a 149CH)	Vertical



Test mode:	Transmitting (802.11a 149CH)	Horizontal
------------	------------------------------	------------



30MHz~1GHz		
Test mode:	Transmitting (802.11a 52CH)	Vertical

Test mode:	Transmitting (802.11a 52CH)	Horizontal
------------	-----------------------------	------------

Report No.: CQASZ20240801757E-04

Transmitter Emission above 1GHz

Test mode:	802.11a(6Mbps)			ps) Test channel:		36 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10360	52.29	2.26	54.55	74	-19.45	peak	Н
10360	36.75	2.26	39.01	54	-14.99	AVG	Н
15540	50.26	3.75	54.01	74	-19.99	peak	Н
15540	38.83	3.75	42.58	54	-11.42	AVG	Н
10360	55.49	2.26	57.75	74	-16.25	peak	V
10360	39.20	2.26	41.46	54	-12.54	AVG	V
15540	50.67	3.75	54.42	74	-19.58	peak	V
15540	35.61	3.75	39.36	54	-14.64	AVG	V

Test mode:	802.11a(6Mbps)			Test chann	el:	48 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10480	52.19	2.31	54.50	74	-19.50	peak	Н
10480	37.74	2.31	40.05	54	-13.95	AVG	Н
15720	48.82	3.79	52.61	74	-21.39	peak	Н
15720	36.62	3.79	40.41	54	-13.59	AVG	Н
10480	53.56	2.31	55.87	74	-18.13	peak	V
10480	37.65	2.31	39.96	54	-14.04	AVG	V
15720	49.62	3.79	53.41	74	-20.59	peak	V
15720	36.31	3.79	40.10	54	-13.90	AVG	V

Test mode:	802.11a(6Mbps)			Test chann	el:	149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
11490	51.62	2.54	54.16	74	-19.84	peak	н
11490	37.62	2.54	40.16	54	-13.84	AVG	Н
17235	49.74	3.94	53.68	74	-20.32	peak	н
17235	36.63	3.94	40.57	54	-13.43	AVG	Н
11490	54.46	2.54	57.00	74	-17.00	peak	V
11490	37.10	2.54	39.64	54	-14.36	AVG	V
17235	50.14	3.94	54.08	74	-19.92	peak	V
17235	37.46	3.94	41.40	54	-12.60	AVG	V

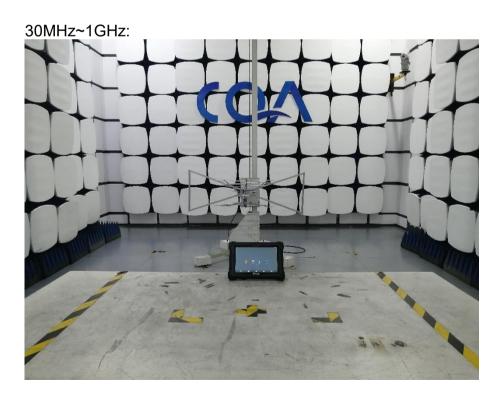
Test mode:	802.11a(6Mbps)			Test channel:		165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
11650	52.32	2.58	54.90	74	-19.10	peak	Н
11650	38.75	2.58	41.33	54	-12.67	AVG	Н
17475	50.83	4.02	54.85	74	-19.15	peak	Н
17475	36.41	4.02	40.43	54	-13.57	AVG	Н
11650	53.50	2.58	56.08	74	-17.92	peak	V
11650	38.32	2.58	40.90	54	-13.10	AVG	V
17475	50.92	4.02	54.94	74	-19.06	peak	V
17475	36.32	4.02	40.34	54	-13.66	AVG	V

Report No.: CQASZ20240801757E-04

Test mode:	802.11a(6Mbps)			Test chann	el:	52 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10520	53.47	2.26	55.73	74	-18.27	peak	Н
10520	36.95	2.26	39.21	54	-14.79	AVG	Н
15780	52.14	3.75	55.89	74	-18.11	peak	Н
15780	37.09	3.75	40.84	54	-13.16	AVG	Н
10520	55.98	2.26	58.24	74	-15.76	peak	V
10520	38.63	2.26	40.89	54	-13.11	AVG	V
15780	51.93	3.75	55.68	74	-18.32	peak	V
15780	35.98	3.75	39.73	54	-14.27	AVG	V

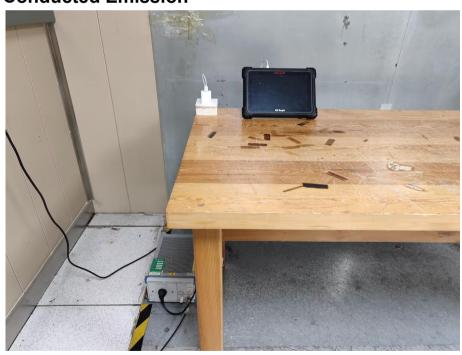
Test mode:	802.11a(6Mbps)			Test chann	el:	64 CH	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10640	52.44	2.31	54.75	74	-19.25	peak	Н
10640	36.05	2.31	38.36	54	-15.64	AVG	Н
15960	48.59	3.79	52.38	74	-21.62	peak	Н
15960	35.83	3.79	39.62	54	-14.38	AVG	Н
10640	53.25	2.31	55.56	74	-18.44	peak	V
10640	37.95	2.31	40.26	54	-13.74	AVG	V
15960	48.51	3.79	52.30	74	-21.70	peak	V
15960	36.69	3.79	40.48	54	-13.52	AVG	V

Remark:


- 1) The 802.11a 6Mbps of rate is the worst case, only the worst data recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

8 Photographs - EUT Test Setup

8.1 Radiated Spurious Emission



8.2 Conducted Emission

Report No.: CQASZ20240801757E-04

9 Photographs - EUT Constructional Details

Refer to PHOTOGRAPHS OF EUT for CQASZ20240801757E-01.

*** END OF REPORT ***