

FCC PART 90

TEST REPORT

For

Fujian BelFone Communications Technology Co., Ltd.

A15, Huaqiao Economic Development Zone, Shuangyang, Luojiang, Quanzhou, Fujian, China

FCC ID: 2AARFBFTM82501

Report Type:
Original Report

Report Number:

RESZ180208025-00A

Report Date:

Reviewed By:

Reviewed By:

Report Bay Area Compliance Laboratories Corp. (Shenzhen)
6/F., West Wing, Third Phase of Wanli Industrial Building,
Shihua Road, Futian Free Trade Zone, Shenzhen,
Guangdong, China
Tel: +86-755-33320018

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	6
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
APPLICABLE STANDARD	
Result	
FCC §2.1046 & §90.205 - RF OUTPUT POWER	11
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	11
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	13
APPLICABLE STANDARD	13
TEST PROCEDURE	
TEST DATA	13
FCC §2.1049 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	19
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	19
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	25
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	25
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	28
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1055 & §90.213 - FREQUENCY STABILITY	30
APPLICABLE STANDARD	30

TEST PROCEDURE	30
TEST DATA	30
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	32
APPLICABLE STANDARD	32
TEST PROCEDURE	
TEST DATA	33

FCC Part 90

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Fujian BelFone Communications Technology Co., Ltd.'s product, model number: BF-TM8250 UHF (FCC ID: 2AARFBFTM82501) or the "EUT" in this report was a Digital transceiver which was measured approximately: 17.5 cm (L) \times 17.5 cm (W) \times 6.3 cm (H), rated with input voltage: DC 13.8 V.

Report No.: RSZ180208025-00A

EUT Specification:

Operating frequency band	400-470 MHz
Modulation type	4FSK, FM
Channel separation	12.5kHz
Data Output Davier	High: 25 W
Rate Output Power	Low: 10 W

^{*} All measurement and test data in this report was gathered from production sample serial number: 1800186 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2018-02-08.

Objective

This test report is prepared on behalf of *Fujian BelFone Communications Technology Co., Ltd.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 – Private Land Mobile Radio Service

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 90 Page 4 of 34

Measurement Uncertainty

Parameter	uncertainty		
Occupied Channel Bandwidth	±5%		
RF Output Power with Power meter	±0.5dB		
RF conducted test with spectrum	±1.5dB		
All emissions, radiated	±4.88dB		
Temperature	±3°C		
Humidity	±6%		
Supply voltages	±0.4%		

Report No.: RSZ180208025-00A

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 342867, the FCC Designation No. : CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 90 Page 5 of 34

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Report No.: RSZ180208025-00A

EUT Exercise Software

No exercise software was used.

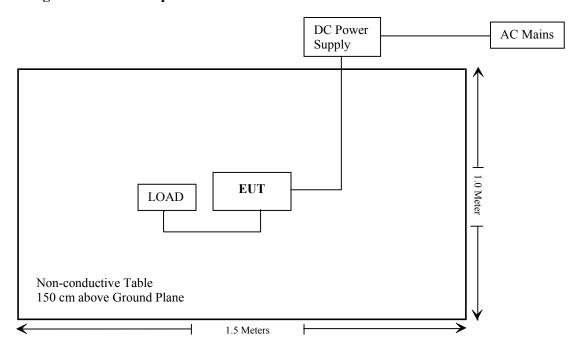
Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
TDK-Lambda	DC Power Supply	Z60-14-L-C	/
/	Load	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Power Cable	1.8	EUT	DC Power Supply
Shielding Detachable RF Cable	0.5	EUT	Load

FCC Part 90 Page 6 of 34

Block Diagram of Test Setup

FCC Part 90 Page 7 of 34

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307(b), §2.1091	Maximum Permissible exposure (MPE)	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Compliance
§2.1049; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051;§90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Report No.: RSZ180208025-00A

FCC Part 90 Page 8 of 34

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Radiated Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2018-01-11	2019-01-11		
НР	Amplifier	HP8447E	1937A01046	2017-11-19	2018-05-17		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21		
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2017-04-24	2018-04-24		
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017-12-22	2020-12-21		
НР	Synthesized Sweeper	HP 8341B	2624A00116	2017-07-02	2018-07-01		
Mini	Amplifier	ZVA-183-S+	5969001149	2017-05-21	2018-05-21		
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17		
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2017-11-19	2018-05-21		
Ducommun technologies	RF Cable	104PEA	218124002	2017-11-19	2018-05-21		
Ducommun technologies	RF Cable	RG-214	1	2017-11-19	2018-05-21		
Ducommun technologies	RF Cable	RG-214	2	2017-11-22	2018-05-22		
COM POWER	Dipole Antenna	AD-100	041000	2017-08-18	2018-08-18		
]	RF Conducted te	est				
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2017-04-24	2018-04-24		
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2017-12-24	2018-12-24		
HP Agilent	RF Communication test set	8920A	3325U00859	2017-06-14	2018-06-13		
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2017-07-02	2018-07-01		
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2017-05-09	2018-05-08		
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2017-11-01	2018-10-31		
Ducommun technologies	RF Cable	RG-214	3	2017-11-22	2018-05-22		
WEINSCHEL	30dB Attenuator	N/A	N/A	2017-11-22	2018-05-23		

Report No.: RSZ180208025-00A

FCC Part 90 Page 9 of 34

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSZ180208025-00A

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Occupational/Controlled Exposure

	Limits for occupational/Controlled Exposure				
Frequency Range (MHz)	Electric Field Magnetic Field Power Strength Strength (V/m) (A/m) (mW/cm²)		Averaging Time (Minutes)		
0.3-1.34	614	1.63	*(100)	6	
1.34-30	1842/f	4.89/f	$*(900/f^2)$	6	
30-300	61.4	0.163	1.0	6	
300-1500	/	/	f/300	6	
1500-100,000	/	/	5.0	6	

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For worst case:

Frequency	Ante	nna Gain	Max average output power	Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
400-470	5.5	3.55	14091.915	55	1.32	1.33

Note: Max tune-up output power is 44.5 dBm (28183.83 mW), the EUT has PTT function, the duty cycle is 50%. So the average power is 14091.915 mW

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 55cm from nearby persons.

Result: Compliance

FCC Part 90 Page 10 of 34

^{* =} Plane-wave equivalent power density

FCC §2.1046 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RSZ180208025-00A

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Tracy Hu on 2018-03-07.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 90 Page 11 of 34

Report No.: RSZ180208025-00A

Note: The rated high power is 25 W. The rated low power is 10 W.

FCC Part 90 Page 12 of 34

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047 and §90.207:

(a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.

Report No.: RSZ180208025-00A

(b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Procedure

Test Method: TIA/EIA-603-D

Test Data

Environmental Conditions

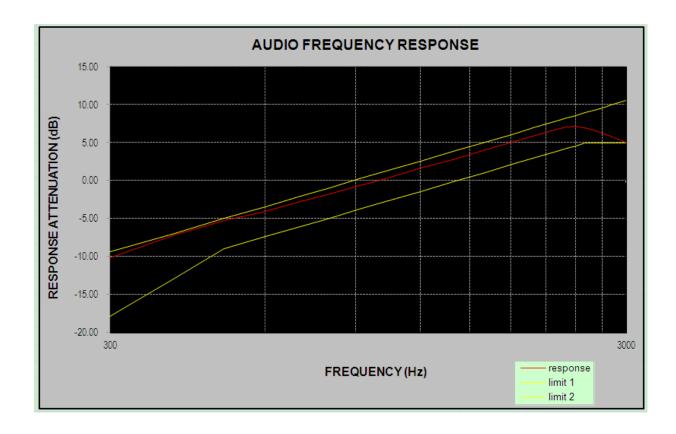
Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Tracy Hu on 2018-03-08.

Test Mode: Transmitting

Please refer to the following tables and plots.

FCC Part 90 Page 13 of 34

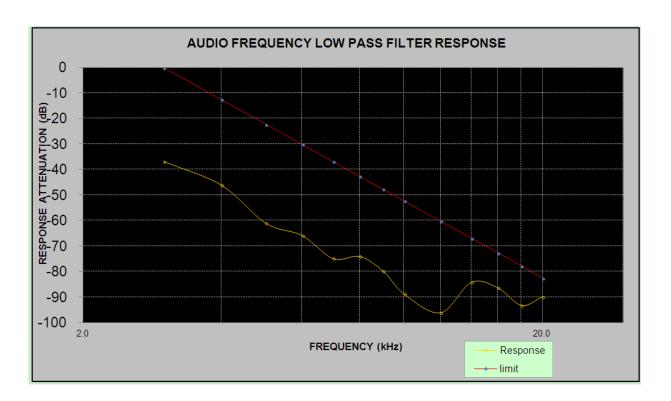

Audio Frequency Response

Report No.: RSZ180208025-00A

Carrier Frequency: 453.2125 MHz, Channel spacing=12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-10.23
400	-7.17
500	-5.32
600	-4.04
700	-2.81
800	-1.81
900	-0.76
1000	0.00
1200	1.68
1400	2.81
1600	4.01
1800	5.02
2000	5.94
2100	6.38
2200	6.78
2300	7.07
2400	7.11
2500	6.97
2600	6.63
2700	6.28
2800	5.83
2900	5.44
3000	5.03

FCC Part 90 Page 14 of 34



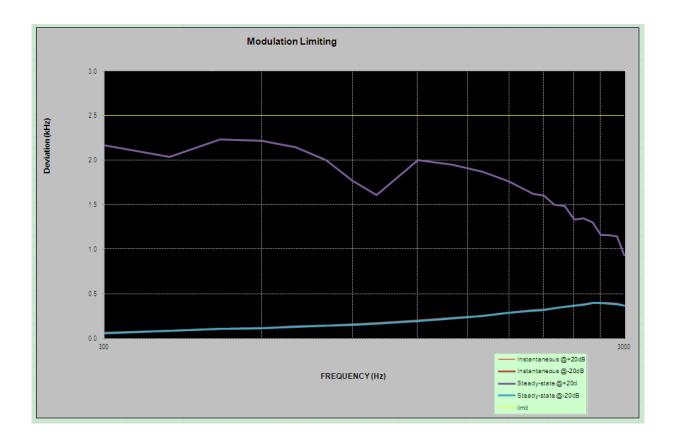
FCC Part 90 Page 15 of 34

Report No.: RSZ180208025-00A

Carrier Frequency: 453.2125 MHz, Channel spacing=12.5 kHz

Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)
1.0	0.0	/
3.0	-36.80	0.0
4.0	-46.02	-12.5
5.0	-60.98	-22.2
6.0	-65.83	-30.1
7.0	-74.89	-36.8
8.0	-74.05	-42.6
9.0	-79.80	-47.7
10.0	-88.82	-52.3
12.0	-96.17	-60.2
14.0	-84.20	-66.9
16.0	-86.39	-72.7
18.0	-93.28	-77.8
20.0	-89.90	-82.5

FCC Part 90 Page 16 of 34


MODULATION LIMITING

Report No.: RSZ180208025-00A

Carrier Frequency: 453.2125 MHz, Channel spacing=12.5 kHz

	Instantaneous		Stead	y-state	
Audio Frequency (Hz)	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	FCC Limit [kHz]
300	2.168	0.062	2.166	0.058	2.500
400	2.047	0.086	2.041	0.082	2.500
500	2.237	0.107	2.237	0.104	2.500
600	2.224	0.115	2.221	0.111	2.500
700	2.150	0.132	2.148	0.129	2.500
800	2.004	0.143	1.999	0.139	2.500
900	1.773	0.154	1.772	0.152	2.500
1000	1.610	0.170	1.612	0.167	2.500
1200	2.006	0.197	2.002	0.195	2.500
1400	1.953	0.228	1.949	0.224	2.500
1600	1.868	0.251	1.867	0.249	2.500
1800	1.762	0.289	1.760	0.286	2.500
2000	1.627	0.313	1.623	0.310	2.500
2100	1.605	0.324	1.601	0.319	2.500
2200	1.506	0.339	1.500	0.336	2.500
2300	1.483	0.356	1.484	0.352	2.500
2400	1.332	0.370	1.331	0.367	2.500
2500	1.351	0.380	1.347	0.377	2.500
2600	1.303	0.397	1.301	0.394	2.500
2700	1.157	0.396	1.157	0.394	2.500
2800	1.163	0.393	1.160	0.390	2.500
2900	1.145	0.386	1.144	0.382	2.500
3000	0.938	0.369	0.935	0.365	2.500

FCC Part 90 Page 17 of 34

FCC Part 90 Page 18 of 34

FCC §2.1049 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Report No.: RSZ180208025-00A

Applicable Standard

FCC §2.1049 and §90.210

Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least: At least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Data

Environmental Conditions

Temperature:	23~25 ℃
Relative Humidity:	50~52 %
ATM Pressure:	100.5~101.0 kPa

The testing was performed by Tracy Hu from 2018-03-08 to 2018-05-10.

FCC Part 90 Page 19 of 34

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)
Analog	12.5	453.2125 High Low	High	9.936	10.337
Analog				9.936	10.337
Digital	12.5	452 2125	High	6.891	8.173
Digital		453.2125	Low	6.731	8.734

Report No.: RSZ180208025-00A

Note: Emission bandwidth was based on calculation method instead of measurement.

Emission Designator Per CFR 47 §2.201& §2.202&, Bn = 2M + 2D

For FM Mode (Channel Spacing: 12.5 kHz)

Emission Designator 11K0F3E In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation. $BW = 2(M+D) = 2*(3.0 \text{ kHz} + 2.5 \text{ kHz}) = 11 \text{ kHz} \rightarrow 11K0$

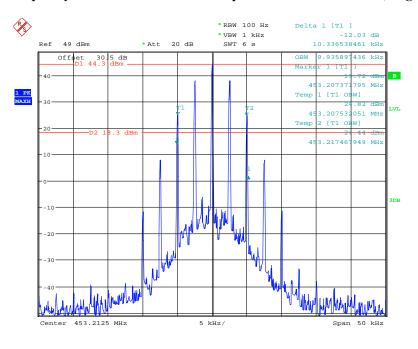
F3E portion of the designator represents an FM voice transmission Therefore, the entire designator for 12.5 kHz channel spacing FM mode is 11K0F3E.

For Digital Mode (Channel Spacing: 12.5 kHz)

Emission Designator 7K60F1D and 7K60F1E

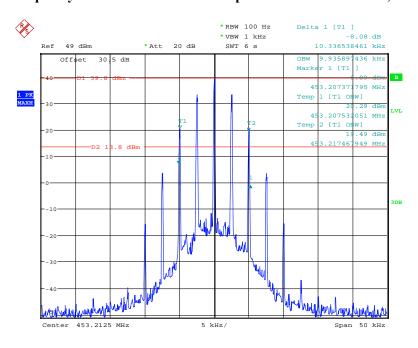
The 99% energy rule (title 47CFR 2.1049) was used for digital mode. It basically states that 99% of the modulation energy falls within X kHz, in this case, 6.891 kHz. The emission mask was obtained from 47CFR 90.210(d).

F1D and F1E portion of the designator indicates digital information.


Therefore, the entire designator for 12.5 kHz channel spacing digital mode is 7K60F1D and 7K60F1E.

FCC Part 90 Page 20 of 34

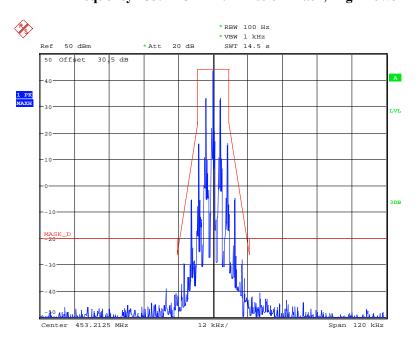
Analog Modulation:


Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, High Power

Report No.: RSZ180208025-00A

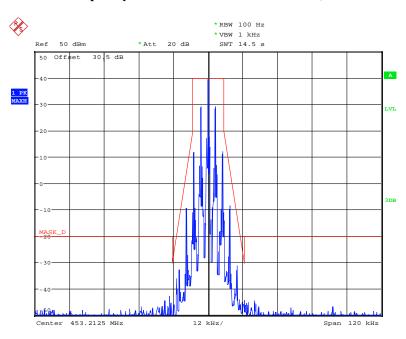
Date: 10.MAY.2018 20:20:38

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power



Date: 10.MAY.2018 20:12:29

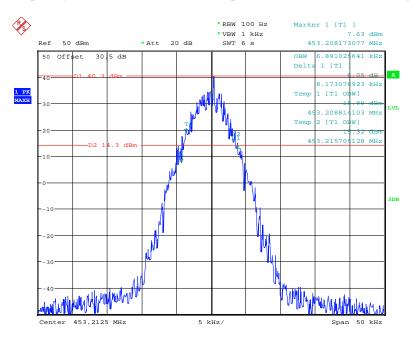
FCC Part 90 Page 21 of 34


Frequency 453.2125 MHz: Emission Mask, High Power

Report No.: RSZ180208025-00A

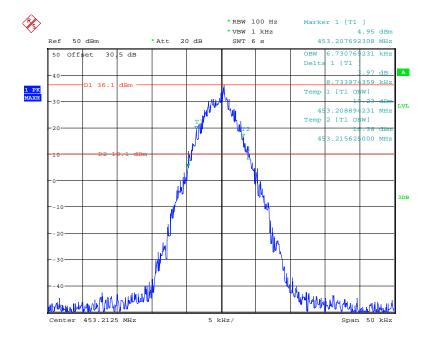
Date: 29.MAR.2018 23:07:22

Frequency 453.2125 MHz: Emission Mask, Low Power


Date: 29.MAR.2018 22:49:25

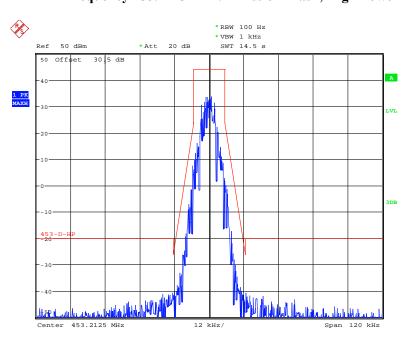
FCC Part 90 Page 22 of 34

Digital Modulation:

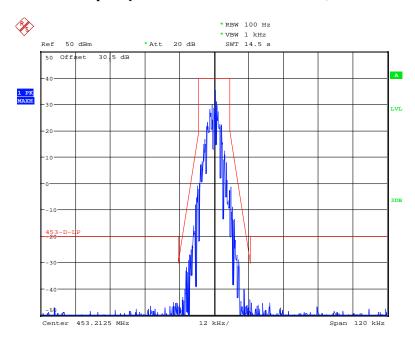

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, High Power

Report No.: RSZ180208025-00A

Date: 8.MAR.2018 00:04:37


Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power

Date: 8.MAR.2018 00:12:15


FCC Part 90 Page 23 of 34

Report No.: RSZ180208025-00A

Date: 8.MAR.2018 00:03:32

Frequency 453.2125 MHz: Emission Mask, Low Power

Date: 8.MAR.2018 00:02:37

FCC Part 90 Page 24 of 34

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RSZ180208025-00A

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Test Procedure

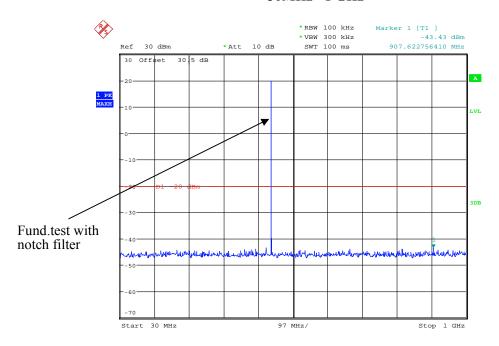
The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

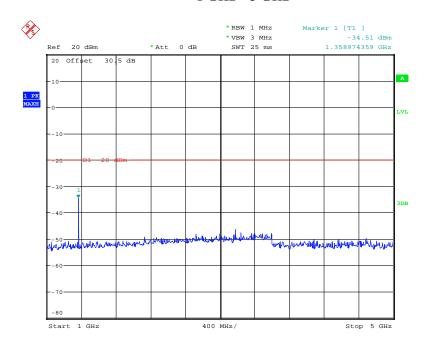
Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Tracy Hu on 2018-03-07.


Test Mode: Transmitting, please refer to the following plots.

FCC Part 90 Page 25 of 34

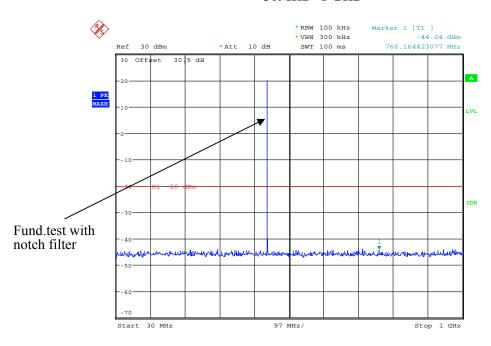
ratories Corp. (Shenzhen) Report No.: RSZ180208025-00A


Analog Modulation:

30MHz - 1 GHz

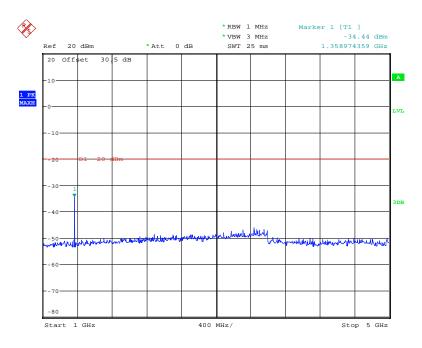
Date: 7.MAR.2018 21:58:23

1 GHz - 5 GHz


Date: 7.MAR.2018 21:59:07

FCC Part 90 Page 26 of 34

Digital Modulation:


30MHz - 1 GHz

Report No.: RSZ180208025-00A

Date: 7.MAR.2018 21:58:03

1 GHz - 5 GHz

Date: 7.MAR.2018 21:59:31

FCC Part 90 Page 27 of 34

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

Report No.: RSZ180208025-00A

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in $dB = 50+10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Tracy Hu on 2018-03-29.

FCC Part 90 Page 28 of 34

Test Mode: Transmitting (High power level)

30MHz - 5GHz:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute		
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			Ana	log Modu	lation 45.	3.2125MH	Iz	_		_
906.425	56.28	110	2.3	Н	-38.7	0.70	0.0	-39.40	-20	19.40
906.425	49.68	290	1.9	V	-45.3	0.70	0.0	-46.00	-20	26.00
1359.64	63.22	210	2.0	Н	-44.7	1.60	7.90	-38.40	-20	18.40
1359.64	61.51	270	1.8	V	-46.7	1.60	7.90	-40.40	-20	20.40
1812.85	58.39	288	2.5	Н	-48.0	1.30	9.30	-40.00	-20	20.00
1812.85	53.63	77	1.3	V	-52.4	1.30	9.30	-44.40	-20	24.40
2266.06	56.14	163	1.6	Н	-49.1	1.30	10.00	-40.40	-20	20.40
2266.06	50.64	24	2.5	V	-54.5	1.30	10.00	-45.80	-20	25.80
			Dig	ital Modu	lation 453	3.2125MH	z			
906.425	55.96	218	2.3	Н	-39.0	0.70	0.0	-39.70	-20	19.70
906.425	50.47	284	2.3	V	-44.5	0.70	0.0	-45.20	-20	25.20
1359.64	61.54	60	1.9	Н	-46.4	1.60	7.90	-40.10	-20	20.10
1359.64	60.22	156	2.3	V	-48.0	1.60	7.90	-41.70	-20	21.70
1812.85	56.37	19	1.7	Н	-50.1	1.30	9.30	-42.10	-20	22.10
1812.85	55.28	57	1.6	V	-50.8	1.30	9.30	-42.80	-20	22.80
2266.06	54.16	134	1.1	Н	-51.1	1.30	10.00	-42.40	-20	22.40
2266.06	49.83	354	1.3	V	-55.3	1.30	10.00	-46.60	-20	26.60

Report No.: RSZ180208025-00A

Note:

Absolute Level = Substituted Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

FCC Part 90 Page 29 of 34

FCC §2.1055 & §90.213 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

Report No.: RSZ180208025-00A

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Tracy Hu on 2018-03-09.

Test Mode: Transmitting

FCC Part 90 Page 30 of 34

Report No.: RSZ180208025-00A

Digital Modulation, Reference Frequency: 453.2125MHz, Limit: ±2.5 ppm, 12.5 kHz					
Test Env	ironment	Frequency Meas	ure with Time Elapsed		
Temperature (°C)			Frequency Error (ppm)		
	Frequency Stability	y versus Input Temper	ature		
50	13.8	453.21222	-0.6112		
40	13.8	453.21218	-0.6995		
30	13.8	453.21222	-0.6112		
20	13.8	453.21223	-0.5891		
10	13.8	453.21218	-0.6995		
0	13.8	453.21217	-0.7215		
-10	13.8	453.21218	-0.6995		
-20	13.8	453.21222	-0.6112		
-30	13.8	453.21227	-0.5009		
	Frequency Stability versus Input Voltage				
20	11.7	453.21221	-0.6333		

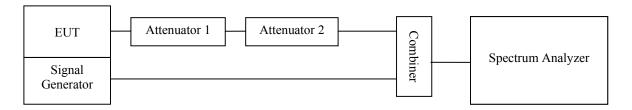
FCC Part 90 Page 31 of 34

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: TIA-603-D 2010, section 2.2.19.3


Test Procedure

a) Connect the EUT and test equipment as shown on the following block diagram.

b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.

Report No.: RSZ180208025-00A

- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ± 4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

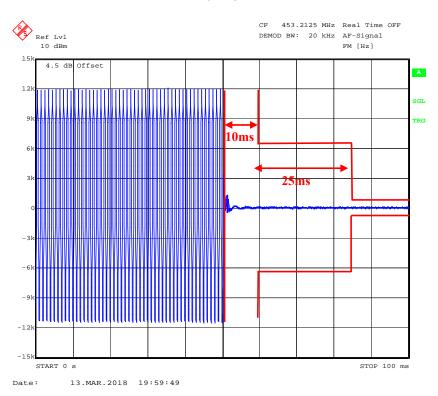
FCC Part 90 Page 32 of 34

Test Data

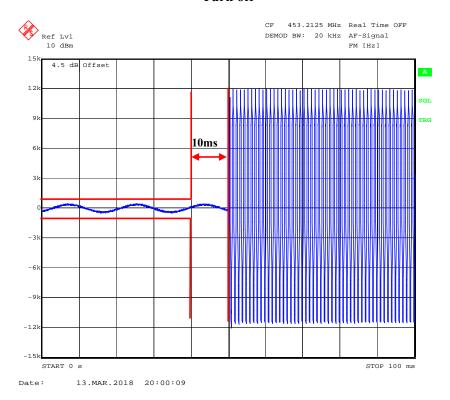
Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Tracy Hu on 2018-03-13.


Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	10 (t1)	<+/-12.5 kHz	
12.5	25(t2)	<+/-6.25 kHz	Pass
	10 (t3)	<+/-12.5 kHz	

Report No.: RSZ180208025-00A


Please refer to the following plots.

FCC Part 90 Page 33 of 34

Turn on

Turn off

***** END OF REPORT *****

FCC Part 90 Page 34 of 34