

FCC/IC Test Report

FOR:

Wi-MM Corporation

Model: BP100-2-2-1

Product Description: Bike Computer with location, alarm and performance information

> FCC ID: 2ABUE-BP100-2-2-1 IC Certification Number: 11915A-BP100221

> > 47 CFR Part 2, 22, 24 RSS-GEN issue 3 RSS-132 Issue 3 RSS-133 Issue 6

TEST REPORT #: EMC_ WIMML_002_14001_BP-100_FCC_22_24_Rev1 DATE: 2014-07-09

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • <u>http://www.cetecom.com</u> *CETECOM* Inc. is a Delaware Corporation with Corporation number: 2905571

Table of Contents

1	Asse	ssment	3
2	Adm	inistrative Data	1
2	.1	Identification of the Testing Laboratory Issuing the Test Report	4
2	.2	Identification of the Client	4
2	.3	Identification of the Manufacturer	4
2	.4	Dates of Testing:	1
3	Equi	pment under Test (EUT)	5
3	.1	Specification of the Equipment under Test	5
3	.2	Identification of the Equipment under Test (EUT)	5
3	.3	Identification of Accessory equipment	5
4	Sum	mary of Measurement Results	7
5	Mea	surements)
5	.1	Measurement Uncertainty	9
	5.7	RF Power Output)
	5.7.1	References10)
	5.7.2	Limits:)
	5.7.3	Conducted Output Power Verification1	1
	5.7.4	RF Power Output12	2
5.8	Sp	ourious Emissions Radiated 20)
	5.8.1	References)
	5.8.2	<i>Limits:</i>)
	5.8.3	Radiated out of band measurement procedure:22	2
	5.8.4	Sample Calculations for Radiated Measurements23	3
	5.8.5	Spectrum Analyzer Settings23	3
	5.8.6	Test Results:	5
6.	Test	Equipment and Ancillaries used for tests 40)
6	Bloc	k Diagrams	1
7	Revi	sion History	1

The following equipment as further described in section 3 of this test report was evaluated against the applicable criteria specified in FCC CFR47 Parts 2, 22 and 24 & Industry Canada Radio Standard Specifications RSS-GEN Issue 3, RSS-132 Issue 3 and RSS-133 Issue 6.

No deviations were ascertained during the course of the tests performed.

Company	Description	Model #
Wi-MM Corporation	Bike computer with location, alarm and performance information	BP100-2-2-1

Report reviewed by:

		Josie Sabado	Signing on the behalf of Franz Engert
2014-07-09	Compliance	(Test Lab Manager)	(Compliance Manager)
Date Section		Name	Signature
Responsible for	the Report:		
	Compliance	Douglas Antioco	
2014-07-09	Compliance	(EMC Engineer)	
Date Section		Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3. CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Address:	CETECOM Inc.
	411 Dixon Landing Rd
	Milpitas, CA 95035
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Compliance Manager:	Franz Engert
Responsible Project Leader	Douglas Antioco

2.2 Identification of the Client

Applicant's Name:	Wi-MM Corporation
Street Address:	1885 De La Cruz Blvd
City/Zip Code	San Jose CA 95050
Country	United States
Contact Person:	Les Levitt
Phone No.	(408) 373-6624
Fax:	
e-mail:	llevitt@wi-mm.com

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Some as aliant
City/Zip Code	Same as chem.
Country	

2.4 Dates of Testing: 2014-03-25

Equipment under Test (EUT) 3

Specification of the Equipment under Test 3.1

Model Number:	BP100-2-2-1			
FCC-ID :	2ABUE-BP100-2-2-1			
IC Certification Number:	11915A-BP100221			
Product Description:	Bike computer with location, alarm and performance information.			
Technology / Type(s) of Modulation:	see the following spec of incorporated cellular module:			
Integrated Module Info:	U-blox LISA-C200 (FCC ID: XU9-LISAC200/ IC ID: 8694A-LISAC200) • 800/1900 Mhz CDMA 1xRTT modulation: QPSK and HPSK			
Operating Frequency Ranges (MHz) / Channels:	CDMA 2000/850: 824.70-848.31; 656 channels; CDMA 2000/1900: 1851.25- 1908.75; 906 channels;			
Antenna info:	hexa-band cellular SMD antenna TAOGLAS Model Number: PA.25 Anam documented max.antenna gain: 824 MHz: 1.5 dBi; 1850 MHz: 2.4 dBi			
Rated Operating Voltage Range:	Vmin: 3.3V/ Vnom: 3.7/ Vmax: 4.2V			
Rated Operating Temperature Range:	Tmin: 0°C/ Tmax: 50°C			
Test Sample Status:	Prototype			
Other radios included in the device:	 Bluetooth 4.0 Bluegiga BLE113 2.4 GHz band of operation GPS U-Blox MAX-7Q L1C/A (1575.42 MHz) (Reciever Only) 			

Identification of the Equipment under Test (EUT) 3.2

EUT #	Serial Number	Sample	HW/SW Version

CETECOM

1	232611140033	Conducted	BP100 2.2.1/1.0
2	232611140027	Radiated	BP100 2.2.1/1.0

3.3 Identification of Accessory equipment

AE #	Туре	Manufacturer	Model	Serial Number
1	N/A	-	-	-

4 **Summary of Measurement Results**

CDMA 850MHz Band:

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
\$2.1046 \$22.913 (a) RSS132 5.4	RF Output Power	Nominal	CDMA 850					Complies
\$2.1055 \$22.355 RSS132 5.3	Frequency Stability	Nominal	CDMA 850					Note 1
\$2.1049 \$22.917(b) RSS132 5.2	Occupied Bandwidth	Nominal	CDMA 850					Note 1
\$2.1051 \$22.917 RSS132 5.5	Band Edge Compliance	Nominal	CDMA 850					Note 1
\$2.1051 \$22.917 RSS132 5.5	Conducted Spurious Emissions	Nominal	CDMA 850					Note 1
\$2.1053 \$22.917 RSS132 5.5	Radiated Spurious Emissions	Nominal	CDMA 850					Complies

Note: NA= Not Applicable; NP= Not Performed.

Note 1: Leveraged from module certification. See Section 5.4

CDMA 1900MHz Band:

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
\$2.1046 \$24.232 (a) RSS133 6.4	RF Output Power	Nominal	CDMA 1900					Complies
\$2.1055 \$24.235 RSS133 6.3	Frequency Stability	Nominal	CDMA 1900					Note 1
§2.1049 §24.238(b) RSS133 6.2	Occupied Bandwidth	Nominal	CDMA 1900					Note 1
\$2.1051 \$24.238 RSS133 6.5	Band Edge Compliance	Nominal	CDMA 1900					Note 1
\$2.1051 \$24.238 RSS133 6.5	Conducted Spurious Emissions	Nominal	CDMA 1900					Note 1
\$2.1053 \$24.238 RSS133 6.5	Radiated Spurious Emissions	Nominal	CDMA 1900					Complies

Note: NA= Not Applicable; NP= Not Performed. Note 1: Leveraged from module certification.

5 **Measurements**

5.1 **Measurement Uncertainty**

	Uncertainty in dB radiated <30MHz	Uncertainty in in dB radiated 30MHz - 1GHz	Uncertainty in dB radiated > 1GHz	Uncertainty in dB Conducted measurement
standard deviation k=1	2.48	1.94	2.16	0.64
95% confidence interval in dB	4.86	3.79	4.24	1.25
95% confidence interval in dB in delta to Result	+-2.5 dB	+-2.0 dB	+- 2.3dB	+-0.7dB

5.2 **Nominal Environmental Test Conditions**

- Ambient Temperature: 20-25 °C
- Relative humidity: 40-60% -

5.3 **Default Test Temperature and Voltage**

- Test Temperature: 20°C (nominal);
- Test Voltage: 3.7 VDC(nominal);

Deviating test conditions are indicated at individual test description where applicable.

5.4 **Inheriting Test Results from Incorporated Module Certification:**

The EUT integrates a pre-certified module U-blox LISA-C200. with FCC ID: XU9-LISAC200; IC Certification Number: 8694A-LISAC200

Taking into account guidance from FCC KDB 996369 (modular approval) and where relevant test procedures did not change conducted test results are leveraged from the conducted test report for the LISA-C200 modem given by Nemko USA, Inc. dated April 11, 2012 with Report Number: 2012 04203246 FCC; FCC ID: XU9-LISAC200; IC Certification Number: 8694A-LISAC200.

This test report contains full radiated testing as per FCC 22H/24E and RSS-132/133 and conducted power verification required per KDB 996369.

5.5 **Other Testing Notes:**

- 1. The different cellular operation modes of the EUT as required for testing are controlled through the link with the Digital Radio Communication Tester (R&S CMU200).
- 2. The EUT is tested on the low, mid and high channel of each of the supported cellular operation modes.

5.6 **Measurement Method:**

Testing is performed according to the guidelines provided in FCC publication (KDB) 971168 D01 Power Meas License Digital Systems v02r01: Measurement Guidance for Certification of Licensed Digital Transmitters7, June 2013 and according to relevant parts of TIA-603C 2004 as detailed below.

RF Power Output 5.7

References 5.7.1

FCC: CFR Part 2.1046, CFR Part 22.913, CFR Part 24.232, CFR Part 27.50 IC: RSS-Gen Section 4.8; RSS-132 Section 5.4; RSS-133 Section 6.4, RSS-139 Section 6.4

5.7.2 Limits:

5.7.2.1 FCC 22.913 (a) Effective radiated power limits.

The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts.

5.7.2.2 FCC 24.232 (b)(c) Power limits.

(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band are limited to 1 watt EIRP.

(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(6) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

5.7.2.3 RSS-132, Issue 3, cl. 5.4

The transmitter output power shall be measured in terms of average power. The equivalent isotropically radiated power (e.i.r.p.) for mobile equipment shall not exceed 11.5 watts. In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

5.7.2.4 RSS-133, Issue 6, cl. 4.1 and 6.4

The transmitter power shall be measured in terms of average power.

The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed 2 watts maximum e.i.r.p. In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

5.7.3.1 Measurement Procedure

Ref: TIA-603C 2004 2.2.1

- 1. Connect the equipment as shown in the above diagram. A Digital Radio Communication Tester (DRT: R&S CMU200 here) is used to enable the EUT to transmit and to measure the output power.
- 2. Adjust the settings of the CMU200 to set the EUT to its maximum power at the required channel.
- 3. Record the Peak and Average Output power level measured by the CMU200.
- 4. Correct the measured level for all losses in the RF path.
- 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band and for all types of modulation schemes.
 - a. CDMA mode measurements performed in 1xRTT configuration.

5.7.4 <u>RF Power Output</u>

5.7.4.1 Radiated Output Power Measurement Procedure

Ref: TIA-603C 2004 -2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in center of the turn table.
- 2. Adjust the settings of the Digital Radio Communication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to the channel frequency and to required settings: peak detector, max hold trace, RBW>OBW, VBW>3xRBW, sweeptime auto couple, span > 2x RBW.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation: ERP (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation: EIRP (dBm) = ERP (dBm) + 2.14 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

Note: Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.

5.7.4.2 Spectrum Analyzer Settings:

	ERP	EIRP
Resolution Bandwidth	5 MHz	5 MHz
Video Bandwidth	5 MHz	5 MHz
Detector	Peak	Peak
Trace Mode	Max Hold	Max Hold
Sweep Time	Auto	Auto

5.7.4.3 Measurement Results

Frequency (MHz)	Measured Average Output Power from module's test report	Conducted Peak Output Power	Conducted Average Output Power	Manufacturer's Upper Tolerance Conducted Average Power	Peak ERP / EIRP Measured	PAR Calculated
CDMA 850						
824.70	24.28	30.25	23.81	26	25.25 / 27.4	6.44
836.52	24.63	28.27	23.70	26	26.28 / 28.43	4.57
848.31	24.97	28.03	23.55	26	26.02 / 28.17	4.48
CDMA 1900						
1851.25	25.24	26.72	23.30	26	29.31	3.42
1880	24.85	28.71	23.67	26	29.13	5.04
1909.75	24.92	26.84	23.54	26	28.29	3.3

Conducted measurements were made on antenna port.

5.7.4.4 Verification Result

All measured results remain within the manufacturing tolerance as taken from the module manufacturer's specification. All radiated values within ERP / EIRP limits.

5.7.4.5 **Plots:**

ERP (CDMA 1x-RTT 850) CHANNEL 1013

ERP (CDMA 1x-RTT 850) CHANNEL 384

MaxPeak-ClearWrite-PK+

MaxPeak-MaxHold-PK+

MaxPeak-ClearWrite-PK+ _____ MaxPeak-MaxHold-PK+

EIRP (CDMA 1x-RTT 1900) CHANNEL 25

MaxPeak-ClearWrite-PK+ MaxPeak-MaxHold-PK+

EIRP (CDMA 1x-RTT 1900) CHANNEL 600

MaxPeak-ClearWrite-PK+ MaxPeak-MaxHold-PK+

EIRP (CDMA 1x-RTT 1900) CHANNEL 1175

MaxPeak-ClearWrite-PK+ MaxPeak-MaxHold-PK+

5.8 Spurious Emissions Radiated

5.8.1 References

FCC: CFR Part 2.1053, CFR Part 22.917, CFR Part 24.238 IC: RSS-Gen Section 4.9; RSS 132 Section 5.5; RSS 133 Section 6.5

5.8.2 Limits:

(a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

For all power levels +30dBm to 0dBm, this becomes a constant specification of -13dBm.

5.8.2.1 FCC 22.917 Emission limitations for cellular equipment.

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

(b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.8.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

(b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.8.2.3 RSS-132 Section 5.5.1.1 and RSS-133 Section 6.5.1

In the first 1.0 MHz band immediately outside and adjacent to the licensee's frequency block, the power of emissions per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB. After the first 1.0 MHz, the power of emissions shall be attenuated below the transmitter output power by at least $43 + 10 \log_{10}(P)$, dB, in any 100 kHz bandwidth.

After the first 1.5 MHz, the power of emissions shall be attenuated below the transmitter output power by at least $43 + 10 \log_{10}(P)$, dB, in any MHz of bandwidth.

5.8.2.4 RSS-139 Section 6.5

In the first 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB.

After the first 1.0 MHz outside the equipment's operating frequency block, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB.

5.8.3 <u>Radiated out of band measurement procedure:</u>

Ref: TIA-603C 2004- 2.2.12 Unwanted emissions: Radiated Spurious

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. Adjust the settings of the Digital Radio Communication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 8. Repeat steps 4, 5 and 6 with all antennas vertically polarized.
- 9. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

(Note: Steps 5 and 6 above are performed prior to testing and LOSS is recorded by test software. Steps 3, 4 and 7 above are performed with test software.)

5.8.4 Sample Calculations for Radiated Measurements

5.8.4.1 Power Measurements using Substitution Procedure:

The measurement on the Spectrum Analyzer is used as a basis for the Substitution procedure. The EUT is replaced with a Signal Generator and an antenna. The setting on the Signal Generator is varied until the Spectrum Analyzer displays the original reading. EIRP is calculated as-

EIRP (dBm)= Signal Generator setting (dBm)- Cable Loss (dB)+ Antenna Gain (dBi)

Example:

Frequency (MHz)	Measured SA (dBµV)	Signal Generator setting (dBm)	Antenna Gain (dBi)	Dipole Gain (dBd)	Cable Loss (dB)	EIRP (dBm)
1000	95.5	24.5	6.5	0	3.5	27.5

5.8.5 Spectrum Analyzer Settings

Settings for FCC 22

	9 kHz – 30 MHz					
	9 – 150 kHz	150 – 490 kHz	490 kHz – 30 MHz			
Resolution Bandwidth	200 Hz	9 kHz	9 kHz			
Video Bandwidth	2 kHz	100 kHz	100 kHz			
Detector	Peak	Peak	Peak			
Trace Mode	Max Hold	Max Hold	Max Hold			
Sweep Time	Auto	Auto	Auto			

	30MHz – 1 GHz	1 – 1.58 GHz	1.58 – 9 GHz
Resolution Bandwidth	100 kHz	1 MHz	1 MHz
Video Bandwidth	100 kHz	1 MHz	1 MHz
Detector	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto

Settings for FCC 24

	30MHz – 1 GHz	1 – 2.7 GHz	2.7 – 18 GHz	18 – 19.1 GHz
Resolution Bandwidth	100 kHz	1 MHz	1 MHz	1 MHz
Video Bandwidth	100 kHz	1 MHz	1 MHz	1 MHz
Detector	Peak	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto	Auto

5.8.6 <u>Test Results:</u>

Harmonic	Tx ch- 1013 Freq. (MHz)	Level (dBm)	Tx ch-384 Freq. (MHz)	Level (dBm)	Tx ch-777 Freq. (MHz)	Level (dBm)	Limit FCC and IC (dBm)
2	1649.4	-48	1673.04	-48	1696.62	-46.08	
3	2474.1	-48.74	2509.56	-45.64	2544.93	-48.65	
4	3298.8	NF	3346.08	NF	3393.24	NF	
5	4123.5	NF	4182.6	NF	4241.55	NF	
6	4948.2	NF	5019.12	NF	5089.86	NF	-13
7	5772.9	NF	5855.64	NF	5938.17	NF	
8	6597.6	NF	6692.16	NF	6786.48	NF	
9	7422.3	NF	7528.68	NF	7634.79	NF	
10	8247	NF	8365.2	NF	8483.1	NF	
		M	NF = No	ise Floor ncertainty: ±3	dB		

5.8.6.1 Test Results Transmitter Spurious Emission CDMA 850:

Harmonic	Tx ch-25 Freq.(MHz)	Level (dBm)	Tx ch-600 Freq. (MHz)	Level (dBm)	Tx ch-1175 Freq. (MHz)	Level (dBm)	Limit FCC and IC (dBm)
2	3702.5	-42.66	3760	-45.61	3817.5	-40.10	
3	5553.75	NF	5640	NF	5726.25	NF	
4	7405	NF	7520	NF	7635	NF	
5	9256.25	NF	9400	NF	9543.75	NF	
6	11107.5	NF	11280	NF	11452.5	NF	-13
7	12958.75	NF	13160	NF	13361.25	NF	
8	14810	NF	15040	NF	15270	NF	
9	16661.25	NF	16920	NF	17178.75	NF	
10	18512.5	NF	18800	NF	19087.5	NF	
	NF = Noise Floor Measurement Uncertainty: ±3dB						

5.8.6.2 Test Results Transmitter Spurious Emission CDMA-1900:

5.8.6.3 Plots:

Radiated Spurious Emissions (CDMA-850) Tx: Low Channel **Test results 30MHz-1GHz**

Preview Result 1-PK+ * Data Reduction Result 1 [1]-PK+ -13dBm

Test results 1GHz-9GHz

Radiated Spurious Emissions (CDMA-850) Tx: Mid Channel

Test results 30MHz-1GHz

Test results 1GHz-9GHz

Radiated Spurious Emissions (CDMA-850) Tx: High Channel

Test results 30MHz-1GHz

Test results 1GHz-9GHz

-13dBm

Preview Result 1-PK+

Radiated Spurious Emissions (CDMA-1900) Tx: Low Channel **Test results 30MHz-1GHz**

Preview Result 1-PK+ -13dBm

Test results 1GHz-18GHz

Radiated Spurious Emissions (CDMA-1900) Tx: Mid Channel **Test results 30MHz-1GHz**

Preview Result 1-PK+ -13dBm

Test results 1GHz-18GHz

Preview Result 1-PK+ -13dBm

Test results 18GHz-19.1GHz

Radiated Spurious Emissions (CDMA-1900) Tx: High Channel **Test results 30MHz-1GHz**

Preview Result 1-PK+ -13dBm

Test results 1GHz-18GHz

Preview Result 1-PK+ * Data Reduction Result 1 [2]-PK+ -13dBm

	$I \perp$			
9	-1	120	0	М
	and the second	and the little	Caluer, .	
	-	1000		

6. Test Equipment and Ancillaries used for tests

No.	Equipment Name	Manufacturer	Type/model	Serial No.	Cal Date	Cal Interval		
3m Semi- Anechoic Chamber:								
	Digital Radio Comm. Tester	Rohde&Schwarz	CMU 200	101821	Jun 2013	2 Years		
	EMC32 Measurement Software	Rohde&Schwarz	8.52.0	N/A	N/A	N/A		
	Turn table	EMCO	2075	N/A	N/A	N/A		
	MAPS Position Controller	ETS Lindgren	2092	0004-1510	N/A	N/A		
	Antenna Mast	EMCO	2075	N/A	N/A	N/A		
	Relay Switch Unit	Rohde&Schwarz	RSU	338964/001	N/A	N/A		
	EMI Receiver/Analyzer	Rohde&Schwarz	ESU 40	100251	Sep 2013	1 Year		
	1500MHz HP Filter	Filtek	HP12/1700	14c48	N/A	N/A		
	2800 MHz HP Filter	Filtek	HP12/2800	14C47	N/A	N/A		
	Pre-Amplifier	Miteq	JS40010260	340125	N/A	N/A		
	Binconilog Antenna	EMCO	3141	0005-1186	Apr 2012	3 Years		
	Horn Antenna	EMCO	3115	35114	Mar 2012	3 Years		
	Horn Antenna	ETS Lindgren	3116	70497	Mar 2012	3 Years		
	Spectrum Analyzer	Rohde&Schwarz	FSU	100189	Jun 2013	2 Years		
	Loop Antenna 6512	ETS Lindgren	6512	49838	Mar 2014	3 Years		
Ancillary equipment								
	Humidity Temperature Logger	Dickson	TM320	03280063	Apr 2013	1 Year		
	Communication Antenna	IBP5-900/1940	Kathrein	N/A	N/A	N/A		

6 <u>Block Diagrams</u>

Revision History 7

Date	Report Name	Changes to report	Report prepared by
2014-06-24	EMC_WIMML_002_14001_BP-100_FCC_22_24	First Version	Dantioco
2014-07-09	EMC_WIMML_002_14001_BP100_FCC_22_24_Rev1	Operational description changed, replaces previous test report number	Dantioco