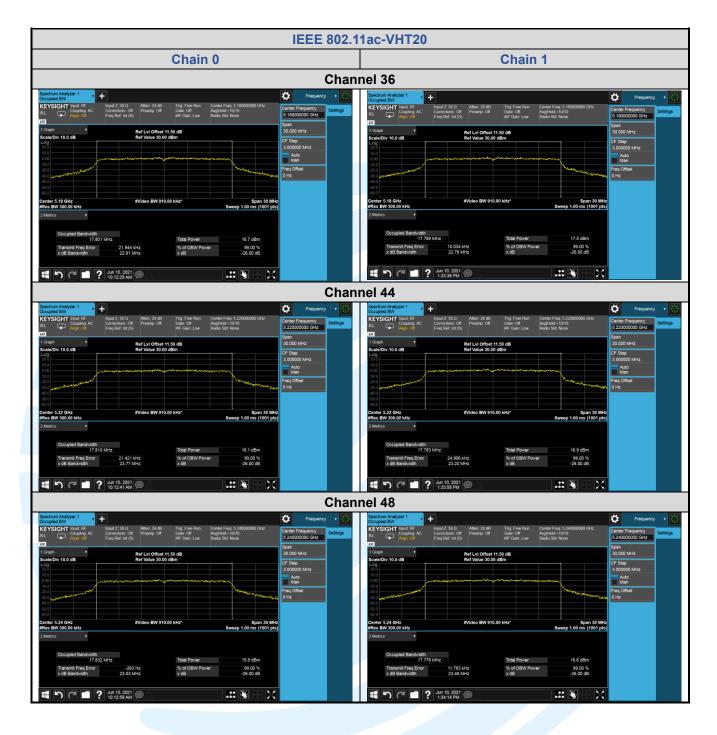

Page 32 of 139

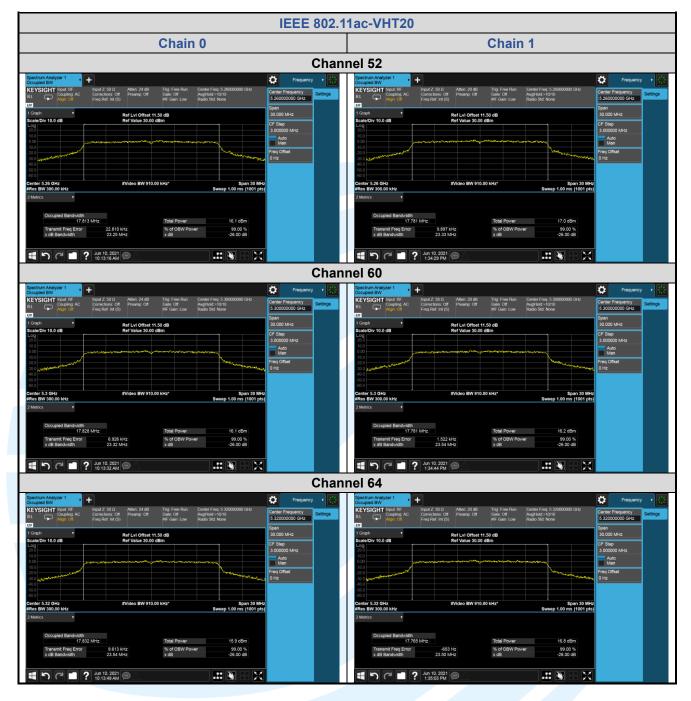
Report No.: 210520024RFC-4



Shenzhen UnionTrust Quality and Technology Co., Ltd.

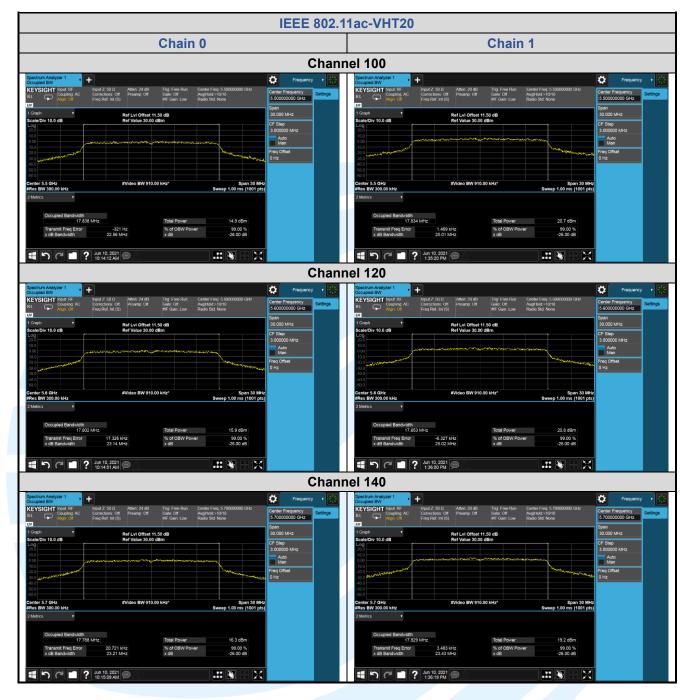
 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com


 UTTR-RF-FCCPART15.407-V1.1
 Fax: +86-755-28230886
 Http://www.uttlab.com
 http://www.uttlab.com

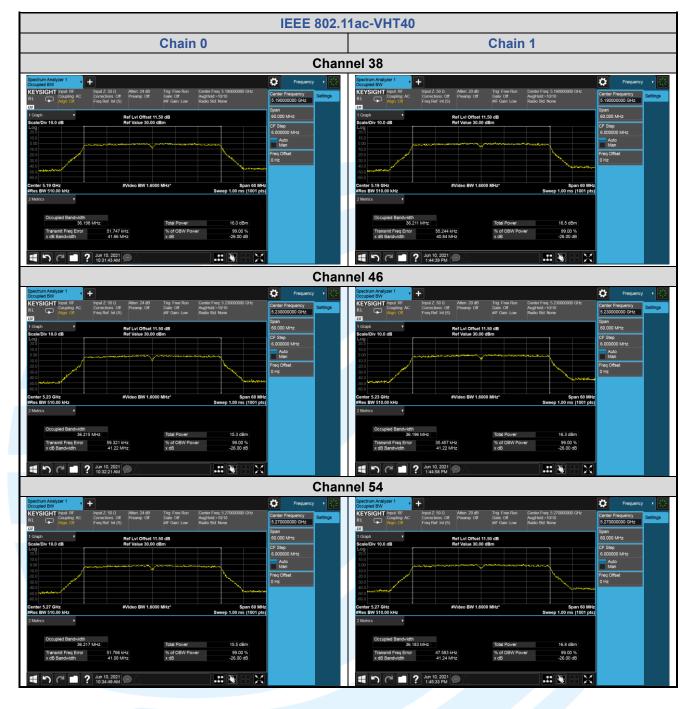
Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 34 of 139


Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 35 of 139


Report No.: 210520024RFC-4

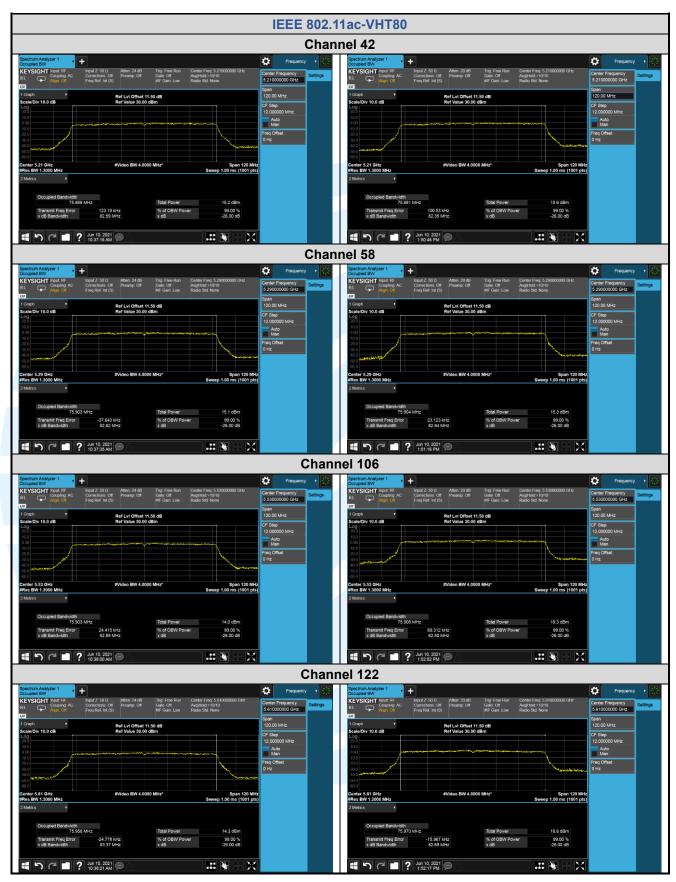
Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 36 of 139


Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 37 of 139


Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 38 of 139

Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 39 of 139

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.407 (e)

Test Method: KDB 789033 D02 v02r01Section C.2

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure:

Limit:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \ge 3 * RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.5.3 for details.						
Instruments Used:	Refer to section 3 for details						
Test Mode:	Transmitter mode						
Test Results:	Pass						
Test Data:							

Mode	Channel/ Frequency		ndwidth Hz)		ndwidth Hz)	6 dB Bandwidth	Pass / Fail
	(MHz)	Chain 0	Chain 1	Chain 0	Chain 1	Limit	Fall
	149 (5745)	15.46	15.41	16.429	16.446	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	16.32	16.30	16.442	16.454	> 500 kHz	Pass
	165 (5825)	15.14	16.30	16.450	16.464	> 500 kHz	Pass
	149 (5745)	17.53	16.58	17.660	17.648	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	16.03	15.95	17.660	17.642	> 500 kHz	Pass
002.111-11120	165 (5825)	16.80	16.55	17.649	17.662	> 500 kHz	Pass
IEEE	151 (5755)	35.92	36.32	36.102	36.125	> 500 kHz	Pass
802.11n-HT40	159 (5795)	36.29	36.33	36.132	13.166	> 500 kHz	Pass
1555	149 (5745)	16.01	16.76	17.646	17.644	> 500 kHz	Pass
IEEE 802.11ac-VHT20	157 (5785)	15.91	17.58	17.649	17.678	> 500 kHz	Pass
002.1140-011120	165 (5825)	15.66	16.24	17.656	17.646	> 500 kHz	Pass
IEEE	151 (5755)	36.30	36.36	36.132	13.164	> 500 kHz	Pass
802.11ac-VHT40	159 (5795)	36.31	36.32	36.144	36.143	> 500 kHz	Pass
IEEE 802.11ac-VHT80	155 (5775)	75.61	75.02	75.583	75.540	> 500 kHz	Pass

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.1
 Http://www.uttlab.com
 http://www.uttlab.com

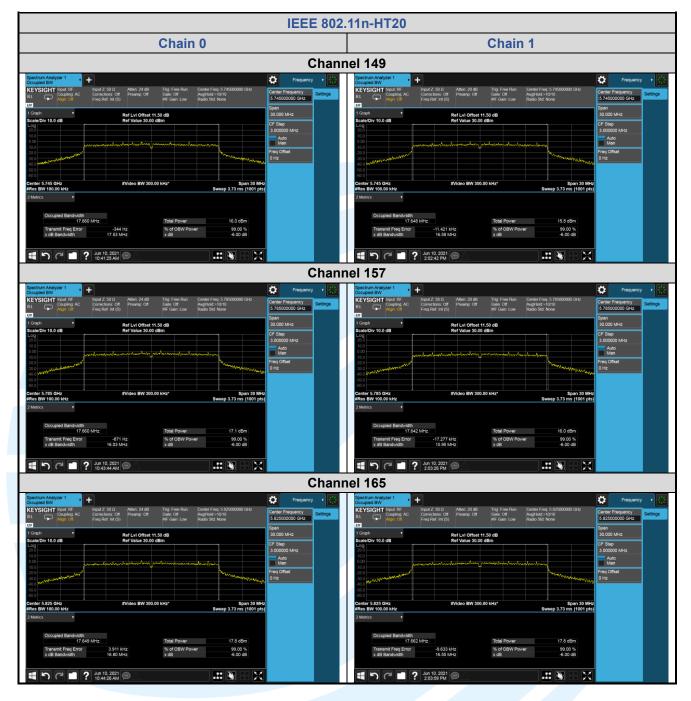
X

? Jun 10, 2021 1:55:29 PM

まら

The test plots as follows: **IEEE 802.11a** Chain 0 Chain 1 Channel 149 Ö Ö KEYSIGHT **KEYSIGHT** rig: Free F iate: Off g:Free #e:Off Auto Man Span 30 MH p 3.73 ms (1001 pts Span 30 MH p 3.73 ms (1001 pt ter 5.745 GHz 19.7 dBrr 19.1 dBr 5.127 kHz 15.46 MHz 99.00 % -6.00 dB 99.00 % -12.264 kHz 15.41 MHz ? Jun 10, 2021 T Channel 157 Ċ Ö KEYSIGHT KEYSIGHT Gate: Off quency Auto Man Auto Span 30 MHz ep 3.73 ms (1001 pts Span 30 MH ap 3.73 ms (1001 pt 20.3 dBr 18.9 dBr 99.00 % -6.00 dB -1.100 kHz 16.32 MHz % of OE 99.00 % -6.00 dB 10.152 kHz 1:55:08 PM ි ි III ? Jun 10, 2021 X 30 Channel 165 Ö ¢ KEYSIGHT uency 00 GHz 5.82 5.8 Ref Lvi Offset 11.50 di Ref Value 30.00 dBm Ref Lvi Offset 11.50 dB Ref Value 30 00 dBm 10.0 48 Auto Man Auto Man Span 30 MH p 3.73 ms (1001 pt Span 30 Mi p 3.73 ms (1001 pt ieo BW 300.00 kHz BW 300.00 KH 20.8 dBm % of O 99.00 % 99.00 %

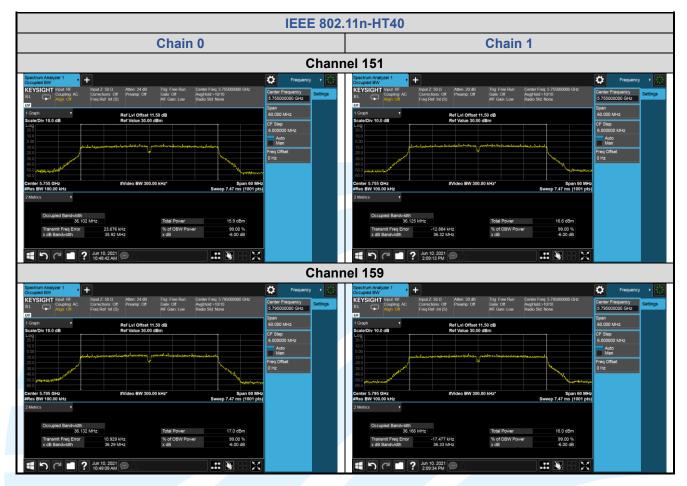
Shenzhen UnionTrust Quality and Technology Co., Ltd.


Jun 10, 2021 10:40:52 AM

501

X

Page 41 of 139

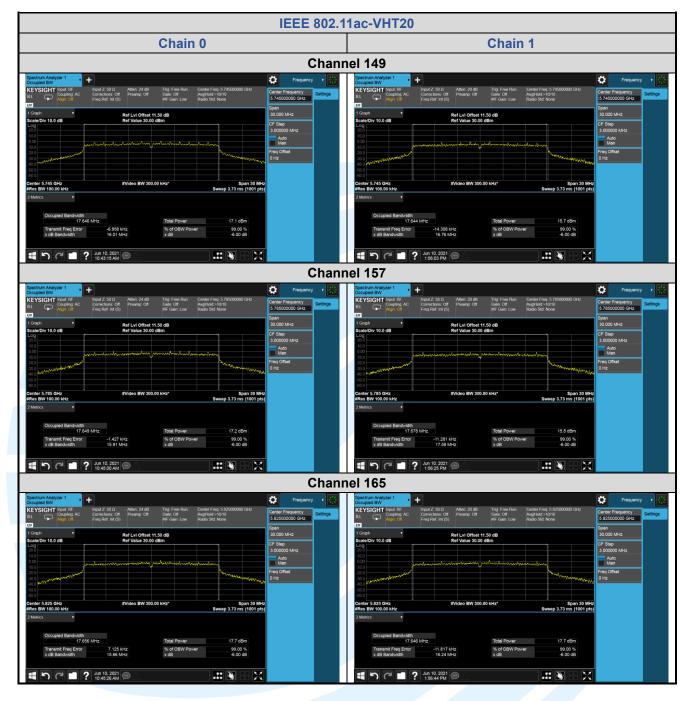

Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 42 of 139

Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.


 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.1
 Http://www.uttlab.com
 http://www.uttlab.com

Page 43 of 139

Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.


 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.1
 Http://www.uttlab.com
 http://www.uttlab.com

Page 44 of 139

Report No.: 210520024RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 45 of 139

5.5 MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement:FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)Test Method:KDB 789033 D02 v02r01 Section E.3.a (Method PM)Limits:

1. For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Test Procedure:

- 1. Connected the EUT's antenna port to measure device by 10dB attenuator.
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Transmitter mode
Test Results:	Pass
Test Data:	

For U-NII-2A, U-NII-2C Band:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 21.62 MHz 11 dBm + $10\log_{10} (21.62) = 24.35 \text{ dBm} > 24 \text{ dBm} (200\text{mW})$ So the 24 dB limit applicable

Directional gain and the maximum output power limit.

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	Peak Power Limits (dBm)	
U-NII-1	1.46	0.24	3.88	24.00	
U-NII-2A	1.25	0.46	3.87	24.00	
U-NII-2C	2.77	1.83	5.32	24.00	
U-NII-3	1.62	1.60	4.62	30.00	

Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:

If transmit signals are correlated, then

Directional gain = 10 log[(10^G1 /20 + 10^G2 /20 + ... + 10^GN /20)^2 /NANT] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

			Max	cimum Conc	lucted Outp	ut Power (d	Bm)	
	Channel/		SI	SO		Total		
Mode	Frequency	Cha	in O	Cha	in 1	Power	Limits	Pass / Fail
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	1 0.007 1 011
		Power	Power	Power	Power	Chain 0+1		
	36 (5180)	15.49	15.59	16.43	16.53	1	24	Pass
	44 (5220)	15.30	15.40	15.86	15.96	1	24	Pass
	48 (5240)	15.06	15.16	15.67	15.77	1	24	Pass
	52 (5260)	15.21	15.31	16.02	16.12	/	24	Pass
	60 (5300)	15.56	15.66	15.65	15.75		24	Pass
IEEE 802.11a	64 (5320)	15.51	15.61	16.08	16.18	1	24	Pass
	100 (5500)	14.72	14.82	16.43	16.53	1	24	Pass
	120 (5600)	15.13	15.23	16.15	16.25	1	24	Pass
	140 (5700)	15.50	15.60	14.85	14.95	1	24	Pass
	149 (5745)	14.08	14.18	14.47	14.57	/	30	Pass
	157 (5785)	15.04	15.14	14.30	14.40	/	30	Pass
	165 (5825)	15.37	15.47	15.99	16.09	/	30	Pass

Page 47 of 139

Report No.: 210520024RFC-4

			Max	lucted Outp	ut Power (dl	Bm)		
	Channel/		MI	NO		Total		
Mode	Frequency	Cha	in 0	Chain 1		Power	Limits	Pass / Fail
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	1 4007 1 411
		Power	Power	Power	Power	Chain 0+1		
	36 (5180)	12.35	12.46	13.29	13.40	15.97	24	Pass
	44 (5220)	12.17	12.28	12.68	12.79	15.56	24	Pass
	48 (5240)	11.89	12.00	12.56	12.67	15.36	24	Pass
	52 (5260)	12.04	12.15	12.85	12.96	15.59	24	Pass
	60 (5300)	12.31	12.42	12.46	12.57	15.51	24	Pass
IEEE 802.11n-HT20	64 (5320)	12.25	12.36	12.82	12.93	15.67	24	Pass
	100 (5500)	11.73	11.84	13.36	13.47	15.74	24	Pass
	120 (5600)	11.90	12.01	12.94	13.05	15.57	24	Pass
	140 (5700)	12.17	12.28	11.48	11.59	14.96	24	Pass
	149 (5745)	11.68	11.79	11.22	11.33	14.58	30	Pass
	157 (5785)	12.78	12.89	11.24	11.35	15.20	30	Pass
	165 (5825)	12.96	13.07	12.87	12.98	16.04	30	Pass

			Мах	imum Cond	ut Power (d	Bm)		
	Channel/		MI	MO	Total			
Mode	Frequency	Cha	in 0	Chain 1		Power	Limits	Pass / Fail
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	1 0357 1 011
		Power	Power	Power	Power	Chain 0+1		
	38 (5190)	11.70	11.97	12.23	12.50	15.25	24	Pass
	46 (5230)	11.35	11.62	12.17	12.44	15.06	24	Pass
	54 (5270)	11.28	11.55	12.10	12.37	14.99	24	Pass
	62 (5310)	11.63	11.90	11.97	12.24	15.09	24	Pass
IEEE 802.11n-HT40	102 (5510)	11.06	11.33	12.68	12.95	15.23	24	Pass
	118 (5590)	11.42	11.69	12.24	12.51	15.13	24	Pass
	134 (5670)	10.91	11.18	11.28	11.55	14.38	24	Pass
	151 (5755)	11.03	11.30	10.39	10.66	14.00	30	Pass
	159 (5795)	12.05	12.32	10.94	11.21	14.81	30	Pass

			Мах	imum Cond	lucted Outp	ut Power (d	Bm)	
	Channel/		MI	NO		Total		
Mode	Frequency	Cha	in 0	Chain 1		Power	Limits	Pass / Fail
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	1 4007 1 411
		Power	Power	Power	Power	Chain 0+1		
	36 (5180)	12.36	12.49	13.31	13.44	16.01	24	Pass
	44 (5220)	12.06	12.19	12.73	12.86	15.55	24	Pass
	48 (5240)	11.84	11.97	12.54	12.67	15.35	24	Pass
	52 (5260)	12.02	12.15	12.98	13.11	15.67	24	Pass
	60 (5300)	12.37	12.50	12.50	12.63	15.58	24	Pass
IEEE 802.11ac-	64 (5320)	12.25	12.38	12.81	12.94	15.68	24	Pass
VHT20	100 (5500)	11.51	11.64	13.38	13.51	15.69	24	Pass
	120 (5600)	11.93	12.06	12.94	13.07	15.60	24	Pass
	140 (5700)	12.19	12.32	11.51	11.64	15.01	24	Pass
	149 (5745)	11.67	11.80	11.22	11.35	14.60	30	Pass
	157 (5785)	12.71	12.84	11.25	11.38	15.19	30	Pass
	165 (5825)	13.04	13.17	12.82	12.95	16.08	30	Pass

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 48 of 139

Report No.: 210520024RFC-4

			Max	imum Cond	lucted Outp	ut Power (d	Bm)	
	Channel/		MI	NO		Total		
Mode	Frequency	Cha	in O	Chain 1		Power	Limits	Pass / Fail
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	1 4357 1 411
		Power	Power	Power	Power	Chain 0+1		
	38 (5190)	11.72	12.07	12.14	12.50	15.30	24	Pass
	46 (5230)	11.30	11.65	12.13	12.48	15.10	24	Pass
	54 (5270)	11.32	11.67	12.09	12.44	15.09	24	Pass
IEEE 802.11ac-	62 (5310)	11.56	11.91	11.89	12.24	15.09	24	Pass
VHT40	102 (5510)	11.09	11.44	12.66	13.01	15.31	24	Pass
VIII40	118 (5590)	11.43	11.78	12.24	12.59	15.22	24	Pass
	134 (5670)	10.98	11.33	11.22	11.57	14.47	24	Pass
	151 (5755)	11.02	11.37	10.39	10.74	14.08	30	Pass
	159 (5795)	12.12	12.47	10.94	11.29	14.93	30	Pass

		Maximum Conducted Output Power (dBm)								
	Channel/		MI	NO	Total					
Mode	Frequency	Cha	in O	Cha	in 1	Power	Limits	Pass / Fail		
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	1 0007 1 011		
		Power	Power	Power	Power	Chain 0+1				
	42 (5230)	10.75	11.11	11.35	11.71	14.43	24	Pass		
IEEE 802.11ac-	58 (5290)	10.98	11.34	11.08	11.44	14.40	24	Pass		
VHT80	106 (5530)	10.44	10.80	11.88	12.24	14.59	24	Pass		
VIII00	122 (5610)	10.47	10.83	11.15	11.51	14.20	24	Pass		
	155 (5775)	10.79	11.15	9.65	10.01	13.63	30	Pass		

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor 2. Total (Chain 0+1) = $10*\log[(10^{Chain 0/10})+(10^{Chain 1/10})]$

Page 49 of 139

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement:FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)Test Method:KDB 789033 D02 v02r01 Section FLimits:

1. For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure:

Page 50 of 139

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Sweep time = auto, trigger set to "free run".

d) Trace average at least 100 traces in power averaging mode.

e) Record the max value and add 10 log (1/duty cycle)

2. For U-NII-3 band:

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.

d) Sweep time = auto, trigger set to "free run".

e) Trace average at least 100 traces in power averaging mode.

f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.5.3 for details.					
Instruments Used:	Refer to section 3 for details					
Test Mode:	Transmitter mode					
Test Results:	Pass					
Test Data:						

Directional gain and the maximum output power limit.

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	PSD Limits (dBm/MHz or dBm/500kHz)
U-NII-1	1.46	0.24	3.88	11.00
U-NII-2A	1.25	0.46	3.87	11.00
U-NII-2C	2.77	1.83	5.32	11.00
U-NII-3	1.62	1.60	4.62	30.00

Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows: If transmit signals are correlated, then

Directional gain = 10 log[(10^GI /20 + 10^GZ /20 + ... + 10^GN /20)² /NANT] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

Page 51 of 139

For U-NII-1, U-NII-2A, U-NII-2C band

			Maxi	mum Power	Spectral D	ensity (dBm/	MHz)	
	Channel/		SI	SO		Total PSD		
Mode	Frequency	Cha	in 0	Cha	in 1	MIMO	Limits	Pass / Fail
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1	Linits	1 035/1 011
	36 (5180)	3.852	3.957	4.512	4.617		11	Pass
	44 (5220)	3.719	3.824	4.334	4.439		11	Pass
	48 (5240)	3.487	3.592	3.845	3.950		11	Pass
	52 (5260)	3.584	3.689	4.296	4.401		11	Pass
IEEE 802.11a	60 (5300)	3.773	3.878	3.488	3.593		11	Pass
	64 (5320)	3.741	3.846	4.078	4.183		11	Pass
	100 (5500)	2.381	2.486	4.566	4.671		11	Pass
	120 (5600)	3.296	3.401	4.778	4.883		11	Pass
	140 (5700)	3.796	3.901	3.277	3.382		11	Pass

			Maximum Power Spectral Density (dBm					MHz)	
		Channel/		MI	MO		Total PSD		
	Mode	Frequency	Chain 0		Chain 1		MIMO	Limits	Pass / Fail
		(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1	Linits	1 4357 1 411
		36 (5180)	0.475	0.587	1.102	1.214	3.92	11	Pass
		44 (5220)	0.243	0.355	0.471	0.583	3.48	11	Pass
		48 (5240)	-0.001	0.111	0.245	0.357	3.25	11	Pass
		52 (5260)	0.110	0.222	0.662	0.774	3.52	11	Pass
	IEEE 802.11n-HT20	60 (5300)	0.346	0.458	0.111	0.223	3.35	11	Pass
		64 (5320)	-0.216	-0.104	0.360	0.472	3.20	11	Pass
		100 (5500)	1.906	2.018	1.048	1.160	4.62	11	Pass
		120 (5600)	-1.075	-0.963	1.276	1.388	3.38	11	Pass
		140 (5700)	-0.720	-0.608	-0.390	-0.278	2.57	11	Pass

		Maximum Power Spectral Density (dBm/MHz)							
	Channel/		MI	MO		Total PSD			
Mode	Frequency	Cha	in 0	Cha	in 1	MIMO		Pass / Fail	
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1		1 4357 1 411	
	38 (5190)	-3.095	-2.823	-3.142	-2.870	0.16	11	Pass	
	46 (5230)	-3.594	-3.322	-2.949	-2.677	0.02	11	Pass	
	54 (5270)	-3.546	-3.274	-2.991	-2.719	0.02	11	Pass	
IEEE 802.11n-HT40	62 (5310)	-3.474	-3.202	-3.412	-3.140	-0.16	11	Pass	
	102 (5510)	-4.211	-3.939	0.841	1.113	2.29	11	Pass	
	118 (5590)	-3.751	-3.479	0.828	1.100	2.40	11	Pass	
	134 (5670)	-4.256	-3.984	-0.383	-0.111	1.38	11	Pass	

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.1
 Fax: +86-755-28230886
 Fax: +86-755-28230886
 Fax: +86-755-28230886
 Http://www.uttlab.com

Page 52 of 139

Report No.: 210520024RFC-4

		Maximum Power Spectral Density (dBm/MHz)								
	Channel/		МІМО							
Mode	Frequency	Cha	in 0	Chain 1		Total PSD MIMO	Limits	Pass / Fail		
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1	Linits	1 0357 1 011		
	36 (5180)	0.552	0.686	1.472	1.606	4.18	11	Pass		
	44 (5220)	0.329	0.463	0.902	1.036	3.77	11	Pass		
	48 (5240)	0.047	0.181	0.855	0.989	3.61	11	Pass		
IEEE 802.11ac-	52 (5260)	0.141	0.275	1.129	1.263	3.81	11	Pass		
VHT20	60 (5300)	0.414	0.548	0.576	0.710	3.64	11	Pass		
VIII20	64 (5320)	0.199	0.333	1.107	1.241	3.82	11	Pass		
	100 (5500)	-2.401	-2.267	1.741	1.875	3.29	11	Pass		
	120 (5600)	-1.081	-0.947	1.728	1.862	3.69	11	Pass		
	140 (5700)	-0.718	-0.584	0.047	0.181	2.83	11	Pass		

		Maximum Power Spectral Density (dBm/MHz)								
	Channel/		MI	MO		Total PSD				
Mode	Frequency	Chai	in O	Chain 1		MIMO	Limits	Pass / Fail		
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1	Linits	1 0357 1 011		
	38 (5190)	-3.298	-2.943	-3.142	-2.787	0.15	11	Pass		
	46 (5230)	-3.556	-3.201	-2.938	-2.583	0.13	11	Pass		
IEEE 802.11ac-	54 (5270)	-3.358	-3.003	-3.118	-2.763	0.13	11	Pass		
VHT40	62 (5310)	-3.440	-3.085	-3.490	-3.135	-0.10	11	Pass		
11140	102 (5510)	-5.076	-4.721	-2.469	-2.114	-0.21	11	Pass		
	118 (5590)	-3.667	-3.312	-2.469	-2.114	0.34	11	Pass		
	134 (5670)	-4.253	-3.898	-3.648	-3.293	-0.57	11	Pass		

			Maximum Power Spectral Density (dBm/MHz)								
		Channel/	МІМО				Total PSD				
	Mode	Frequency	Chain 0		Chain 1		MIMO	Limits	Pass / Fail		
		(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1	Linits	1 4357 1 411		
Γ		42 (5230)	-6.746	-6.384	-6.550	-6.188	-3.27	11	Pass		
	IEEE 802.11ac-	58 (5290)	-6.594	-6.232	-6.646	-6.284	-3.25	11	Pass		
	VHT80	106 (5530)	-7.698	-7.336	-5.559	-5.197	-3.13	11	Pass		
		122 (5610)	-7.216	-6.854	-6.288	-5.926	-3.35	11	Pass		