

RADIO TEST REPORT FCC ID: 2A7MA-R72

Product: Bluetooth Speaker Trade Mark: N/A Model No.: R72 Family Model: N/A Report No.: S22102801903001 Issue Date: Nov 26, 2022

Prepared for

Shenzhen Steed Technology Co., Ltd 2nd Floor,A2 Building,Silicon valley automotive electronics pioneer park,Shenzhen,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 7	FEST RESULT CERTIFICATION	3
2 8	SUMMARY OF TEST RESULTS	4
3 I	FACILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	5
3.2		
3.3		
	GENERAL DESCRIPTION OF EUT	
	DESCRIPTION OF TEST MODES	
6 8	SETUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2	SUPPORT EQUIPMENT	10
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7]	TEST REQUIREMENTS	13
7.1	CONDUCTED EMISSIONS TEST	
7.2	RADIATED SPURIOUS EMISSION	
7.3		
7.4		
7.5		
7.6 7.7		
7.7		
7.8 7.9		
7.9		
7.1		
	rest results	
8.1	DWELL TIME	
8.2		
8.3		
8.4		
8.5		
8.6 8.7	BAND EDGE CONDUCTED RF SPURIOUS EMISSION	
0.7	CONDUCTED RF SFURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

Applicant's name	Shenzhen Steed Technology Co., Ltd
Address	2nd Floor,A2 Building,Silicon valley automotive electronics pioneer park,Shenzhen,China
Manufacturer's Name	Shenzhen Steed Technology Co., Ltd
Address	2nd Floor,A2 Building,Silicon valley automotive electronics pioneer park,Shenzhen,China
Product description	
Product name	Bluetooth Speaker
Model and/or type reference:	R72
Family Model	N/A
Sample number	S221028019003

Measurement Procedure Used:

APPLICABLE STANDARDS STANDARD/ TEST PROCEDURE TEST RESULT FCC 47 CFR Part 2, Subpart J Complied FCC 47 CFR Part 15, Subpart C Complied ANSI C63.10-2013 Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Testing Engineer

Authorized Signatory

(Marv Hu)

Oct 28, 2022 ~Nov 26, 2022

(Alex Li)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Bluetooth Speaker		
Trade Mark	N/A		
FCC ID	2A7MA-R72		
Model No.	R72		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK		
Number of Channels	79 Channels		
Antenna Type	Inverted F Antenna		
Antenna Gain	-0.58dBi		
Adapter	N/A		
Battery	DC 3.7V, 1800mAh		
Power supply	DC 3.7V from battery or DC 5V from USB Port.		
HW Version	VA		
FW Version	V0		
SW Version	V1.0		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

	Re	vision History		
Report No. Version Description Issued Date				
S22102801903001	Rev.01	Initial issue of report	Nov 26, 2022	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode	
C-1 AE-2 Adapter	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
Measurement C-2 EUT	
Note: 1. The temporary antenna connector is soldered on the PCB board in order to p and this temporary antenna connector is listed in the equipment list. 2. EUT built-in battery-powered, the battery is fully-charged.	perform conducted tests

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		cor equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.01	2023.03.31	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.06.16	2023.06.15	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07 2022.11.07	2022.11.06 2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07 2022.11.04	2022.11.06 2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

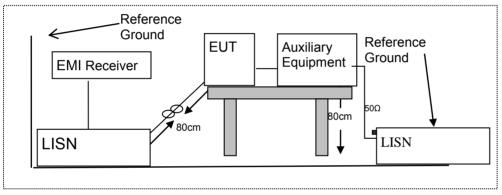
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

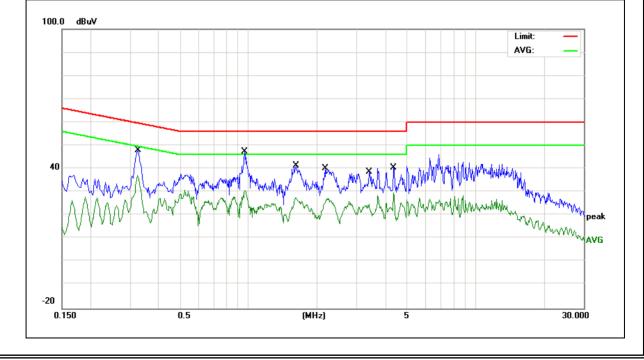
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

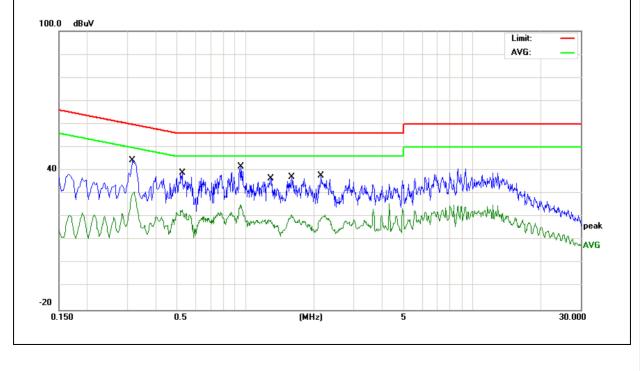

EUT:	Bluetooth Speaker	Model Name :	R72
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.3260	38.22	9.64	47.86	59.55	-11.69	QP
0.3260	27.66	9.64	37.30	49.55	-12.25	AVG
0.9620	37.72	9.68	47.40	56.00	-8.60	QP
0.9660	20.85	9.68	30.53	46.00	-15.47	AVG
1.6220	31.69	9.67	41.36	56.00	-14.64	QP
1.6220	17.95	9.67	27.62	46.00	-18.38	AVG
2.1780	30.53	9.69	40.22	56.00	-15.78	QP
2.1780	17.54	9.69	27.23	46.00	-18.77	AVG
3.4060	28.86	9.74	38.60	56.00	-17.40	QP
3.4060	15.11	9.74	24.85	46.00	-21.15	AVG
4.3539	30.79	9.76	40.55	56.00	-15.45	QP
4.3539	19.93	9.76	29.69	46.00	-16.31	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Bluetooth Speaker	Model Name :	R72
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

	1					
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3180	34.59	9.65	44.24	59.76	-15.52	QP
0.3180	21.12	9.65	30.77	49.76	-18.99	AVG
0.5260	29.30	9.66	38.96	56.00	-17.04	QP
0.5260	13.42	9.66	23.08	46.00	-22.92	AVG
0.9540	31.97	9.69	41.66	56.00	-14.34	QP
0.9540	15.57	9.69	25.26	46.00	-20.74	AVG
1.2900	26.93	9.67	36.60	56.00	-19.40	QP
1.2900	9.12	9.67	18.79	46.00	-27.21	AVG
1.5980	27.46	9.67	37.13	56.00	-18.87	QP
1.5980	11.25	9.67	20.92	46.00	-25.08	AVG
2.1460	28.11	9.67	37.78	56.00	-18.22	QP
2.1460	9.91	9.67	19.58	46.00	-26.42	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

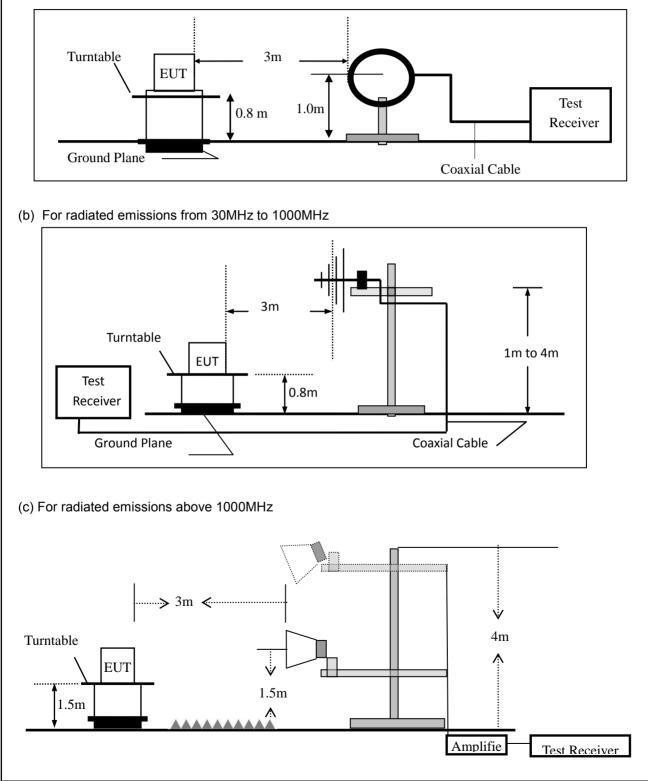
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	uring the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Al	Peak		1 MHz							
Above 1000	Average	1 MHz	1 MHz							

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	Bluetooth Speaker	Model No.:	R72
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Bluetooth Speaker Model Name : R72 **25°**℃ 55% Temperature: Relative Humidity: Test Mode: Mode 3 GFSK Pressure: 1010hPa DC 3.7V Test Voltage : Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 70.5836 18.07 13.58 31.65 40.00 -8.35 QP V 160.3456 17.91 18.33 36.24 43.50 -7.26 QP V 187.6208 16.82 16.34 43.50 -10.34 QP 33.16 V 252.0627 15.64 19.16 34.80 46.00 -11.20 QP V 510.0436 8.33 24.98 33.31 46.00 -12.69 QP V 706.6999 28.01 -8.94 QΡ 9.05 37.06 46.00 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBu∀/m Limit: Margin: x <u>5</u> 32 Marker Work way by -8 30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000

NTEK 北测[®]

	(H/V) Reading Level Remark H 191.7450 16.39 16.18 32.57 43.50 -10.93 QP H 264.7457 13.00 19.64 32.64 46.00 -13.36 QP H 305.6800 14.62 20.44 35.06 46.00 -10.94 QP H 510.0436 8.90 24.98 33.88 46.00 -12.12 QP H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV
H 191.7450 16.39 16.18 32.57 43.50 -10.93 QP H 264.7457 13.00 19.64 32.64 46.00 -13.36 QP H 305.6800 14.62 20.44 35.06 46.00 -10.94 QP H 510.0436 8.90 24.98 33.88 46.00 -12.12 QP H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Margin: Margin:	H 191.7450 16.39 16.18 32.57 43.50 -10.93 QP H 264.7457 13.00 19.64 32.64 46.00 -13.36 QP H 305.6800 14.62 20.44 35.06 46.00 -10.94 QP H 510.0436 8.90 24.98 33.88 46.00 -12.12 QP H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m Margin: Margin: 72.0 dBuV/m dBuV/m <td< th=""></td<>
H 305.6800 14.62 20.44 35.06 46.00 -10.94 QP H 510.0436 8.90 24.98 33.88 46.00 -12.12 QP H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Vinit: Margin: Margin: 72.0 dBuV/m	H 305.6800 14.62 20.44 35.06 46.00 -10.94 QP H 510.0436 8.90 24.98 33.88 46.00 -12.12 QP H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Variable Variable Variable Variable 72.0 dBuV/m dBuV/m<
H 510.0436 8.90 24.98 33.88 46.00 -12.12 QP H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Vision Level - Limit Vision Level - Limit 72.0 dBuV/m dBuV/m	H 510.0436 8.90 24.98 33.88 46.00 -12.12 QP H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Visual Content of the second s
H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m T2.0 dBuV/m dBuV/m dimit: margin: J 3 4 margin: 4	H 833.3170 7.90 29.62 37.52 46.00 -8.48 QP H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m 72.0 dBuV/m Imit: Margin: Imit:
H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	H 958.7943 6.66 31.22 37.88 46.00 -8.12 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Imit: Margin: Margi
Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit	Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m

Spuriou											
EUT:		Bluetooth Speaker Model No.:								R72	
Temperatu	e:	20 ℃				F	Rela	ative Humic	dity:	48%	
Test Mode:		Mode	e2/Mode	3/Mode4		-	Tes	t By:		Mary Hu	
All the mod	I the modulation modes have been tested, and the worst result was report as below:										
Freque		Read Level	Cable loss	Antenna Factor	Preamp Factor	Emissio Level		Limits	Marg	n Remark	Comment
(MHz) (0	dBµV)	(dB)	dB/m	(dB)	(dBµV/r	m)	(dBµV/m)	(dB)		
				Low Char	nel (2402	MHz)(GF	SK))Above 1G			
4804.	65 6	6.51	5.21	35.59	44.30	63.01		74.00	-10.9	9 Pk	Vertical
4804.	65 4	43.58	5.21	35.59	44.30	40.08	3	54.00	-13.9	2 AV	Vertical
7206.	63 6	53.90	6.48	36.27	44.60	62.05	5	74.00	-11.9	5 Pk	Vertical
7206.	63 4	43.61	6.48	36.27	44.60	41.76	6	54.00	-12.2	4 AV	Vertical
4805.	00 6	50.94	5.21	35.55	44.30	57.40)	74.00	-16.6	0 Pk	Horizontal
4805.	00 4	41.35	5.21	35.55	44.30	37.81		54.00	-16.1	9 AV	Horizontal
7206.	68 6	50.02	6.48	36.27	44.52	58.25	5	74.00	-15.7	5 Pk	Horizontal
7206.	68 4	43.52	6.48	36.27	44.52	41.75	5	54.00	-12.2	5 AV	Horizontal
	Mid Channel (2441 MHz)(GFSK)Above 1G										
4882.	92 6	67.97	5.21	35.66	44.20	64.64	L.	74.00	-9.36	6 Pk	Vertical
4882.	92 4	43.65	5.21	35.66	44.20	40.32	2	54.00	-13.6	8 AV	Vertical
7323.	04 6	64.35	7.10	36.50	44.43	63.52	2	74.00	-10.4	8 Pk	Vertical
7323.)4 4	43.79	7.10	36.50	44.43	42.96	6	54.00	-11.0	4 AV	Vertical
4882.	07 6	64.73	5.21	35.66	44.20	61.40)	74.00	-12.6	0 Pk	Horizontal
4882.)7 4	43.22	5.21	35.66	44.20	39.89)	54.00	-14.1	1 AV	Horizontal
7324.	50 6	62.37	7.10	36.50	44.43	61.54	Ļ	74.00	-12.4	6 Pk	Horizontal
7324.	50 4	41.15	7.10	36.50	44.43	40.32	2	54.00	-13.6	8 AV	Horizontal
				High Char	nel (2480	MHz)(GF	SK)) Above 1G	ì		
4959.	31 6	65.21	5.21	35.52	44.21	61.73	3	74.00	-12.2		Vertical
4959.	-	43.24	5.21	35.52	44.21	39.76	6	54.00	-14.2		Vertical
7439.	35 6	63.57	7.10	36.53	44.60	62.60)	74.00	-11.4		Vertical
7439.3		43.61	7.10	36.53	44.60	42.64	ŀ	54.00	-11.3	-	Vertical
4960.	99 6	53.20	5.21	35.52	44.21	59.72	2	74.00	-14.2	8 Pk	Horizontal
4960.	99 4	40.34	5.21	35.52	44.21	36.86	6	54.00	-17.1	4 AV	Horizontal
7440.	30 5	59.02	7.10	36.53	44.60	58.05	5	74.00	-15.9	5 Pk	Horizontal
7440.	30 4	43.60	7.10	36.53	44.60	42.63	3	54.00	-11.3	7 AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

■ Spu												
EUT:	Bluetooth Speaker Model No.: R7							R72	1			
Tempera	ature:	20 ℃				1	Rel	ative Humi	dity:	48%	, D	
Test Mo	de:	Mode2/ N	lode4			-	Tes	st By:		Mar	y Hu	
All the r	If the modulation modes have been tested, and the worst result was report as below:								,			
Frequ	lency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emissic Level		Limits	Mar	gin	Detector	Comment
(Mł	−lz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/r	n)	(dBµV/m)	(dE	3)	Туре	
				1	Mbps(GFS	SK)-Non-h	пор	ping				
2310	0.00	54.27	2.97	27.80	43.80	41.24		74	-32.	76	Pk	Horizontal
2310	0.00	42.05	2.97	27.80	43.80	29.02		54	-24.	98	AV	Horizontal
2310	0.00	53.97	2.97	27.80	43.80	40.94		74	-33.	06	Pk	Vertical
2310	0.00	44.36	2.97	27.80	43.80	31.33	;	54	-22.	67	AV	Vertical
2390	0.00	50.10	3.14	27.21	43.80	36.65	5	74	-37.	35	Pk	Vertical
2390	0.00	43.10	3.14	27.21	43.80	29.65	;	54	-24.	35	AV	Vertical
2390	0.00	53.21	3.14	27.21	43.80	39.76	;	74	-34.	24	Pk	Horizontal
2390	0.00	40.94	3.14	27.21	43.80	27.49)	54	-26.	51	AV	Horizontal
2483	3.50	52.55	3.58	27.70	44.00	39.83	5	74	-34.	17	Pk	Vertical
2483	3.50	42.39	3.58	27.70	44.00	29.67	,	54	-24.	33	AV	Vertical
2483	3.50	50.13	3.58	27.70	44.00	37.41		74	-36.	59	Pk	Horizontal
2483	3.50	42.32	3.58	27.70	44.00	29.60)	54	-24.	40	AV	Horizontal
					1Mbps(G	FSK)-hop	opin	ıg				
2310	0.00	51.23	2.97	27.80	43.80	38.20)	74	-35.	80	Pk	Horizontal
2310	0.00	44.81	2.97	27.80	43.80	31.78		54	-22.	22	AV	Horizontal
2310	0.00	52.52	2.97	27.80	43.80	39.49)	74	-34.	51	Pk	Vertical
2310	0.00	43.99	2.97	27.80	43.80	30.96	;	54	-23.	04	AV	Vertical
2390	0.00	50.49	3.14	27.21	43.80	37.04		74	-36.	96	Pk	Vertical
2390	0.00	40.74	3.14	27.21	43.80	27.29)	54	-26.	71	AV	Vertical
2390	0.00	54.71	3.14	27.21	43.80	41.26	;	74	-32.	74	Pk	Horizontal
2390	0.00	40.11	3.14	27.21	43.80	26.66	;	54	-27.	34	AV	Horizontal
2483	3.50	51.11	3.58	27.70	44.00	38.39)	74	-35.	61	Pk	Vertical
2483	3.50	41.60	3.58	27.70	44.00	28.88	5	54	-25.	12	AV	Vertical
2483	3.50	50.57	3.58	27.70	44.00	37.85	,	74	-36.	15	Pk	Horizontal
2483	3.50	44.43	3.58	27.70	44.00	31.71		54	-22.	29	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 3260MHz-18000MHz									
ΕL	•						Model No.:		R72	
Те	mperature:	nperature: 20 °C						lumidity:	48%	
Те	Test Mode: Mode2/ Mode4 T				Test By:		Mary Hu	L		
Α	All the modulation modes have been tested, and the worst result							ort as bel	ow:	
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
	3260	60.69	4.04	29.57	44.70	49.60	74	-24.40	Pk	Vertical
	3260	47.07	4.04	29.57	44.70	35.98	54	-18.02	AV	Vertical
	3260	54.87	4.04	29.57	44.70	43.78	74	-30.22	Pk	Horizontal
	3260	44.45	4.04	29.57	44.70	33.36	54	-20.64	AV	Horizontal
	3332	62.64	4.26	29.87	44.40	52.37	74	-21.63	Pk	Vertical
	3332	44.68	4.26	29.87	44.40	34.41	54	-19.59	AV	Vertical
	3332	61.32	4.26	29.87	44.40	51.05	74	-22.95	Pk	Horizontal
	3332	45.59	4.26	29.87	44.40	35.32	54	-18.68	AV	Horizontal
	17797	49.32	10.99	43.95	43.50	60.76	74	-13.24	Pk	Vertical
	17797	38.81	10.99	43.95	43.50	50.25	54	-3.75	AV	Vertical
	17788	56.29	11.81	43.69	44.60	67.19	74	-6.81	Pk	Horizontal
	17788	36.33	11.81	43.69	44.60	47.23	54	-6.77	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Bluetooth Speaker	Model No.:	R72
Temperature:	20 (Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Bluetooth Speaker	Model No.:	R72
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Bluetooth Speaker	Model No.:	R72
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Bluetooth Speaker	Model No.:	R72
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Bluetooth Speaker	Model No.:	R72
Temperature:	20 °C	Relative Humidity:	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Bluetooth Speaker	Model No.:	R72 48%
Temperature:	20 °C	Relative Humidity:	
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached Inverted F antenna (Gain: -0.58dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

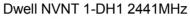
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

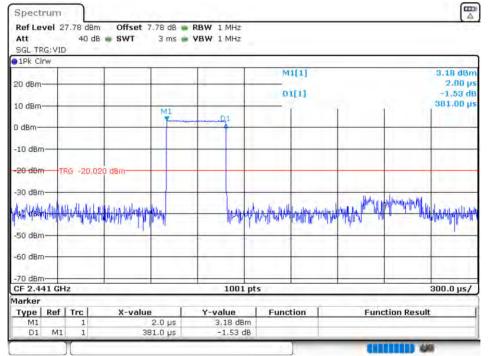
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

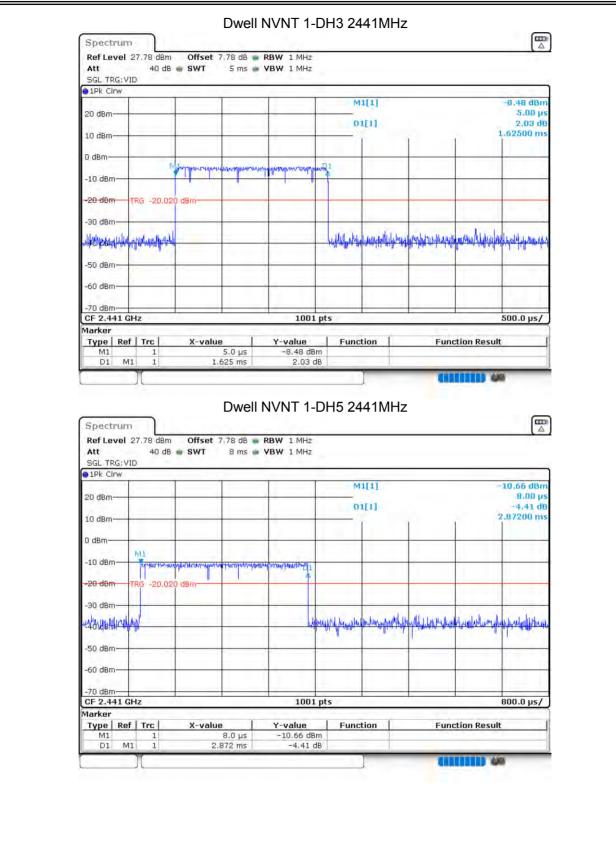
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

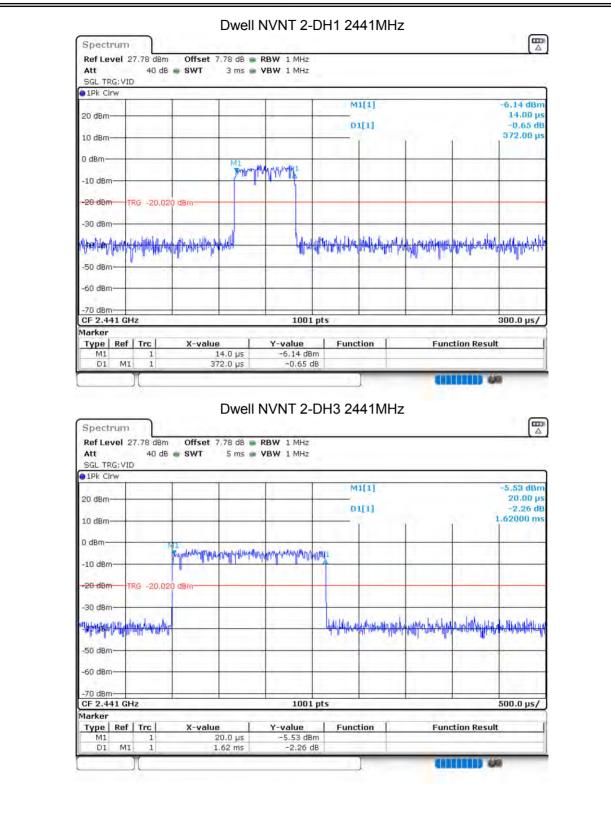


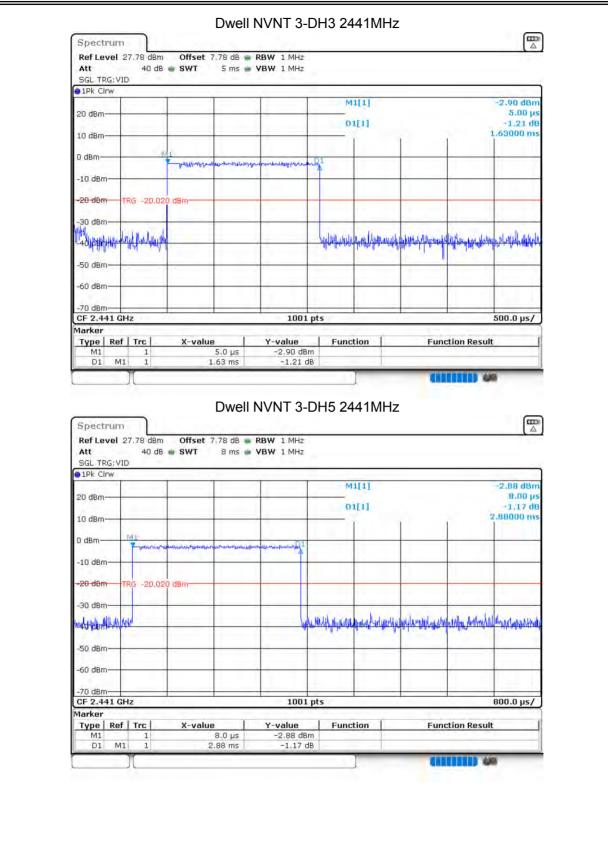


8 TEST RESULTS

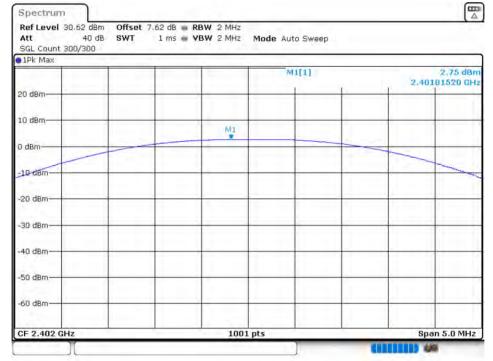
8.1 DWELL TIME


Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict	
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	VEIUICI	
NVNT	1-DH1	2441	0.381	121.92	31600	400	Pass	
NVNT	1-DH3	2441	1.625	260	31600	400	Pass	
NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass	
NVNT	2-DH1	2441	0.372	119.04	31600	400	Pass	
NVNT	2-DH3	2441	1.62	259.2	31600	400	Pass	
NVNT	2-DH5	2441	2.864	305.493	31600	400	Pass	
NVNT	3-DH1	2441	0.384	122.88	31600	400	Pass	
NVNT	3-DH3	2441	1.63	260.8	31600	400	Pass	
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass	

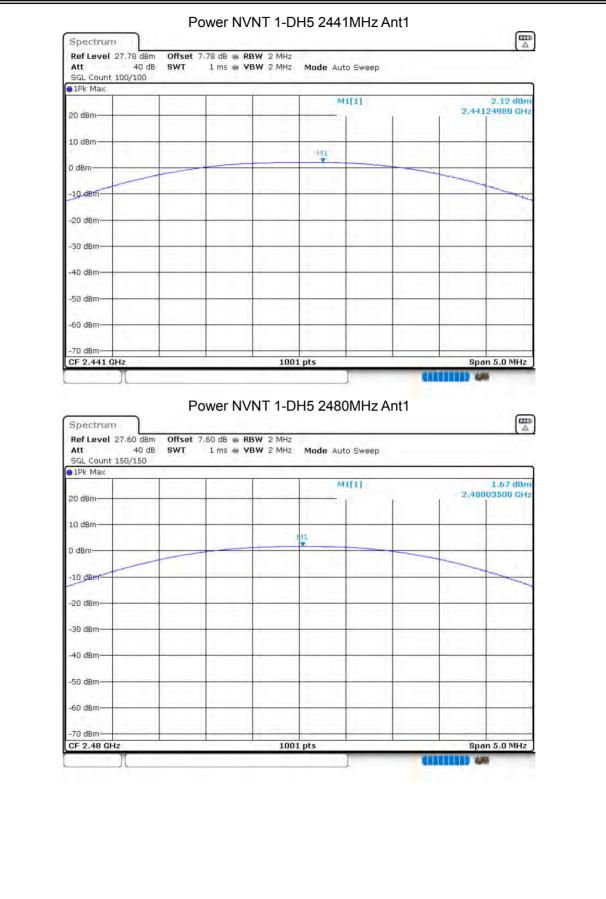




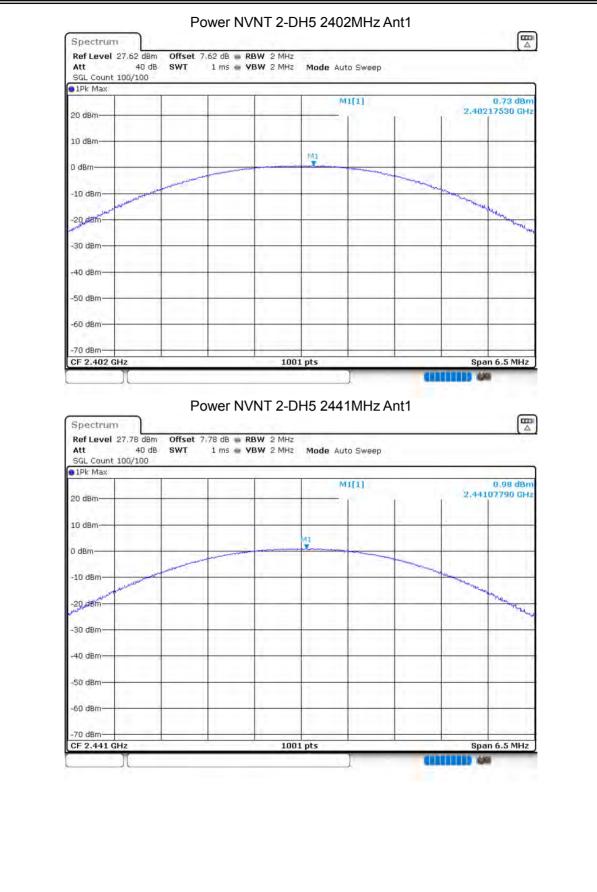
Att 40 dB S SGL TRG: VID	SWT 8 ms 🖮 '	VBW 1 MHz					
1Pk Clrw	1	1 1	M1[1	1]			-4.72 dBm
20 dBm			01[1	1			24.00 µs -0.11 dB
10 dBm				Ĩ	1		2.86400 ms
D dBm	when the states and the states and	warmen Memoral	_				
-10 dBm	and the set the set	a la su a dat	-		-		
-20 dBm TRG -20,020 dBi	m					_	
-30 dBm						_	
htan department		W	hundred from the prod	Laguesda and Lag Har	Hutta hunder	hay the shypholy	nut full much filling
-50 dBm-					- 1	1.1	
-60 dBm							
		1.1					
-70 dBm		1001	pts	-la		6i	800.0 µs/
	X-value	Y-value	Functio	n [Func	tion Result	t I
M1 1	24.0 μs 2.864 ms	-4.72 dBr -0.11 d					
D1 M1 1						the second s	-
Spectrum Ref Level 27.78 dBm C)ffset 7.78 dB 🖷 I	RBW 1 MHz	DH1 244	1MHz			
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG: VID)ffset 7.78 dB 🖷 I		DH1 244	1MHz			
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG:VID)ffset 7.78 dB 🖷 I	RBW 1 MHz	DH1 244				-2.89 dBm
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG:VID)ffset 7.78 dB 🖷 I	RBW 1 MHz		ıj			-2.89 dBm 2.00 µs -1.13 dB
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG:VID)ffset 7.78 dB 🖷 I	RBW 1 MHz	M1[1	ıj			-2.89 dBm 2.00 µs
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID PIPk Clrw 20 dBm	Dffset 7.78 dB I I SWT 3 ms I I	RBW 1 MHz	M1[1	ıj			-2.89 dBm 2.00 µs -1.13 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	Dffset 7.78 dB I I SWT 3 ms I I	RBW 1 MHz VBW 1 MHz	M1[1	ıj			-2.89 dBm 2.00 µs -1.13 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG:VID IPk Clrw 20 dBm 10 dBm 0 dBm	Diffset 7.78 dB I I	RBW 1 MHz VBW 1 MHz	M1[1	ıj			-2.89 dBm 2.00 µs -1.13 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPR CIrw 20 dBm 10 dBm	Diffset 7.78 dB I I	RBW 1 MHz VBW 1 MHz	M1[1 01[1				-2.89 dBm 2.00 µs -1.13 dB 384.00 µs
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TRG -20,020 dBi -30 dBm	Diffset 7.78 dB I I	RBW 1 MHz VBW 1 MHz	M1[1 01[1				-2.89 dBm 2.00 µs -1.13 dB 384.00 µs
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TRG -20,020 dBr	Diffset 7.78 dB I I	RBW 1 MHz VBW 1 MHz	M1[1 01[1	ıj		Lynk yn solady	-2.89 dBm 2.00 µs -1.13 dB 384.00 µs
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Diffset 7.78 dB I I	RBW 1 MHz VBW 1 MHz	M1[1 01[1			John Hart Hart	-2.89 dBm 2.00 µs -1.13 dB 384.00 µs
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm -10 dBm -30 dBm -50 dBm -60 dBm	Diffset 7.78 dB I I	RBW 1 MHz VBW 1 MHz	M1[1 01[1				-2.89 dBm 2.00 µs -1.13 dB 384.00 µs
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG: VID 9 IPk Clrw 0 IPk Clrw 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Diffset 7.78 dB I I	RBW 1 MHz VBW 1 MHz					-2.89 dBm 2.00 µs -1.13 dB 384.00 µs
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG: VID ID IPk Cinw 20 dBm ID 20 dBm ID dBm ID 10 dBm ID dBm ID -10 dBm ID dBm ID -30 dBm ID ID ID -50 dBm ICF 2.441 GHz ID ID -70 dBm ID ID ID ID	Diffset 7.78 dB 1	RBW 1 MH2 VBW 1 MH2	M1[1 01[1 	nharrentfulla			-2.89 d8m 2.00 µs -1.13 dB 384.00 µs
Spectrum Ref Level 27.78 dBm C Att 40 dB S SGL TRG: VID 10 dBm 20 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm	Diffset 7.78 dB • 1	RBW 1 MH2 VBW 1 MH2	M1[1 	nharrentfulla			-2.89 d8m 2.00 µs -1.13 dB 384.00 µs



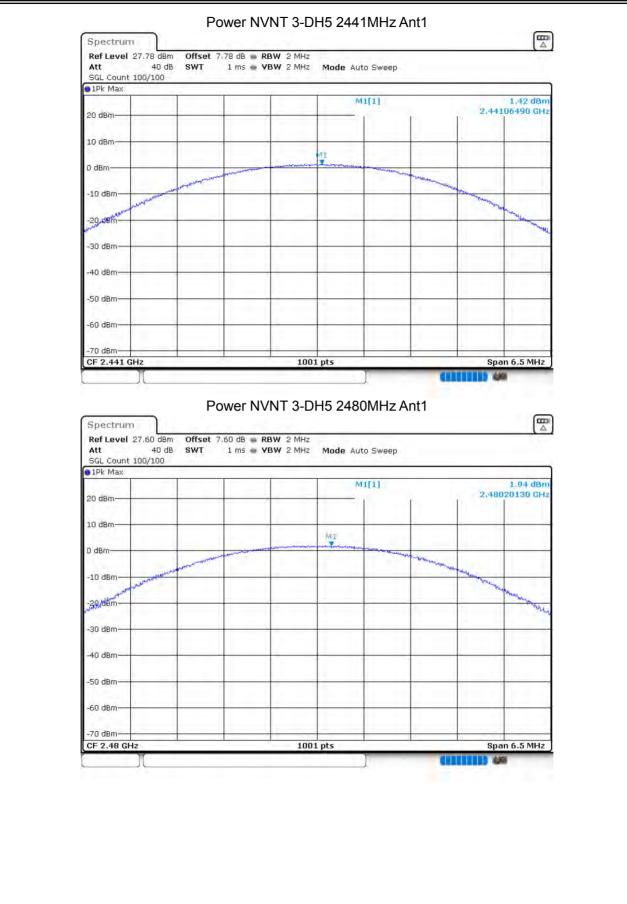
8.2 MAXIMUM CONDUCTED OUTPUT POWER


Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	2.75	30	Pass
NVNT	1-DH5	2441	Ant 1	2.12	30	Pass
NVNT	1-DH5	2480	Ant 1	1.67	30	Pass
NVNT	2-DH5	2402	Ant 1	0.73	21	Pass
NVNT	2-DH5	2441	Ant 1	0.98	21	Pass
NVNT	2-DH5	2480	Ant 1	1.49	21	Pass
NVNT	3-DH5	2402	Ant 1	0.66	21	Pass
NVNT	3-DH5	2441	Ant 1	1.42	21	Pass
NVNT	3-DH5	2480	Ant 1	1.94	21	Pass

Power NVNT 1-DH5 2402MHz Ant1



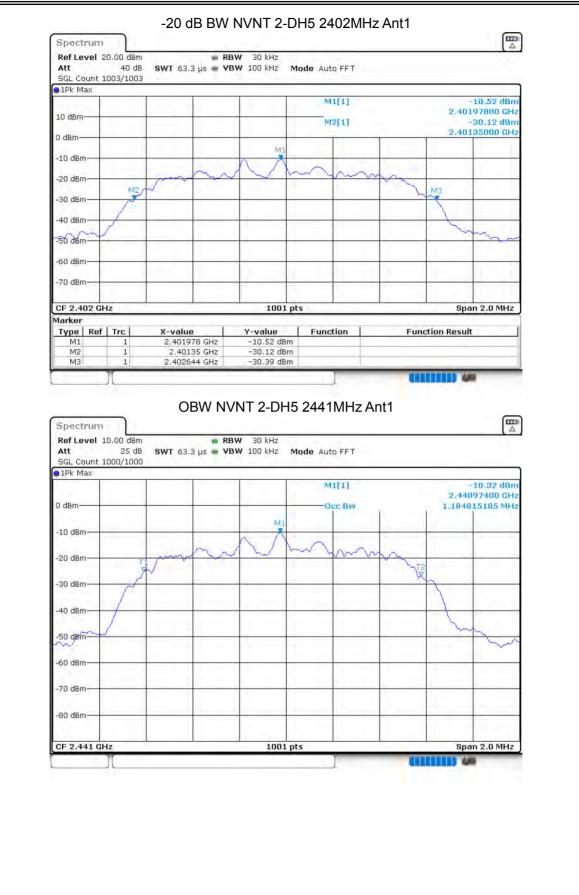


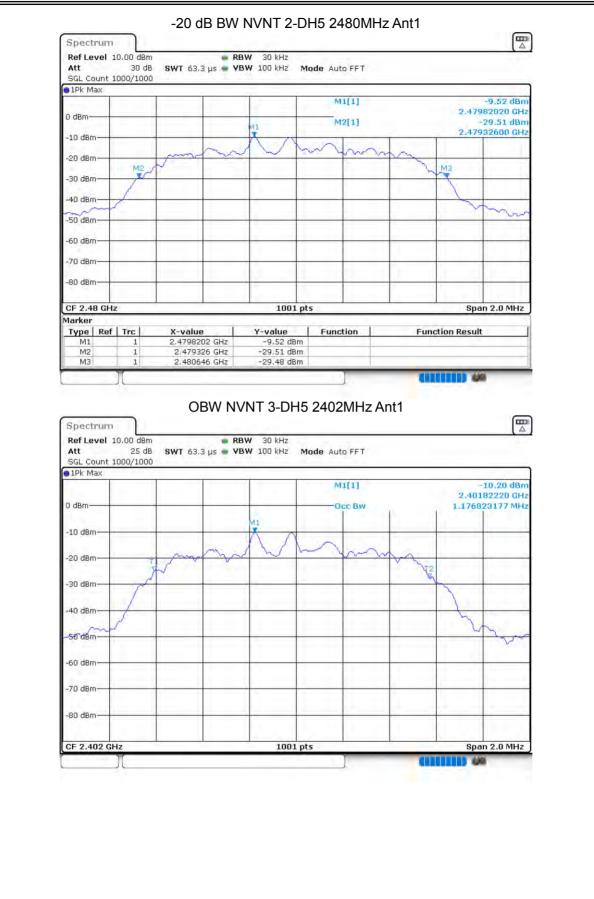


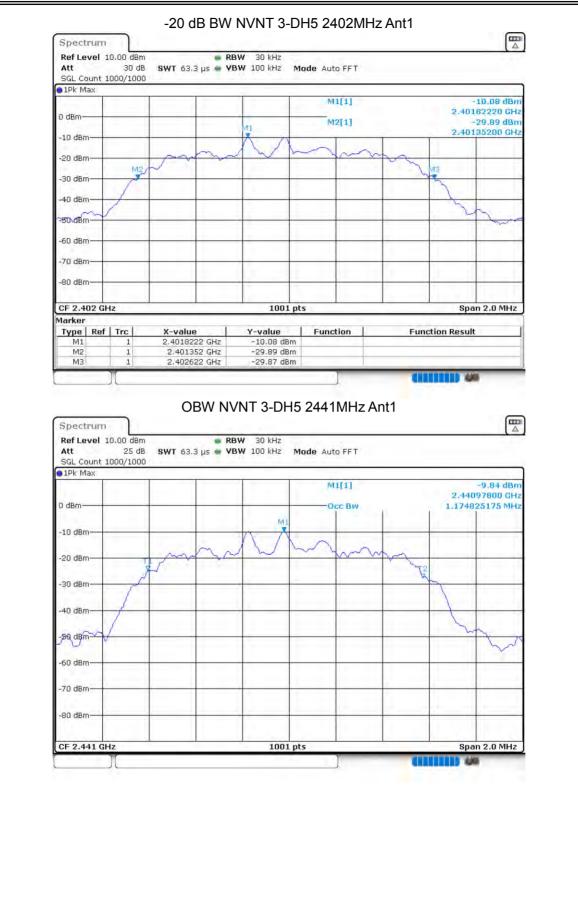
8.3 OCCUPIED CHANNEL BANDWIDTH

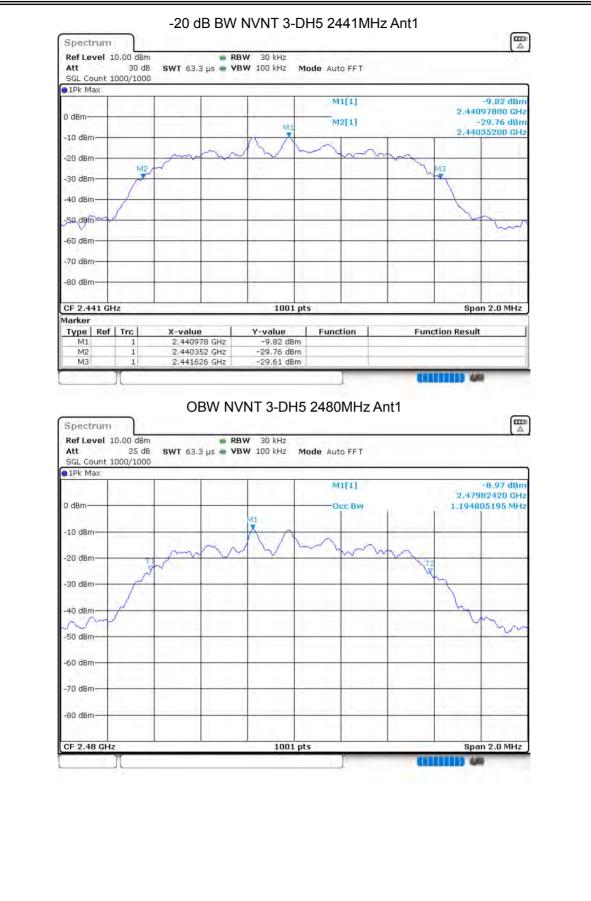
0.0 00001						
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
Condition	Mouc	(MHz)	7 internia	(MHz)	(MHz)	verdict
NVNT	1-DH5	2402	Ant 1	0.9411	1.076	Pass
NVNT	1-DH5	2441	Ant 1	0.963	1.068	Pass
NVNT	1-DH5	2480	Ant 1	0.9431	1.03	Pass
NVNT	2-DH5	2402	Ant 1	1.1928	1.294	Pass
NVNT	2-DH5	2441	Ant 1	1.1848	1.288	Pass
NVNT	2-DH5	2480	Ant 1	1.1988	1.32	Pass
NVNT	3-DH5	2402	Ant 1	1.1768	1.27	Pass
NVNT	3-DH5	2441	Ant 1	1.1748	1.274	Pass
NVNT	3-DH5	2480	Ant 1	1.1948	1.322	Pass

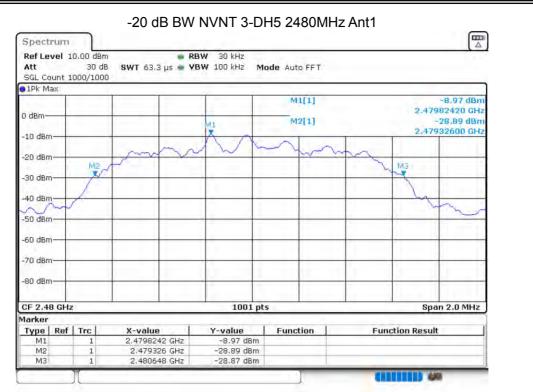
OBW NVNT 1-DH5 2402MHz Ant1

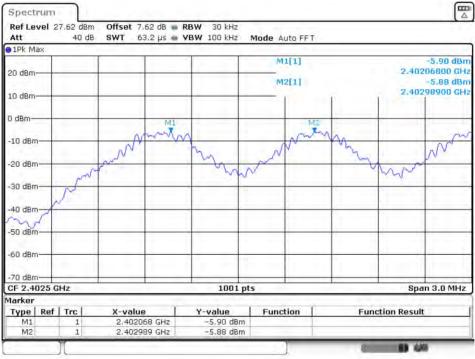




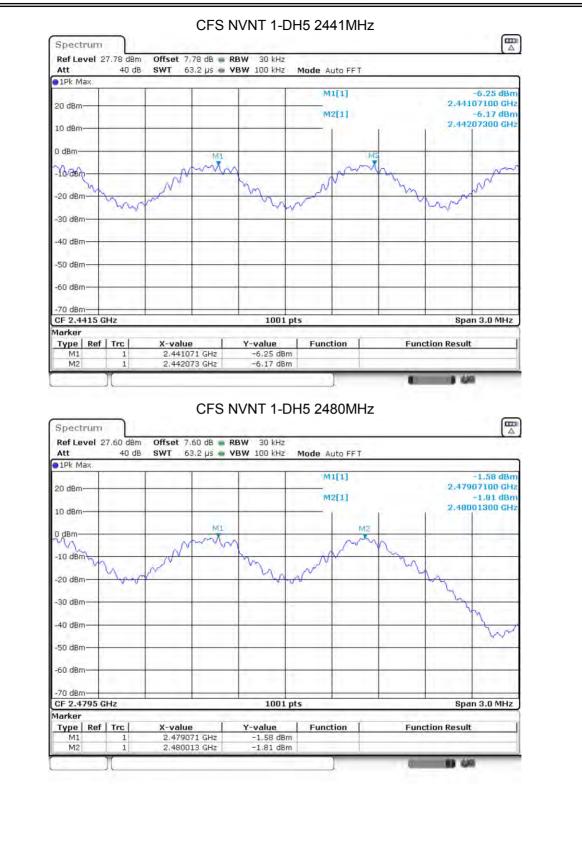


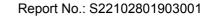


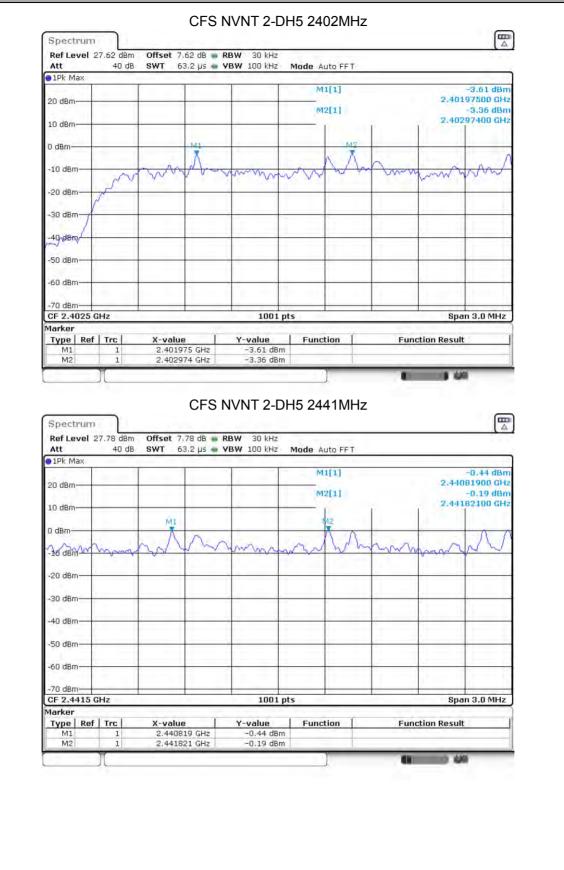


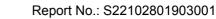


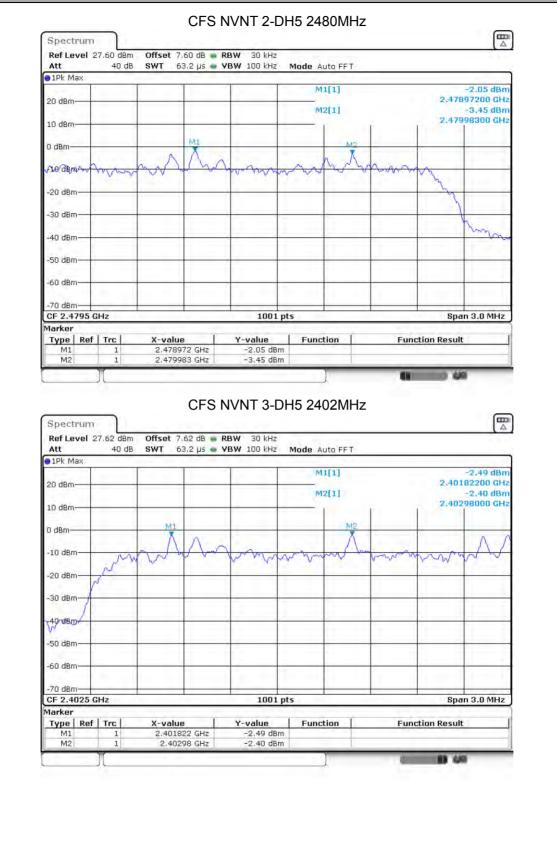
8.4 CARRIER FREQUENCIES SEPARATION

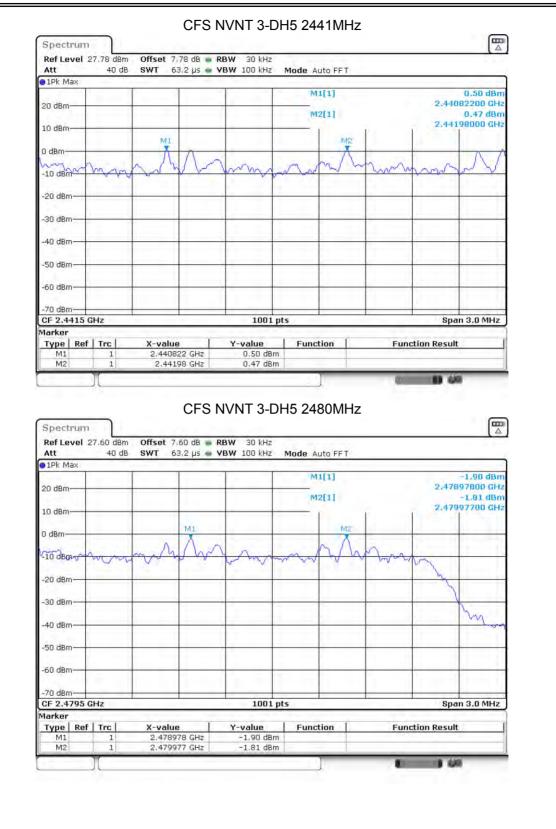

U.T CANNE			N			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
Condition	MOUE	(MHz)	(MHz)	(MHz)	(MHz)	VEILICI
NVNT	1-DH5	2402.068	2402.989	0.921	0.68	Pass
NVNT	1-DH5	2441.071	2442.073	1.002	0.68	Pass
NVNT	1-DH5	2479.071	2480.013	0.942	0.68	Pass
NVNT	2-DH5	2401.975	2402.974	0.999	0.88	Pass
NVNT	2-DH5	2440.819	2441.821	1.002	0.88	Pass
NVNT	2-DH5	2478.972	2479.983	1.011	0.88	Pass
NVNT	3-DH5	2401.822	2402.98	1.158	0.881	Pass
NVNT	3-DH5	2440.822	2441.98	1.158	0.881	Pass
NVNT	3-DH5	2478.978	2479.977	0.999	0.881	Pass

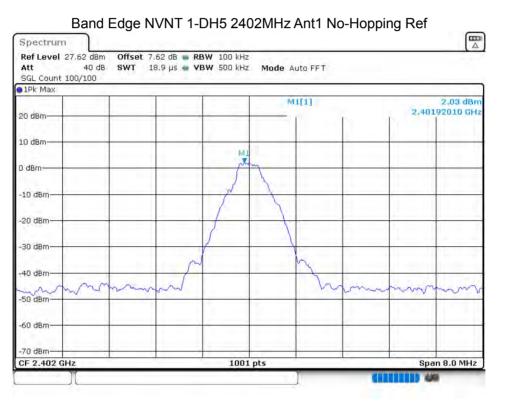

CFS NVNT 1-DH5 2402MHz







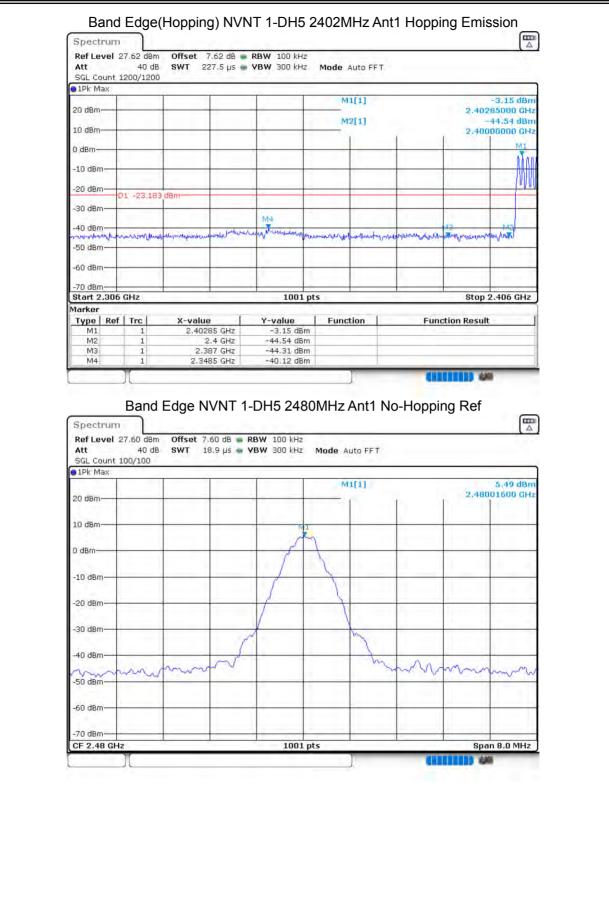



	dition /NT	Mode I 1-DH5		g Numbe 79	er Lin 15						
Spectrum The level 27.62 dBm Offset 7.62 dB • RBW 100 kHz Att 40 dB SWT 1 ms • VBW 300 kHz Mode Auto Sweep SGL count 7000/7000 • • • • • 1Pk Max • • • • • 20 dBm • • • • • • 10 dBm •				Hor	opina N	Ιο Ννντ	[1-DH	5 2402	MHz		
Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 0		Spectrun	n	1.01	spingin						
SGL Count 7000/7000 IPK Max 20 dBm							Mode	Auto Sweep			
20 dBm		SGL Count		2413			10-10-1				
M2[1] 0.61 dBm 0/dBm 2.4800765 GHz 0/dBm M2 -10 cBm M2 -20 dBm M2 -30 dBm -10 -40 dBm -10 -20 dBm -10 -20 dBm -10 -30 dBm -10 -30 dBm -10 -50 dBm -10 -50 dBm -10 -70 dBm -100 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker -3.04 dBm		10 C					P	M1[1]		2.40	
10 Bm 10 Bm 10 Bm -10 Bm 10 Bm -20 dBm 10 Bm -20 dBm 10 Bm -30 dBm 10 Bm -40 dBm 10 Bm -50 dBm 10 Bm -60 dBm 10 Bm -70 dBm 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker 1001 pts M1 1 2.401837 GHz -3.04 dBm		16,253					P	M2[1]			0.61 dBm
-10 EBM -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -10 LBm -10								1	ſ.		
-20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -30 dBm -30 dBm -30 dBm -50 dBm -30 dBm -30 dBm -30 dBm -50 dBm -30 dBm -30 dBm -30 dBm -60 dBm -30 dBm -30 dBm -30 dBm -70 dBm -30 dBm -30 dBm -30 dBm Marker -30 dBm -30 dBm -30 dBm			алальала	Алиллани	1AAAAAAAA	aanaaaaaa	1000000	UNABADAADA	NADADATAA	MAAMAN	MMM
-30 dBm +0 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70		1444144	WWWWW	WHWW	WAWA	MAMANA	MAMA	ADALAAAA	MAAAAAA	111111111	AAAAAA
-40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm			0.010.10.00	010000	<u></u>				1		
M Stop St			1								
-60 dBm -70 dBm -70 dBm 1001 pts Start 2.4 GHz 1001 pts Marker Type Type Ref M1 1 2.401837 GHz		-H0 dBm	1		-		-		1		hubs
-70 dBm Image: constraint of the second		-50 dBm		-	-						
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.401837 GHz -3.04 dBm		-60 dBm					-				
Marker Type Ref Trc X-value Y-value Function Function Result I M1 1 2.401837 GHz -3.04 dBm I			211-2			1001	nte		1	Stop 2	4025 CU2
M1 1 2.401837 GHz -3.04 dBm		Marker	1								
		M1	1	2.40183	37 GHz	-3.04 dBr	n	ction	Fund	tion Resul	t
				2,480076	55 GHz	0.61 dBr	20				
		M2) I				0.1	7			10
		[)	1	a	•	0
									CI		0
		M2						Ţ	0		8
			1				1101 2		-		0
									-		0
											0
							3				0
											0
							3				8
							2				0
											0
							2				0
											0
											0
											0
											0

NTEK 北测[®]

8.6 BAND EDGE

8.6 BANDE	DGE						
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	No-Hopping	-43.7	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-36.93	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-47.73	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-43.09	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-40.78	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-40	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-43.33	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-43.18	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-40.93	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-39.71	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-44.08	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-43.29	-20	Pass



Att SGL Count	27.62 dBm 40 dB 100/100			RBW 100 k⊢ VBW 500 k⊢		Auto FFT			
				1	M	1[1]		0.0	2.11 dBm
20 dBm					M	2[1]			215000 GHz -45.41 dBm
10 dBm				1			1		000000 GHz
0 dBm			-	-	-		-		
-10 dBm			-	-			1		
-20 dBm	D1 -17,973	dBm					-	-	+
-30 dBm	·		-	-	-	-	-	-	
-40 dBm			0.00m 1	M4	-		12200	Ma	1112
-50 dBm	evented with a spec	www.www.www.www.www.www.	Anthonyoun	Werner and think the	-unan-chance	puradrady have	unparticulturet	opplying	adurated with
-60 dBm				-	-				
-70 dBm							1	1	1.00
Start 2.30	5 GHz			1001	pts			Stop	2.406 GHz
Marker Type Rei	f Trc	X-value		Y-value	Func	tion	Fun	tion Resul	t I
M1 M2	1		L5 GHz .4 GHz	2.11 dE -45.41 dE					
M3 M4	1	2.3	89 GHz 19 GHz	-46.38 dE	m				
	Y	2.0		11100 00		7			8
D	and Edd	ao/Honr	ving) M			21/1-	Ant1 Ho	nning E	lof
1Pk Max	-		-	Ť.	M	uto FFT			-3.18 dBm
• 1Pk Max 20 dBm					M	1[1]		2,40	-3,18 dBm 301500 GHz
20 dBm					M			2.40	
20 dBm								2,40	
20 dBm								2,40	
20 dBm								2,40	
20 dBm								2.40	
20 dBm								2,40	
20 dBm								2,40	
20 dBm	mm		~~~^					2.40	
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	mm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					2,40	
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	·····		~~~^					2,40	
20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Hz		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1001				Spo	
20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-	Hz J			1001					
20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-	Hz I		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1001				Spo	
20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-	Hz		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1001				Spo	

20 dBm M1[1] 2.480.5000 GHz 10 dBm 2.482.5000 GHz 0 dBm 2.482.5000 GHz -10 dBm 01 -14.514 dBm -20 dBm -4.5.99 dBm -20 dBm -4.5.90 dBm M1 1 2.4935 GHz M2 1 2.492 GHz -4.5.90 dBm -4.5.90 dBm M2 1 2.492 GHz -4.2.50 dBm -4.2.50 dBm Courterout -4.2.50 dBm -20 dBm -4.2.45 dBm -40 dBm -4.2.45 dBm <tr< th=""><th>SGL Count 100/ ● 1Pk Max</th><th>1</th><th>1</th><th>- A</th><th>1</th><th></th><th></th><th></th><th>F FF dB</th></tr<>	SGL Count 100/ ● 1Pk Max	1	1	- A	1				F FF dB
10/6/m 2.4835000 GHz 0.dsm 2.4835000 GHz 10/8/m 01-14.514 dsm 20.dsm 10 -30.dsm 10 -40.dsm 10 -30.dsm 10 -40.dsm 10 -50.dsm 10 -40.dsm 10 -50.dsm 10 -50.dsm 10 -70.dsm 12.44015 GHz Norker Stop 2.576 GHz MM 1 2.44015 GHz MMZ 1 2.44015 GHz MM 1 2.44015 GHz MMA 1 2.44015 GHz MMA 1 2.44015 GHz Marker 1 2.44015 GHz Support 18.9 US YBW 300 Hz <	20 dBm		-	-	-				
-10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -70	10 ¹ d8m		_	_		12[1]	7		
-20 dbm 01 -14.514 dbm -30 dbm -49 dbm -49 dbm -49 dbm -50 dbm -49 dbm -50 dbm -49 dbm -60 dbm -49 dbm -70 dbm -49 dbm -60 dbm -49 dbm -70 dbm -49 dbm -60 dbm -49 dbm -70 dbm -49 dbm -70 dbm -49 dbm -70 dbm -70 dbm Morker -100 1pts Stort 2.476 GHz -45.59 dbm Md 1 2.490 15 GHz -45.59 dbm -45.19 dbm Md 1 2.492 GHz -45.29 dbm -45.19 dbm M4 1 2.492 GHz -42.25 dbm -45.19 dbm Stor Count 8009/8009 -100 Hz M141 -10.4 dbm -10 dbm -41.9 Jb<	0 d8m		_	_	-		-		1
20 au au<		i ci i in		-	-			-	
-40 dbm. 114		14/314 0800					1		
Build Build <th< td=""><td>-30 dBm</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td></th<>	-30 dBm				-		-		
-50 dBm -60 dBm -70			Here where they	Madrid and a second	all and with the Public	and a Labort J		philourup	Mary Pridate and
Ord dam Stop 2.576 GHz Marker 1001 pts Stop 2.576 GHz Marker 1 2.49015 GHz Function Function Result M1 1 2.4903 GHz 4.555 GBm Function Result M3 1 2.4932 GHz -45.19 dBm Function Result Function Result M4 1 2.492 GHz -42.25 dBm Function Result Function Result M4 1 2.492 GHz -42.25 dBm Function Result Function Result Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Function Result Function Result Spectrum Stop 2.700 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 8009/800 Gl Bm 918 Max 100 kHz Function Result Function Result Function Result 10 dBm 10 dBm 10.0 dBm 10.0 dBm 2.47717080 GHz -00 dBm -00 dBm -00 dBm -00 dBm -00 dBm -00 dBm -00 dBm -00 dBm -00 dBm -00 dBm -00 dBm	-50 dBm		an one for the	a Westalaan	and a min such an and	Indian de la cara a sera a	enter (Online alle and Arth		- MAR . Reiters
Stort 2.476 GHz 1001 pts Stop 2.576 GHz Marker Ype Ref Trc X-value Y-value Function Function Result M1 1 2.40015 GHz 5.55 dBm Function Function Result M2 1 2.403 GHz -45.99 dBm Function Result Function Result M3 1 2.492 GHz -45.99 dBm Function Result Function Result M4 1 2.492 GHz -45.99 dBm Function Result Function Result M4 1 2.492 GHz -42.25 dBm Function Result Function Result Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Function Result Function Result Function Result Stort 27.60 dBm Offset 7.60 dB & RBW 100 kHz Made Auto FFT SGL Count 8009/8009 Function Result 20 dBm 10 dBm Ref Result M1(1) 2.47717090 GHz Function Result -20 dBm	-60 dBm								
Marker Type Ref Trc X-value Function Function Result M1 1 2.48015 GHz 5.55 dBm Function Result Function Result M3 1 2.492 GHz -45.99 dBm Function Result Function Result M4 1 2.492 GHz -42.25 dBm Function Result Function Result M4 1 2.492 GHz -42.25 dBm Function Result Function Result Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mate Auto FFT SGL Count 8009/8009 FIbr Max 0 dB SWT 18.9 µS YBW 300 kHz Made Auto FFT SGL Count 8009/8009 0 dBm 2.47771/080 GHz Function FT Function FT 0 dBm 0 dBm 0 dBm 0 dBm Function FT Function FT 10 dBm 10 dBm 10 dBm 10 dBm Function FT Function FT 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm Function FT 10 dBm 10 dBm <td></td> <td>z</td> <td>1</td> <td>10</td> <td>1 pts</td> <td></td> <td>1</td> <td>Stop 2</td> <td>2.576 GHz</td>		z	1	10	1 pts		1	Stop 2	2.576 GHz
M1 1 2.48015 GHz 5.55 GHz -45.99 dBm M3 1 2.4835 GHz -45.19 dBm -45.19 dBm M4 1 2.55 GHz -45.19 dBm	Marker		ualua			stion 1	Fim		
M3 1 2.5 GHz -45.19 dBm M4 1 2.492 GHz -42.25 dBm Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 4 00 dB SWT 18.9 µS YBW 300 kHz Mode Auto FFT Sol. Count 8009/8009 IPk Max 2.4777.7080 GHz 20 dBm 4	M1	1	2.48015 GHz	5.55 (iBm	cuon	Fun	alon Kesult	
MI Image: Control of the second	M3	1	2.5 GHz	-45.19	dBm				
Spectrum Image: Control of the second s	M4	T	2.492 GHz	-42,251	1Bm				
BrdBm M1 -10"dBm -10"dBm -20 dBm -10"dBm -20 dBm -10"dBm -30 dBm -10"dBm -30 dBm -10"dBm -30 dBm -10"dBm -20 dBm -10"dBm -30 dBm -10"dBm -70 dBm -10"dBm -70 dBm -10"dBm -70 dBm -10"dBm -70 dBm -10"dBm	Banc Spectrum Ref Level 27.6 Att SGL Count 8005	0 dBm Offs 40 dB SW	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho	pping R	
BrdBm -10 "dBm -10 "dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm Span 8.0 MHz	Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max	0 dBm Offs 40 dB SW	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-10 'dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm-	0 dBm Offs 40 dB SW	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70	Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm 10 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm 10 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm 10 dBm 10 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Banc Spectrum Ref Level 27.6 Att SGL Count 8005 PIPk Max 20 dBm 10 dBm 10 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Banc Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Banc Spectrum Ref Level 27.6 Att SGL Count BDDS IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
-70 dBm	Banc Spectrum Ref Level 27.6 Att SGL Count BDDS IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
CF 2.48 GHz 1001 pts Span 8.0 MHz	Banc Spectrum Ref Level 27.6 Att SGL Count BDDS IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
	Banc Spectrum Ref Level 27.6 Att SGL Count BDDS IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
	Banc Spectrum Ref Level 27.6 Att SGL Count BDDS IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	łz łz Mode	Auto FFT	Ant1 Ho		1.04 dBm
	Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	Hz Mode	Auto FFT	Ant1 Ho	2.477	1.04 dBm 17080 GHz
	Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	0 dBm Offs 40 dB SW /8009	et 7.60 dB) NVNT 1-	Hz Mode	Auto FFT	Ant1 Ho	2.477	1.04 dBm 17080 GHz

😑 1Pk Max	1000/1000	r r				
20 dBm				M1[1]		0.67 dBi 2.47995000 GF
10 dBm				M2[1]		-44.27 dB) 2.48350000 GH
M1 DydBm						
1000				11.1	1.0.1	
-10 dBm	D1 -18.965	i dBm				
-30 dBm						
in the same P	14	142				1
-50 dBm-	-herrowshillow	and the set of the second second	a proprieta and and the second of	enteredynamic many	any web-weight a start web	w Month Manufactures and
-60 dBm						
-70 dBm	6 GHz	1 1	1001	ots		Stop 2.576 GHz
Marker Type Re	f Tro	X-value	Y-value	Function	Functio	on Result
M1 M2	1	2.47995 (GHz 0.67 dBm	1	, anoth	
M3	1	2.5 (GHz -44.43 dBm	r i		
644						
Spectrum Ref Level Att SGL Count	n 27.62 dBm 40 dB	Offset 7.62	GHZ -42.05 dBm NT 2-DH5 240 dB dB RBW 100 kHz µs YBW 300 kHz	2MHz Ant1	No-Hopping	[<u></u>
Spectrun Ref Level Att SGL Count	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1	No-Hopping	(m
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1	No-Hopping	-0.50 dBi
Spectrun Ref Level Att SGL Count IPk Max	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1	No-Hopping	-0.50 dBi
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1	No-Hopping	-0.50 dBi
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1		-0.50 dBi
Spectrum Ref Level Att SGL Count I D dBm 0 dBm -10 dBm -10 dBm	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1	No-Hopping	-0.50 dBi
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1		-0.50 dBi
Spectrum Ref Level Att SGL Count I D dBm 0 dBm -10 dBm -10 dBm	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1		-0.50 dBi
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1		-0.50 dBi
Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm	Band	Edge NVN Offset 7.62	NT 2-DH5 240	2MHz Ant1		-0.50 dBi
Spectrum Ref Level Att SGL Count © 1Pk Max 20 dBm	Band	Edge NVN Offset 7.62 SWT 18.9	NT 2-DH5 240	2MHz Ant1		-0.50 dBi 2.40197600 Gi
Spectrum Ref Level Att SGL Count © 1Pk Max 20 dBm	Band	Edge NVN Offset 7.62 SWT 18.9	NT 2-DH5 240	2MHz Ant1		-0.50 dBi 2.40197600 Gi
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	Band 27.62 dBm 40 dB 100/100	Edge NVN Offset 7.62 SWT 18.9	NT 2-DH5 240	2MHz Ant1		-0.50 dBi 2.40197600 Gi
Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm	Band 27.62 dBm 40 dB 100/100	Edge NVN	NT 2-DH5 240	2MHz Ant1		-0.50 dBi 2.40197600 Gi
Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band 27.62 dBm 40 dB 100/100	Edge NVN	NT 2-DH5 240	2MHz Ant1		-0.50 dBi 2.40197600 Gi

SGL Count 1 91Pk Max	00/100	-	-						
20 dBm		_			MI	L[1]		2.40	-0.56 dBm
10 dBm				1.1	M2	2[1]			-45.87 dBm
0 dBm								2.400	M1
-10 dBm								1	4
1.	1 -20,495	dBm						1	
-30 dBm		apm		-	1		_	1	
-40 dBm	_			M4				MB	Ma
-50 dBm	desperation	homenan	roughmany	trachadillauranny	carry bully law yes	monanthanpolis	manhandoutlan	all with Riddow pre-	manual was
-60 dBm				_		-		_	
-70 dBm						1			1 1
Start 2.306 Marker	GHz			1001	pts		-	Stop	2.406 GHz
Contraction of the second s	Trc 1	X-valu	le	Y-value -0.56 dB	Funct	ion	Fun	ction Result	t [
M2 M3	1		2.4 GHz	-45.87 dB -45.84 dB	m				
M4	1		.39 GHz 497 GHz	-45.84 UB -41.28 dB					
2									
Ba Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	VNT 2-D RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	pping R	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	RBW 100 kHz	Mode Au		Ant1 Ho		
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho		-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm	7.62 dBm 40 dB	Offset	7.62 dB F F 18,9 µs F N	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	7.62 dBm 40 dB	Offset	7.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	Offset	7.62 dB F F 18,9 µs F N	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	Offset	7.62 dB F F 18,9 µs F N	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	7.62 dBm 40 dB	Offset	7.62 dB F F 18,9 µs F N	RBW 100 kHz	Mode Au	ito FFT			-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	7.62 dBm 40 dB 000/8000	Offset	7.62 dB F F 18,9 µs F N	RBW 100 kHz		ito FFT		2.403	-0,41 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 000/8000	Offset	7.62 dB F F 18,9 µs F N			ito FFT		2.403	-0.41 dBm 92220 GHz
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	7.62 dBm 40 dB 000/8000	Offset	7.62 dB F F 18,9 µs F N			ito FFT		2,403	-0.41 dBm 92220 GHz
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 000/8000	Offset	7.62 dB F F 18,9 µs F N			ito FFT		2,403	-0.41 dBm 92220 GHz

Ref Level 3 Att SGL Count 3	40 dB			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT			
9 1Pk Max					MI	L[1]			-0,49 dBm
20 dBm					Ma	2[1]			85000 GHz
10 dBm							(2.400	100000 GHz M
0 dBm									Ania
-10 dBm				1					
	01 -20,406	dBm						1	
-30 dBm				M4				150	
-40 dBm	en manual parts	million and allowed	whether and	Maymonterage	how when the	a strategies	machimenelyldexilling	which surveyed	month
-50 dBm						:			1
-60 dBm							· · · · · · · · · · · · · · · · · · ·	1	
-70 dBm Start 2.306	GHz			1001 p	ts			Stop	2.406 GHz
Marker Type Ref	Trc	X-valu	e	Y-value	Funct	ion	Fund	tion Result	t - 1
M1 M2	1	2,405	85 GHz 2.4 GHz	-0.49 dBm -44.37 dBm	12.				
M3 M4	1	2.	39 GHz	-45.03 dBm -40.41 dBm					
			and the second second						
Spectrum Ref Level 3 Att SGL Count 3 @1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	2-DH5 248(RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	o-Hoppi	ng Ref	
Spectrum Ref Level : Att SGL Count :	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz	Mode Au		o-Hoppin		0.00 dBm 113590 GHz
Spectrum Ref Level 3 Att SGL Count 1 PIPk Max	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz	Mode Au	ito FFT			0.00 dBm
Spectrum Ref Level 3 Att SGL Count 1 PPK Max 20 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT			0.00 dBm
Spectrum Ref Level : SGL Count : 9 IPk Max 20 dBm 10 dBm 0 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT			0.00 dBm
Spectrum Ref Level 3 Att SGL Count 3 PIPk Max 20 dBm- 10 dBm- -10 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT			0.00 dBm
Spectrum Ref Level : SGL Count : 9 IPk Max 20 dBm 10 dBm 0 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT			0.00 dBm
Spectrum Ref Level 3 Att SGL Count 3 PIPk Max 20 dBm- 10 dBm- -10 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT			0.00 dBm
Spectrum Ref Level : Att SGL Count : 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT			0.00 dBm
Spectrum Ref Level : Att SGL Count : I D dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	o-Hoppin		0.00 dBm
Spectrum Ref Level : Att SGL Count : 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	o-Hoppin		0.00 dBm 113590 GHz
Spectrum Ref Level : Att SGL Count : I D dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	o-Hoppin		0.00 dBm 113590 GHz
Spectrum Ref Level : Att SGL Count : IDR Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 100/100	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz		ito FFT		2,480	0.00 dBm 113590 GHz
Spectrum Ref Level : Att SGL Count : 9 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 100/100	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz		ito FFT	o-Hoppin	2,480	0.00 dBm 013590 GHz
Spectrum Ref Level : SGL Count : ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.60 dBm 40 dB 100/100	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz		ito FFT	o-Hoppin	2,480	0.00 dBm 013590 GHz
Spectrum Ref Level : Att SGL Count : IDR Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 100/100	Offset 7	.60 dB 🝺	RBW 100 kHz VBW 300 kHz		ito FFT	o-Hoppin	2,480	0.00 dBm 013590 GHz

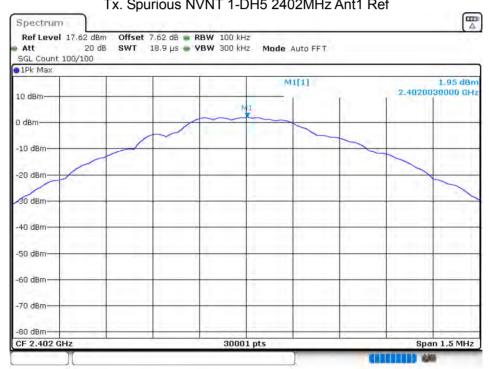
20 dBm 2.47985000 0 dBm 2.4985000 0 dBm 2.4935000 0 dBm 2.4935000 0 dBm 2.4935000 0 dBm 3.0 L -19,996 dBm 4.4 -10 dBm 4.4 -20 dBm 01 -19,996 dBm 4.4 -30	SGL Count 100/100 1Pk Max		2					
10 dBm M2[1] -44.22 0 dBm 2.49350000 -10 dBm -2.49350000 -20 dBm 01 -19,996 dBm -30 dBm -40 dBm/2 -40 dBm/2 -10 -50 dBm -10 -60 dBm -10 -70 dBm -1001 pts Stort 2.476 GHz 1001 pts Stort 2.476 GHz -0.32 dBm M3 1 2.4995 GHz -0.32 dBm M3 1 2.4995 GHz -0.32 dBm M3 1 2.4995 GHz -44.22 dBm M3 1 2.4921 GHz -44.32 dBm M4 1 2.4991 GHz -43.34 dBm Spectrum Offset 7.60 dB RBW 100 kHz M4 1 2.4921 GHz M30 dHz M4 1 2.4921 GHz M00 kHz M4 2.4991 GHz M00 kHz M00 kHz M11 0.498 WIT 18	20 dBm			M	1[1]		2.47	0.32 dBm 985000 GHz
Mill Description Mill Description -10 dBm -10 - 19,996 dBm -10 - 19,996 dBm -10 - 19,996 dBm -10 - 19,996 dBm -30 dBm -40 dBm -40 - 40,000 -40,000				M	2[1]			-44.22 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -70	M1.						2.90	330000 GH2
201 19,996 dBm 101 19,996 dBm 101 1	A				1			
30 dBm M4	-10 cBm-						<u>i</u> ,	1
40 dBm M3 M4	-20 dBm D1 -19,9	96 dBm		-		1		1
Hold dam Hold dam <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
-60 dBm -60 dBm -70 dBm -70 dBm Start 2.476 GHz 1001 pts Marker Type Ref Trc X-value M1 1 2.47985 GHz M2 1 2.4395 GHz 0.32 dBm M3 1 2.5 GHz -44.22 dBm M3 1 2.4921 GHz -43.34 dBm M4 1 2.4921 GHz -43.34 dBm Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Mode Auto FFT SGL Count 8000/8000 Offset 7.60 dB MI[1] 0.48 20 dBm MI 0.48 -10 dBm -20 dBm -30 dBm <td>-40 dBm2 M4</td> <td>MIS Ludid in W. John Belled</td> <td>Altransian - word A</td> <td>de traticientes a</td> <td>LI Look A. or B.</td> <td>40.00.1410</td> <td>Martin Marting Prender</td> <td>AM + Marchen And</td>	-40 dBm2 M4	MIS Ludid in W. John Belled	Altransian - word A	de traticientes a	LI Look A. or B.	40.00.1410	Martin Marting Prender	AM + Marchen And
Start 2.476 GHz 1001 pts Stop 2.576 fm Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47995 GHz -44.22 dBm Fm	-50 dBm	Another Antennaline adver-	an a musicingle for a	Miron both and a first	Arrandinda Ad And	an a Adamada		Roudle Dude a
Start 2.476 GHz 1001 pts Stop 2.576 fm Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47985 GHz 0.32 dBm Fm Fm </td <td>-60 dBm</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td>	-60 dBm			-		-	-	
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47985 GHz 0.32 dBm Function Function Result M2 1 2.4835 GHz -44.22 dBm Function Result Function Result M3 1 2.5 GHz -46.08 dBm Function Function Result M4 1 2.4921 GHz -43.34 dBm Function Result Function Result M4 1 2.4921 GHz -43.34 dBm Function Result Function Result Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Function Result Function Result Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Made Auto FFT SGL Count 8000/8000 FIPK Max 40 dB SWT 18.9 µS YBW 300 kHz Mode Auto FFT 20 dBm 40 dBm 40 dB Function Result Function Result Function Result -20 dBm -30 dBm -40 dB -40 dB -40 dB -40 dB -40 dB								
Type Ref Trc X-value Function Function Result M1 1 2.47985 GHz 0.32 dBm 1 1 1 1 1 2.4835 GHz -44.22 dBm 1 1 1 1 2.4921 GHz -44.08 dBm 1 1 2.4921 GHz -43.34 dBm 1 1 2.4921 GHz -43.34 dBm 1 1 2.4921 GHz -43.34 dBm 1			100	1 pts			Stop	2.576 GHz
M2 1 2.4835 GHz -44.22 dBm M3 1 2.5 GHz -46.08 dBm M4 1 2.4921 GHz -43.34 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB • RBW 100 kHz Att • 40 dB • SWT 18.9 µS • YBW 300 kHz Mode Auto FFT SGL Count 8000/8000 • IPk Max 20 dBm 0 dBm M1[1] 0.48 20 dBm10 dBm30 dBm30 dBm	Type Ref Trc				tion	Fun	ction Resul	t
M4 1 2.4921 GHz -43.34 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 8000/8000 III (1) 0.48 2.47997600 2.47997600 ID dBm MI MI 0.48 2.47997600 3.48 20 dBm MI MI 0.48 3.47997600 3.48 3.47997600 10 dBm MI MI 0.48 3.47997600 3.48 3.47997600 30 dBm MI MI MI 0.48 3.47997600 3.47997600								
Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dB Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT GL count 8000/8000 MI[1] 0.48 IPk Max 0 MI[1] 0.48 2.47997600 ID dBm MI[1] 0.48 2.47997600 0 -20 dBm								
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 Image: Second Sec	- W				1	100		a .
Mt Mt -10 dBm -20 dBm -30 dBm -30 dBm	Spectrum Ref Level 27.60 de Att 40 o SGL Count 8000/80	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH	z z Mode Al	uto FFT	ant1 Ho	pping F	
9,d8m -10 d8m -20 d8m -30 d8m	Spectrum Ref Level 27.60 dE Att 40 o SGL Count 8000/80 1Pk Max	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH	z z Mode Al	uto FFT	Ant1 Ho		0,48 dBm
-10 dBm -20 dBm -30 dBm	Spectrum Ref Level 27.60 dB Att 40 · SGL Count 8000/80 Pk Max 20 dBm-	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH	z z Mode Al	uto FFT	Ant1 Ho		0,48 dBm
-20 dBm	Spectrum Ref Level 27.60 dB Att 40 · SGL Count 8000/80 Pk Max 20 dBm-	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
-30 dBm	Spectrum Ref Level 27.60 dB Att 40 SGL Count 8000/80 IPk Max 20 dBm 10 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
-30 dBm	Spectrum Ref Level 27.60 dB Att 40 SGL Count 8000/80 IPk Max 20 dBm 10 dBm 0,dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
	Spectrum Ref Level 27.60 dB Att 40 SGL Count 8000/80 IPk Max 20 dBm 10 dBm -10 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
40 dbm	Spectrum Ref Level 27.60 dB Att 40 SGL Count 8000/80 IPk Max 20 dBm 10 dBm -10 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
	Spectrum Ref Level 27.60 dB Att 40 SGL Count 8000/80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
monorm	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/80 IPk Max 20 dBm -0 dBm 10 dBm -0 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
-50 dBm	Spectrum Ref Level 27.60 dB Att 40 SGL Count 8000/80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
-60 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 8000/80 IPk Max 20 dBm 10 dBm -0 dBm -20 dBm -30 dBm -40 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/80 IPk Max 20 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/80 IPk Max 20 dBm 10 dBm	m Offset 7.60 dB SWT 18,9	dB B RBW 100 kH µs VBW 300 kH	z Xode A	uto FFT	Ant1 Ho		0,48 dBm
	Spectrum Ref Level 27.60 db Att 40 i SGL Count 8000/80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	m Offset 7.60 dB SWT 18,9	dB • RBW 100 k+ µs • YBW 300 k+	z Mode Au	uto FFT	Ant1 Ho	2.47	0,48 dBm

SGL Count 1Pk Max	1000/1000								
20 dBm					M	1[1]		2 470	-3.17 dBm 905000 GHz
10 dBm					M	2[1]			-44.04 dBm 350000 GHz
						í	1	2.400	SOUDD GHZ
UNINGBM-						1.000		1	
	01 -19,516	dBm		(/)			1	1	
-30 dBm		usini				1	<u> </u>	1	1 <u> </u>
-40 dBm2	M4	403						1	1 - 5
-50 dBm-	in the second	maningmuchen	helpine marine	the show and a start	animalist Myras	experient believen	funderestantingentressed	and the second and the second	and the second second
-60 dBm								1	
-70 dBm				· · · · ·			J	1	·
Start 2.47	i GHz		1	1001	ots		1	Stop	2.576 GHz
Marker Type Ref	Trc	X-valu		Y-value	Fund	tion	Fund	tion Result	t]
M1 M2	1		905 GHz 335 GHz	-3.17 dBm -44.04 dBm					
M3 M4	1		2.5 GHz 389 GHz	-44.76 dBm -42.71 dBm					
L			a same transformer			1.			
Spectrum Ref Level Att SGL Count	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	-DH5 240 RBW 100 kHz yBW 300 kHz	13.7		o-Hoppi	ng Ref	
Spectrum Ref Level Att SGL Count IPk Max	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A		o-Hoppin		-0.06 dBm
Spectrum Ref Level Att SGL Count	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	o-Hoppin		
Spectrum Ref Level Att SGL Count IPk Max	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm-	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- 0 dBm-	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT	o-Hoppin		-0.06 dBm
Spectrum Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- D dBm-	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count I DPk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count I D dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count PIPk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count I D dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count I D dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Band 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode A	uto FFT			-0.06 dBm
Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Band 27,62 dBm 40 dB 300/300	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz	Mode Ar	uto FFT	o-Hoppin	2.40:	-0.06 dBm
Spectrum Ref Level Att SGL Count I OdBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	Band 27,62 dBm 40 dB 300/300	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode Ar	uto FFT	o-Hoppin	2,40:	-0,06 dBm L98400 GHz
Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Band 27,62 dBm 40 dB 300/300	Offset 7	.62 dB 🐞 🖡	RBW 100 kHz YBW 300 kHz	Mode Ar	uto FFT	o-Hoppin	2,40:	-0,06 dBm L98400 GHz

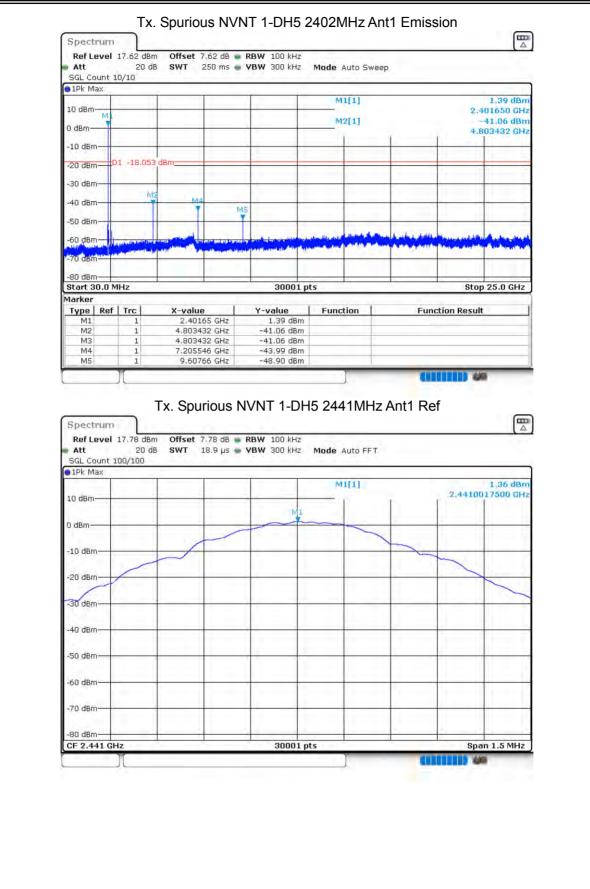
SGL Count	100/100	-							
20 dBm					M1	[1]		2.40	-0.02 dBm 195000 GHz
10 dBm					M2	[1]			-44.90 dBm
					1		(—	2.40	1000000 GHz M1
0 dBm								1	
-10 dBm									i Ta Vii
	D1 -20,063	dBm					1.		
-30 dBm			M4			1.000		1	
-40 dBm-	merchanthanker	www.	rowing towners	Man Marth Mul	anenthymhictory	una marchille	application and	und francis	hope the have
-50 dBm									
-60 dBm				1				1	1
-70 dBm	6 GHz		1	1001	pts			Stop	2.406 GHz
Marker Type Re	f Trol	X-valı		Y-value	Functi	an 1		ction Resu	
M1	1	2.40	195 GHz 2.4 GHz	-0.02 dBr	n		Full	COULT KESU	int
M2 M3	1	2	2.39 GHz	-44.90 dBr -46.12 dBr	n				
M4	1	2,3	404 GHz	-40.99 dBr	n				
Spectrun Ref Level Att SGL Count		Offset	7.62 dB 👜 F	VNT 3-D RBW 100 kHz YBW 300 kHz	10.20		Ant1 Ho	pping F	Ref
Spectrun Ref Level Att	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	10.20	to FFT	Ant1 Ho		
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT	Ant1 Ho		-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -10 dBm- -20 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	n 27.62 dBm 40 dB	Offset	7.62 dB 👜 F	RBW 100 kHz	Mode Aut	to FFT			-0.05 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 8000/8000	Offset	7.62 dB 👜 F			to FFT		2,40	-0.05 dBm 1398200 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -60 dBm-	27.62 dBm 40 dB 8000/8000	Offset	7.62 dB 👜 F	RBW 100 kHz		to FFT		2,40	-0.05 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 8000/8000	Offset	7.62 dB 👜 F			to FFT		2,40	-0.05 dBm 1398200 GHz
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 8000/8000	Offset	7.62 dB 👜 F			to FFT		2,40	-0.05 dBm 1398200 GHz

SGL Count	1000/1000			VBW 300 kHz				
20 dBm					M1[1]		2 4050	0.34 dBm
					M2[1]			95000 GHz 13.93 dBm
10 dBm						1	2.4000	00000 GHz
				1				Hall
-10 dBm								1
	D1 -20,053	dBm		1			1	
-30 dBm		-		M4			Ma	MO
-40 dBm	Hanny Water	newstatler lande	en hadred	when provident and	every many many	metalinitic policity		manuful
-60 dBm				1				
		· · · · · · · · · · · · · · · · · · ·					1	
-70 dBm- Start 2.30	5 GHz	T	1	1001 pt	s	1	Stop 2	.406 GHz
Marker Type Re		X-valu		Y-value	Function	Fund	tion Result	
M1 M2	1	3	595 GHz 2.4 GHz	0.34 dBm -43.93 dBm				
M3	1		.39 GHz 483 GHz	-43.54 dBm -39.76 dBm				
M4	1	2,04		and the second second second	~~~			
Spectrun Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz YBW 300 kHz	a	No-Hoppin	ng Ref	
M4 Spectrun Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz	a	No-Hoppin		1.05 dBm
Spectrun Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz	Mode Auto FFT	No-Hoppin		
M4 Spectrun Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz	Mode Auto FFT	No-Hoppin		1.05 dBm
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz	Mode Auto FFT	No-Hoppin		1.05 dBm
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- D dBm-	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT			1.05 dBm
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT			1.05 dBm
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- D dBm-	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT			1.05 dBm
M4 Spectrun Ref Level Att SGL Count DPk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT			1.05 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT	No-Hoppin		1.05 dBm
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	Band 27.60 dBm 40 dB 100/100	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT			1.05 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Band 27.60 dBm 40 dB	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT	No-Hoppin		1.05 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.60 dBm 40 dB 100/100	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT			1.05 dBm
M4 Spectrum Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Band 27.60 dBm 40 dB 100/100	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT			1.05 dBm
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Band 27.60 dBm 40 dB 100/100	Edge N Offset 7	IVNT 3	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto FFT		2.4799	1.05 dBm
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Band 27.60 dBm 40 dB 100/100	Edge N Offset 7	IVNT 3	B-DH5 2480	Mode Auto FFT		2.4799	1.05 dBm 96800 GH2
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Band 27.60 dBm 40 dB 100/100	Edge N Offset 7	IVNT 3	B-DH5 2480	Mode Auto FFT		2.4799	1.05 dBm 96800 GH2

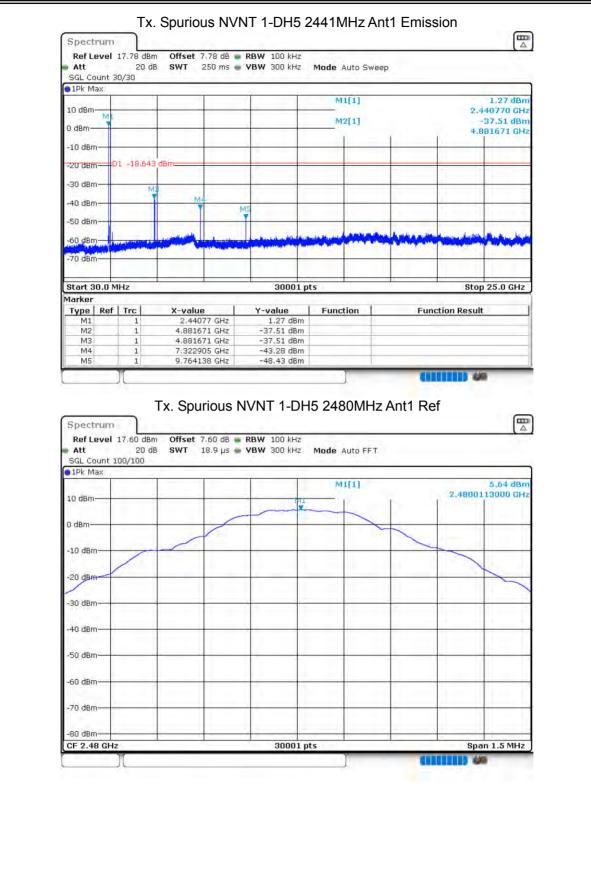
20 dbm	SGL Count 100 91Pk Max				7		and the second			
10 dBm 2.49350000 GHz 0 dBm 2.49350000 GHz 10 dBm 2.49350000 GHz 20 dBm 30 dBm -30 dBm -40 dBm -50 dBm -40 dBm -70 dBm -45.02 dBm M1 2.49015 GHz -45.02 dBm M2 1 2.49015 GHz -45.02 dBm M3 1 2.4913 GHz -45.02 dBm M4 1 2.4913 GHz -45.02 dBm M3 10.2.4913 GHz M1611 2.492 77.00 GHz SQL count 8000/9000 OHz M1611 2.4789 7700 GHz O dBm -00 dBm -00 dBm -00 dBm -00 dBm	20 dBm		_	_		M	1[1]		2.48	
a dam 10 dam 20 dam 40 dam 40 dam 40 dam 50 dam 40 dam	10 dBm			-		M	2[1]			
-100 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -30 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -30 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -50 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -60 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -60 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm -70 dsm -12.9.95 dsm -11.9.955 dsm -11.9.955 dsm -11.9.955 dsm Marker -12.4905 dsh -45.02 dsm -11.9.955 dsm -11.9.955 dsm Marker -12.4905 dsh -45.02 dsm -11.9.9.955 dsm -11.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	M1									
20 dBm 1 18.955 dBm 1	A			-			1		1	
-30 dbm -10 dbm		-18,953 dB	m							
-b dem										1-1-1
Band Stop Stop <th< td=""><td></td><td>M4</td><td>110</td><td>1</td><td></td><td>1</td><td>1.1.1.1.1</td><td>1</td><td>1</td><td>1 1</td></th<>		M4	110	1		1	1.1.1.1.1	1	1	1 1
-60 dBm -70 dBm Stop 2.576 GHz 38tert 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type Ref Trc X-value Y-value Function Result M1 1 2.4835 GHz 0.05 dBm Function Result M2 1 2.4835 GHz -46.40 dBm Function Result M3 1 2.4935 GHz -46.40 dBm Function Result M4 1 2.4913 GHz -43.04 dBm Function Result Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Match Auto FFT Sciount 8000/8000 O dBm 0 M1 1.00 dBm 2.47897700 GHz -47897700 GHz -47897700 GHz -47897700 GHz -40 dBm <	inter 4000000000000000000000000000000000000	martitelestade	WH Manon long	and an all the state of the sta	ut numan phoneters	washingthally	when product	humphradus	www.mon	alournalpernalle
Order Stop 2.576 GHz Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker 1 2.49015 GHz 0.05 dBm Function Result Function Result M1 1 2.4903 GHz -40.05 dBm Function Result Function Result M3 1 2.4933 GHz -45.02 dBm Function Result Function Result M4 1 2.4933 GHz -43.04 dBm Function Result Function Result M4 1 2.4933 GHz -43.04 dBm Function Result Function Result M4 1 2.4933 GHz -43.04 dBm Function Result Function Result M4 1 2.4933 GHz -43.04 dBm Function Result Function Result Spectrum Function Result Function Result Function Result Function Result Spectrum Function Result Function Result Function Result Function Result Stop 2.50 dBm Offset 7.60 dB RBW 100 kHz M1[1] 1.08 dBm 20 dBm Function Result Funct				-	-					
Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker 1 2.40115 GHz 0.05 dBm Function Function Result Functio					-			1.	1,	1
Type Ref Trc X-value Y-value Function Function Result M1 1 2.49015 GHz 0.05 dBm 1 2.4916 GHz 1.401 dBm 1 2.4913 GHz 1.401 dBm 1 2.4913 GHz 1.43.04 dBm 1 2.4913 GHz 1.43.04 dBm 1 2.4913 GHz 1.43.04 dBm 1 1.01 dBm 1 2.4913 GHz 1.43.04 dBm 1 2.4913 GHz 1.43.04 dBm 1 1.01 dBm 1 1.01 dBm 1 1.01 dBm 1 1.02 dBm 1 1.02 dBm 1 1.08 dBm 1 1.47997700 GHz 1 1.08 dBm 1 1.08 dBm 1 1 1.08 dBm 1 1.08 dBm 1 <t< td=""><td></td><td>Hz</td><td></td><td></td><td>1001</td><td>pts</td><td>I</td><td></td><td>Stop</td><td>2.576 GHz</td></t<>		Hz			1001	pts	I		Stop	2.576 GHz
M1 1 2.48015 GHz -46.40 dBm M2 1 2.4835 GHz -46.40 dBm M3 1 2.5 GHz -46.40 dBm M4 1 2.4913 GHz -45.02 dBm M4 1 2.4913 GHz -43.04 dBm Spectrum C C Ref Level 27.50 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Mode Auto FFT GL Court 8000/8000 Offset 7.60 dB RBW 100 kHz Made Auto FFT Set Court 8000/8000 O dBm Offset 7.60 dB RBW 100 kHz Made Auto FFT Set Court 8000/8000 O dBm Offset 7.60 dB RBW 100 kHz Made Auto FFT Set Court 8000/8000 O dBm O dBm O dBm O dBm O dBm O dBm -20 dBm O dBm -30 dBm O dBm	Contract and the second second second	Ire	¥-valuo		Y-value	L Euro	tion	Func	tion Pocul	
M3 1 2.5 GHz -45.02 dBm M4 1 2.4913 GHz -43.04 dBm Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Ref Spectrum C Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Made Auto FFT SGL Count 8000/8000 WT 18.9 µ5 YBW 300 kHz Made Auto FFT O dBm M1 L.08 dBm 10 dBm M1 L.08 dBm -10 dBm M1 L.08 dBm -20 dBm M1 L.08 dBm -20 dBm M1 L.08 dBm -10 dBm M1 L.08 dBm -20 dBm M1 L.08 dBm -20 dBm M1 L.08 dBm -10 dBm M1 L.08 dBm -20 dBm M1 L.08 dBm -20 dBm M1 L.08 dBm -20 dBm L.08 dBm L.08 dBm -30 dBm L.08 dBm L.08 dBm -30 dBm L.08 dBm L.08 dBm -30 dBm <thl.08 dbm<="" th=""> <thl.08 dbm<="" th=""> <thl.08< td=""><td>M1</td><td>1</td><td>2.4801</td><td>L5 GHz</td><td>0.05 dB</td><td>n</td><td></td><td>, and</td><td>cion Kesu</td><td></td></thl.08<></thl.08></thl.08>	M1	1	2.4801	L5 GHz	0.05 dB	n		, and	cion Kesu	
Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS WBW 300 kHz Mode Auto FFT Sol Count 8000/8000 10 dBm MI[1] 1.08 dBm 20 dBm MI[1] 2.47897700 GHz 10 dBm MI[1] 2.47897700 GHz 10 dBm MI[1] 2.47897700 GHz OdBm -00 dBm	M3	1	2.	.5 GHz	-45.02 dB	n				
Spectrum Image: Control of the sector of the s	MI4	1	2,491	L3 GHZ	-43.04 aB	n	7			
10 dBm M1 0 dBm M1 -10 dBm -10 dBm -20 dBm -10 dBm	Spectrum Ref Level 27.	60 dBm (Offset 7.t	60 dB 🐞 R	BW 100 kHz	13.7		Ant1 Hop	oping R	
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -0 dBm -	Spectrum Ref Level 27. Att SGL Count 800	60 dBm (40 dB \$	Offset 7.t	60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	oping R	
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -20 d	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max	60 dBm (40 dB \$	Offset 7.t	60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.08 dBm
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -30 dBm -50 dBm -30 dBm -60 dBm -30 dBm -70 dBm -30 dBm -70 dBm -30 dBm	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm-	60 dBm (40 dB \$	Offset 7.t	60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.08 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm- 10 dBm-	60 dBm (40 dB \$	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.08 dBm
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm	60 dBm (40 dB \$	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.08 dBm
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm 0 dBm	60 dBm (40 dB \$	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.08 dBm
-40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	60 dBm (40 dB \$	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.08 dBm
-50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm-	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.08 dBm
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm-	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop		1.08 dBm
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop		1.08 dBm
-70 dBm	Spectrum Ref Level 27. Att SGL Count 800 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop		1.08 dBm
CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm • 0 dBm • 10 dBm • 10 dBm • -20 dBm • -30 dBm • -50 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop		1.08 dBm
	Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm • 0 dBm • 10 dBm • 10 dBm • -20 dBm • -30 dBm • -50 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop		1.08 dBm
	Spectrum Ref Level 27. Att SGL Count 800 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop		1.08 dBm
	Spectrum Ref Level 27. Att SGL Count 800 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop	2.470	1.08 dBm 997700 GHz
	Spectrum Ref Level 27. Att SGL Count 800 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop	2.470	1.08 dBm 997700 GHz
	Spectrum Ref Level 27. Att SGL Count 800 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	60 dBm 0 40 dB 5	Offset 7.t	60 dB 👜 R 3,9 µs 🛶 V	BW 100 kHz	Mode A		Ant1 Hop	2.470	1.08 dBm 997700 GHz

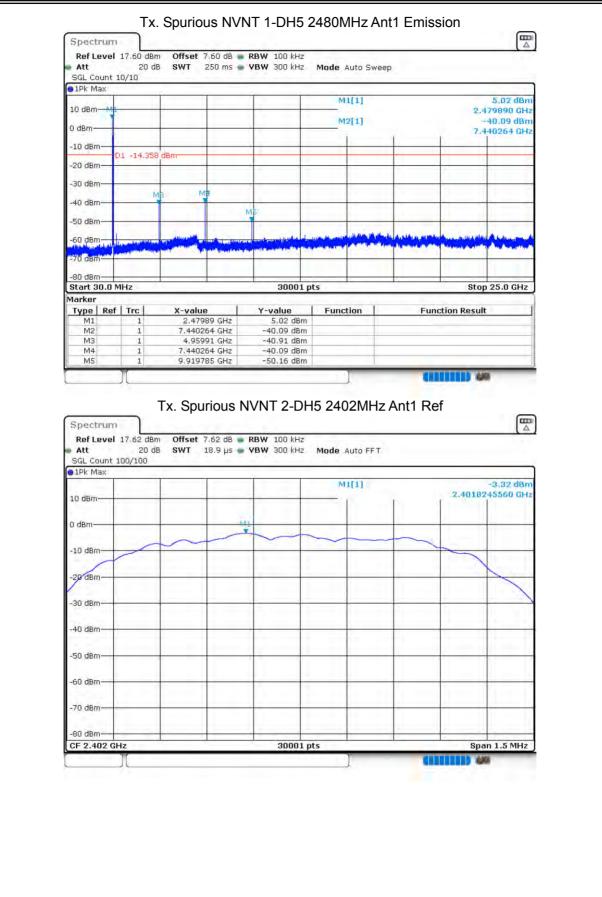

					1.1	Spectrum
		Mode Auto FFT		set 7.60 dB 🖷 /Τ 227.5 μs 🖷	40 dB	Ref Level : Att SGL Count :
					and some	1Pk Max
0.27 dBm		M1[1]				
2.47815000 GHz						20 dBm
-43.42 dBm		M2[1]	1			10.10
2.48350000 GHz	6					10 dBm-
the first state of the second state of the sec		100.00				A IN
- +	-	-				Clodes dem-
			-		1 -18.925	-
					1 -10,923	-20 dBm—-1
						-30 cBm-
					M4	
were my town under when any allow	a mini the in the	a caba la milianda	Martin tells 1. 1	3 minutes and my market		-40 dBm
wentering) . Ancoulous	Josepheren Jamener	and a drawn and a solar	Langer and hours	and an and a second sec	man and a factor	-50 dBm
						-50 060
						-60 dBm
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·			
	1					-70 dBm
Stop 2.576 GHz	-		1001 pts	_	GHz	Start 2.476
						larker
inction Result	Func	Function	Y-value	-value	Trc	and the second se
			0.27 dBm -43.42 dBm	2.47815 GHz 2.4835 GHz	1	M1 M2
			-43.27 dBm	2.4835 GHz 2.5 GHz	1	M3
			-42.22 dBm	2.4932 GHz	1	M4

8.7 CONDUCTED RF SPURIOUS EMISSION

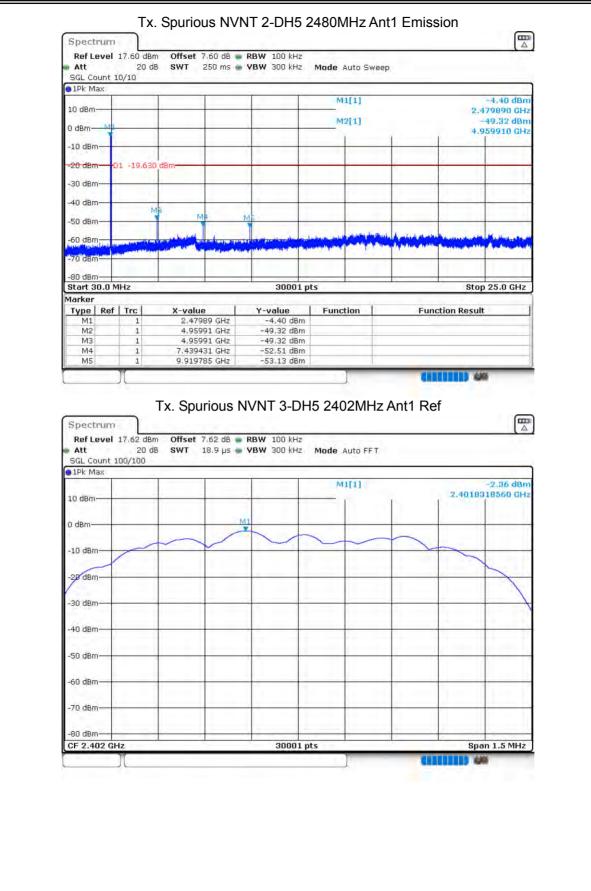

• ••						
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-43.01	-20	Pass
NVNT	1-DH5	2441	Ant 1	-38.86	-20	Pass
NVNT	1-DH5	2480	Ant 1	-45.73	-20	Pass
NVNT	2-DH5	2402	Ant 1	-46.55	-20	Pass
NVNT	2-DH5	2441	Ant 1	-49.94	-20	Pass
NVNT	2-DH5	2480	Ant 1	-49.68	-20	Pass
NVNT	3-DH5	2402	Ant 1	-48.51	-20	Pass
NVNT	3-DH5	2441	Ant 1	-51.76	-20	Pass
NVNT	3-DH5	2480	Ant 1	-45.58	-20	Pass

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

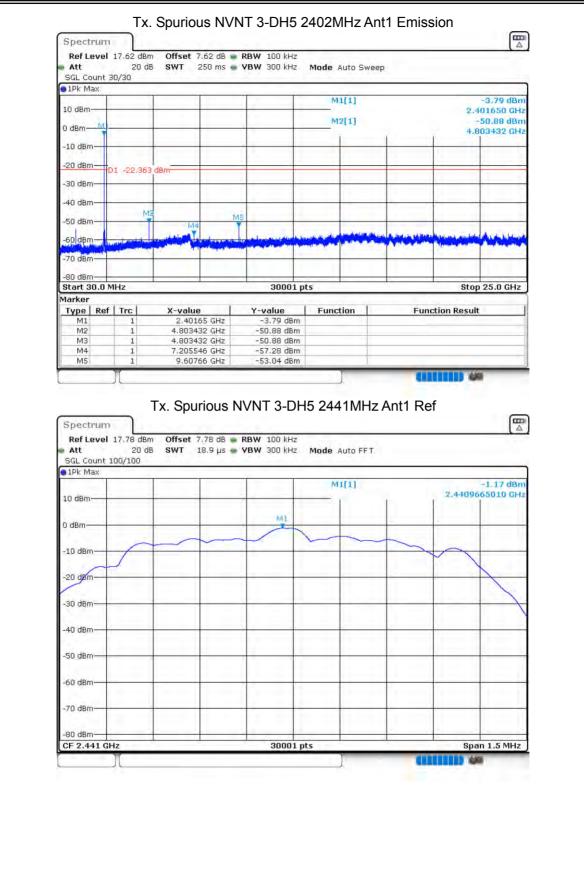




• 1Pk Max					M	1[1]			-5.05 dB
10 dBm					M	2[1]		2	-49.88 dB
0 dBm	1					1	1	Í.	.803432 GH
-20 dBm									
-30 dBm	01 -23.319	dBm							
-40 dBm				12					
-50 dBm	Mg	iv)-	I	15		-	-		
-60 dBm-	Louis mark lines in	and the state	-	the second law	ر الار رالالمحمد مر ال	and the siling	Alessa a she	-	day Auto and
-70 dBm	a meter of the still based (A not a furth				
-80 dBm	4Hz			30001	nts				op 25.0 GH:
Marker							20		
Type Ref	1		49 GHz	Y-value -5.05 dBr		uon	Fur	nction Res	uit
M2	1		32 GHz	-49.88 dBr -49.88 dBr	n				
M3	1								
M3 M4 M5	1 1 1	7.2055	66 GHz	-55.33 dBr -52.73 dBr					
M4 M5	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz		n H5 244 2 Mode	Auto FFT	Ant1 Re	ef	
M4 M5 Spectrum Ref Level Att SGL Count :	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dB NVNT 2-D RBW 100 kHz	n H5 244 2 Mode		Ant1 Re		-1,62 dB 9474520 G
M4 M5 Ref Level Att SGL Count : IPk Max 10 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dB NVNT 2-D RBW 100 kHz	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count :	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count : IPk Max 10 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count 1 SGL Count 1 O dBm 0 dBm -10 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count 1 SGL Count 1 O dBm -10 dBm -10 dBm -30 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count : 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count 1 SGL Count 1 O dBm -10 dBm -10 dBm -30 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1.62 dB
M4 M5 Ref Level Att SGL Count : 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1,62 dB
M4 M5 Spectrum Ref Level Att SGL Count : 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1,62 dB
M4 M5 Spectrum Ref Level Att SGL Count : 9 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	1 1 1 17.78 dBm 20 dB	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244 2 Mode	Auto FFT	Ant1 Re		-1,62 dB
M4 M5 Ref Level Att SGL Count : 9 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 17.78 dBm 20 dB 100/100	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBr	n H5 244	Auto FFT	Ant1 Re	2.440	-1,62 dB
M4 M5 Ref Level Att SGL Count 1: • 1Pk Max 10 dBm - 10 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	1 17.78 dBm 20 dB 100/100	7.2055 9.607 Tx. Spu Offset	146 GHz	-52.73 dBi	n H5 244	Auto FFT	Ant1 Re	2.440	-1.62 dB



• 1Pk Max		1	M1[1]		-4	63 dBr
10 dBm					2.4407	70 GH
0 dBm 4			M2[1]	1 1	9.7641	57 dBr 138 GH
-10 dBm-						
-20 dBm	.625 dBm					
-30 dBm						
-40 dBm	1	MS				
-50 dBm	MB M4	-	المراجعة والمراجع والمراجع والم	La Separa destan	as here a million	Sec. Bas
-60 dBm			annual and a short of the Marked and	nte de anter de colories	nin entra des	And I alight
		-				
Start 30.0 MHz Marker		30001	pts	-	Stop 25	.0 GHz
Type Ref Trc M1 1		Y-value	Function	Functi	on Result	
M1 1 M2 1 M3 1		z -51.57 dBm	1			
M3 1 M4 1 M5 1	7.322905 GH 9.764138 GH	z -59.58 dBn	1			_
I INIO I I	9,704130 GH	-31,37 UDI			AND AND	-
LI						
Spectrum Ref Level 17.60 Att 2 SGL Count 100/10 PIPk Max	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz s VBW 300 kHz		z Ant1 Ref		(<u>–</u>
Ref Level 17.60 Att 2 SGL Count 100/10 1Pk Max	dBm Offset 7.60 d 0 dB SWT 18.9 μ	8 🖷 RBW 100 kHz		z Ant1 Ref		37 dBr
L Ref Level 17.60 Att 2 SGL Count 100/10	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref	0, 2,47996885	37 dBr
Ref Level 17.60 Att 2 SGL Count 100/10 1Pk Max	dBm Offset 7.60 d 0 dB SWT 18.9 μ	8 🖷 RBW 100 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 1Pk Max 10 dBm-	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 IPk Max 10 dBm -10 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 1Pk Max 10 dBm- 0 dBm-	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 IPk Max 10 dBm -10 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17.60 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 • 1Pk Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dBr
Ref Level 17,60 Att 2 SGL Count 100/10 • 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz	Mode Auto FFT	z Ant1 Ref	2.47996885	37 dB 510 GH
Ref Level 17,60 Att 2 SGL Count 100/10 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz is VBW 300 kHz	Mode Auto FFT	z Ant1 Ref		37 dB 510 GH
Ref Level 17,60 Att 2 SGL Count 100/10 •1Pk Max 10 dBm •10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	dBm Offset 7.60 d 0 dB SWT 18.9 μ	B RBW 100 kHz	Mode Auto FFT	z Ant1 Ref	2.47996885	37 dB 510 GH



					M	1[1]			-0.08 dB
10 dBm ML					M	2[1]		2.	440770 GH -52,94 dB
0 dBm							(8	398.124 MH
	1 -21,174								
-30 dBm	1 -21,1/4	UBIN	-				1		
-40 dBm			-	6				1	
-50 dBm	m	M4	M						
-60 dBm	-	- Aller and A	and the second second				New And	A date of a desired	Artist
-70 dBm									
Start 30.0 M	IHz		_	30001	pts			Sto	p 25.0 GH:
Marker Type Ref	Trc	X-value		Y-value	Funct	tion	Fun	ction Resu	lt
M1 M2	1	2.4407 898.12	77 GHz 24 MHz	-0.08 dBm -52.94 dBm					
M3 M4	1	4.88167 7.32290	05 GHz	-56.28 dBm -56.46 dBm	d I				
M5	1	9,76413	38 GHz	-53.35 dBm	4	1	-		ans.
Spectrum Ref Level Att SGL Count 1	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	VNT 3-DH			Ant1 Re	ef	
Ref Level Att SGL Count 1 1Pk Max	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz	Mode 4		Ant1 Re		0.95 dB 713510 Gł
Ref Level Att SGL Count 1 PPK Max	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 PPK Max	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm- 0 dBm-	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 PPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	17.60 dBm 20 dB	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode 4	Auto FFT	Ant1 Re		0,95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17.60 dBm 20 dB 00/100	Offset 7	.60 dB 🍙 I	RBW 100 kHz YBW 300 kHz	Mode /	Auto FFT		2.4799	0.95 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	17.60 dBm 20 dB 00/100	Offset 7	.60 dB 🍙 I	RBW 100 kHz	Mode /	Auto FFT		2.4799	0,95 dB

	rum								
Ref L	evel	17.60 de		RBW 100 kHz	1.1.1.1.1				
Att		20	dB SWT 250 ms 🍙	VBW 300 kHz	Mode Au	to Sweep			
SGL Co		0/30		and a set of					
01Pk M	ЭX								
					M1[1]			-1.56 dBm
10 dBm		_							79890 GHz
0 dBm-	ML				M2[1]			-44.64 dBm
e sain					Ĩ.		(í 4.9	59078 GHz
-10 dBn		-							
	_	1 -19.04	to dhe				1		
-20 dBn	-	1 -19:04	+6 dBm	-			· · · · ·	-	
-30 dBn	-			1					
								i i	11
-40 dBn	-		MB	-			-		
-				ME				1.0	
-50 dBn	-			1		1.000	1		
-60 dBn	_		A Description of the second second	بر الألدانية المحدقات ا	Look (Market Ball	A date	the producer provider.	Hidden and party	and a men
And the second second	and the second second	and the state of the state	and have been and the second	the state of the state of the state of the state				A second s	
-70 dBn	-								
-80 dBn									
Start 3		Hz	1	30001 pt	c			Stor	25.0 GHz
Marker	0.0 14	112		30001 pt			-	500	20.0 0112
Type	Ref	Tec	X-value	Y-value	Functio	m 1	Fund	tion Result	. 1
M1	NGI	1	2,47989 GHz	-1.56 dBm	, anch		- Tuni	alon Kesul	
M2		1	4.959078 GHz	-44.64 dBm					
MЗ	1	1	4.959078 GHz	-44.64 dBm					
M4		1	7.439431 GHz	-55.25 dBm					
M5		1	9.919785 GHz	-52.92 dBm					

END OF REPORT