

FCC TEST REPORT

Test report On Behalf of KINGRAY ELECTRONICS Co., LTD For Wireless earbuds Model No.: BB2720,BP1253,KR801 FCC ID: 2AML6KR801

Prepared for : KINGRAY ELECTRONICS Co., LTD 3F, Building 13th, Xingwei the third Industrial Park, Fenghuang Village, Fuyong town, Baoan District, Shenzhen, Guangdong, China

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

TEST REPORT

Applicant's name	KINGRAY ELECTRONICS Co., LTD 3F, Building 13th, Xingwei the third Industrial Park, Fenghuang
Address	Village, Fuyong town, Baoan District, Shenzhen, Guangdong, China
Manufacture's Name	KINGRAY ELECTRONICS Co., LTD
Address	3F, Building 13th, Xingwei the third Industrial Park, Fenghuang Village, Fuyong town, Baoan District, Shenzhen, Guangdong, China
Product description	
Trade Mark:	1
Product name:	Wireless earbuds
Model and/or type reference:	BB2720,BP1253,KR801
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Nov. 12, 2019 ~. Nov.27, 2019
Date of Issue:	Nov.27, 2019
Test Result:	Pass

:

:

:

Testing Engineer

Gorf Dianl (Gary Qian) Edan Mu

Technical Manager

(Eden Hu)

Authorized Signatory

Jason

(Jason Zhou)

Contents

Product	Description	
	ent Under Test	
	scription of the Equipment under Test (EUT)	
	ration mode	
	agram of Test Setup	
	Submittal(s) / Grant (s)	
Modifica	tions	
<u>TEST</u>	ENVIRONMENT	
TEST FA		
Environ	nental conditions	
Environ Summar	nental conditions y of measurement results	
Environi Summar Stateme	nental conditions y of measurement results nt of the measurement uncertainty	
Environi Summar Stateme Equipme	nental conditions y of measurement results	
Environi Summar Stateme Equipme	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u>	
Environi Summar Stateme Equipme TEST 4.1.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission	
Environi Summar Stateme Equipme TEST 4.1. 4.2.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission	
Environi Summar Stateme Equipme TEST 4.1.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission	
Environi Summar Stateme Equipmo TEST 4.1. 4.2. 4.3.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
Environi Summar Stateme Equipmo TEST 4.1. 4.2. 4.3. 4.4.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission	
Environi Summar Stateme Equipmo TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
Environi Summar Stateme Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
Environi Summar Stateme Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test CONDITIONS AND RESULTS	
Environi Summar Stateme Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>DA 00-705</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

2. <u>SUMMARY</u>

2.1. Product Description

Name of EUT	Wireless earbuds	
Trade Mark:	1	
Model Number	BB2720	
List Model:	BP1253,KR801	
Power Rating	DC 3.7V and DC 5V From Adapter	
Adapter(Auxiliary test Provided by the	Mode:EP-TA20CBC	
laborator)	Input:AC100-240V-50/60Hz, 0.5A	
	Output:DC 5V,2A	
FCC ID	2AML6KR801	
Bluetooth FCC Operation frequency	2402MHz-2480MHz	
Bluetooth Modulation	GFSK,π/4DQPSK	
Antenna Type	PCB antenna	
Antenna gain	0.00dBi	

2.2. Equipment Under Test

Power supply system utilised

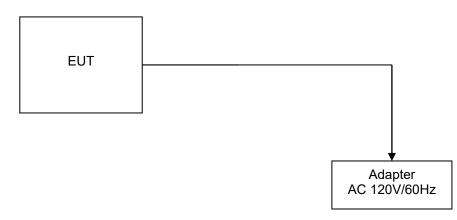
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		\bullet	Other (specified in blank bel	ow))

DC 3.7V and DC 5V From Adapter

2.3. Short description of the Equipment under Test (EUT)

This is a Wireless earbuds.

For more details, refer to the user's manual of the EUT.


2.4. EUT operation mode

The Applicant provides test software (AT directive) to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/39/78 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)	
00	2402	40	2442	
01	2403	41	2443	
02	2404	42	2444	
03	2405	43	2445	
04	2406	44	2446	
05	2407	45	2447	
06	2408	46	2448	
07	2409	47	2449	
08	2410	48	2450	
09	2411	49	2451	
10	2412	50	2452	
11	2413	51	2453	
12	2414	52	2454	
13	2415	53	2455	
14	2416	54	2456	
15	2417	55	2457	
16	2418	56	2458	
17	2419	57	2459	
18	2420	58	2460	
19	2421	59	2461	
20	2422	60	2462	
21	2423	61	2463	
22	2424	62	2464	
23	2425	63	2465	
24	2426	64	2466	
25	2427	65	2467	
26	2428	66	2468	
27	2429	67	2469	
28	2430	68	2470	
29	2431	69	2471	
30	2432	70	2472	
31	2433	71	2473	
32	2434	72	2474	
33	2435	73	2475	
34	2436	74	2476	
35	2437	75	2477	
36	2438	76	2478	
37	2439	70	2479	
38	2433	78	2480	
<u> </u>	2440	10	2700	

2.5. Block Diagram of Test Setup

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AML6KR801 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.3. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	🛛 Middle					complies
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK	⊠ Full	GFSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(b)(1)	Maximum output power	GFSK Π/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest					complies
§1 5.205	Band edge compliance radiated	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	\boxtimes				complies
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle					complies

Remark:

1. The measurement uncertainty is not included in the test result.

2. NA = Not Applicable; NP = Not Performed

3. We tested all test mode and recorded worst case in report

3.4. Statement of the measurement uncertainty

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

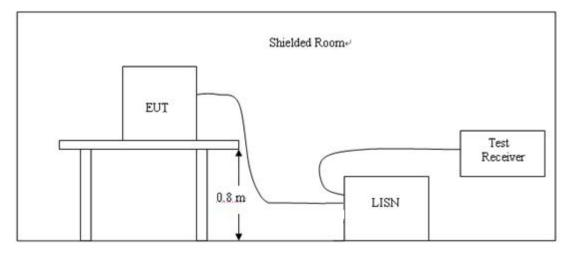
3.5. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2018	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Dec. 28, 2018	1 Year
3.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2018	1 Year
4.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2018	1 Year
5.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2018	1 Year
6.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
7.	High gain antenna	Schwarzbeck	LB- 180400KF	HKE-054	Dec. 28, 2018	1 Year
8.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2018	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2018	1 Year
10.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2018	1 Year
11.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2018	1 Year
12	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 28, 2018	1 Year
13	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2018	1 Year
14	High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 28, 2018	1 Year
15	Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A
16	Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
17.	RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A
18.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	3 Year
19.	RF test software	Tonscend	JS1120-4	HKE-113	N/A	N/A
20.	RF test software	Tonscend	JS1120-3	HKE-114	N/A	N/A
21.	RF test software	Tonscend	JS1120-1	HKE-115	N/A	N/A
22.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
23.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2018	1 Year
24.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2018	1 Year

Page 10 of 46

Report No.: HK1911252988-E

25	Power meter	Agilent	E4419B	HKE-085	Dec. 28, 2018	1 Year
26	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2018	1 Year
27	RF Cable(below1GHz)	Times	9kHz-1GHz	HKE-117	Dec. 28, 2018	1 Year
28.	RF Cable(above 1GHz)	Times	1-40G	HKE-034	Dec. 28, 2018	1 Year
29	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	Dec. 28, 2018	1 Year
30	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year


Note: 1. The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

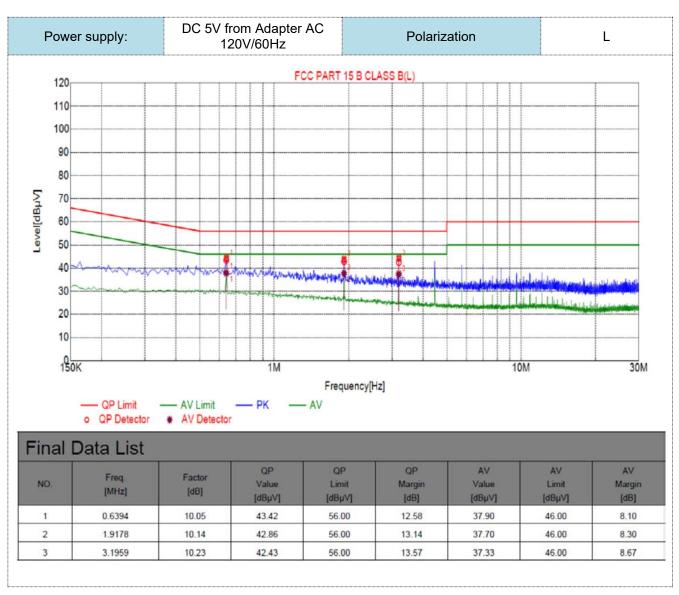
TEST CONFIGURATION

TEST PROCEDURE

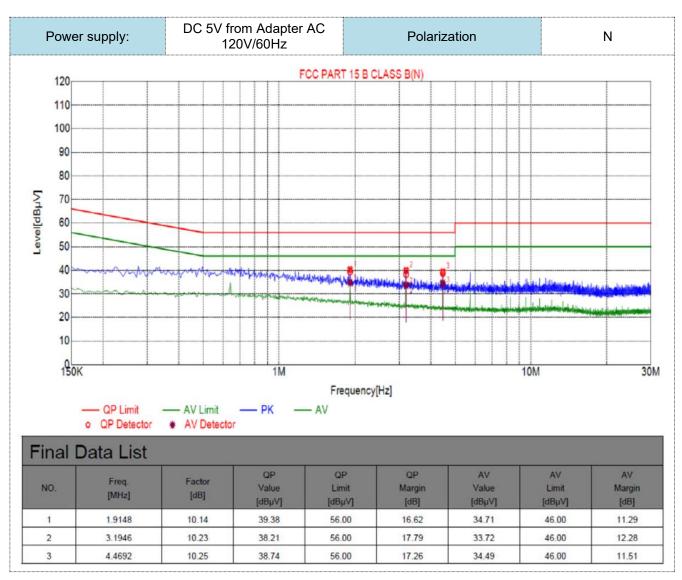
- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

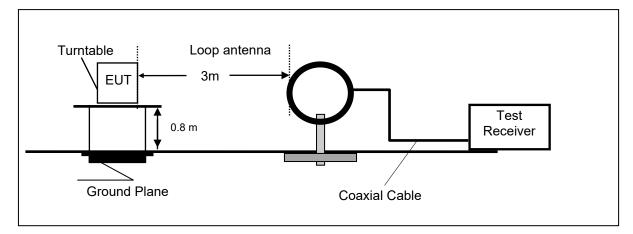
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

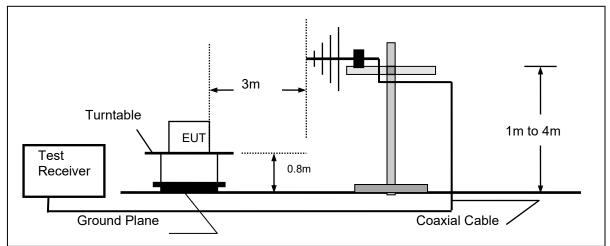

	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

TEST RESULTS

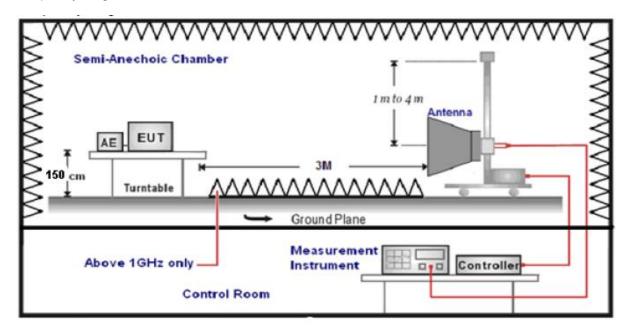

Remark:

- 1. All modes of GFSK, Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.




4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

- 1. The EUT was placed on a turn table which is 12mm above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

 Test Frequency range
 Test Antenna Type

 Test Distance

rest requeitcy range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

· .							
	Test Frequency range	Test Receiver/Spectrum Setting	Detector				
ſ	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto		QP				
ſ	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP				
ſ	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP				
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak				

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

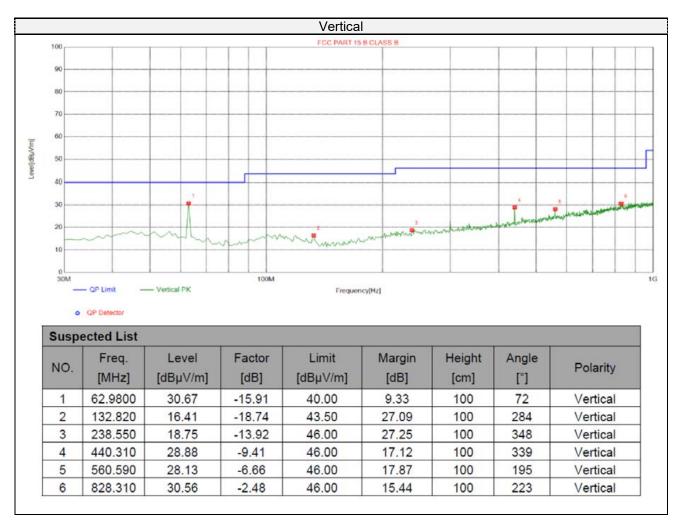
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

- Remark: 1. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
 - 2.For test below 1GHz all modes of GFSK, and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Remark: For test above 1GHz GFSK, Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

lorizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastan		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4804	60.35	-3.64	56.71	74	-17.29	peak		
4804	46.17	-3.64	42.53	54	-11.47	AVG		
7206	55.32	-0.95	54.37	74	-19.63	peak		
7206	43.09	-0.95	42.14	54	-11.86	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	63.98	-3.64	60.34	74	-13.66	peak
4804	46.92	-3.64	43.28	54	-10.72	AVG
7206	55.09	-0.95	54.14	74	-19.86	peak
7206	43.67	-0.95	42.72	54	-11.28	AVG
	r - Antonno Eq		es Pro amplifior			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle (2441MHz)

Horizontal:

r	Nator				•			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4882	62.35	-3.51	58.84	74	-15.16	peak		
4882	45.93	-3.51	42.42	54	-11.58	AVG		
7326	56.11	-0.82	55.29	74	-18.71	peak		
7326	42.86	-0.82	42.04	54	-11.96	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical:								
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4882	62.07	-3.51	58.56	74	-15.44	peak		
4882	45.29	-3.51	41.78	54	-12.22	AVG		
7326	55.32	-0.82	54.5	74	-19.5	peak		
7326	43.26	-0.82	42.44	54	-11.56	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

CH High (2480MHz) Horizontal:

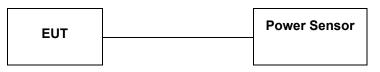
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4960	62.16	-3.43	58.73	74	-15.27	peak		
4960	45.58	-3.43	42.15	54	-11.85	AVG		
7440	56.79	-0.75	56.04	74	-17.96	peak		
7440	44.51	-0.75	43.76	54	-10.24	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical:

	Meter					
Frequency	Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	61.05	-3.43	57.62	74	-16.38	peak
4960	46.46	-3.43	43.03	54	-10.97	AVG
7440	57.44	-0.75	56.69	74	-17.31	peak
7440	43.91	-0.75	43.16	54	-10.84	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:


(1) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

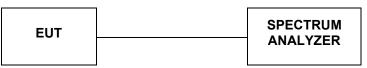
TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS


Туре	Channel	Peak Output power (dBm)	Limit (dBm)	Result
	00	0.015		
GFSK	39	-0.389	21	Pass
	78	-1.328		
	00	0.492		
π/4DQPSK	39	0.135	21	Pass
	78	-0.983		

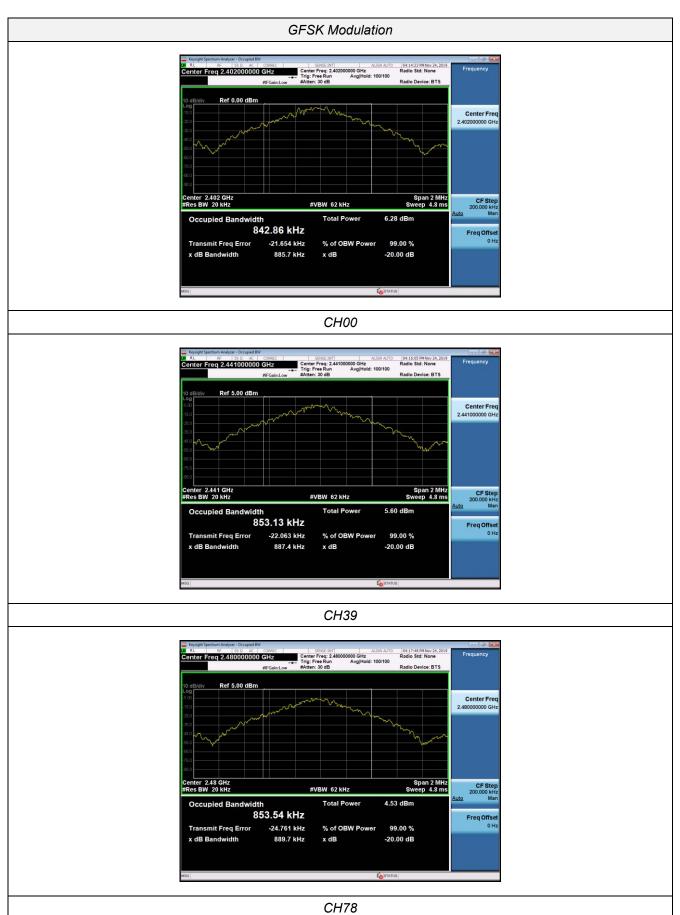
Note: 1.The test results including the cable lose.

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

Modulation	Channel	20dB bandwidth (MHz)	Result
	CH00	0.8857	
GFSK	CH39	0.8874	
	CH78	0.8897	Pass
	CH00	1.334	Fass
π/4DQPSK	CH39	1.285	
	CH78	1.276	

4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

<u>LIMIT</u>

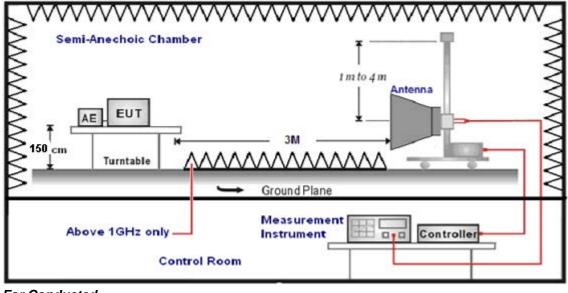
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.


TEST RESULTS

4.5.1 GFSK Test Mode

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
OFOK	CH38	1 0015	2/3* 20dB BW or	Daga
GFSK -	CH39	1.0015	20dB BW	Pass
π/4DQPSK	CH38	1.3238	2/3* 20dB BW or	Pass
II/4DQPSK	CH39	1.3238	20dB BW	Fass

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle


4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:

б.	Setting test receiver/spectrum as following table states:					
	Test Frequency range	ange Test Receiver/Spectrum Setting				
		Peak Value: RBW=1MHz/VBW=3MHz,				
	1GHz-40GHz	Sweep time=Auto	Peak			
	19112-409112	Average Value: RBW=1MHz/VBW=10Hz,	reak			
		Sweep time=Auto				
-						

<u>LIMIT</u>

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

4.6.1 For Radiated Bandedge Measurement

Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (V	vorst case)					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	60.23	-5.81	54.42	74	-19.58	peak
2390	42.75	-5.81	36.94	54	-17.06	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	61.75	-5.81	55.94	74	-18.06	peak
2390	43.29	-5.81	37.48	54	-16.52	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

	/					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	59.63	-5.65	53.98	74	-20.02	peak
2483.5	42.68	-5.65	37.03	54	-16.97	AVG
Pomark: Easter - Antonna Easter + Cable Loss Pro amplifier						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	62.71	-5.65	57.06	74	-16.94	peak
2483.5	44.06	-5.65	38.41	54	-15.59	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.						

t 2.31000 GHz S BW 100 kHz

#VBW 300 kHz

2.390 00 GHz 2.400 00 GHz

2.401 96 GHz

4.6.2 For Conducted Bandedge Measurement

Stop Fr

CF Ste

Ma

2 40

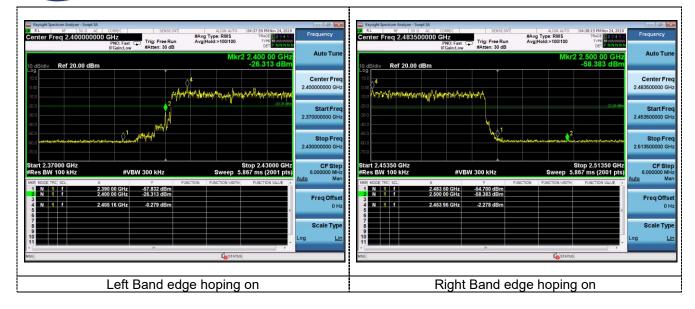
Stop 2.40350 GH

Sween

#VBW 300 kHz

rt 2.47850 GH

Stop Fr


CF Step 2.150000 M

Ma

2.50

Stop 2.50000 GHz Sweep 2.133 ms (2001 pts)

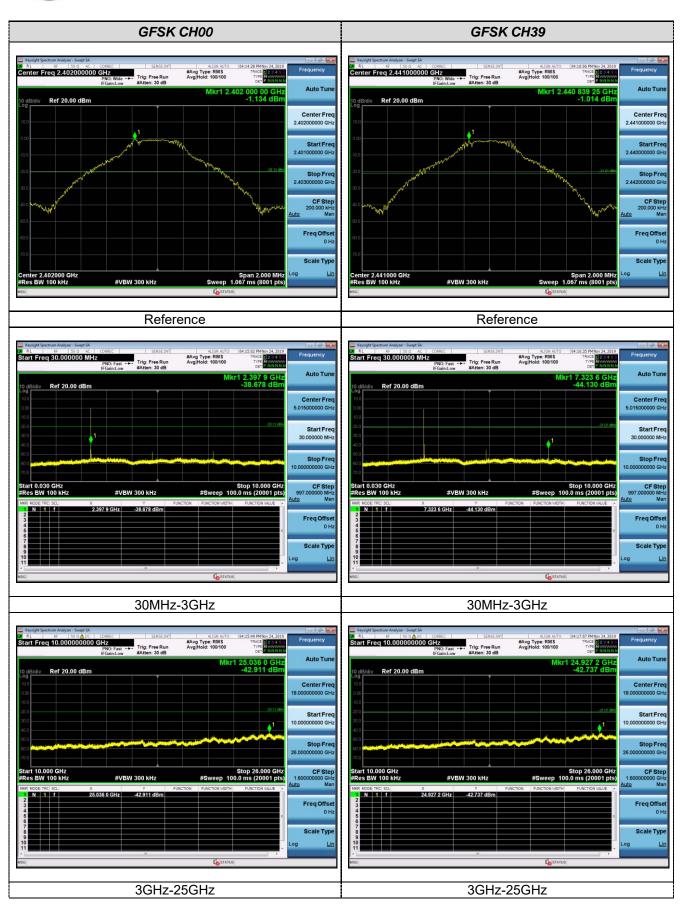
4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and mwasure frequeny range from 9KHz to 25GHz.

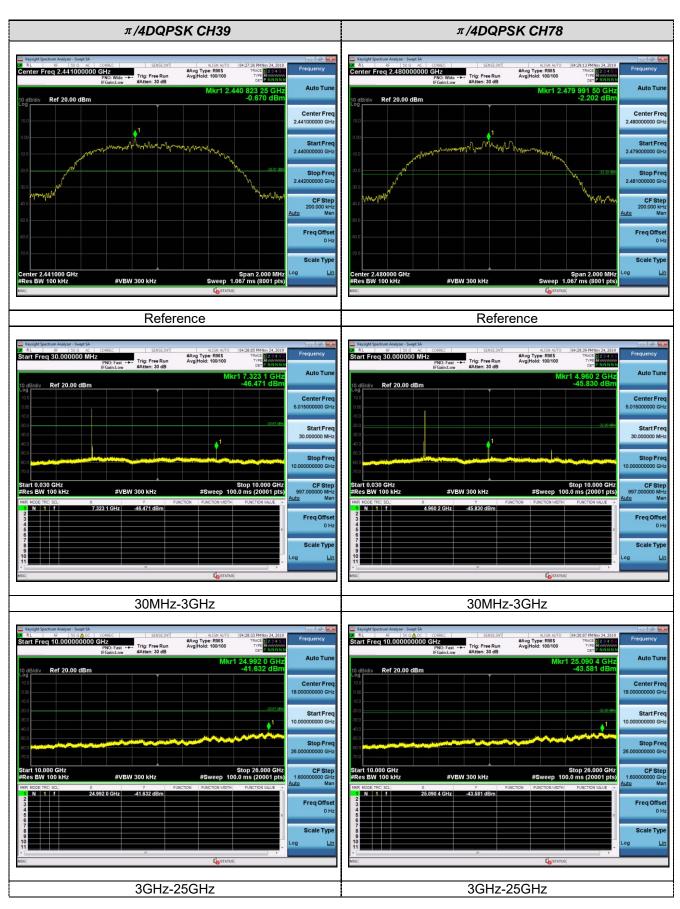
<u>LIMIT</u>

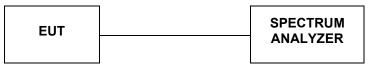

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.


TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

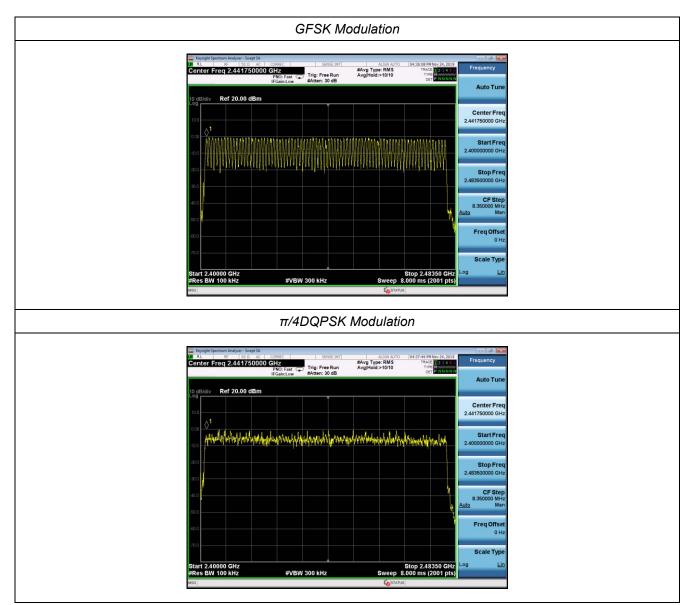




4.8. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.

<u>LIMIT</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	>1 <i>E</i>	Deee
π/4 DQPSK	79	≥15	Pass

4.9. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

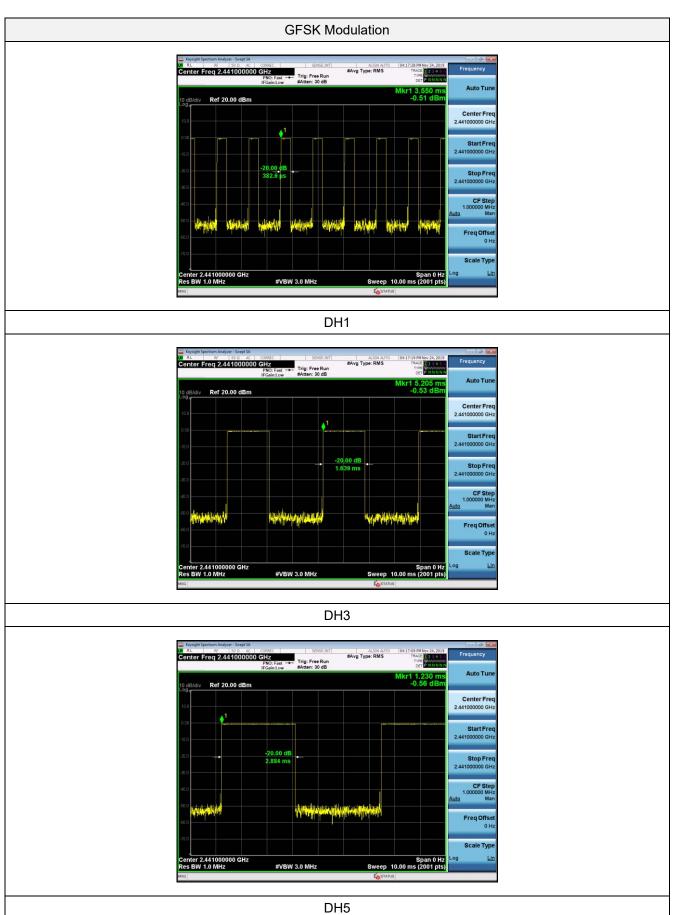
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

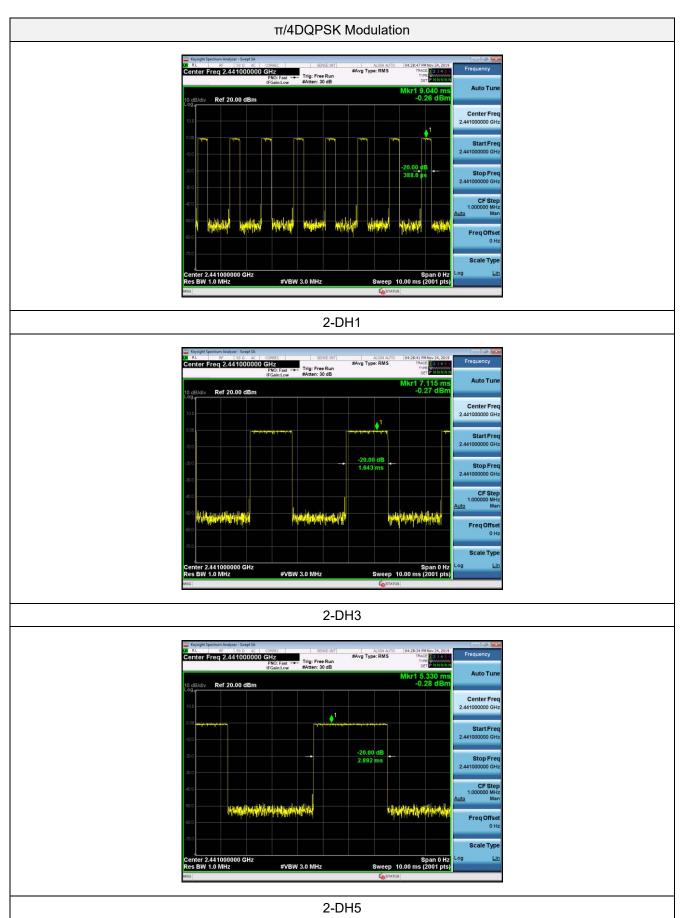
<u>LIMIT</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS


Modulation	Packet	Pulse time (ms)	Dwell time (second)	Limit (second)	Result
	DH1	0.383	0.123		
GFSK	DH3	1.639	0.262	0.40	Pass
	DH5	2.884	0.308		
	DH1	0.389	0.124		
π/4 DQPSK	DH3	1.643	0.263	0.40	Pass
	DH5	2.892	0.308		

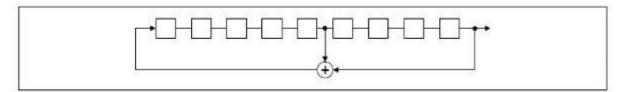
Note:


1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1
 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3
 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage.And the result is fed back to the input of the frist stage.The sequence begins with the frist one of 9 consecutive ones,for example:the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0246	62 64 78 1	73 75 77
		111

Each frequency used equally one the average by each transmitter.

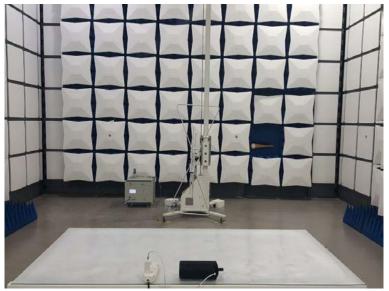
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.11. Antenna Requirement

Standard Applicable

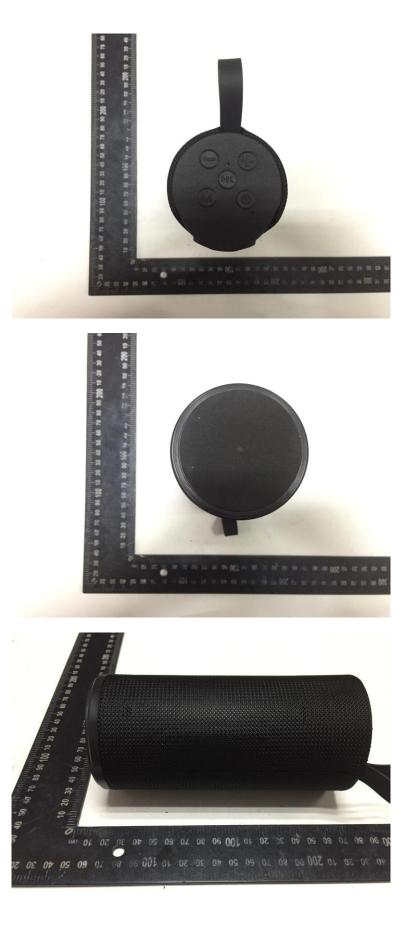
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

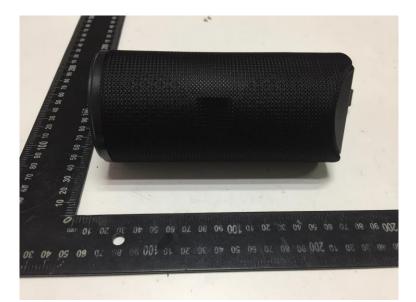
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Antenna Information

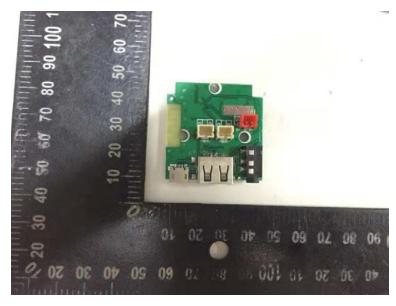
The antenna is PCB antenna, The directional gains of antenna used for transmitting is 0.00 dBi.

5. Test Setup Photos of the EUT





6. Photos of the EUT



.....End of Report.....