

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toll-free: (866) 311-3268 fax: (480) 926-3598

http://www.ComplianceTesting.com info@ComplianceTesting.com

Test Report

Prepared for: Kenwood USA Corporation

Model: NX-5400-K2, NX-5400-K3, NX-5400-F2, NX-5400-F3

Description: 700/800MHz P25 TRANSCEIVER with Bluetooth

To

FCC Part 15.247 FHSS

Date of Issue: June 27, 2014

On the behalf of the applicant: Kenwood USA Corporation

Communications Division 3970 Johns Creek Court Suwanee, GA 30024

Attention of: Joel Berger, Research & Development

Ph: (678) 474-4722

E-mail: jberger@kenwoodusa.com

Prepared by
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax

www.compliancetesting.com

Project No: p1460001

Alex Macon

Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing
All results contained herein relate only to the sample tested

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	June 12, 2014	Alex Macon	Original Document
2.0	June 27, 2014	Alex Macon	Additional dwell time plots of been added to the test section

Table of Contents

<u>Description</u>	<u>Page</u>
The applicant has been cautioned as to the following	5
Standard Test Conditions and Engineering Practices	6
Peak Output Power	9
Conducted Spurious Emissions	
Radiated Spurious Emissions	14
Emissions at Band Edges	15
Occupied Bandwidth	21
Dwell Time	22
Number of Hopping Channels	27
Channel Spacing	30
A/C Powerline Conducted Emissions	31
Test Equipment Utilized	33

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009)

The tests results contained within this test report all fall within our scope of accreditation, unless noted in the table below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

The applicant has been cautioned as to the following

15.21 - Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) - Special Accessories

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Standard Test Conditions and Engineering Practices

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2 and the following individual Parts: 15.247 Operation within bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-2009, ANSI C63.10-2009, FCC DA 00-705, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10 to 40C (50 to 104F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Environmental Conditions				
Temperature Humidity Pressure (°C) (%) (mbar)				
24.6 – 26.4	22.4 – 27.9	959.5 – 968.2		

Measurement results, unless otherwise noted, are worst case measurements.

EUT Description

Model: NX-5400-K2, NX-5400-K3. NX-5400-F2, NX-5400-F3 Description: 700/800MHz P25 TRANSCEIVER with Bluetooth

Additional Information: The EUT is a push to talk occupational radio

EUT Operation during Tests

The EUT was in a normal operating condition for testing. Both a radiated and conducted sample was provided.

15.203: Antenna Requirement:

X	The antenna is permanently attached to the EUT
	The antenna uses a unique coupling
	The EUT must be professionally installed
	The antenna requirement does not apply
	-

Test Results Summary

Specification	Test Name	Pass, Fail, N/A	Comments
15.247(b)	Peak Output Power	Pass	
15.247(d)	Conducted Spurious Emissions	Pass	
15.247(d), 15.209(a), 15.205	Radiated Spurious Emissions	Pass	
15.247(d), 15.209(a), 15.205	Emissions At Band Edges	Pass	
15.247(a)	Occupied Bandwidth	Pass	
15.247(a)	Dwell Time	Pass	
15.247(a)	Number of Hopping Channels	Pass	
15.207	A/C Powerline Conducted Emissions	Pass	

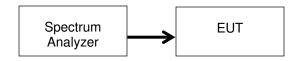
Accessories:

Qty	Description	Mfg	Model	S/N
1	Charger	Kenwood	KSC-Y32	7
1	Switch mode power supply	HDP	DYS404-150200W	N/A

Cables: None

Qty	Description	Length (M)	Shielding Y/N	Shielded Hood Y/N	Ferrite Y/N
1	AC Cord	<3m	N	N	Y

Modifications: None


Peak Output Power

Name of Test: Peak Output Power Engineer: Alex Macon **Test Equipment Utilized:** i00379 **Test Date:** 6/6/14

Test Procedure

The EUT was connected directly to the input of a Spectrum Analyzer. The peak readings were taken and the result was then compared to the limit.

Test Setup

Transmitter Peak Output Power

Tuned Frequency (MHz)	Recorded Measurement (mW)	Specification Limit (W)	Result
2402	1.46	1	Pass
2441	1.42	1	Pass
2480	1.40	1	Pass

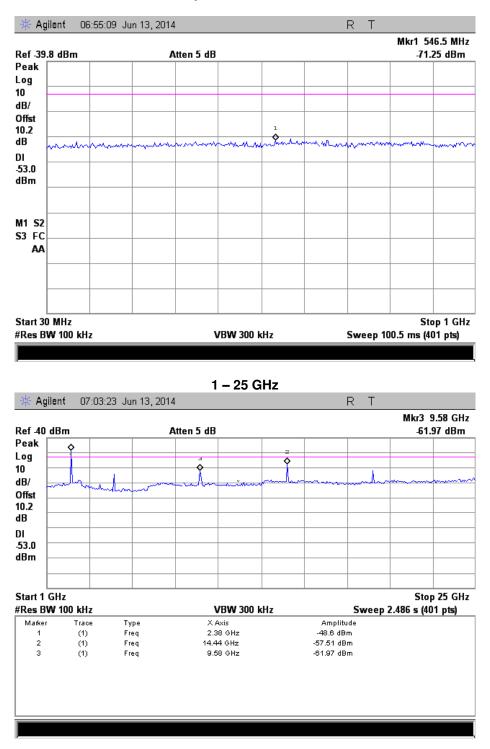
Conducted Spurious Emissions

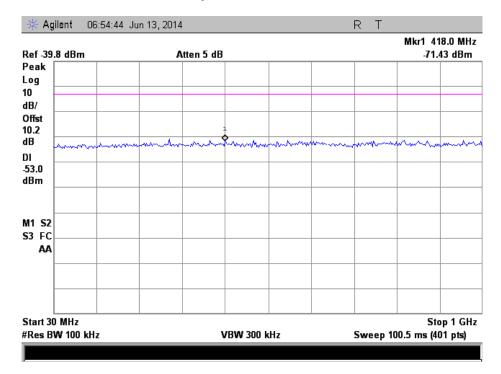
Name of Test: Conducted Spurious Emissions Engineer: Alex Macon Test Equipment Utilized: i00377, i00379 Test Date: 6/6/14

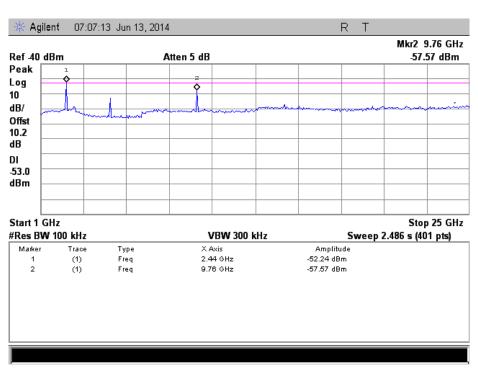
Test Procedure

The EUT was connected directly to a spectrum analyzer to verify that the EUT met the requirements for spurious emissions. The frequency range from 30 MHz to the 10th harmonic of the fundamental transmitter was observed. Only detectable spurious emissions were recorded and plotted.

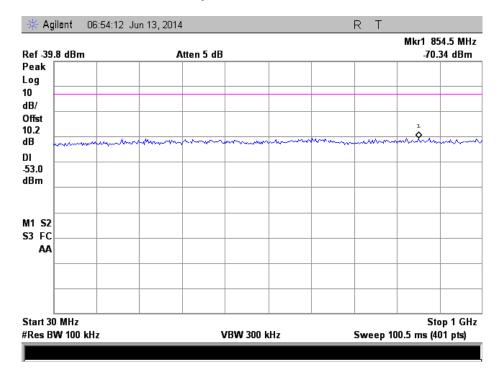
Only the worst case is recorded in the Conducted Spurious Emissions Summary Test Table.

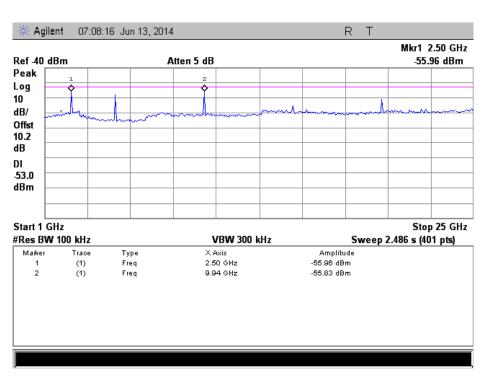

Test Setup


Conducted Spurious Emissions Summary Test Table

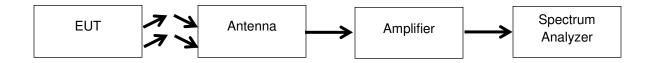

Tuned Frequency (MHz)	Emission Frequency (GHz)	Recorded Measurement (dBm)	Result
2402	14.44	-57.51	Pass
2441	9.76	-57.57	Pass
2480	9.94	-55.83	Pass

Conducted Spurious Emissions 2402 MHz




Conducted Spurious Emissions 2441 MHz

Conducted Spurious Emissions 2480 MHz


Radiated Spurious Emissions

Name of Test: Radiated Spurious Emissions Engineer: Alex Macon **Test Equipment Utilized:** i00271, i00379, i00428 Test Date: 6/11/14

Test Procedure

The EUT was tested in a semi-anechoic chamber set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Spurious Emissions. The antenna and cable correction factors were summed with the amplifier gain and entered into the spectrum analyzer as an offset to ensure accurate readings. The spectrum for each tuned frequency was examined to the 10th harmonic. Measurements from 30 MHz to 1 GHz were performed but no emissions generated by the intentional radiators were detected.

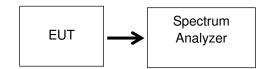
Test Setup

Detector Settings	RBW	VBW
Peak	1 MHz	3 MHz
Average	1 MHz	3 MHz

Radiated Spurious Emissions

Tuned Frequency (MHz)	Emission Frequency (MHz)	Peak Monitored Level (dBuV/m)	Peak Limit (dBuV/m)
2402	4804	40.0	74.0
2402	4050	39.3	74.0
2402	12010	47.8	74.0
2441	4882	38.9	74.0
2441	7321	42.7	74.0
2441	12206	47.6	74.0
2480	4960	39.5	74.0
2480	7439	43.9	74.0
2480	12399	48.2	74.0

All peak emissions were under the average limit of 54 dBuV/m No other emissions were detectable. All emissions were lower than -20 dBc

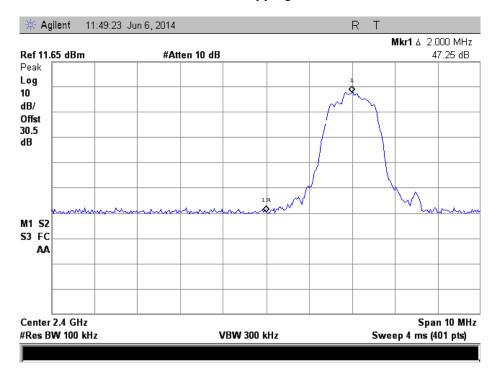

Emissions at Band Edges

Name of Test: Emissions at Band Edges Engineer: Alex Macon Test Equipment Utilized: i00379 Test Date: 6/6/14

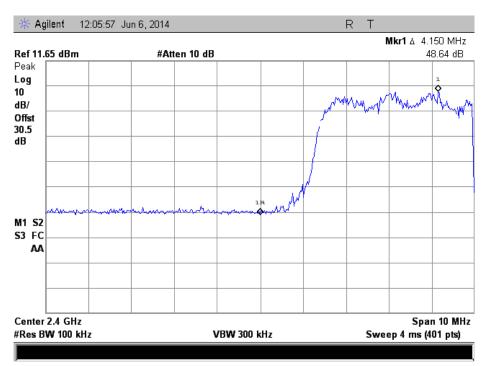
Test Procedure

The EUT was connected directly to a spectrum analyzer which was used to verify that the EUT met the requirements for band edge measurements. The cable and attenuator correction factors were input into the analyzer as a reference level offset to ensure accurate readings.

Test Setup

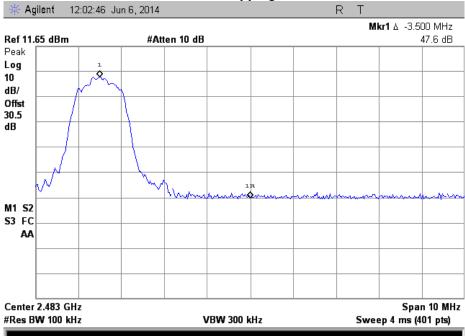

Band Edge Emissions Summary

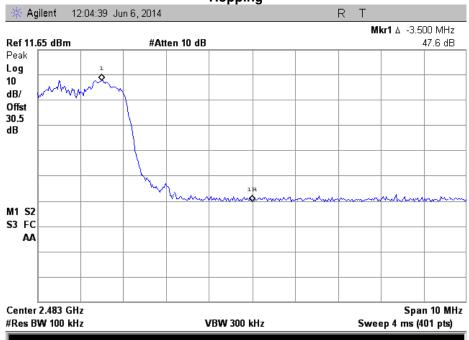
Tuned Frequency (MHz)	Emission Frequency (MHz)	Monitored Level (dBc)	Detector	Limit (dBc)	Result
2402	2400	-47.25	Peak	-20	Pass
2480	2483.5	-47.6	Peak	-20	Pass



Band Edge 2400 MHz

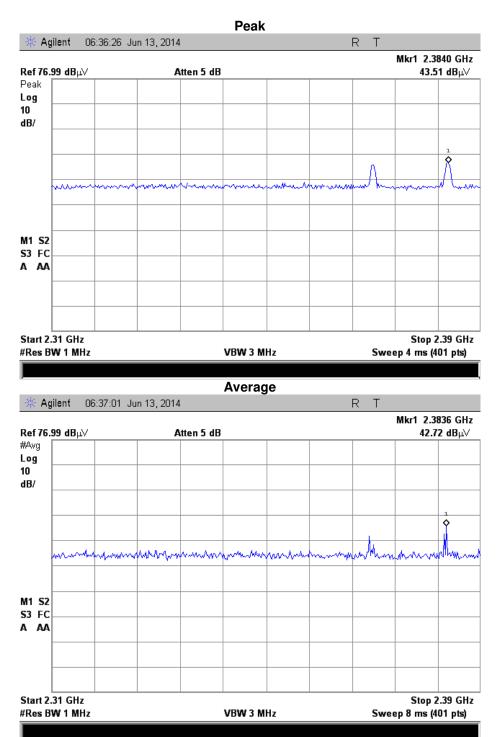
Non-Hopping


Hopping



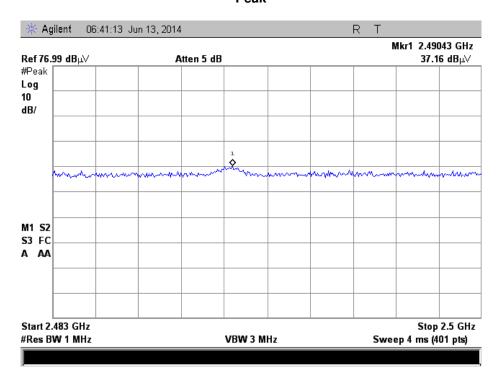
Band Edge 2483.5 MHz

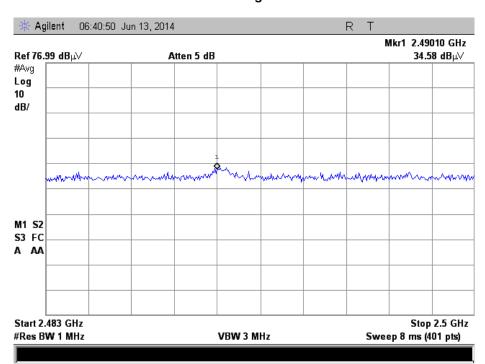
Hopping



Restricted Band Emissions Summary

Tuned Frequency (MHz)	Emission Frequency (MHz)	Peak Monitored Level (dBuV/m)	Peak Limit (dBuV/m)	Average Monitored Level (dBuV/m)	Average Limit (dBuV/m)	Result
2402	2384	43.51	74.0	42.72	54.0	Pass
2480	2490	37.16	74.0	34.58	54.0	Pass

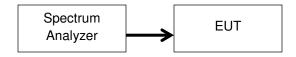

Restricted Band 2390 MHz



Restricted Band 2483.5 MHz

Peak

Average


Occupied Bandwidth

Name of Test:
Occupied Bandwidth
Test Equipment Utilized:
i00379
Engineer: Alex Macon
Test Date: 6/13/14

Test Procedure

The EUT was connected directly to a spectrum analyzer. The Span was set wide enough to capture the entire transmitting spectrum and the resolution bandwidth was set to at least 1% of the span. The analyzer was set to max hold and when the entire spectrum was captured, the 20dB and 99% bandwidths were measured to verify that the bandwidth met the specification.

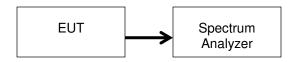
Test Setup

20 dB Bandwidth Summary

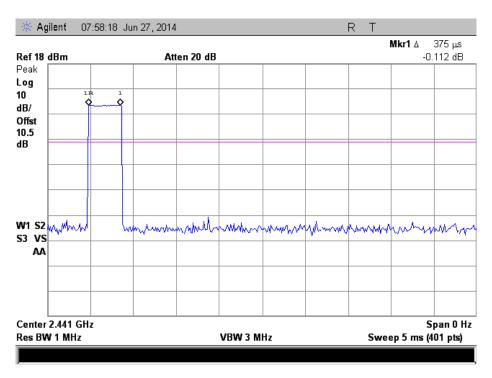
Frequency (MHz)	Recorded Measurement (MHz)	Specification Limit	Result
2402	1.15	N/A	Pass
2441	1.10	N/A	Pass
2480	1.10	N/A	Pass

99% Bandwidth Summary

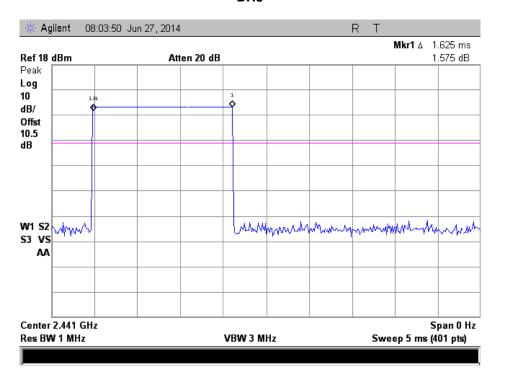
Frequency (MHz)	Recorded Measurement (MHz)	Result
2402	1.21	Pass
2441	1.20	Pass
2480	1.20	Pass

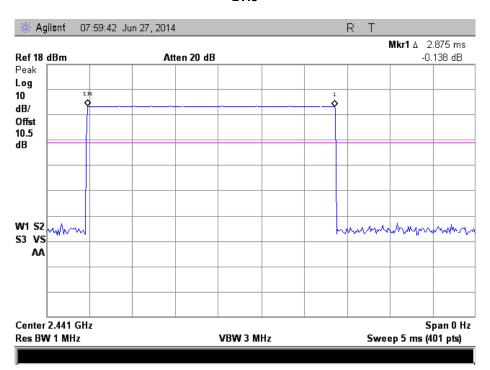

Dwell Time

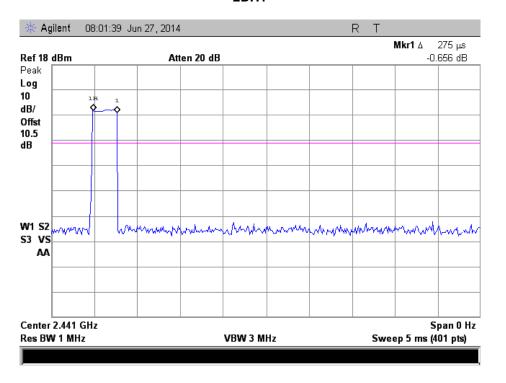
Name of Test:Dwell TimeEngineer: Alex MaconTest Equipment Utilized:i00379Test Date: 6/6/14

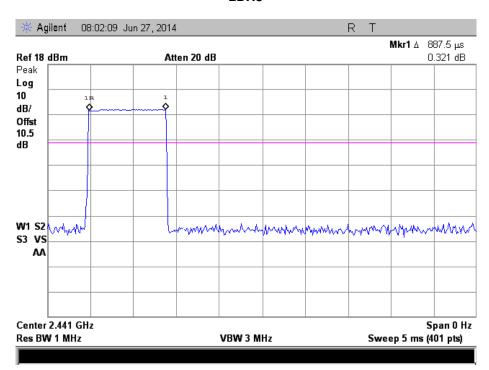

Test Procedure

The EUT was connected directly to a spectrum analyzer. The EUT was set to hopping mode with the spectrum analyzer set to a 0 Hz span. A single transmission was captured and the dwell time was recorded.

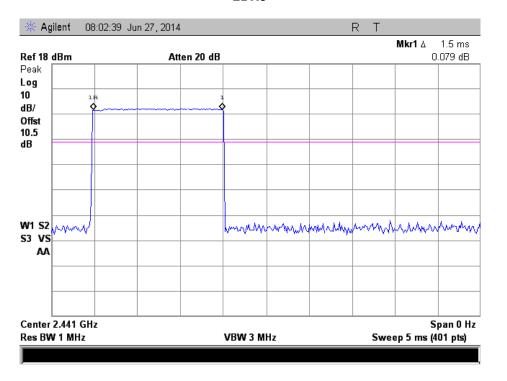

Test Setup

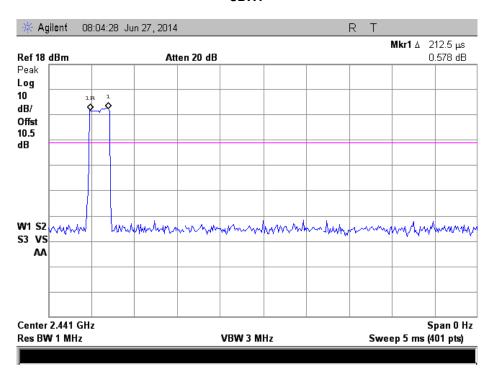

Dwell Time

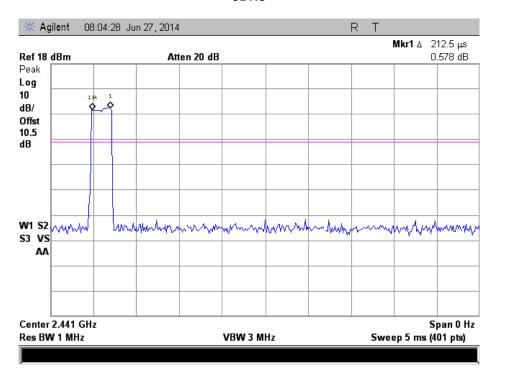


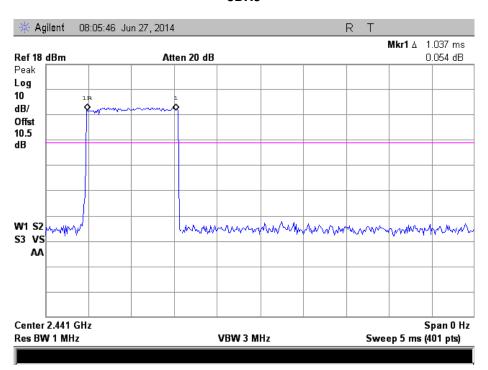


DH₅









Number of Hopping Channels

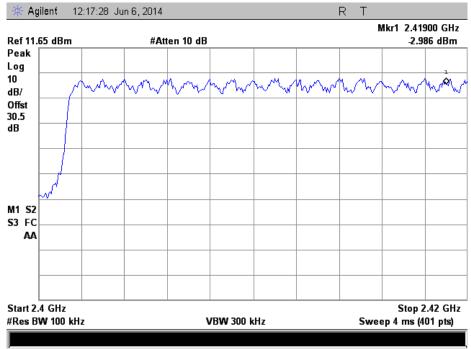
Name of Test: Number of Hopping Channels Engineer: Alex Macon

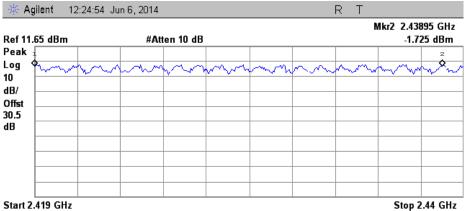
Test Equipment Utilized: i00379 Test Date: 6/6/14

Test Procedure

The EUT was connected directly to a spectrum analyzer. The Span was set to the specified band end points. The EUT was then set to operate in hopping mode. The MAX HOLD function of the spectrum analyzer was utilized to verify the number of hopping cannels.

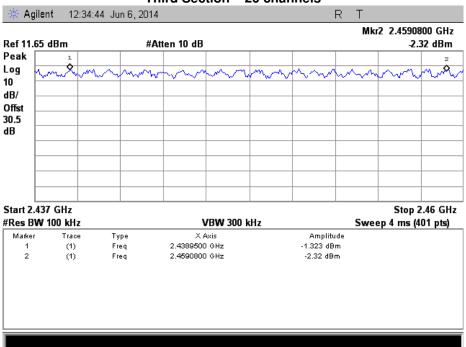
Total channel count - 79

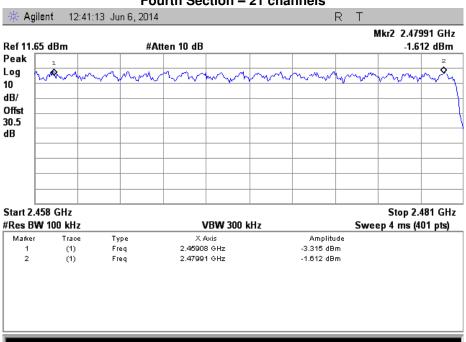

Test Setup



Number of Hopping Channels

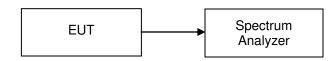
First Section - 18 channels

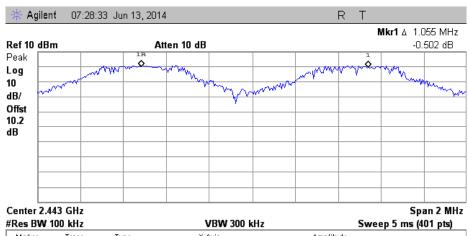

Second Section - 20 channels


Mail 2.4 13 GHZ					310p 2.44 GHZ	
Res B W 100 kHz			VBW 300 kHz		Sweep 4 ms (401 pts)	
Marker	Trace	Type	X Axis	Amplitude		
1	(1)	Freq	2.41900 GHz	-1.921 dBm		
2	(1)	Freq	2.43895 GHz	-1.725 dBm		

Third Section - 20 channels

Fourth Section - 21 channels


Channel Spacing

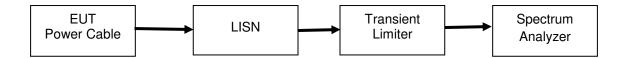

Name of Test: Channel Spacing Engineer: Alex Macon Test Equipment Utilized: i00379 Test Date: 6/6/14

Test Procedure

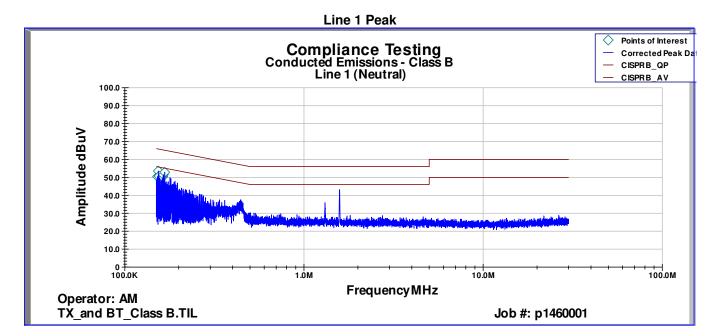
The EUT was connected directly to a spectrum analyzer and the channel spacing was measured.

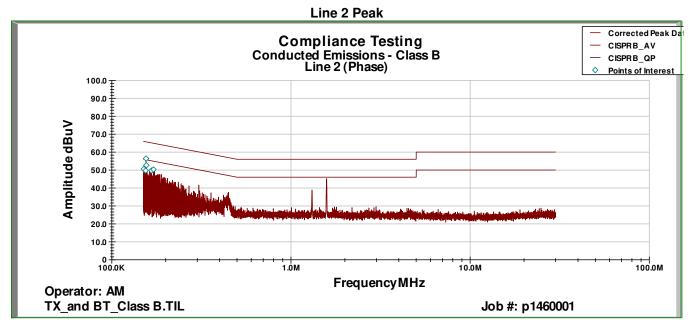
Test Setup

#Res BW	Res B W 100 kHz		VBW 300 kHz		Sweep 5 ms (401 pts)
Marker	Trace	Type	X Axis	Amplitude	
1R	(1)	Freq	2.441998 GHz	-0.219 dBm	
1∆	(1)	Freq	1.055 MHz	-0.502 dB	


A/C Powerline Conducted Emissions

Name of Test: A/C Powerline Conducted Emissions Engineer: Alex Macon Test Equipment Utilized: i00033, i00123, i00270, i00362 Test Date: 6/3/14


Test Procedure


The EUT power cable was connected to a LISN and the monitored output of the LISN was connected to a transient limiter, which then connected directly to a spectrum analyzer. The conducted emissions from 150 kHz to 30 MHz were measured and compared to the specification limits.

Test Setup

All peak readings are below the quasi peak and average limits, therefore no tabular data was recorded.

The signals at 1.38MHz and 1.57 MHz are ambient test signals and not part of the EUT.

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
EMI Receiver	HP	8546A	i00033	2/24/14	2/24/15
Function Generator	HP	33120A	i00118	Verified on: 6/6/14	
Transient Limiter	Com Power	LIT-930	i00123	Verified on: 6/3/14	
LISN	FCC	FCC-LISN-50-32-2-01	i00270	10/5/12	10/5/14
Horn Antenna, Amplified	ARA	DRG-118/A	i00271	5/8/14	5/8/15
Humidity / Temp Meter	Newport	IBTHX-W-5	i00282	3/24/14	3/24/15
Voltmeter	Fluke	75111	i00320	3/24/14	3/24/15
Spectrum Analyzer	Agilent	E4407B	i00331	4/23/13	4/23/14
Spectrum Analyzer	Tektronix	RSA3308A	i00345	3/18/14	3/18/15
Bi-Log Antenna	Schaffner	CBL 6111D	i00349	10/8/13	10/8/15
AC Power Source	Behlman	BL 6000	i00362	Verified on:6/3/14	
High Pass Filter	Trilithic	4HX3400-3-XX	i00377	Verified on:6/10/14	
EMI Analyzer	Agilent	E7405A	i00379	1/14/14	1/14/15
Thermo Hygrometer	Omega	RH81	i00408	4/15/13	4/15/15
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	11/26/13	11/26/15

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT