

	TEST REPOR	Т				
FCC ID::	2A2IL-G18					
Test Report No::	TCT210701E025					
Date of issue::	Jul. 21, 2021					
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB				
Testing location/ address:	TCT Testing Industrial Park Fuq Street, Bao'an District Shenzher Republic of China	iao 5th Industrial Zone, Fuhai n, Guangdong, 518103, People's				
Applicant's name:	Shenzhen Koseli Technology Co	o., Ltd.				
Address:	4F, Block 1, Tumao Industrial Park, Hebei Industrial Zone, South Rd Dalang, Longhua, Shenzhen, China					
Manufacturer's name:	Shenzhen Koseli Technology Co	o., Ltd.				
Address:	4F, Block 1, Tumao Industrial Park, Hebei Industrial Zone, South Rd Dalang, Longhua, Shenzhen, China					
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013					
Test item description:	Gaming bluetooth headset					
Trade Mark::	N/A					
Model/Type reference:	G18					
Rating(s)::	Rechargeable Li-ion Battery DC	3.7V				
Date of receipt of test item:	Jul. 01, 2021					
Date (s) of performance of test:	See dates for each test case					
Tested by (+signature):	Aaron Mo	Laron Mo				
Check by (+signature):	Beryl Zhao	Benyl there				
Approved by (+signature):	Tomsin	Tomsin				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1.		
	1.1. EUT description	3
	1.2. Model(s) list	3
	1.3. Operation Frequency	4
2.	Test Result Summary	5
3.	General Information	
	3.1. Test environment and mode	6
	3.1. Test environment and mode	6
4.	Facilities and Accreditations	7
	4.1. Facilities	7
	4.2. Location	7
	4.3. Measurement Uncertainty	7
5.	Test Results and Measurement Data	8
	5.1. Antenna requirement	8
	5.2. Conducted Emission	9
	5.3. Conducted Output Power	13
	5.4. 20dB Occupy Bandwidth	14
	5.5. Carrier Frequencies Separation	15
	5.6. Hopping Channel Number	17
	5.7. Dwell Time	
	5.8. Pseudorandom Frequency Hopping Sequence	19
	5.9. Conducted Band Edge Measurement	20
	5.10.Conducted Spurious Emission Measurement	
	5.11.Radiated Spurious Emission Measurement	22
Α	ppendix A: Test Result of Conducted Test	
Α	ppendix B: Photographs of Test Setup	
	ppendix C: Photographs of EUT	

1. General Product Information

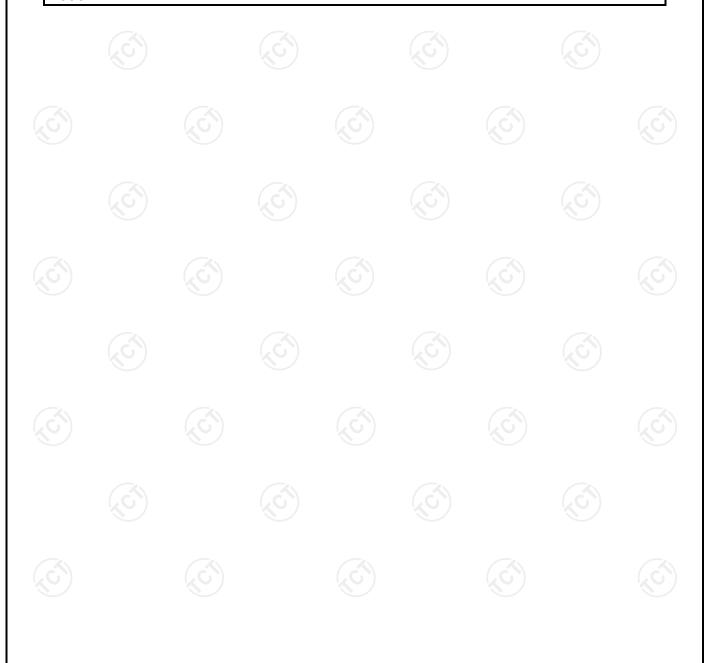
1.1. EUT description

Test item description:	Gaming bluetooth headset	(61)		
Model/Type reference:	G18			
Sample Number:	TCT210701E025-0101			
Bluetooth Version:	V5.1		(0)	
Operation Frequency:	2402MHz~2480MHz			
Transfer Rate:	1/2 Mbits/s	(C)		
Number of Channel:	79			
Modulation Type:	GFSK, π/4-DQPSK		(G)	
Modulation Technology:	FHSS			
Antenna Type:	Ceramic Antenna			
Antenna Gain:	1.6dBi	(0)		
Rating(s):	Rechargeable Li-ion Battery DC 3.	7V		
Remark:	1 (c) (c)			

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.



1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	_ 20	2422MHz	40	2442MHz	60	2462MHz
<u>(C)</u> 1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
···		·				·	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
					O		
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	- 59	2461MHz		-

Remark: Channel 0, 39 & 78 have been tested for GFSK, π/4-DQPSK modulation mode.

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

TESTING CENTRE TECHNOLOGY Report No.: TCT210701E025

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	25.0 °C	25.0 °C					
Humidity:	55 % RH	55 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Software:							
Software Information:	FCC Assist 1.0.1.2						
Power Level:	10						
Test Mode:							
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery						

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name	
Adapter	JD-050200	2012010907576735	1	JD	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an

District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT210701E025

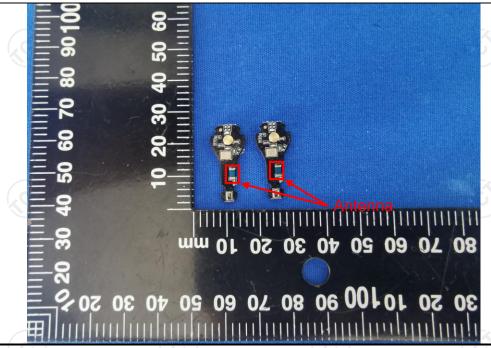
5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is ceramic antenna which permanently attached, and the best case gain of the antenna is 1.6dBi.

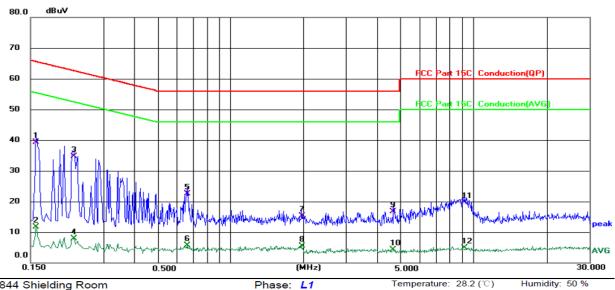
5.2. Conducted Emission


5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Frequency Range:	150 kHz to 30 MHz	(0)	(C ¹)						
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto						
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56	(dBuV)						
Test Setup:	Reference Plane 40cm 80cm Filter AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m								
Test Mode:	Charging								
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 								
Test Result:	PASS								

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Test Receiver	R&S	ESCI3	100898	Jul. 27, 2021					
LISN-2	LISN-2 Schwarzbeck		8126453	Sep. 11, 2021					
Line-5	TCT	CE-05	N/A	Sep. 02, 2021					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					



5.2.3. Test data

Report No.: TCT210701E025

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room
Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1580	29.66	9.61	39.27	65.57	-26.30	QP	
2		0.1580	2.07	9.61	11.68	55.57	-43.89	AVG	
3		0.2260	25.27	9.38	34.65	62.60	-27.95	QP	
4		0.2260	-1.52	9.38	7.86	52.60	-44.74	AVG	
5		0.6620	13.22	9.24	22.46	56.00	-33.54	QP	
6		0.6620	-3.49	9.24	5.75	46.00	-40.25	AVG	
7		1.9619	5.88	9.51	15.39	56.00	-40.61	QP	
8		1.9619	-4.04	9.51	5.47	46.00	-40.53	AVG	
9		4.6820	7.05	9.63	16.68	56.00	-39.32	QP	
10		4.6820	-5.25	9.63	4.38	46.00	-41.62	AVG	
11		9.2299	10.11	9.65	19.76	60.00	-40.24	QP	
12		9.2299	-4.68	9.65	4.97	50.00	-45.03	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

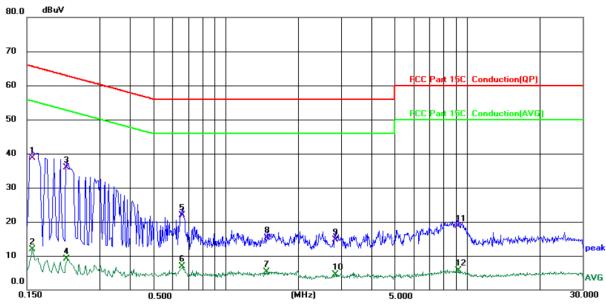
Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak


AVG =average

 $^{^{\}star}$ is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 28.2 (°C)

Humidity: 50 %

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1580	29.06	9.60	38.66	65.57	-26.91	QP	
2		0.1580	2.23	9.60	11.83	55.57	-43.74	AVG	
3		0.2179	26.63	9.33	35.96	62.90	-26.94	QP	
4		0.2179	-0.22	9.33	9.11	52.90	-43.79	AVG	
5		0.6580	12.56	9.27	21.83	56.00	-34.17	QP	
6		0.6580	-2.43	9.27	6.84	46.00	-39.16	AVG	
7		1.4738	-4.07	9.42	5.35	46.00	-40.65	AVG	
8		1.4939	5.92	9.42	15.34	56.00	-40.66	QP	
9		2.8460	5.21	9.48	14.69	56.00	-41.31	QP	
10		2.8460	-5.06	9.48	4.42	46.00	-41.58	AVG	
11		9.1700	9.07	9.66	18.73	60.00	-41.27	QP	
12		9.1700	-4.01	9.66	5.65	50.00	-44.35	AVG	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

 $Measurement (dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.			
Test Result:	PASS			

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

5.4. 20dB Occupy Bandwidth

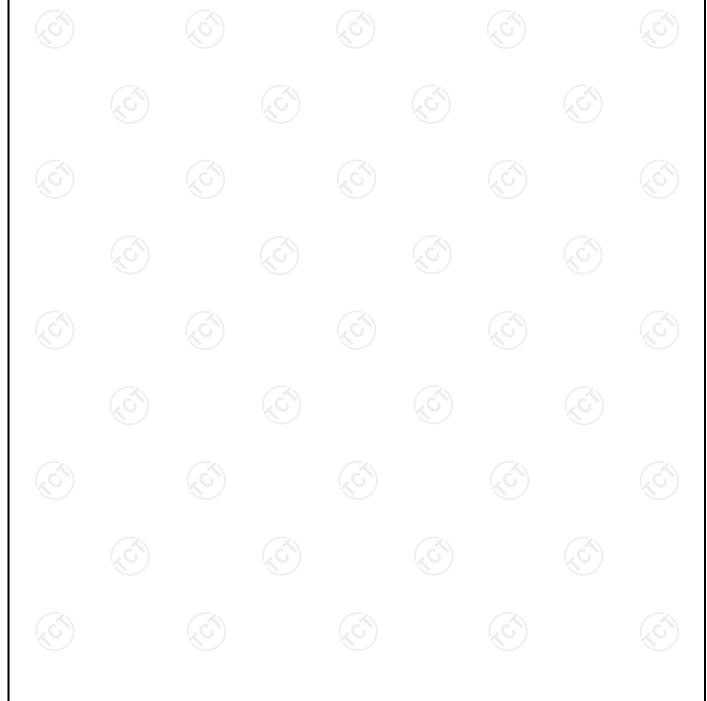
5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer		EUT	
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Transmitting mode with modulation The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = maxhold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

5.5. Carrier Frequencies Separation


5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 		
Test Result:	PASS		

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

5.6. Hopping Channel Number

5.6.1. Test Specification

J.o. 1. Test Specification			
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 		
Test Result:	PASS		
1 7			

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

5.7. Dwell Time

5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 		
Test Result:	PASS		

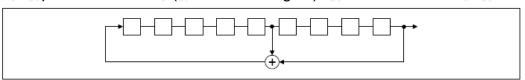
5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

5.8. Pseudorandom Frequency Hopping Sequence

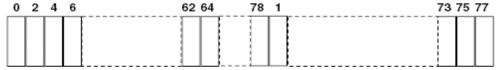
Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Page 19 of 78

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fain the restricted bands must also comply with the radiated emission limits.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 			
Test Result:	PASS			

5.9.2. Test Instruments

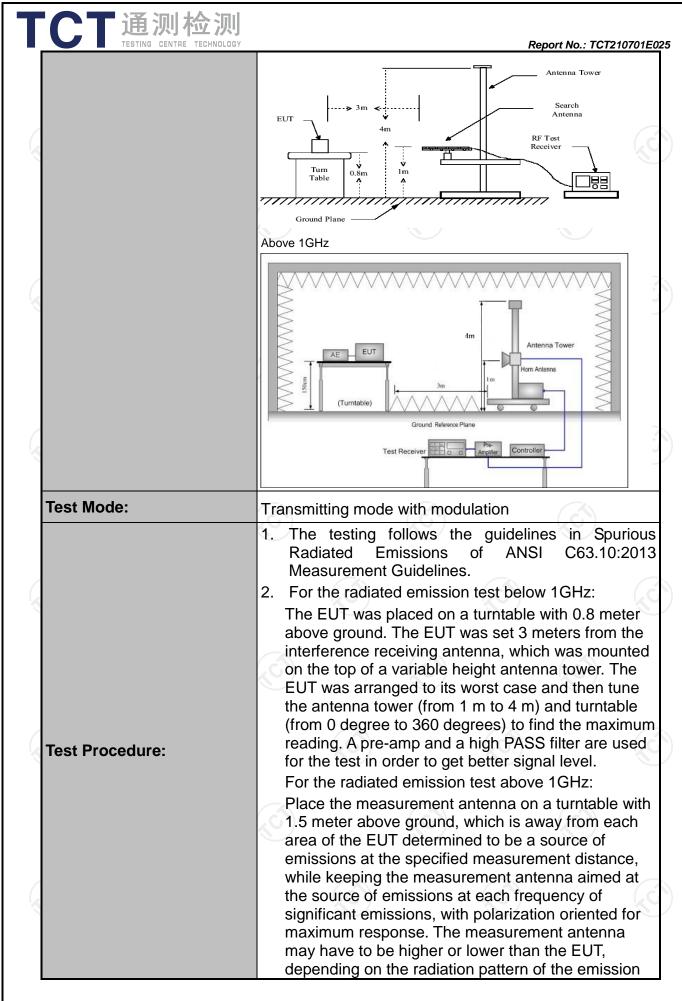
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments


Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

Test Requirement:	FCC Part15	C Sec	tion 1	15.209	(0)			(c
Test Method:	ANSI C63.10):2013	}					
Frequency Range:	9 kHz to 25 (GHz		7.				
Measurement Distance:	3 m		(30			((C)		
Antenna Polarization:	Horizontal &	Vertic	al					
	Frequency 9kHz- 150kHz	9kHz- 150kHz Quasi-		tector RBW si-peak 200Hz		Quas	Remark i-peak V	
Receiver Setup:	150kHz- 30MHz	Quasi-		9kHz	30kHz		i-peak V	
	30MHz-1GHz Above 1GHz	Quasi- Pea Pea	ak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Pe	<u>ii-peak Value</u> eak Value erage Val	Э
	Frequen			Field Stre	ength	Mea	asureme	nt
	0.009-0.4 0.490-1.7		2400/F 24000/F			300 30		(6
	1.705-3 30-88			30 100			30	
Limit:		88-216 216-960				(6	3	
	Above 9	60		500			3	
	Frequency	(1		Strength olts/meter)	Measure Distan (mete	ce	Detect	tor
	Above 1GHz	<u> </u>		500 000	3		Avera Peal	
	For radiated emis	ssions b	elow 3	Z\		Comput		
Test setup:	0.8m	Turn table	Ground P	lm lane	 	Amplifier		
	30MHz to 1GHz							

TCT通测]检测	
TESTING CEN	TRE TECHNOLOGY	Report No.: TCT210701E025 and staying aimed at the emission source for
		receiving the maximum signal. The final
		measurement antenna elevation shall be that which maximizes the emissions. The measurement
		antenna elevation for maximum emissions shall be
13		restricted to a range of heights of from 1 m to 4 m
	3.	above the ground or reference ground plane. Set to the maximum power setting and enable the
	5.	EUT transmit continuously.
	4.	Use the following spectrum analyzer settings:
		(1) Span shall wide enough to fully capture the
		emission being measured;
((2) Set RBW=120 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW≥RBW;
		Sweep = auto; Detector function = peak; Trace = max hold for peak
	E. C.	(3) For average measurement: use duty cycle correction factor method per
		15.35(c). Duty cycle = On time/100 milliseconds
		On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*Ln
'		Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc.
	ć	Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
		Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
Test results:	PA	ASS (A)

5.11.2. Test Instruments

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022
Antenna Mast	Keleto	RE-AM	N/A	N/A
Line-4	TCT	RE-high-04	N/A	Sep. 02, 2021
Line-8	TCT	RE-01	N/A	Jul. 27, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

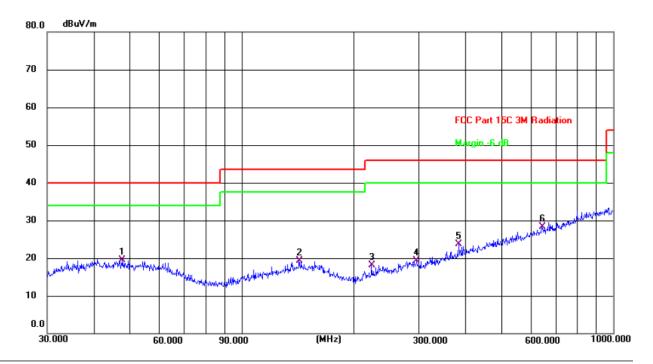
5.11.3. Test Data

Please refer to following diagram for individual

Horizontal:

Below 1GHz

80.0	dBuV/	m														_
70															\perp	_
60		+-		\vdash											\dashv	\dashv
											C Part 1		Hadia	tion		Н
50		+								M.	ugin_6.	dR				\dagger
40						ſ			₩]
40						r										7
30								3 when when the production of						. serio	while	lver
-											5 .5	No Mary Land	happy	Selver		
20		1	2					3 ×	4	d to desire the delice	And States of the States of th				\perp	_
	and hand the second	toda chertresi cher	(Armenten), jej	Mary Mary	VIANIMO		bent	war fattette from the fact of the following front of the	Parting of health plant of the second	arda att						
10		+				Arthu.	<u>'</u>								+	\dashv
0.0																
).000		6	0.000		9	0.00	O (MHz)	- 3	800.000		6	00.00		10	00.000


Site Polarization: Horizontal Temperature: 24.5(C)
Limit: FCC Part 15C 3M Radiation Power: DC 3.7 V Humidity: 54 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	41.1320	5.37	13.99	19.36	40.00	-20.64	QP	Р	
2	59.0251	5.62	13.20	18.82	40.00	-21.18	QP	Р	
3	149.4857	5.33	13.33	18.66	43.50	-24.84	QP	Р	
4	281.0075	5.56	14.16	19.72	46.00	-26.28	QP	Р	
5	429.5228	5.67	17.89	23.56	46.00	-22.44	QP	Р	
6	494.1984	5.40	19.27	24.67	46.00	-21.33	QP	Р	

Vertical:

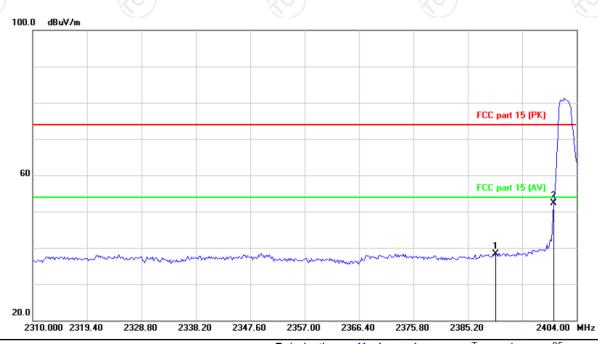
Site	Site Polarization: Vertical Tempe											
Limit:	FCC Part 15		Power: DC 3.7 V					Humidity:	54 %			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark			
1	47.8260	5.70	13.83	19.53	40.00	-20.47	QP	Р				
2	142.8243	6.05	13.26	19.31	43.50	-24.19	QP	Р				
3	223.7334	6.43	11.68	18.11	46.00	-27.89	QP	Р				
4	296.1836	5.38	13.83	19.21	46.00	-26.79	QP	Р				
5	383.9318	7.01	16.69	23.70	46.00	-22.30	QP	Р				
6 *	642.8613	6.32	21.94	28.26	46.00	-17.74	QP	Р				

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

- 2. Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK) and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.
- 3. Freq. = Emission frequency in MHz
 Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB)
 Correction Factor= Antenna Factor + Cable loss Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard

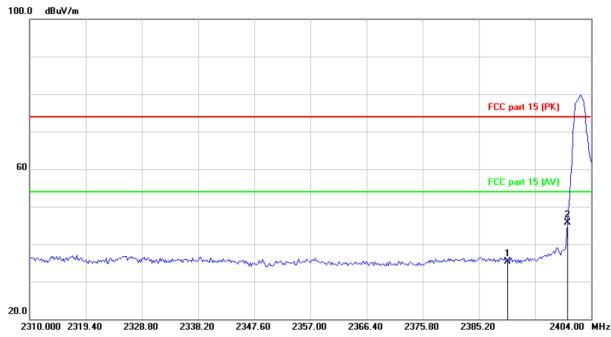
Over (dB) = Measurement $(dB\mu V/m)$ – Limits $(dB\mu V/m)$


* is meaning the worst frequency has been tested in the test frequency range.

Test Result of Radiated Spurious at Band edges

Lowest channel 2402:

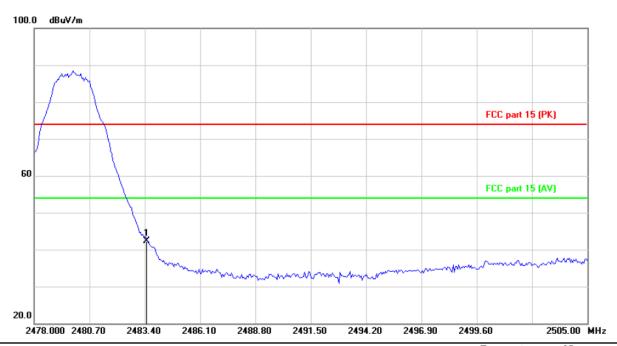
Horizontal:


_]	- 12				
	Limit: FCC part 15 (PK)			Power:		Humidity:	55 %
	Site			Polarization:	Horizontal	Temperature	e: 25

No.	Mk	c. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		2390.000	51.42	-13.15	38.27	74.00	-35.73	peak
2	*	2400.000	65.42	-13.12	52.30	74.00	-21.70	peak

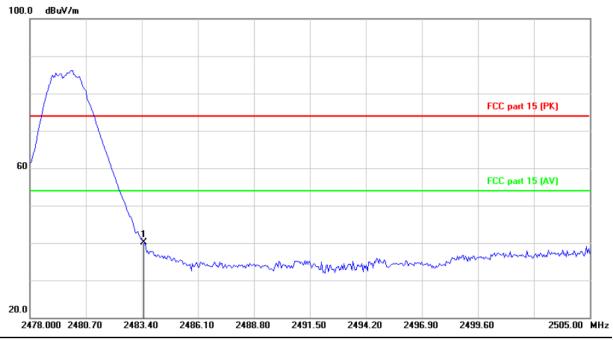
Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %


No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	2	2390.000	48.54	-13.15	35.39	74.00	-38.61	peak
2	* 2	2400.000	58.81	-13.12	45.69	74.00	-28.31	peak

Highest channel 2480:

Horizontal:


Site Polarization: Horizontal Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

No.	MI	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	2483.500	55.19	-12.84	42.35	74.00	-31.65	peak

Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

No. Mk.	Freq.			Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1 * 2	483.500	53.03	-12.84	40.19	74.00	-33.81	peak

Note: Measurements were conducted in all two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (GFSK) was submitted only.

Above 1GHz

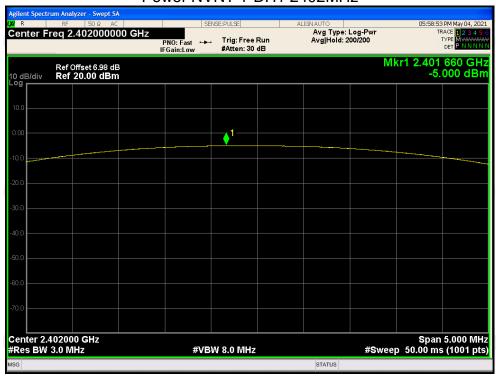
Modulation Type: Pi/4 DQPSK										
Low channel: 2402 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	l AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4804	Н	45.22		0.66	45.88		74	54	-8.12	
7206	Н	35.43		9.50	44.93		74	54	-9.07	
	H							7-7		
	,G')		(, G			.C`)		(,C)		
4804	V	45.08		0.66	45.74	<u></u>	74	54	-8.26	
7206	V	36.57		9.50	46.07		74	54	-7.93	
	V									

Middle cha	nnel: 2441	MHz		70	5)		(0)		KO
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	45.85		0.99	46.84		74	54	-7.16
7323	(H)	36.17		9.87	46.04	1	74	54	-7.96
	H					<u></u>			
4000		40.40		0.00	44.40		74	- - - - -	0.50
4882	V	43.43		0.99	44.42		74	54	-9.58
7323	V	35.06		9.87	44.93		74	54	-9.07
)	V	\/)				

High channel: 2480 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	45.62		1.33	46.95		74	54	-7.05
7440	Н	36.94		10.22	47.16		74	54	-6.84
	Η	7-4							
(C)		(.c)		(, ((.G)		
4960	V	47.03		1.33	48.36		74	54	-5.64
7440	V	38.07		10.22	48.29		74	54	-5.71
	V								

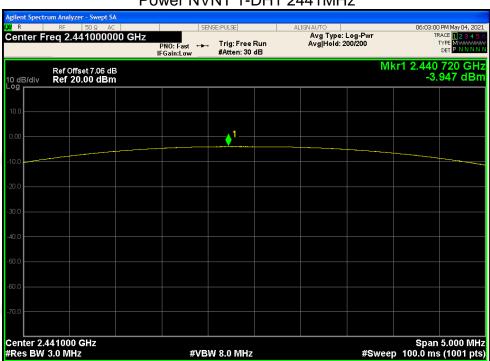
Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Measurements were conducted in all two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Pi/4 DQPSK) was submitted only.
- 7. All the restriction bands are compliance with the limit of 15.209.

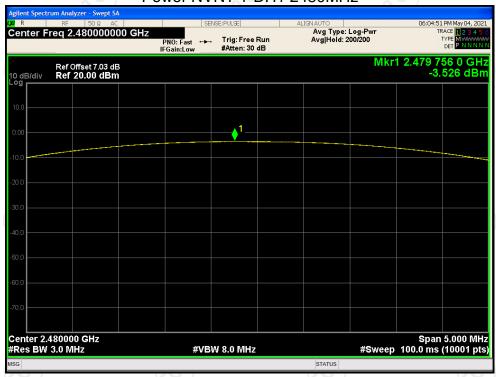


Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power


Condition	Mode	Frequency	Conducted Power	Total Power	Limit	Verdict
Condition wode		(MHz)	(dBm)	(dBm)	(dBm)	verdict
NVNT	1-DH1	2402	-5.000	-5.000	30	Pass
NVNT	1-DH1	2441	-3.947	-3.947	30	Pass
NVNT	1-DH1	2480	-3.526	-3.526	30	Pass
NVNT	2-DH1	2402	-4.210	-4.210	21	Pass
NVNT	2-DH1	2441	-3.131	-3.131	21	Pass
NVNT	2-DH1	2480	-2.704	-2.704	21	Pass

Power NVNT 1-DH1 2402MHz



Power NVNT 1-DH1 2441MHz

Power NVNT 1-DH1 2480MHz

#VBW 8.0 MHz

Report No.: TCT210701E025

Power NVNT 2-DH1 2441MHz

Report No.: TCT210701E025 Power NVNT 2-DH1 2480MHz Avg Type: Log-Pwr Avg|Hold: 200/200 Center Freg 2.480000000 GHz PNO: Fast --- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 784 GHz -2.704 dBm Ref Offset 7.03 dB Ref 20.00 dBm <u>1</u> Center 2.480000 GHz #Res BW 3.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 8.0 MHz STATUS

Page 36 of 78

-20dB Bandwidth

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.878	Pass
NVNT	1-DH1	2441	0.875	Pass
NVNT	1-DH1	2480	0.877	Pass
NVNT	2-DH1	2402	1.253	Pass
NVNT	2-DH1	2441	1.255	Pass
NVNT	2-DH1	2480	1.257	Pass

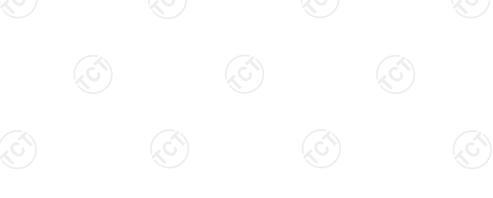
-20dB Bandwidth NVNT 1-DH1 2402MHz

-20dB Bandwidth NVNT 1-DH1 2441MHz

-20dB Bandwidth NVNT 1-DH1 2480MHz



-20dB Bandwidth NVNT 2-DH1 2402MHz


-20dB Bandwidth NVNT 2-DH1 2441MHz

-20dB Bandwidth NVNT 2-DH1 2480MHz

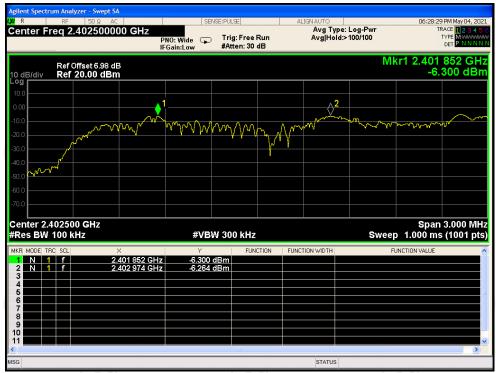
Carrier Frequencies Separation

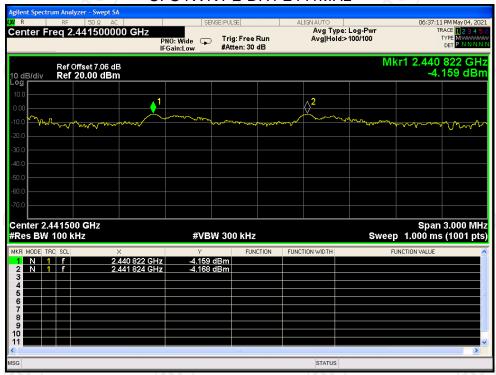
Garrier i requeriere deparation								
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict		
		(MHz)	(MHz)	(MHz)	(MHz)	verdict		
NVNT	1-DH1	2401.822	2402.824	1.002	0.878	Pass		
NVNT	1-DH1	2440.822	2441.842	1.020	0.875	Pass		
NVNT	1-DH1	2478.831	2479.821	0.990	0.877	Pass		
NVNT	2-DH1	2401.852	2402.974	1.122	0.835	Pass		
NVNT	2-DH1	2440.822	2441.824	1.002	0.837	Pass		
NVNT	2-DH1	2478.789	2479.806	1.017	0.838	Pass		

CFS NVNT 1-DH1 2402MHz

CFS NVNT 1-DH1 2441MHz

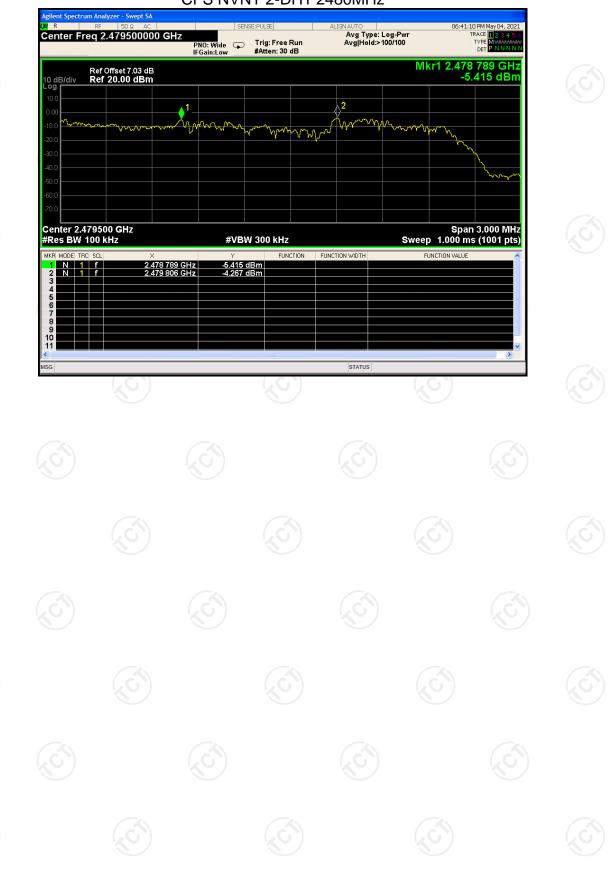
Report No.: TCT210701E025


CFS NVNT 1-DH1 2480MHz



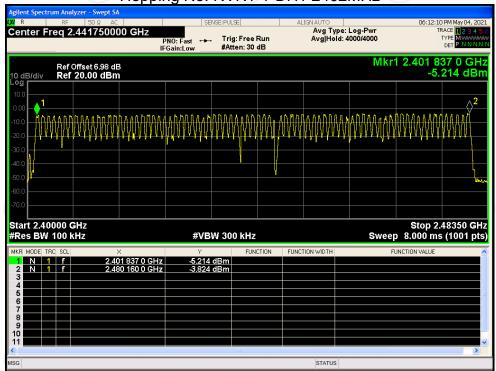
CFS NVNT 2-DH1 2402MHz

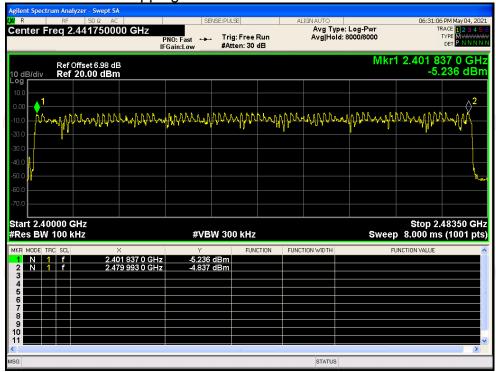
Report No.: TCT210701E025


CFS NVNT 2-DH1 2441MHz

CFS NVNT 2-DH1 2480MHz

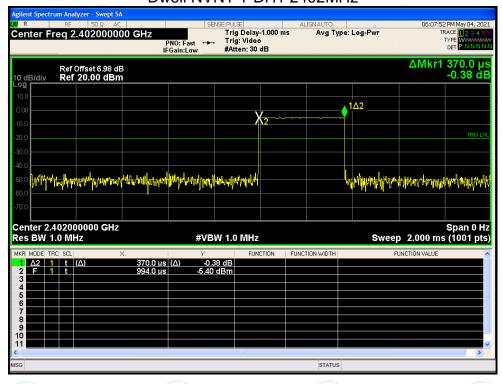
Report No.: TCT210701E025



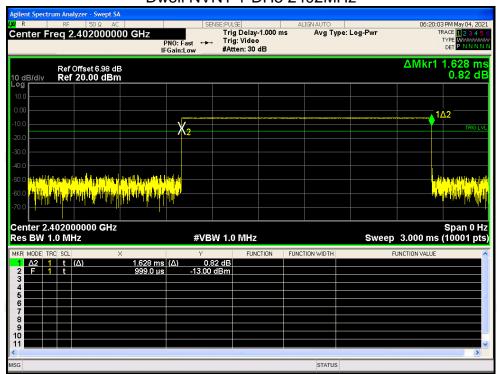

Number of Hopping Channel

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass

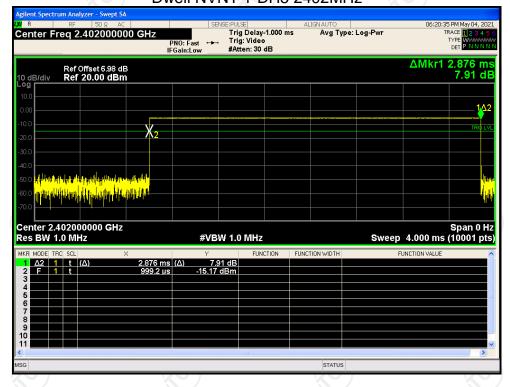
Hopping No. NVNT 2-DH1 2402MHz



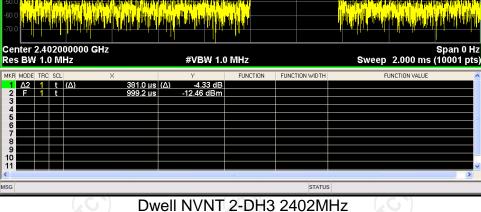
Dwell Time


Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2402	0.370	118.400	31600	400	Pass
NVNT	1-DH3	2402	1.628	260.480	31600	400	Pass
NVNT	1-DH5	2402	2.876	306.773	31600	400	Pass
NVNT	2-DH1	2402	0.381	121.920	31600	400	Pass
NVNT	2-DH3	2402	1.633	261.280	31600	400	Pass
NVNT	2-DH5	2402	2.881	307.307	31600	400	Pass

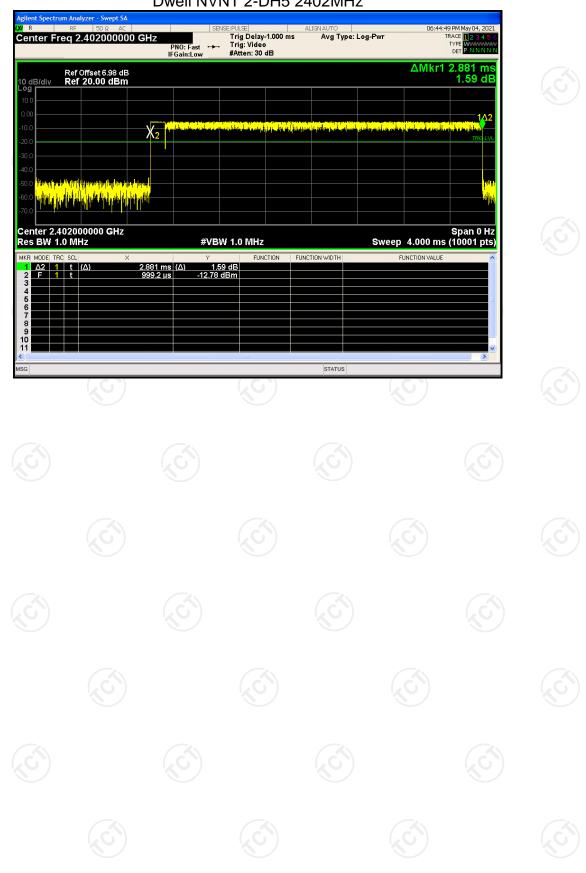
Dwell NVNT 1-DH1 2402MHz



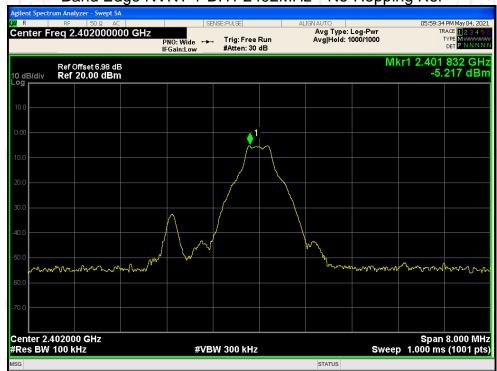
Report No.: TCT210701E025 Dwell NVNT 1-DH3 2402MHz

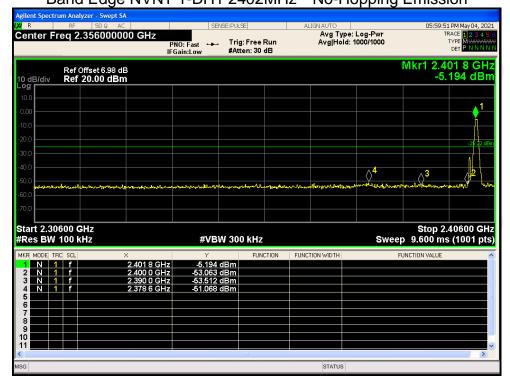


Dwell NVNT 1-DH5 2402MHz


Aglent Spectrum Analyzer - Swept SA M R RF 50 Q AC SENSE:PUSE Center Freq 2.4020000000 GHz PNO: Fast IFGain:Low Ref Offset 6.98 dB Ref 20.00 dBm Ref 20.00 dBm Center Freq 2.402000 dBm Ref 20.00 dBm Aug Type: Log-Pwr Trig: Video #Atten: 30 dB AMkr1 381.0 µs -4.33 dB

Dwell NVNT 2-DH5 2402MHz

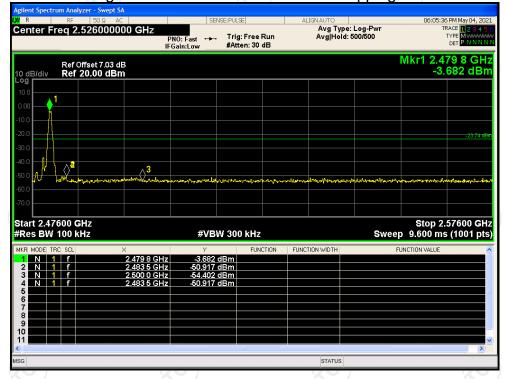



Band Edge

Condition	Mode	Frequency	Hopping	Max Value	Limit	Verdict
		(MHz)	Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	No-Hopping	-45.84	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-47.17	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-46.77	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-45.18	-20	Pass

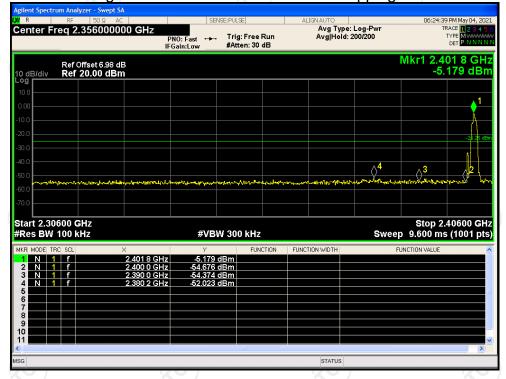
Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref

Band Edge NVNT 1-DH1 2402MHz No-Hopping Emission



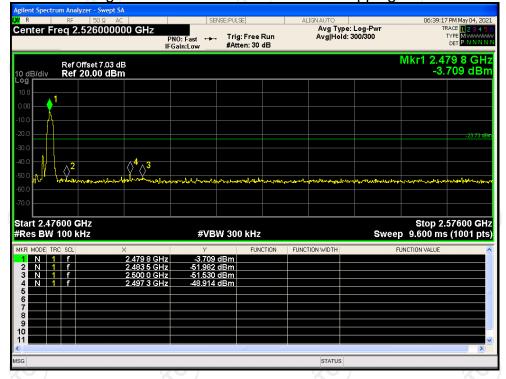
Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

Band Edge NVNT 1-DH1 2480MHz No-Hopping Emission



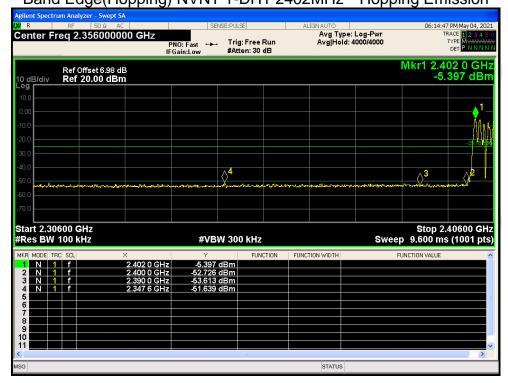
Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Band Edge NVNT 2-DH1 2402MHz No-Hopping Emission



Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

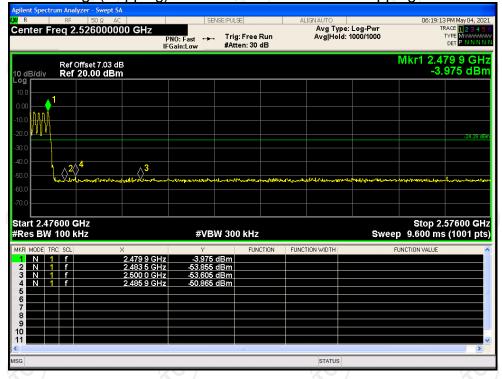
Band Edge NVNT 2-DH1 2480MHz No-Hopping Emission


Band Edge(Hopping)

0 \ 11 \ 0/						
Condition	Mode	Frequency	Hopping	Max Value	Limit	Verdict
	Mode	(MHz)	z) Mode (dB	(dBc)	(dBc)	verdict
NVNT	1-DH1	2402	Hopping	-46.47	-20	Pass
NVNT	1-DH1	2480	Hopping	-46.58	-20	Pass
NVNT	2-DH1	2402	Hopping	-45.21	-20	Pass
NVNT	2-DH1	2480	Hopping	-46.54	-20	Pass

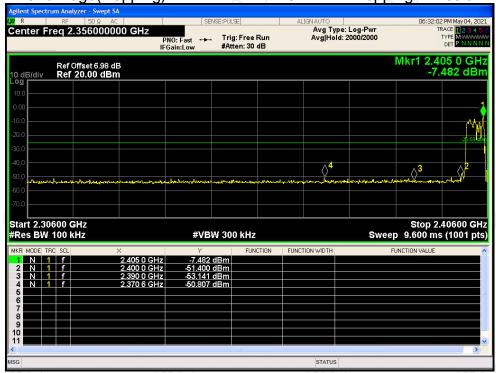
Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref

Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission



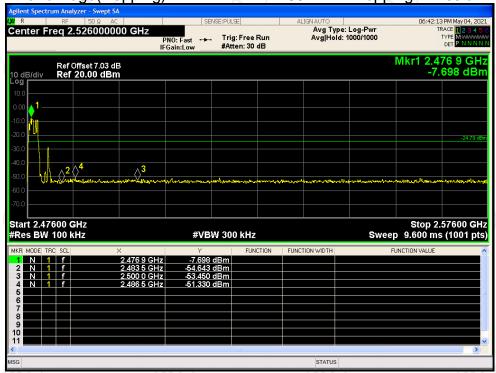
Band Edge(Hopping) NVNT 1-DH1 2480MHz Hopping Ref

Band Edge(Hopping) NVNT 1-DH1 2480MHz Hopping Emission



Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Ref

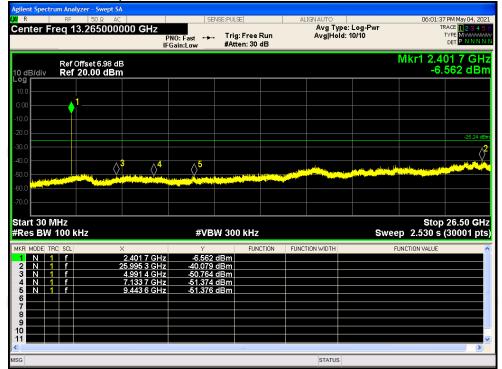
Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Emission



Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Ref

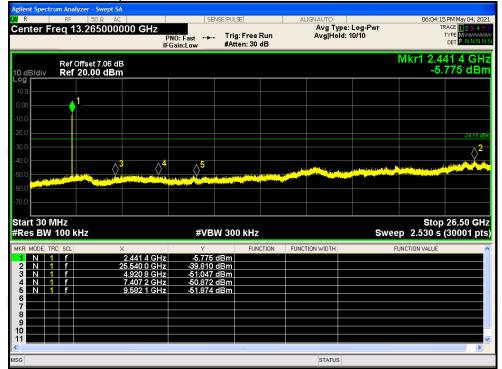
Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Emission

Conducted RF Spurious Emission


					~	
	Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	1-DH1	2402	-34.83	-20	Pass
	NVNT	1-DH1	2441	-35.62	-20	Pass
	NVNT	1-DH1	2480	-35.85	-20	Pass
	NVNT	2-DH1	2402	-34.47	-20	Pass
	NVNT	2-DH1	2441	-35.39	-20	Pass
	NVNT	2-DH1	2480	-35.92	-20	Pass
	NVNT	3-DH1	2402	-40.69	-20	Pass
	NVNT	3-DH1	2441	-40.16	-20	Pass
	NVNT	3-DH1	2480	-40.12	-20	Pass

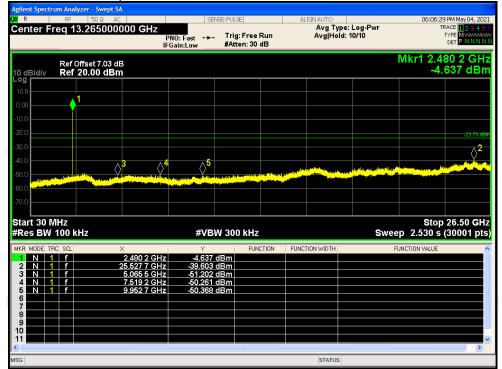
Tx. Spurious NVNT 1-DH1 2402MHz Ref

Tx. Spurious NVNT 1-DH1 2402MHz Emission



Tx. Spurious NVNT 1-DH1 2441MHz Ref

Tx. Spurious NVNT 1-DH1 2441MHz Emission

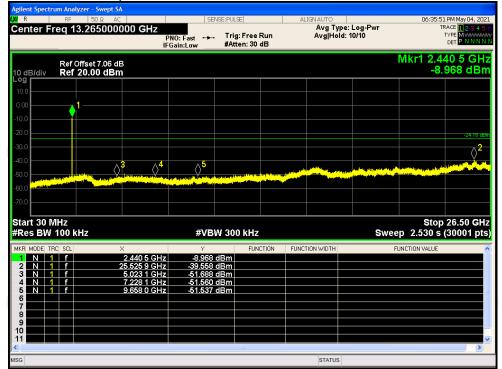


Tx. Spurious NVNT 1-DH1 2480MHz Ref

Tx. Spurious NVNT 1-DH1 2480MHz Emission

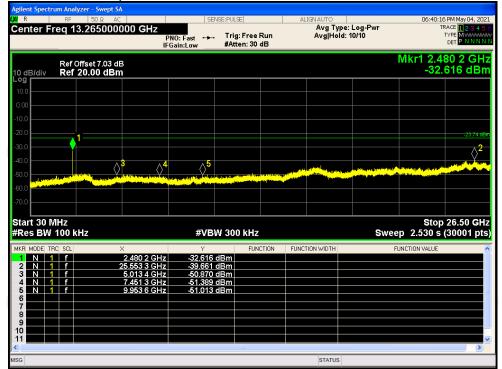
Tx. Spurious NVNT 2-DH1 2402MHz Ref

Tx. Spurious NVNT 2-DH1 2402MHz Emission



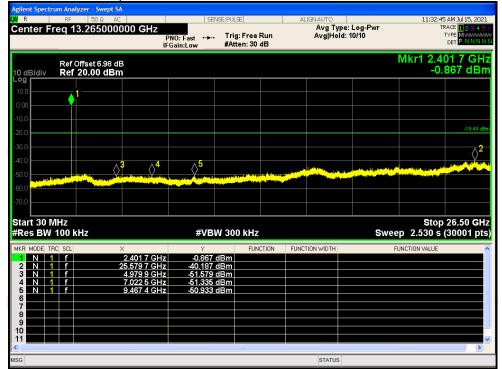
Tx. Spurious NVNT 2-DH1 2441MHz Ref

Tx. Spurious NVNT 2-DH1 2441MHz Emission



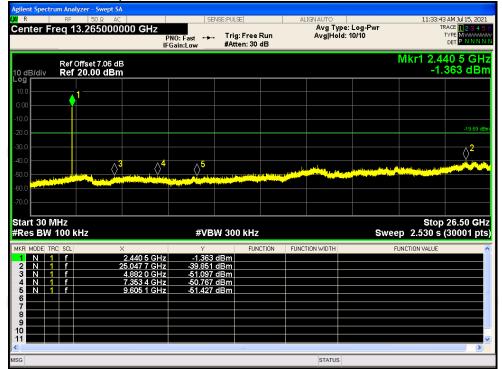
Tx. Spurious NVNT 2-DH1 2480MHz Ref

Tx. Spurious NVNT 2-DH1 2480MHz Emission



Tx. Spurious NVNT 3-DH1 2402MHz Ref

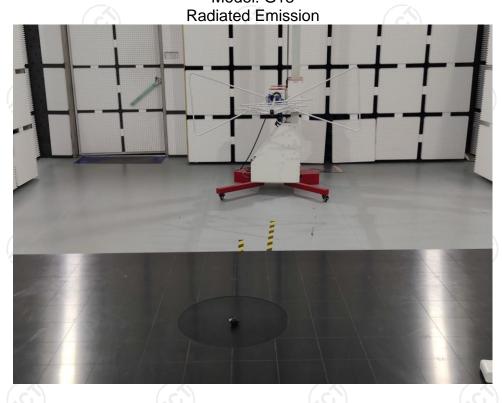
Tx. Spurious NVNT 3-DH1 2402MHz Emission

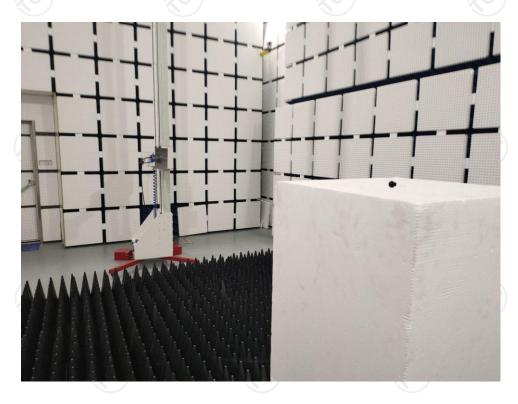


Tx. Spurious NVNT 3-DH1 2441MHz Ref

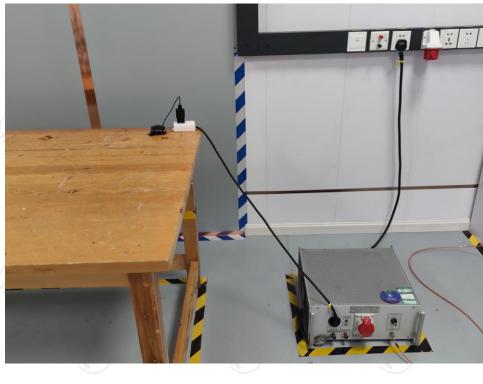
Tx. Spurious NVNT 3-DH1 2441MHz Emission

Tx. Spurious NVNT 3-DH1 2480MHz Ref


Tx. Spurious NVNT 3-DH1 2480MHz Emission



Appendix B: Photographs of Test Setup


Product: Gaming bluetooth headset Model: G18

Conducted Emission

TCT通测检测 TESTING CENTRE TECHNOLOGY

Appendix C: Photographs of EUT Product: Gaming bluetooth headset Model: G18 External Photos

