


For MIMO antenna port 1+antenna port 2

	Configuration Band IV (5725 - 5850 MHz)						
Mode	Test channel	Power Density (dBm)	Limit (dBm)	Result			
11n(HT20)	CH149	11.02	30	PASS			
11n(HT20)	CH157	11.90	30	PASS			
11n(HT20)	CH161	12.11	30	PASS			
11n(HT40)	CH151	10.78	30	PASS			
11n(HT40)	CH159	11.33	30	PASS			
11ac(HT20)	CH149	11.20	30	PASS			
11ac(HT20)	CH157	11.22	30	PASS			
11ac(HT20)	CH161	11.59	30	PASS			
11ac(HT40)	CH151	10.35	30	PASS			
11ac(HT40)	CH159	10.36	30	PASS			
11ac(HT80)	CH155	10.27	30	PASS			
11ax(HT20)	CH149	12.73	30 NY TESTING	PASS			
11ax(HT20)	CH157	12.71	30	PASS			
11ax(HT20)	CH161	13.56	30	PASS			
11ax(HT40)	CH151	12.35	30	PASS			
11ax(HT40)	CH159	13.38	30	PASS			
11ax(HT80)	CH155	11.35	30	PASS			
11ax(HT80)	Note: 1 According 2 Result uni	to KDB 662911, Resul	It power = 10log(10 ^{(ant1/10} +10 converted to units of dBm.	TIME			

Note: This product supports antenna 1 and antenna 2 launch, but only support 802.11 n/ac/ax for MIMO mode, not support 802.11 a for MIMO mode.

4.6. BAND EDGE

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407
Test Method:	ANSI C63.10 2013
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.
Test Setup:	Ant. feed point 1.4 m Ground Plane Receiver Amp.
Test Mode:	Transmitting mode with modulation
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

PASS

Test Result:

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.

Report No.: HK2207193140-3E

4.6.2. Test Instruments

	Ra	diated Emissior	n Test Site (966	5)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESRP3	HKE-005	Feb. 18, 2022	Feb. 17, 2023
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	Feb. 17, 2023
Preamplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	Feb. 17, 2023
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	Feb. 17, 2023
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 18, 2022	Feb. 17, 2023
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 18, 2022	Feb. 17, 2023
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 18, 2022	Feb. 17, 2023
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A MARTE
Hf antenna	Schwarzbeck	LB-180400-KF	HKE-031	Feb. 18, 2022	Feb. 17, 2023
RF cable	Tonscend	1-18G	HKE-099	Feb. 18, 2022	Feb. 17, 2023
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 18, 2022	Feb. 17, 2023
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	Feb. 17, 2023

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

All schemas have been tested, and the report reflects only the worst schema: ANT.2

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turns
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.11	-2.06	45.05	68.2	-23.15	peak
5700	68.74	-1.96	66.78	105.2	-38.42	peak
5720	90.29	-2.87	87.42	110.8	-23.38	peak
5725	98.24	-2.14	96.1	122.2	-26.1	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.48	-2.06	46.42	68.2	-21.78	peak
5700	69.27	-1.96	67.31	105.2	-37.89	peak
5720	90.95	-2.87	88.08	110.8	-22.72	peak
5725	98.87	-2.14	96.73	122.2	-25.47	peak

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.33	-1.97	97.36	122.2	-24.84	peak
5855	80.37	-2.13	78.24	110.8	-32.56	peak
5875	84.83	-2.65	82.18	105.2	-23.02	peak
5925	97.94	-2.28	95.66	68.2	27.46	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

260	76.0	260	700.		200	76.0
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	102.15	-1.97	100.18	122.2	-22.02	peak
5855	89.12	-2.13	86.99	110.8	-23.81	peak
5875	84.97	-2.65	82.32	105.2	-22.88	peak
5925	46.33	-2.28	44.05	68.2	-24.15	peak
0.20			100	-	9	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data start Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.98	-2.06	46.92	68.2	-21.28	peak
5700	70.11	-1.96	68.15	105.2	-37.05	peak
5720	89.42	-2.87	86.55	110.8	-24.25	peak
5725	99.35	-2.14	97.21	122.2	-24.99	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.1	-2.06	45.04	68.2	-23.16	peak
5700	69.93	-1.96	67.97	105.2	-37.23	peak
5720	90.75	-2.87	87.88	110.8	-22.92	peak
5725	99.42	-2.14	97.28	122.2	-24.92	peak
10000		DESTA	(0.000)			(0.00)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stak TESTIM
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.26	-1.97	97.29	122.2	-24.91	peak
5855	90.11	-2.13	87.98	110.8	-22.82	peak
5875	87.43	-2.65	84.78	105.2	-20.42	peak
5925	46.55	-2.28	44.27	68.2	-23.93	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.02	-1.97	97.05	122.2	-25.15	peak
5855	89.56	-2.13	87.43	110.8	-23.37	peak
5875	84.22	-2.65	81.57	105.2	-23.63	peak
5925	49.88	-2.28	47.6	68.2	-20.6	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.23	-2.06	45.17	68.2	-23.03	peak
5700	70.44	-1.96	68.48	105.2	-36.72	peak
5720	91.09	-2.87	88.22	110.8	-22.58	peak
5725	98.09	-2.14	95.95	122.2	-26.25	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.79	-2.06	45.73	68.2	-22.47	peak
5700	68.31	-1.96	66.35	105.2	-38.85	peak
5720	91.66	-2.87	88.79	110.8	-22.01	peak
5725	100.24	-2.14	98.1	122.2	-24.1	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.63	-1.97	95.66	122.2	-26.54	peak
5855	89.24	-2.13	87.11	110.8	-23.69	peak
5875	85.59	-2.65	82.94	105.2	-22.26	peak
5925	47.08	-2.28	44.8	68.2	-23.4	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAK
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.94	-1.97	96.97	122.2	-25.23	peak
5855	89.97	-2.13	87.84	110.8	-22.96	peak
5875	86.33	-2.65	83.68	105.2	-21.52	peak
5925	48.08	-2.28	45.8	68.2	-22.4	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.02	-2.06	44.96	68.2	-23.24	peak
5700	69.47	-1.96	67.51	105.2	-37.69	peak
5720	90.1	-2.87	87.23	110.8	-23.57	peak
5725	99.63	-2.14	97.49	122.2	-24.71	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	48.51	-2.06	46.45	68.2	-21.75	peak
5700	69.11	-1.96	67.15	105.2	-38.05	peak
5720	91.09	-2.87	88.22	110.8	-22.58	peak
5725	98.95	-2.14	96.81	122.2	-25.39	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.39	-1.97	96.42	122.2	-25.78	peak
5855	90.89	-2.13	88.76	110.8	-22.04	peak
5875	84.97	-2.65	82.32	105.2	-22.88	peak
5925	46.39	-2.28	44.11	68.2	-24.09	peak

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	HUAK
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
98.66	-1.97	96.69	122.2	-25.51	peak
90.03	-2.13	87.9	110.8	-22.9	peak
84.1	-2.65	81.45	105.2	-23.75	peak
46.35	-2.28	44.07	68.2	-24.13	peak
	(dBµV) 98.66 90.03 84.1	(dBμV) (dB) 98.66 -1.97 90.03 -2.13 84.1 -2.65	(dBμV) (dB) (dBμV/m) 98.66 -1.97 96.69 90.03 -2.13 87.9 84.1 -2.65 81.45	(dBμV) (dB) (dBμV/m) (dBμV/m) 98.66 -1.97 96.69 122.2 90.03 -2.13 87.9 110.8 84.1 -2.65 81.45 105.2	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 98.66 -1.97 96.69 122.2 -25.51 90.03 -2.13 87.9 110.8 -22.9 84.1 -2.65 81.45 105.2 -23.75

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	46.68	-2.06	44.62	68.2	-23.58	peak
5700	69.24	-1.96	67.28	105.2	-37.92	peak
5720	90.44	-2.87	87.57	110.8	-23.23	peak
5725	98.14	-2.14	96	122.2	-26.2	peak

Vertical:

100	45.0		V/A	164	45.6	C TO A
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	49.5	-2.06	47.44	68.2	-20.76	peak
5700	70.01	-1.96	68.05	105.2	-37.15	peak
5720	91.63	-2.87	88.76	110.8	-22.04	peak
5725	99.68	-2.14	97.54	122.2	-24.66	peak
AK TEN	"IPI"	40.	The state of the s		11/2/20	1100

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.97	-1.97	98	122.2	-24.2	peak
5855	90.83	-2.13	88.7	110.8	-22.1	peak
5875	86	-2.65	83.35	105.2	-21.85	peak
5925	45.21	-2.28	42.93	68.2	-25.27	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.93	-1.97	95.96	122.2	-26.24	peak
5855	89.86	-2.13	87.73	110.8	-23.07	peak
5875	84.44	-2.65	81.79	105.2	-23.41	peak
5925	46.66	-2.28	44.38	68.2	-23.82	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor Emission Level Limits	g Factor Emission Level Limits Margi	Factor	Factor Emission Level Limits Margin	Margin	Data at ST Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
[©] 5650	48.89	-2.06	46.83	68.2	-21.37	peak	
5700	69.82	-1.96	67.86	105.2	-37.34	peak	
5720	91.48	-2.87	88.61	110.8	-22.19	peak	
5725	99.25	-2.14	97.11	122.2	-25.09	peak	

Vertical:

JUM	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
47.38	-2.06	45.32	68.2	-22.88	peak
68.55	-1.96	66.59	105.2	-38.61	peak
90.37	-2.87	87.5	110.8	-23.3	peak
100.01	-2.14	97.87	122.2	-24.33	peak
	47.38 68.55 90.37	47.38 -2.06 68.55 -1.96 90.37 -2.87	47.38 -2.06 45.32 68.55 -1.96 66.59 90.37 -2.87 87.5	47.38 -2.06 45.32 68.2 68.55 -1.96 66.59 105.2 90.37 -2.87 87.5 110.8	47.38 -2.06 45.32 68.2 -22.88 68.55 -1.96 66.59 105.2 -38.61 90.37 -2.87 87.5 110.8 -23.3

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

S AL

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.84	-1.97	95.87	122.2	-26.33	peak
5855	91.34	-2.13	89.21	110.8	-21.59	peak
5875	83.86	-2.65	81.21	105.2	-23.99	peak
5925	47.62	-2.28	45.34	68.2	-22.86	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.76	-1.97	95.79	122.2	-26.41	peak
5855	91.21	-2.13	89.08	110.8	-21.72	peak
5875	85.41	-2.65	82.76	105.2	-22.44	peak
5925	45.86	-2.28	43.58	68.2	-24.62	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ax20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.41	-2.06	45.35	68.2	-22.85	peak
5700	70.53	-1.96	68.57	105.2	-36.63	peak
5720	90.26	-2.87	87.39	110.8	-23.41	peak
5725	97.86	-2.14	95.72	122.2	-26.48	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.94	-2.06	46.88	68.2	-21.32	peak
5700	68.63	-1.96	66.67	105.2	-38.53	peak
5720	91.84	-2.87	88.97	110.8	-21.83	peak
5725	97.8	-2.14	95.66	122.2	-26.54	peak

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
⁵ 5850	99.34	-1.97	97.37	122.2	-24.83	peak
5855	89.27	-2.13	87.14	110.8	-23.66	peak
5875	84.92	-2.65	82.27	105.2	-22.93	peak
5925	46.18	-2.28	43.9	68.2	-24.3	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		1.0		1.50	1.5
Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
100.3	-1.97	98.33	122.2	-23.87	peak
90.6	-2.13	88.47	110.8	-22.33	peak
85.68	-2.65	83.03	105.2	-22.17	peak
47.69	-2.28	45.41	68.2	-22.79	peak
	(dBµV) 100.3 90.6 85.68	(dBµV) (dB) 100.3 -1.97 90.6 -2.13 85.68 -2.65	(dBμV) (dB) (dBμV/m) 100.3 -1.97 98.33 90.6 -2.13 88.47 85.68 -2.65 83.03	(dBμV) (dB) (dBμV/m) (dBμV/m) 100.3 -1.97 98.33 122.2 90.6 -2.13 88.47 110.8 85.68 -2.65 83.03 105.2	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 100.3 -1.97 98.33 122.2 -23.87 90.6 -2.13 88.47 110.8 -22.33 85.68 -2.65 83.03 105.2 -22.17

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ax40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
⁵ 5650	48.75	-2.06	46.69	68.2	-21.51	peak
5700	68.92	-1.96	66.96	105.2	-38.24	peak
5720	89.85	-2.87	86.98	110.8	-23.82	peak
5725	99.11	-2.14	96.97	122.2	-25.23	peak

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz) (dBµV)	(dB)	(dB) (dBµV/m)	(dBµV/m)	(dB)	Detector Type
49.42	-2.06	47.36	68.2	-20.84	peak
70.89	-1.96	68.93	105.2	-36.27	peak
92.16	-2.87	89.29	110.8	-21.51	peak
99.41	-2.14	97.27	122.2	-24.93	peak
	(dBµV) 49.42 70.89 92.16	(dBµV) (dB) 49.42 -2.06 70.89 -1.96 92.16 -2.87	(dBμV) (dB) (dBμV/m) 49.42 -2.06 47.36 70.89 -1.96 68.93 92.16 -2.87 89.29	(dBμV) (dB) (dBμV/m) (dBμV/m) 49.42 -2.06 47.36 68.2 70.89 -1.96 68.93 105.2 92.16 -2.87 89.29 110.8	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 49.42 -2.06 47.36 68.2 -20.84 70.89 -1.96 68.93 105.2 -36.27 92.16 -2.87 89.29 110.8 -21.51

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.35	-1.97	97.38	122.2	-24.82	peak
5855	89.13	-2.13	87	110.8	-23.8	peak
5875	85.36	-2.65	82.71	105.2	-22.49	peak
5925	45.93	-2.28	43.65	68.2	-24.55	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

26/12	400	460	160		460	460
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.79	-1.97	96.82	122.2	-25.38	peak
5855	90.86	-2.13	88.73	110.8	-22.07	peak
5875	85.19	-2.65	82.54	105.2	-22.66	peak
5925	46.79	-2.28	44.51	68.2	-23.69	peak
	•					

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ax80 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.33	-2.06	46.27	68.2	-21.93	peak
5700	70.25	-1.96	68.29	105.2	-36.91	peak
5720	90.2	-2.87	87.33	110.8	-23.47	peak
5725	100.13	-2.14	97.99	122.2	-24.21	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.89	-2.06	46.83	68.2	-21.37	peak
5700	70.38	-1.96	68.42	105.2	-36.78	peak
5720	90.67	-2.87	87.8	110.8	-23	peak
5725	99.38	-2.14	97.24	122.2	-24.96	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atk TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.86	-1.97	97.89	122.2	-24.31	peak
5855	89.18	-2.13	87.05	110.8	-23.75	peak
5875	83.97	-2.65	81.32	105.2	-23.88	peak
5925	45.26	-2.28	42.98	68.2	-25.22	peak

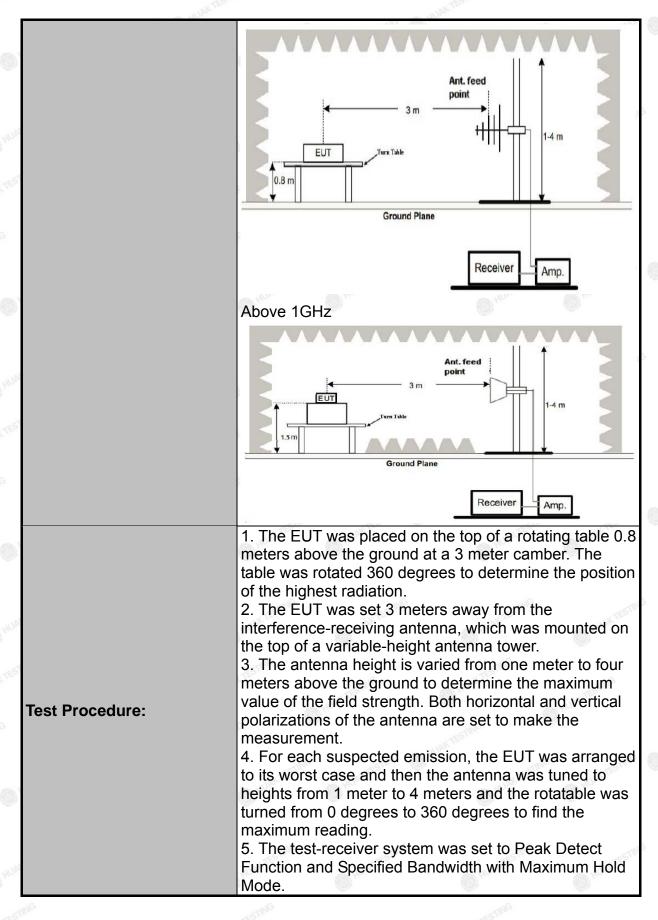
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

ZC'0"	-C'O'	76.0	260		260	-6°0
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.85	-1.97	96.88	122.2	-25.32	peak
5855	91.08	-2.13	88.95	110.8	-21.85	peak
5875	86.16	-2.65	83.51	105.2	-21.69	peak
5925	45.44	-2.28	43.16	68.2	-25.04	peak
	•	11007				

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

AFICATION.



4.7. SPURIOUS EMISSION

4.7.1.1. Test Specification

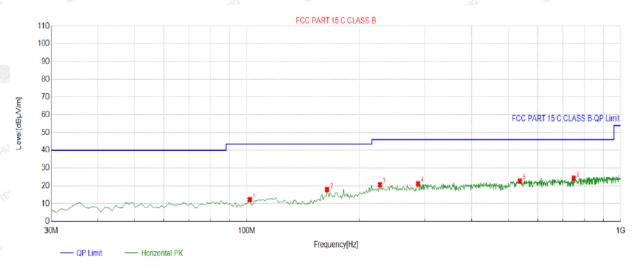
Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.209					
Test Method:	KDB 789033	D02 v02r0	11	HUAN	(a) HONE	
Frequency Range:	9kHz to 40Gl	Ηz		TESTING		
Measurement Distance:	3 m	AK TESTING	(1) H	br	LAKTESTING	
Antenna Polarization:	Horizontal &	Vertical		NG	0,	
Operation mode:	Transmitting	mode with	modulat	ion		
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value	
Limit:	an e.i.r.p. of -2 (2) For transmit emissions outs an e.i.r.p. of -2 (3) For transmit emissions outs an e.i.r.p. of -2 (4) For transmit (i) All emissions MHz or more a to 10 dBm/MHz from 25 MHz alto a level of 15 edge, and from linearly to a lev	ide of the 5. 7 dBm/MHz tters operation ide of the 5. 7 dBm/MHz tters operation ide of the 5. 7 dBm/MHz tters operation is shall be limbove or below at 25 MHz bove or below 5 MHz abov 10 dBm/MHz 11 dBm/MHz 12 dBm/MHz 13 dBm/MHz 14 dBm/MHz 15 dBm/MHz	15-5.35 G . ng in the 5 15-5.35 G . ng in the 5 47-5.725 G . ng in the 5 nited to a I bw the bar above or bw the bar at 5 MHz ve or below n/MHz at t w 1GHz at	Hz band : 5.25-5.35 Hz band : 5.47-5.725 GHz band : 5.725-5.85 evel of -2 nd edge in the band edge in the ba	Shall not exceed GHz band: All shall not exceed GHz band: All shall not exceed GHz band: All shall not exceed GHz band: At 55 acreasing linearly band edge, and acreasing linearly below the band d edge increasing	
Test setup:	For radiated of the state of th	3 m	A A A	RX Antenno	TOSTING TOSTING	

PASS

Test results:

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: HK2207193140-3E

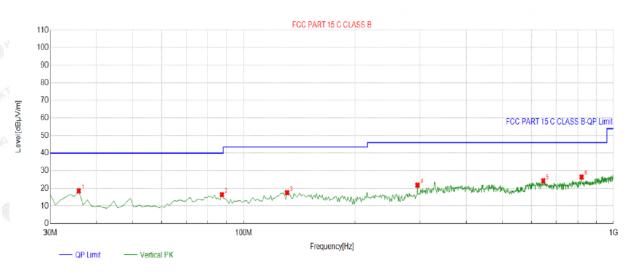

4.7.2. Test Data

Test mode: TX 802.11a 5745MHz

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Below 1GHz

Horizontal


QP Detector

Suspe	Suspected List										
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	101.8519	-14.91	27.12	12.21	43.50	31.29	100	94	Horizontal		
2	163.9940	-17.01	34.96	17.95	43.50	25.55	100	126	Horizontal		
3	227.1071	-13.73	34.39	20.66	46.00	25.34	100	54	Horizontal		
4	287.3073	-12.33	33.55	21.22	46.00	24.78	100	74	Horizontal		
5	537.8178	-6.37	29.12	22.75	46.00	23.25	100	60	Horizontal		
6	749.4895	-2.44	26.75	24.31	46.00	21.69	100	54	Horizontal		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

OP Detector

	Suspected List											
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolovity		
3	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
	1	35.8258	-15.65	34.23	18.58	40.00	21.42	100	335	Vertical		
	2	87.2873	-17.81	34.20	16.39	40.00	23.61	100	322	Vertical		
3	3	130.9810	-17.07	34.60	17.53	43.50	25.97	100	154	Vertical		
	4	295.0751	-11.96	33.77	21.81	46.00	24.19	100	348	Vertical		
	5	645.5956	-4.07	28.37	24.30	46.00	21.70	100	348	Vertical		
	6	819.3994	-1.25	27.65	26.40	46.00	19.60	100	15	Vertical		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Fred	quency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
(III)			
	NYTES		NYTESTI.
mig	STING MIN	THE STING	AND CAME
OKTES	MAKTE	AKTEST WAKTE	OKTEST - WAKTE

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Above 1GHz

RADIATED EMISSION TEST

LOW CH 149 (802.11 a Mode with 5.8G)/5745 All modes of operation were investigated and the worst-case of Ant 1 are reported.

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
3368	50.93	-4.59	46.34	68.2	-21.86	peak	
11096	48.38	4.21	52.59	74	-21.41	peak	
11096	35.89	4.21	40.1	54	-13.9	AVG	

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.34	-4.59	45.75	68.2	-22.45	peak
11096	46.49	4.21	50.7	74	-23.3	peak
11096	35.87	4.21	40.08	54	-13.92	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	49.49	-4.59	44.9	68.2	-23.3	peak
10523	47.16	4.21	51.37	68.2	-16.83	peak

Vertical:

E. PERSON		DECEMA.	PENCEL		DECEMA.	PENCH.
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.32	-4.59	47.73	68.2	-20.47	peak
10523	51.11	4.21	55.32	68.2	-12.88	peak
9/11		TEST			TEST	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	56.12	-4.59	51.53	74	-22.47	peak
2705	36.55	-4.59	31.96	54	-22.04	AVG
11717	48.72	4.84	53.56	74	-20.44	peak
11717	26.54	4.84	31.38	54	-22.62	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

-11/4	-11/2		Ma.	All a	-411/4	-1114
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.41	-4.59	49.82	74	-24.18	peak
2705	35.4	-4.59	30.81	54	-23.19	AVG
11717	46.9	4.84	51.74	74	-22.26	peak
11717	23.7	4.84	28.54	54	-25.46	AVG
UNITED AND	N HO	TO HUMA	ASS.		as MONE	NOW ALCOHOLOGY

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n20 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAK
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	51.02	-4.59	46.43	68.2	-21.77	peak
11096	46.32	4.21	50.53	74	-23.47	peak
11096	30.22	4.21	34.43	54	-19.57	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.14	-4.59	45.55	68.2	-22.65	peak
11096	45.12	4.21	49.33	74	-24.67	peak
11096	29.87	4.21	34.08	54	-19.92	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Toron
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.62	-4.59	48.03	68.2	-20.17	peak
10523	46.62	4.21	50.83	68.2	-17.37	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stan Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	49.88	-4.59	45.29	68.2	-22.91	peak
10523	46.62	4.21	50.83	68.2	-17.37	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.16	-4.59	49.57	74	-24.43	peak
2705	33.81	-4.59	29.22	54	-24.78	AVG
11717	47.87	4.84	52.71	74	-21.29	peak
11717	23.66	4.84	28.5	54	-25.5	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

~~~	-2711			A.W.		-711-
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	55.55	-4.59	50.96	74	-23.04	peak
2705	34.01	-4.59	29.42	54	-24.58	AVG
11717	48.23	4.84	53.07	74	-20.93	peak
11717	26.26	4.84	31.1	54	-22.9	AVG
110 kg	V blo.	- 40/20	ASSE ALON		- 110 km	All House

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

#### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

S) FIL

5.8G 802.11n40 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

**LOW CH 151** 

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	51.44	-4.59	46.85	68.2	-21.35	peak
11096	46.92	4.21	51.13	74	-22.87	peak
11096	32.11	4.21	36.32	54	-17.68	AVG

#### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	52.62	-4.59	48.03	68.2	-20.17	peak
11096	45.12	4.21	49.33	74	-24.67	peak
11096	32.98	4.21	37.19	54	-16.81	AVG
155	N. The	. <	EST		TES	W. The

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



#### MID CH159

#### Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Data star Time
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
51.15	-4.59	46.56	68.2	-21.64	peak
42.32	4.21	46.53	68.2	-21.67	peak
	(dBµV) 51.15	(dBµV) (dB) 51.15 -4.59	(dBμV) (dB) (dBμV/m) 51.15 -4.59 46.56	(dBμV)     (dB)     (dBμV/m)     (dBμV/m)       51.15     -4.59     46.56     68.2	(dBμV)     (dB)     (dBμV/m)     (dBμV/m)     (dBμV/m)       51.15     -4.59     46.56     68.2     -21.64

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Vertical:

11/1/20	10%	170	10.		1,7	10%
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.26	-4.59	47.67	68.2	-20.53	peak
10523	43.11	4.21	47.32	68.2	-20.88	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

# Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac20 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

**LOW CH 149** 

# Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	(D)
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	49.37	-4.59	44.78	68.2	-23.42	peak
11096	45.12	4.21	49.33	74	-24.67	peak
11096	30.22	4.21	34.43	54	-19.57	AVG

#### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	DA HUAKTES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	46.92	-4.59	42.33	68.2	-25.87	peak
11096	47.85	4.21	52.06	74	-21.94	peak
11096	32.15	4.21	36.36	54	-17.64	AVG
Pomark: Factor	= Antenna Factor -	L Cable Loss	Pro amplifier	ic Outer	-STING	TESTING

# MID CH157

# Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Toron
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	49.33	-4.59	44.74	68.2	-23.46	peak
10523	40.89	4.21	45.1	68.2	-23.1	peak

# Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	50.25	-4.59	45.66	68.2	-22.54	peak
10523	49.32	4.21	53.53	68.2	-14.67	peak
-C-		,C2	1		.c.	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



#### HIGH CH165

#### Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. S. HUAK TEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
2705	53.93	-4.59	49.34	74	-24.66	peak
2705	33.85	-4.59	29.26	54	-24.74	AVG
11717	46.16	4.84	51	74	-23	peak
11717	23.65	4.84	28.49	54	-25.51	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.82	-4.59	50.23	74	-23.77	peak
2705	36.2	-4.59	31.61	54	-22.39	AVG
11717	47.19	4.84	52.03	74	-21.97	peak
11717	26.07	4.84	30.91	54	-23.09	AVG
Who was	. No	- 11/10	All Mo		11/1/10	ASS. Pro

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.



# 5.8G 802.11ac40 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

#### **LOW CH 151**

#### Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.22	-4.59	45.63	68.2	-22.57	peak
11096	49.32	4.21	53.53	74	-20.47	peak
11096	34.22	4.21	38.43	54	-15.57	AVG

#### Vertical:

Ole	· 01/2	10/2	10%		10/2	10%
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	51.26	-4.59	46.67	68.2	-21.53	peak
11096	47.14	4.21	51.35	74	-22.65	peak
11096	30.27	4.21	34.48	54	-19.52	AVG
TEST	OKTE	v T	STEE		"TES!	AKTER

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5.8G 802.11ac80 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

CH 155

#### Horizontal:

-66	-602	.607			667	600
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	51.65	-4.59	47.06	68.2	-21.14	peak
11096	48.32	4.21	52.53	74	-21.47	peak
11096	30.59	4.21	34.8	54	-19.2	AVG
STING	TESTINA	0.0	STING TEST		STING	TESTING

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.31	-4.59	45.72	68.2	-22.48	peak
11096	47.67	4.21	51.88	74	-22.12	peak
11096	30.07	4.21	34.28	54	-19.72	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.



5.8G 802.11ax20 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

**LOW CH 149** 

# Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	<b>3</b>
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	49.77	-4.59	45.18	68.2	-23.02	peak
11096	46.76	4.21	50.97	74	-23.03	peak
11096	32.18	4.21	36.39	54	-17.61	AVG

#### Vertical:

-(1)	-711-	77	A Total Control of the Control of th	4114	~711	-711-
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	49.73	-4.59	45.14	68.2	-23.06	peak
11096	48.67	4.21	52.88	74	-21.12	peak
11096	32.02	4.21	36.23	54	-17.77	AVG
TNG	STING W		TING -CTI	'10 (1)	TNG	STING

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



# MID CH157

# Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Toron
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52	-4.59	47.41	68.2	-20.79	peak
10523	51.34	4.21	55.55	68.2	-12.65	peak

# Vertical:

Frequency M	leter Reading	Factor	Emission Level	Limits	Margin	All Ho.
			Elliosion Ecvel	LIIIII	iviargin	Dotoctor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	51.33	-4.59	46.74	68.2	-21.46	peak
10523	43.19	4.21	47.4	68.2	-20.8	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### HIGH CH165

#### Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data Mar Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.15	-4.59	48.56	74	-25.44	peak
2705	34.92	-4.59	30.33	54	-23.67	AVG
11717	45.99	4.84	50.83	74	-23.17	peak
11717	24.08	4.84	28.92	54	-25.08	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stor Tuno
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.06	-4.59	49.47	74	-24.53	peak
2705	35.1	-4.59	30.51	54	-23.49	AVG
11717	47.29	4.84	52.13	74	-21.87	peak
11717	25.44	4.84	30.28	54	-23.72	AVG
JUNK TE	FILAR	- UTAL	IN HOLDE		- UNANTE	ASSE PRODUCE

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ax40 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

**LOW CH 151** 

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	51.87	-4.59	47.28	68.2	-20.92	peak
11096	47.99	4.21	52.2	74	-21.8	peak
11096	32.03	4.21	36.24	54	-17.76	AVG

#### Vertical:

17.7%	1074	4 12.7%	4 15.7%		1777	102
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.5	-4.59	45.91	68.2	-22.29	peak
11096	49.27	4.21	53.48	74	-20.52	peak
11096	32.12	4.21	36.33	54	-17.67	AVG
- AKTESTIN-	WAY TEST		TESTING IN IAK TEST		NK TESTION	MAKTES

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### **MID CH159**

#### Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3172	50.33	-4.59	45.74	68.2	-22.46	peak
10523	40.22	4.21	44.43	68.2	-23.77	peak
UH SON	4	(0)3	TO HUNK!	(0.00)		B HUAK

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	50.33	-4.59	45.74	68.2	-22.46	peak
10523	41.28	4.21	45.49	68.2	-22.71	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

#### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

# MID CH159

#### Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Torre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	50.24	-4.59	45.65	68.2	-22.55	peak
10523	43.02	4.21	47.23	68.2	-20.97	peak
HUH MEN			ADAM			Dr. HUM

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

#### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	53.19	-4.59	48.6	68.2	-19.6	peak
10523	40.34	4.21	44.55	68.2	-23.65	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.





5.8G 802.11ax80 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

CH 155

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3368	51.45	-4.59	46.86	68.2	-21.34	peak
11096	46.89	4.21	51.1	74	-22.9	peak
11096	30.97	4.21	35.18	54	-18.82	AVG

omana radior - ranconna radior - dadio 2000 - rad ampi

#### Vertical:

	E HO	Alone	ALL HOLDS		HO	ASSE HOUSE
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.98	-4.59	46.39	68.2	-21.81	peak
11096	49.12	4.21	53.33	74	-20.67	peak
11096	31.31	4.21	35.52	54	-18.48	AVG
TEST	OKTE	TE	SIL		TES	N. TE

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

#### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

# 4.8. FREQUENCY STABILITY MEASUREMENT

# 4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)				
Test Method:	ANSI C63.10: 2013				
Limit:	The frequency tolerance shall be maintained within th band of operation frequency over a temperatur variation of 0 degrees to 35 degrees C at normal suppl voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at temperature of 20 degrees C.				
Test Setup:	Spectrum Analyzer EUT  AC/DC Power supply				
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.				
Test Result:	PASS				
Remark:	N/A MATERIAL MANATES IN MANATES I				



# **Test Result as follows:**

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
5.8G Band	4.5V	5745.012	12	5825.001	1
	5V	5745.048	48	5825.011	11 TEST
	5.5V	5745.016	16	5825.035	35

Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
-30	5745.050	50	5825.024	24
-20	5744.974	-26	5825.038	38
-10	5744.980	-20	5824.959	-41
O HUAKT	5744.971	-29	5825.009	9
10	5744.953	-47	5824.974	-26
20	5745.003	3	5825.025	25
30	5745.009	9	5824.978	922
40	5745.014	14	5825.047	47
50	5744.986	-14	5825.026	26
	(°C) -30 -20 -10 0 10 20 30 40	(°C) (5745MHz)  -30 5745.050  -20 5744.974  -10 5744.980  0 5744.971  10 5744.953  20 5745.003  30 5745.009  40 5745.014	(°C)         (5745MHz)         (KHz)           -30         5745.050         50           -20         5744.974         -26           -10         5744.980         -20           0         5744.971         -29           10         5744.953         -47           20         5745.003         3           30         5745.009         9           40         5745.014         14	(°C)         (5745MHz)         (KHz)         (5825MHz)           -30         5745.050         50         5825.024           -20         5744.974         -26         5825.038           -10         5744.980         -20         5824.959           0         5744.971         -29         5825.009           10         5744.953         -47         5824.974           20         5745.003         3         5825.025           30         5745.009         9         5824.978           40         5745.014         14         5825.047

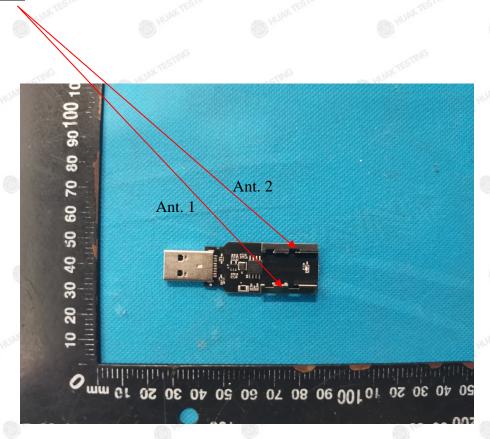
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



# 4.9. ANTENNA REQUIREMENT

#### Standard Applicable

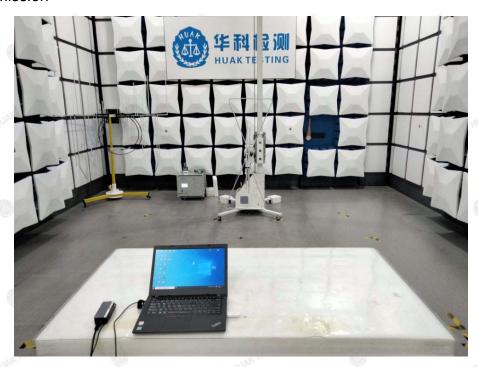
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

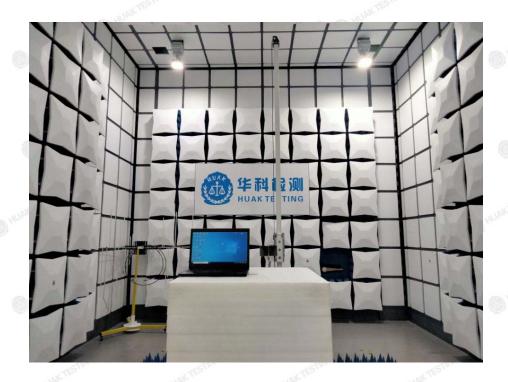

#### Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

#### **Antenna Connected Construction**

The antenna used in this product is a Internal Antenna, need professional installation. It conforms to the standard requirements. and the best case gain of the antenna is Antenna port 1: 3dBi and Antenna port 2:3dBi


# **ANTENNA**

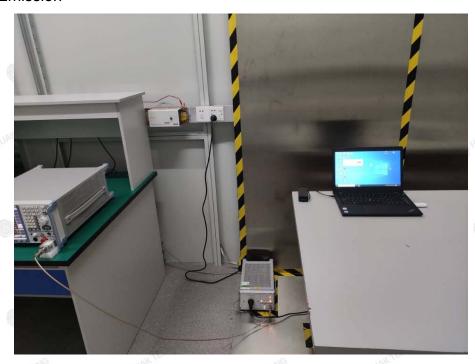





# 5. PHOTOGRAPHS OF TEST SETUP

# **Radiated Emission**






The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



# **Conducted Emission**





# 6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

End of test report--