

XCHARGE Energy USA Inc RF TEST REPORT

REPORT TYPE: FCC Part 15.225 RF Report

MODEL: Please see details in page 6 of this report

REPORT NUMBER: 2406B0910SHA-001

ISSUE DATE: December 4, 2024

DOCUMENT CONTROL NUMBER: TTRF15.225_V1 © 2018 Intertek

intertek

TEST REPORT

Intertek Testing Services (Shanghai FTZ) Co., Ltd. Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 www.intertek.com

Report no.: 2406B0910SHA-001

Applicant:	XCHARGE Energy USA Inc 19121 Marketplace Avenue, Building 2, Suite 2, 145. Kyle, Texas, 78640
Manufacturer:	Beijing X-CHARGE Technology Co., Ltd No.12 Shuangyang Road, Daxing District, Beijing, 100176
Factory:	Beijing X-CHARGE Technology Co., Ltd No.12 Shuangyang Road, Daxing District, Beijing, 100176
FCC ID:	2BCXO-C7AM

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification: **47CFR Part 15 (2023)**: Radio Frequency Devices (Subpart C)

ANSI C63.10 (2020): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

PREPARED BY:

REVIEWED BY:

rie.li

Project Engineer Scout Gong Reviewer Eric Li Total Quality. Assured. TEST REPORT

Content

RE	VISION	HISTORY	4
м	EASURE	MENT RESULT SUMMARY	5
1	GEN	IERAL INFORMATION	6
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	6
	1.2		
	1.3	DESCRIPTION OF TEST FACILITY	
2			
2	-	STANDARDS OR SPECIFICATION	-
	2.1 2.2	Mode of operation during the test	
	2.2	Test software list	-
	2.3	TEST SOFTWARE LIST	-
	2.4	TEST PRIPHERALS LIST	
	2.6	INSTRUMENT LIST	-
	2.0	MEASUREMENT LIST	-
2		DAMENTAL EMISSION	
3			
	3.1		
	3.2	Measurement Procedure	
	3.3		
	3.4	Test Results of Fundamental Emissions	
4	SPU	RIOUS EMISSION	
	4.1	Liмit	.16
	4.2	Measurement Procedure	.16
	4.3	Test Results of Radiated Emissions	. 18
5	FRE	QUENCY STABILITY (TEMPERATURE VARIATION)	22
	5.1	Test limit	.22
	5.2	TEST CONFIGURATION	.22
	5.3	TEST PROCEDURE AND TEST SETUP	.23
	5.4	Test protocol	.23
6	FRE	QUENCY STABILITY (VOLTAGE VARIATION)	24
	6.1	TEST LIMIT	.24
	6.2	TEST CONFIGURATION	.24
	6.3	TEST PROCEDURE AND TEST SETUP	.24
	6.4	Test protocol	.25
7	CON	IDUCTED EMISSIONS	26
	7.1	LIMIT	.26
	7.2	Test Configuration	-
	7.3	Measurement Procedure	.27
	7.4	Test Results of Conducted Emissions	
8	20D	B BANDWIDTH	32
-	8.1		
	8.2	Test configuration.	-
	8.3	Test procedure and test set up.	
	8.4	Test PROTOCOL	
9	A N I T	ENNA REQUIREMENT	25
3			22

Revision History

Report No.	Version	Description	Issued Date
2406B0910SHA-001	Rev. 01	Initial issue of report	December 4, 2024

Measurement Result Summary

TEST ITEM	FCC REFERENCE	RESULT
Fundamental emission	15.225(a) (b) (c)	Pass
Spurious emission	15.225(d)	Pass
Frequency stability	15.225(e)	Pass
Conducted emissions	15.207	Pass
99% and 20dB Bandwidth	15.215(c)	Pass
Antenna requirement	15.203	Pass

Notes:

- 1. NA =Not Applicable
- 2. The determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.
- 3. Additions, Deviations and Exclusions from Standards: None.

Intertek Total Quality. Assured. TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	DC Electric Vehicle Charging Station
Type/Model:	C7AM-400-CC, C7AM-360-CC, C7AM-320-CC, C7AM-280-CC, C7AM-240-CC C7AM-400-LQ-CC, C7AM-360-LQ-CC, C7AM-320-LQ-CC, C7AM-280-LQ-CC, C7AM-240-LQ-CC
Description of EUT:	EUT is a DC electric vehicle charger station with RFID function, it supports LTE function. The design, construction and components are the same, the only difference is the output power which is achieved by different numbers of power modules and associated wiring. The model with suffix "LQ" is product with liquid cooling pump and EV connectors. Model C7AM-240-LQ-CC was tested as a representative in this test report. Here is the certificate information about the wireless modules which EUT equipped. The POS machine communicate with the EUT through network cable and the POS machine does not transmit wireless signals. For the wireless modular, FCC ID is 2AANYIR6X5-S. For the POS machine, FCC ID is 2AHPPAPX01.
Rating:	For General models: Input: 3P 480VAC, 60Hz, up to 570A; Output: 200- 1000VDC, up to 400A, 240 - 400kW. For models with suffix LQ (Liquid cooled connector): 3P 480VAC, 60Hz, up to 570A; Output: 200-1000VDC, up to 500A, 240 - 400kW.
EUT type:	Tabletop Floor standing
Software Version:	/
Hardware Version:	/
Serial numbers:	A240610-05-001
Sample received date:	June 10, 2024
Date of test:	June 10, 2024, to November 25, 2024

1.2 Technical Specification

Frequency Range:	13.56 MHz ~ 13.56 MHz
Modulation:	ASK
Antenna:	PCB antenna

Total Quality. Assured. TEST REPORT

1.3 Description of Test Facility

Name:	Intertek Testing Services (Shanghai FTZ) Co., Ltd.
Address:	Building 86, No. 1198 Qinzhou Road (North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized, certified, or accredited by these	CNAS Accreditation Lab Registration No. CNAS L21189
organizations:	FCC Accredited Lab Designation Number: CN0175
	IC Registration Lab CAB identifier.: CN0014
	VCCI Registration Lab Member No: 3598 (Registration No.: R-14243, G-10845, C-14723, T- 12252)
	A2LA Accreditation Lab Certificate Number: 3309.02

Test were contracted by the following laboratories:

Subcontractor:

Name:	JiangSu Electronic Information Security Testing Evaluation Center
Address:	No.100 of Jinshui Road, Binhu District
A2LA Accreditation Lab Certificate Number:	6385.01

intertek Total Quality. Assured.

TEST REPORT

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2023) ANSI C63.10 (2020)

2.2 Mode of operation during the test

While testing, the internal modulation and continuous transmission was applied.

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	SKET Auto EMC Test Software	Keleto	V3.0
Radiated emission	SKET Auto EMC Test Software	Keleto	V3.0

2.4 Test peripherals list

ltem No	Description	Band and Model	S/No
1	Resistor Load	-	-

2.5 Test environment condition:

Test items	Temperature	Humidity
Radiated emission	18°C	64% RH
Power line conducted emission	18°C	64% RH

Total Quality. Assured. TEST REPORT

2.6 Instrument list

Conducted Emission							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	Test Receiver	R&S	ESU8	100186	2025-02-23		
\square	A.M.N.	-	NNLK8121	8121466	2025-02-05		
\square	Shielded room	-	-	PB-06	2025-02-05		
Radiat	ed Emission						
Used	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	Test Receiver	R&S	ESCI	100065	2025-01-31		
\square	Bilog Antenna	-	VULB9162	00682	2025-09-29		
\square	Active loop antenna	-	HFH2-Z2	100256	2025-08-14		
\square	Semi-anechoic chamber	-	-	4400	2025-01-31		
RF test	:						
Used	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	Spectrum Analyzer	Keysight	N9030B	EC 6078	2025-03-18		
	Climate chamber	GWS	MT3065	EC 6021	2025-03-07		
Additio	onal instrument						
Used	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	Thermo-Hygrograph	Testo	175h1	EC 6640	2025-08-29		

Intertek Total Quality. Assured. TEST REPORT

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Expanded Uncertainty (k=2)
Conducted emission at mains parts	9kHz ~ 150kHz	3.10 dB
Conducted emission at mains ports	150kHz ~ 30MHz	3.10 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.20 dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	4.40 dB
	6GHz ~ 18GHz	4.40 dB

intertek Total Quality. Assured.

TEST REPORT

3 Fundamental Emission

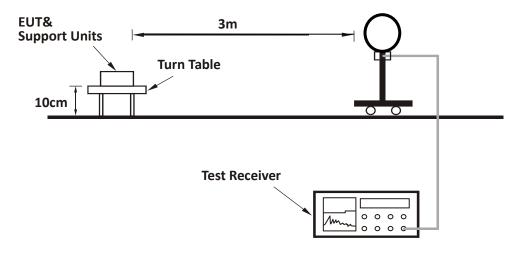
Test result: PASS

3.1 Limit

Frequencies (MHz)	Limit at 30m (dBuV/m)	Limit at 3m (dBuV/m)
13.110 - 13.410	40.50	80.50
13.410 – 13.553	50.50	90.50
13.553 – 13.567	84.00	124.00
13.567 – 13.710	50.50	90.50
13.710 - 14.010	40.50	80.50

3.2 Measurement Procedure

- a) The EUT was placed on a 0.1m plank above the ground at a 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to PK Detect Function and Specified Bandwidth with Maximum Hold Mode.

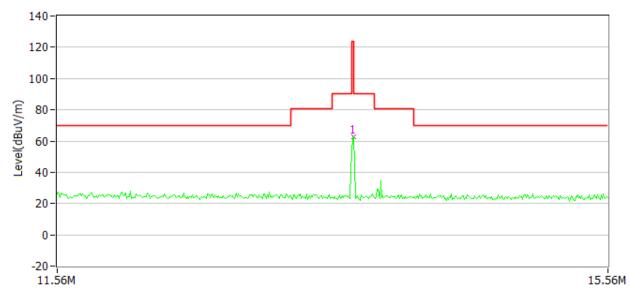

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

Total Quality. Assured.

intertek

3.3 Test Configuration



intertek Total Quality. Assured. TEST REPORT


Antenna Polarization: X axis

3.4 Test Results of Fundamental Emissions

Antenna Polarization: Y axis

Intertek Total Quality. Assured. TEST REPORT

Antenna Polarization: Z axis

Antenna Polarization	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
Х	13.56	62.60	20.50	124.00	61.40	PK
Y	13.56	62.60	20.50	124.00	61.40	РК
Z	13.56	62.60	20.50	124.00	61.40	PK

Remark:

- 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically
- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading

Example:

Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV Limit = 40.00dBuV/m Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB

intertek Total Quality. Assured.

TEST REPORT

4 Spurious Emission

Test result: PASS

4.1 Limit

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

4.2 Measurement Procedure

For Radiated emission below 30MHz:

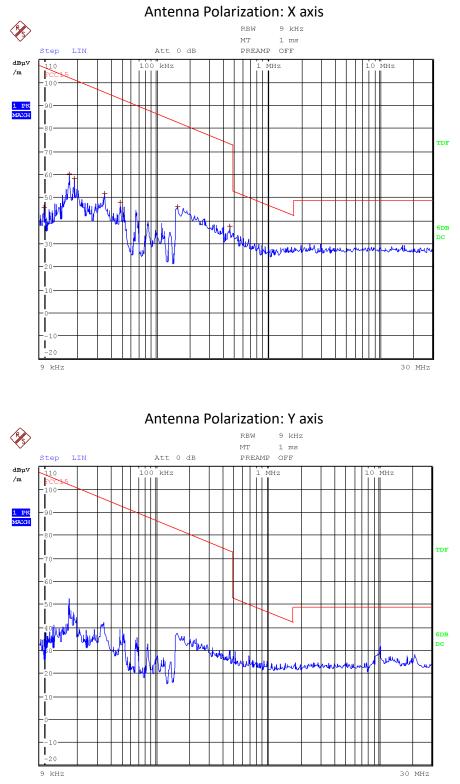
- f) The EUT was placed on a 0.1m plank above the ground at a 10 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- g) The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- h) Both X and Y axes of the antenna are set to make the measurement.
- i) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- j) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

- a) The EUT was placed on a 0.1m plank above the ground at a 10 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.


Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. All modes of operation were evaluated and the worst-case emissions were reported

intertek Total Quality. Assured. TEST REPORT

4.3 Test Results of Radiated Emissions

Test Curve (below 30MHz):

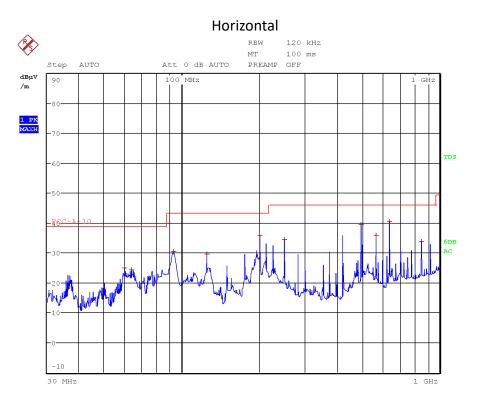
Intertek Total Quality. Assured. TEST REPORT

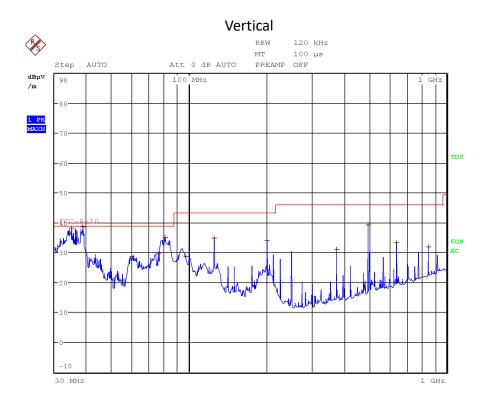
Test data below 30MHz:

Frequency	Limit (dBuV/m)	Corrected Reading (dBuV/m)	Margin (dB)	Detector	Polarity
9.800 kHz	106.85	45.62	61.23	РК	Х
16.400 kHz	102.38	60.27	42.11	РК	Х
18.300 kHz	101.43	58.35	43.08	РК	Х
34.400 kHz	95.96	51.66	44.30	РК	Х
47.400 kHz	93.17	47.90	45.27	РК	Х
154.500 kHz	82.91	45.83	37.08	РК	Х
451.500 kHz	73.60	37.43	36.17	РК	Х
12.100 kHz	105.02	41.17	63.85	РК	Y
16.400 kHz	102.38	52.48	49.90	РК	Y
33.900 kHz	96.08	42.05	54.03	РК	Y
47.300 kHz	93.19	39.07	54.12	РК	Y
154.500 kHz	82.92	37.47	45.45	РК	Y
10.356 kHz	48.59	33.52	15.07	РК	Y

Remark:

1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.


2. Corrected Reading = Original Receiver Reading + Correct Factor


3. Margin = Limit - Corrected Reading

4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

intertek Total Quality. Assured. TEST REPORT

Test Curve (30MHz to 1000MHz):

Intertek Total Quality. Assured. TEST REPORT

Test data (30MHz to 1000MHz)

Frequency (MHz)	Limit (dBuV/m)	Corrected Reading (dBuV/m)	Margin (dB)	Detector	Polar
200.00	43.50	37.90	5.60	РК	Hor
495.08	46.00	40.00	6.00	РК	Hor
636.56	46.00	44.20	1.80	РК	Hor
34.88	39.50	36.00	3.50	РК	Ver
38.60	39.50	36.50	3.00	РК	Ver
80.80	39.50	33.90	5.60	РК	Ver

Remark:

1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example:

Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m; Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB. intertek Total Quality. Assured. TEST REPORT


5 Frequency Stability (Temperature Variation)

Test result: PASS

5.1 Test limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage.

5.2 Test Configuration

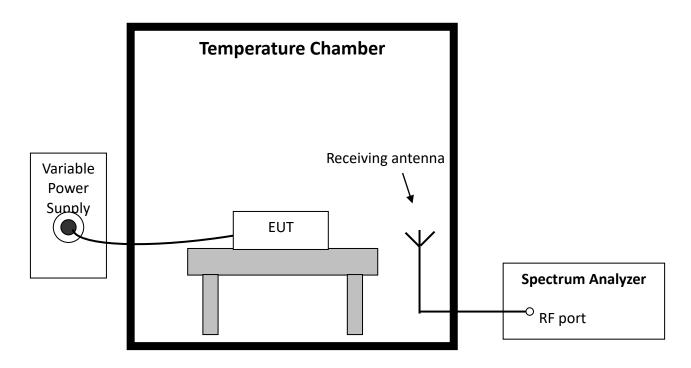
5.3 Test procedure and test setup

Test Procedure as per ANSI 63.10 clause 6.8.1.

5.4 Test protocol

Voltage (V)	Temp (ºC)	Freq Measured (MHz)	Freq Nominal (MHz)	Tolerance (%)	Limit (%)
	-20	13.5606		0.0044	
	-10 13.5605		0.0037		
	0	0 13.5606		0.0044	± 0.0100
400	10	13.5607		0.0052	
480	20	13.5607	13.5600	0.0052	
	30	13.5605		0.0037	
	40	13.5604		0.0029	-
	50	13.5606		0.0044	

Total Quality. Assured. TEST REPORT


6 Frequency Stability (Voltage Variation)

Test result: PASS

6.1 Test limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 Test Configuration

6.3 Test procedure and test setup

Test Procedure as per ANSI 63.10 clause 6.8.2.

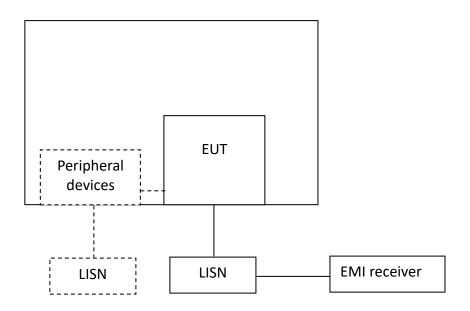
intertek Total Quality. Assured.

TEST REPORT

6.4 Test protocol

Temp (ºC)	Voltage (V)	Freq Measured (MHz)	Freq nominal (MHz)	Tolerance (%)	Limit (%)
	408	13.5606		0.0044	
20	480	13.5605	13.5600	0.0037	± 0.0100
	552	13.5605		0.0037	

Total Quality. Assured. TEST REPORT


7 Conducted emissions

Test result: PASS

7.1 Limit

Frequency range	Limits dB(μV)				
(MHz)	Quasi-peak	Average			
0.15 ~ 0.5	79	66			
0.5 ~ 30	73	60			
Note: If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.					

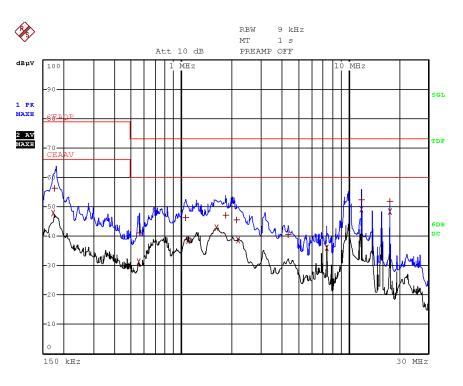
7.2 Test Configuration

itertek Total Quality. Assured.

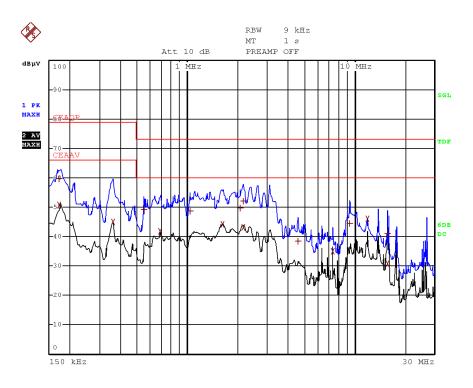
TEST REPORT

7.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

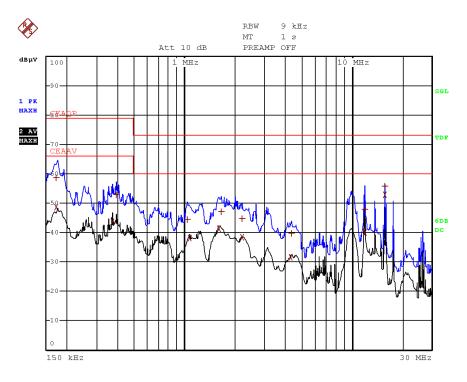

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

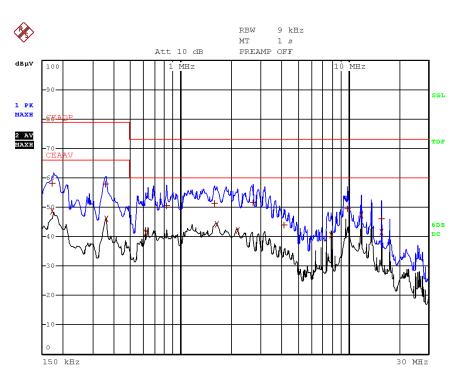

Intertek Total Quality. Assured. TEST REPORT

7.4 Test Results of Conducted Emissions

Test Curve:



Line L1



Line L2

intertek Total Quality. Assured. TEST REPORT

Line N

intertek Total Quality. Assured.

TEST REPORT

Frequency	Limit	Level	Delta	Detector	Phase
174.000 kHz	(dBuV) 66.00	(dBuV) 47.82	(dB) 18.17	CAV	L1
174.000 kHz	79.00	56.32	22.67	QP	L1 L1
554.000 kHz	60.00	31.40	28.59	CAV	L1 L1
558.000 kHz	73.00	41.08	31.91	QP	L1 L1
1.058 MHz	-	-		QP QP	L1 L1
	73.00	46.45	26.54		
1.090 MHz	60.00	38.46	21.54	CAV	L1
1.622 MHz	60.00	42.89	17.10	CAV	L1
1.850 MHz	73.00	47.12	25.87	QP	L1
2.142 MHz	73.00	45.41	27.58	QP	L1
2.178 MHz	60.00	38.75	21.24	CAV	L1
4.358 MHz	73.00	40.43	32.56	AP	L1
7.372 MHz	60.00	35.98	24.01	CAV	L1
11.904 MHz	73.00	52.38	20.61	QP	L1
11.904 MHz	60.00	49.09	10.91	CAV	L1
17.624 MHz	73.00	51.92	21.07	QP	L1
17.624 MHz	60.00	48.32	11.67	CAV	L1
174.000 kHz	79.00	59.64	19.35	QP	L2
174.000 kHz	66.00	50.74	15.25	CAV	L2
358.000 kHz	66.00	45.06	20.93	CAV	L2
550.000 kHz	73.00	49.14	23.85	QP	L2
686.000 kHz	60.00	41.75	18.24	CAV	L2
1.038 MHz	73.00	48.64	24.35	QP	L2
1.622 MHz	60.00	44.34	15.65	CAV	L2
2.062 MHz	73.00	49.62	23.37	QP	L2
2.162 MHz	73.00	52.03	20.97	QP	L2
2.166 MHz	60.00	43.30	16.69	CAV	L2
4.614 MHz	73.00	38.44	34.55	QP	L2
7.372 MHz	60.00	35.11	24.88	CAV	L2
9.368 MHz	73.00	44.2	28.57	QP	L2
11.904 MHz	60.00	46.04	13.95	CAV	L2
15.712 MHz	73.00	40.95	32.04	QP	L2
15.712 MHz	60.00	30.90	29.09	CAV	L2
174.000 kHz	79.00	58.69	20.30	QP	L3
174.000 kHz	66.00	48.70	17.29	CAV	L3
370.000 kHz	66.00	43.62	22.37	CAV	L3
390.000 kHz	79.00	52.83	26.16	QP	L3
1.038 MHz	73.00	44.60	28.39	QP	L3
1.078 MHz	60.00	38.21	21.78	CAV	L3
1.614 MHz	60.00	41.35	18.64	CAV	L3
1.666 MHz	73.00	47.14	25.86	QP	L3
2.202 MHz	73.00	44.82	28.18	QP	L3

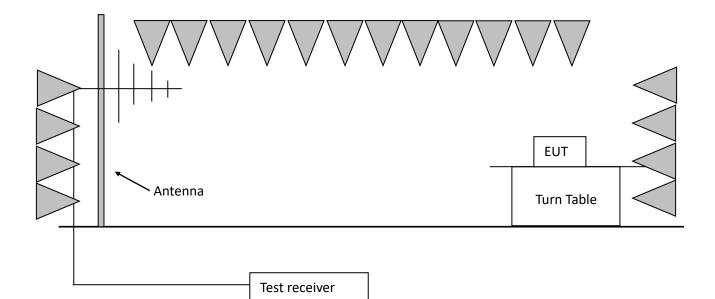
Total Quality. Assured.

Frequency	Limit (dBuV)	Level (dBuV)	Delta (dB)	Detector	Phase
2.210 MU-	, ,	, ,	. ,	C N /	1.2
2.218 MHz	60.00	38.40	21.59	CAV	L3
4.326 MHz	60.00	31.68	28.31	CAV	L3
4.358 MHz	73.00	39.65	33.34	QP	L3
11.936 MHz	73.00	47.86	25.13	QP	L3
11.936 MHz	60.00	40.03	19.96	CAV	L3
15.712 MHz	73.00	55.71	17.28	QP	L3
15.712 MHz	60.00	52.92	7.07	CAV	L3
174.000 kHz	79.00	58.18	20.81	QP	Ν
174.000 kHz	66.00	48.70	17.29	CAV	Ν
354.000 kHz	79.00	57.77	21.22	QP	Ν
358.000 kHz	66.00	46.18	19.81	CAV	Ν
614.000 kHz	60.00	41.38	18.61	CAV	Ν
822.000 kHz	73.00	50.64	22.35	QP	Ν
1.590 MHz	73.00	51.41	21.59	QP	Ν
1.642 MHz	60.00	44.25	15.74	CAV	N
2.190 MHz	60.00	42.22	17.77	CAV	N
2.694 MHz	73.00	51.49	21.50	QP	N
4.142 MHz	73.00	44.05	28.94	QP	Ν
7.868 MHz	60.00	40.67	19.32	CAV	Ν
9.908 MHz	73.00	49.41	23.58	QP	Ν
11.904 MHz	60.00	47.26	12.73	CAV	N
15.708 MHz	73.00	46.15	26.84	QP	N
15.712 MHz	60.00	41.56	18.43	CAV	Ν

Note: The signal of 13.56MHz was caused by the RFID module. It is a wanted signal. Remark:

- 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.
- 2. Level = Original Receiver Reading + Correct Factor
- 3. Delta = Level Limit
- 4. If the PK Level is lower than AV limit, the AV test can be elided.
- 5. the emissions of 13.56MHz are the product's RF signal.

Total Quality. Assured. TEST REPORT


8 20dB Bandwidth

Test result: PASS

8.1 Limit

The 20dB bandwidth should be fallen in the allocated operating frequency range. No limit for 99% bandwidth.

8.2 Test configuration

Total Quality. Assured.

8.3 Test procedure and test set up

The measurement was applied in a 3m semi-anechoic chamber.

The center of the loop antenna shall be 1 m above the horizontal metal ground plane.

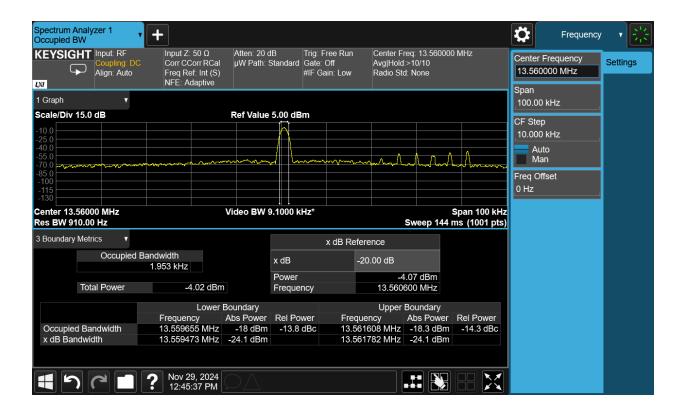
The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set RBW = 1% to 5% of the OBW
- 3. Set VBW \geq 3 \cdot RBW

4. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall

be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

5. Use the 99 % power bandwidth function of the instrument (if available).


6. the 20dB bandwidth is also measured with the same setting.

intertek Total Quality. Assured.

TEST REPORT

8.4 Test protocol

	Lower point (MHz)	Higher point (MHz)	Bandwidth (kHz)	Allocated bandwidth (MHz)
20dB Bandwidth	13.559473	13.561782	2.309	13.553 ~ 13.567
Occupied bandwidth	13.559655	13.561608	1.953	13.553 ~ 13.567

9 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.