MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Fax: +886-3-3288918 Web: <u>www.mrt-cert.com</u> Report No.: 2106TW0501-U4 Report Version: 1.0 Issue Date: 2021-08-20 > Testing Laboratory 3261 ## **MEASUREMENT REPORT** # FCC PART 15.247 902MHz~928MHz FCC ID: HLZ-AMM **APPLICANT:** Acer Incorporated **Application Type:** Certification **Product:** Air Monitor MATE Model No.: AMM FCC Classification: (DTS) Digital Transmission System FCC Rule Part(s): Part 15.247 Test Procedure(s): ANSI C63.10-2013 Received Date: June 10 ,2021 **Test Date:** July 8 ~ 17 ,2021 Tested By : Peter Syu (Peter Syu) Reviewed By : Paddy Chen (Paddy Chen) Approved By : Am her (Chenz Ker) The test results only relate to the tested sample. This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10. Test results reported herein relate only to the item(s) tested. The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd. FCC ID: HLZ-AMM Page Number: 1 of 55 # **Revision History** | Report No. | Version | Description | Issue Date | Note | |---------------|---------|-----------------|------------|------| | 2106TW0501-U4 | 1.0 | Original Report | 2021-08-20 | | FCC ID: HLZ-AMM Page Number: 2 of 55 # **CONTENTS** | Introduction | 1.1. Scope 6 1.2. MRT Test Location 6 2. PRODUCT INFORMATION 7 2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1 Test Setting 18 7.2.2 Test Procedure used 18 7.2.3 Test Setting 18 7.2.3 Test Setting 18 7.2.3 Test Setting 20 7.3.1 Te | Desc | cription | Page | |--|---|-----------|------------------------------------|------| | 1.1. Scope 6 1.2. MRT Test Location 6 2. PRODUCT INFORMATION 7 2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. 1. Summary 17 7. 2. 6dB Bandwidth Measurement 18 7. 2.1. Test Limit 18 7. 2.2. Test Procedure used 18 7. 2.3. Test Setting 18 7. 2.4. Test Setup 18 7. 2.5. Test Result 19 7. 3.0 Utput Power Measurement 20 | 1.1. Scope 6 1.2. MRT Test Location 6 2. PRODUCT INFORMATION 7 2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1 Test Setting 18 7.2.2 Test Procedure used 18 7.2.3 Test Setting 18 7.2.3 Test Setting 18 7.2.3 Test Setting 20 7.3.1 Te | §2.10 | 033 General Information | 5 | | 1.2. MRT Test Location | 1.2. MRT Test Location | 1. | INTRODUCTION | 6 | | 2. PRODUCT INFORMATION 7 2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. 1. Summary 17 7. 2. 6dB Bandwidth Measurement 18 7. 2.1 Test Limit 18 7. 2.2. Test Procedure used 18 7. 2.3. Test Setting 18 7. 2.4. Test Setup 18 7. 2.5. Test Result 19 7. 3. Output Power Measurement 20 7. 3. Test Setting 20 7. 3. Test Setting 20 | 2. PRODUCT INFORMATION 7 2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration .11 2.6. Test Software .11 2.7. EMI Suppression Device(s)/Modifications .11 2.8. Labeling Requirements .11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. GdB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Setting 20 < | 1.1. | Scope | 6 | | 2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. Test Limit 18 7.2.1. Test Limit 18 7.2.2. Test Setup 18 7.2.3. Test Setup 18 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 <t< td=""><td>2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 13 3.3. Radiated Emissions 13 4. ANTENNA
REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. GdB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 <</td><td>1.2.</td><td>MRT Test Location</td><td> 6</td></t<> | 2.1. Equipment Description 7 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 13 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. GdB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 < | 1.2. | MRT Test Location | 6 | | 2.2. Product Specification Subjective to this Standard. 8 2.3. Test Mode. 8 2.4. Operation Frequency / Channel List. 9 2.5. Test Configuration. 11 2.6. Test Software. 11 2.7. EMI Suppression Device(s)/Modifications. 11 2.8. Labeling Requirements. 11 3.8. DESCRIPTION of TEST. 12 3.1. Evaluation Procedure. 12 3.2. AC Line Conducted Emissions. 12 3.3. Radiated Emissions. 13 4. ANTENNA REQUIREMENTS. 14 5. TEST EQUIPMENT CALIBRATION DATE. 15 6. MEASUREMENT UNCERTAINTY. 16 7. TEST RESULT. 17 7.1. Summary. 17 7.2. 12 Test Limit. 18 7.2.1. Test Limit. 18 7.2.2. Test Result. 19 7.3.3. Test Procedure Used. 20 7.3.1. Test Procedure Used. 20 7.3.2. | 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. GdB Bandwidth Measurement 18 7.2.1 Test Dimit 18 7.2.2 Test Procedure used 18 7.2.3 Test Setup 18 7.2.4 Test Setup 19 7.3.0 Output Power Measurement < | 2. | PRODUCT INFORMATION | 7 | | 2.2. Product Specification Subjective to this Standard. 8 2.3. Test Mode. 8 2.4. Operation Frequency / Channel List. 9 2.5. Test Configuration. 11 2.6. Test Software. 11 2.7. EMI Suppression Device(s)/Modifications. 11 2.8. Labeling Requirements. 11 3.8. DESCRIPTION of TEST. 12 3.1. Evaluation Procedure. 12 3.2. AC Line Conducted Emissions. 12 3.3. Radiated Emissions. 13 4. ANTENNA REQUIREMENTS. 14 5. TEST EQUIPMENT CALIBRATION DATE. 15 6. MEASUREMENT UNCERTAINTY. 16 7. TEST RESULT. 17 7.1. Summary. 17 7.2. 12 Test Limit. 18 7.2.1. Test Limit. 18 7.2.2. Test Result. 19 7.3.3. Test Procedure Used. 20 7.3.1. Test Procedure Used. 20 7.3.2. | 2.2. Product Specification Subjective to this Standard 8 2.3. Test Mode 8 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. GdB Bandwidth Measurement 18 7.2.1 Test Dimit 18 7.2.2 Test Procedure used 18 7.2.3 Test Setup 18 7.2.4 Test Setup 19 7.3.0 Output Power Measurement < | 2.1. | Equipment Description | 7 | | 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1 Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 2.4. Operation Frequency / Channel List 9 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.5. Test Result 19 7.3.0. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 | 2.2. | | | | 2.5. Test Configuration 11 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Setting 18 7.2.3. Test Settup 18 7.3.1. Test Imit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setting 20 7.3.5. Test Result of Output Power 21 <td>2.5. Test Configuration .11 2.6. Test Software .11 2.7. EMI Suppression Device(s)/Modifications .11 2.8. Labeling Requirements .11 3. DESCRIPTION of TEST .12 3.1. Evaluation Procedure .12 3.2. AC Line Conducted Emissions .12 3.3. Radiated Emissions .13 4. ANTENNA REQUIREMENTS .14 5. TEST EQUIPMENT CALIBRATION DATE .15 6. MEASUREMENT UNCERTAINTY .16 7. TEST RESULT .17 7.1. Summary .17 7.2. 6dB Bandwidth Measurement .18 7.2.1. Test Limit .18 7.2.2. Test Procedure used .18 7.2.3. Test Setup .18 7.2.4. Test Setup .18 7.3.0. Output Power Measurement .20 7.3.1. Test Procedure Used .20 7.3.2. Test Procedure Used .20 7.3.3. Test Setup .20<td>2.3.</td><td></td><td></td></td> | 2.5. Test Configuration .11 2.6. Test Software .11 2.7. EMI Suppression Device(s)/Modifications .11 2.8. Labeling Requirements .11 3. DESCRIPTION of TEST .12 3.1. Evaluation Procedure .12 3.2. AC Line Conducted Emissions .12 3.3. Radiated Emissions .13 4. ANTENNA REQUIREMENTS .14 5. TEST EQUIPMENT CALIBRATION DATE .15 6. MEASUREMENT UNCERTAINTY .16 7. TEST RESULT .17 7.1. Summary .17 7.2. 6dB Bandwidth Measurement .18 7.2.1. Test Limit .18 7.2.2. Test Procedure used .18 7.2.3. Test Setup .18 7.2.4. Test Setup .18 7.3.0. Output Power Measurement .20 7.3.1. Test Procedure Used .20 7.3.2. Test Procedure Used .20 7.3.3. Test Setup .20 <td>2.3.</td> <td></td> <td></td> | 2.3. | | | | 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 2.6. Test Software 11 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 7.4.1. | 2.4. | Operation Frequency / Channel List | 9 | | 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3.0. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 2.7. EMI Suppression Device(s)/Modifications 11 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test
Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | 2.5. | Test Configuration | 11 | | 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Settup 20 7.3.5. Test Result of Output Power 21 | 2.8. Labeling Requirements 11 3. DESCRIPTION of TEST 12 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | _ | | | | 3. DESCRIPTION of TEST | 3. DESCRIPTION of TEST | 2.7. | | | | 3.1. Evaluation Procedure 12 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Setting 20 7.3.3. Test Setting 20 7.3.3. Test Setting 20 7.3.3. Test Setting 20 7.3.3. Test Setting 20 7.3.4. Test Setting 20 7.3.5. Test Result of Output Power 21 | 3.1. Evaluation Procedure | 2.8. | Labeling Requirements | 11 | | 3.2. AC Line Conducted Emissions 12 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 3.2. AC Line Conducted Emissions. 12 3.3. Radiated Emissions. 13 4. ANTENNA REQUIREMENTS. 14 5. TEST EQUIPMENT CALIBRATION DATE. 15 6. MEASUREMENT UNCERTAINTY. 16 7. TEST RESULT. 17 7.1. Summary | 3. | DESCRIPTION of TEST | 12 | | 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. 1. Summary 17 7. 2. 6dB Bandwidth Measurement 18 7. 2.1. Test Limit 18 7. 2.2. Test Procedure used 18 7. 2.3. Test Setting 18 7. 2.4. Test Setup 18 7. 2.5. Test Result 19 7. 3. Output Power Measurement 20 7. 3. Test Limit 20 7. 3. Test Setting 20 7. 3. Test Result of Output Power 21 | 3.3. Radiated Emissions 13 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 7.4.2. Test Procedure Used 22 | 3.1. | Evaluation Procedure | 12 | | 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. 1. Summary 17 7. 2. 6dB Bandwidth Measurement 18 7. 2.1. Test Limit 18 7. 2.2. Test Procedure used 18 7. 2.3. Test Setting 18 7. 2.4. Test Setup 18 7. 2.5. Test Result 19 7. 3. Output Power Measurement 20 7. 3. Test Limit 20 7. 3. Test Procedure Used 20 7. 3. Test Setting 20 7. 3. Test Setup 20 7. 3. Test Setup 20 7. 3. Test Setup 20 7. 3. Test Result of Output Power 21 | 4. ANTENNA REQUIREMENTS 14 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | 3.2. | AC Line Conducted Emissions | 12 | | 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 5. TEST EQUIPMENT CALIBRATION DATE 15 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | 3.3. | Radiated Emissions | 13 | | 5. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | 4. | ANTENNA REQUIREMENTS | 14 | | 5. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 6. MEASUREMENT UNCERTAINTY 16 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | 5. · | TEST EQUIPMENT CALIBRATION DATE | 15 | | 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7. TEST RESULT 17 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | MEASUREMENT UNCERTAINTY | 16 | | 7.1. Summary 17 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.1. Summary | | | | | 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 20 7.3.5. Test Result of Output Power 21 | 7.2. 6dB Bandwidth Measurement 18 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | | | | 7.2.1. Test Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.2.1. Test
Limit 18 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | | | | 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.2.2. Test Procedure used 18 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | | | | 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.2.3. Test Setting 18 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | | | | 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.2.4. Test Setup 18 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | | | | 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.2.5. Test Result 19 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | _ | 5 - 1 - 1 - 1 - 9 | | | 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.3. Output Power Measurement 20 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | • | | | 7.3.1. Test Limit | 7.3.1. Test Limit 20 7.3.2. Test Procedure Used 20 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | _ | | | | 7.3.2. Test Procedure Used | 7.3.2. Test Procedure Used | | • | | | 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 | 7.3.3. Test Setting 20 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | - | | | | 7.3.4. Test Setup | 7.3.4. Test Setup 20 7.3.5. Test Result of Output Power 21 7.4. Power Spectral Density Measurement 22 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | - | | | | 7.3.5. Test Result of Output Power | 7.3.5.Test Result of Output Power217.4.Power Spectral Density Measurement227.4.1.Test Limit227.4.2.Test Procedure Used22 | | 9 | | | The state of s | 7.4. Power Spectral Density Measurement | - | • | | | 7.4. Fower Spectral Density Measurement | 7.4.1. Test Limit 22 7.4.2. Test Procedure Used 22 | | | | | · | 7.4.2. Test Procedure Used | | • | | | | | | | | | | | | | | | 7.4.3 Test Setting | 5 | | 3 | | | 7.4.3. Test Setting | 1.T.T. 100LUGUU | 7.4.4. | • | | | 7.4.3. Test Setting | | 745 | Test Result | 23 | | 7.5. | Out-of-Band Spurious Emissions Emissions Measurement | 24 | |--------|--|----| | 7.5.1. | Test Limit | 24 | | 7.5.2. | Test Procedure Used | 24 | | 7.5.3. | Test Settitng | 24 | | 7.5.4. | Test Setup | 24 | | 7.5.5. | Test Result | 25 | | 7.6. | Radiated Spurious Emission Measurement | 27 | | 7.6.1. | Test Limit | 27 | | 7.6.2. | Test Procedure Used | 27 | | 7.6.3. | Test Setting | 27 | | 7.6.4. | Test Setup | 29 | | 7.6.5. | Test Result | | | 7.7. | Radiated Restricted Band Edge Measurement | 43 | | 7.7.1. | Test Limit | 43 | | 7.7.2. | Test Procedure Used | 43 | | 7.7.3. | Test Setting | | | 7.7.4. | Test Setup | 45 | | 7.7.5. | Test Result | 46 | | 7.8. | AC Conducted Emissions Measurement | 50 | | 7.8.1. | Test Limit | 50 | | 7.8.2. | Test Setup | 50 | | 7.8.3. | Test Result | 51 | | 8 C | CONCLUSION | 55 | ## §2.1033 General Information | Applicant | Acer Incorporated | | | |--|---|--|--| | Applicant Address | 9F, 88, Sec. 1, Xintai 5th Rd., New Taipei City 221, Taiwan | | | | Manufacturer | EcoBear Technology Corp. | | | | Manufacturer Address | 7F., No. 303, Sec. 4, Zhongxiao E. Rd., Da'an Dist., Taipei City 106, Taiwan (R.O.C.) | | | | Test Site MRT Technology (Taiwan) Co., Ltd | | | | | Test Site Address | No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C) | | | | MRT FCC Registration No. | 291082 | | | | FCC Rule Part(s) | Part 15.247 | | | | Test Device Serial No. | #1 Production Pre-Production Engineering | | | ## **Test Facility / Accreditations** - **1.** MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm. - 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada. - 3. MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Taiwan, EU and TELEC Rules. FCC ID: HLZ-AMM Page Number: 5 of 55 ## 1. INTRODUCTION ## 1.1. Scope Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau. #### 1.2. MRT Test Location The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C). FCC ID: HLZ-AMM Page Number: 6 of 55 ## 2. PRODUCT INFORMATION ## 2.1. Equipment Description | Product Name | Air Monitor MATE | | | |--|---|--|--| | Model No. | АММ | | | | Trademark | acer | | | | 2.4G: 802.11b/g/n-20/n-40 Supports Radios Spec. Bluetooth: V5.1 LE LoRa 902MHz~928MHz | | | | | LoRa Spec. | 902MHz~928MHz | | | | Maximum Power | 17.353dBm | | | | Accessary | | | | | USB Cable | Brand: Ecobear
Model No: 127-01210316+
Length: 0.2m (Shielded) | | | | Power Adapter | Brand: BSY Model No: BSY01J3050200U U Input: AC 100-240V~ 50-60Hz,0.3A Output: DC 5V, 2A | | | FCC ID: HLZ-AMM Page Number: 7 of 55 ## 2.2. Product Specification Subjective to this Standard | Operating Frequency | 902MHz~928MHz | |---------------------|---------------| | Type of modulation | GFSK | ## 2.3. Test Mode | | Mode 1: Transmit – by 902.4MHz | |-----------|--------------------------------| | Test Mode | Mode 2: Transmit – by 915.0MHz | | | Mode 3: Transmit – by 927.6MHz | Note: Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test. FCC ID: HLZ-AMM Page Number: 8 of 55 # 2.4. Operation Frequency / Channel List | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 0 | 902.4 | 29 | 908.2 | 58 | 914 | | 1 | 902.6 | 30 | 908.4 | 59 | 914.2 | | 2 | 902.8 | 31 | 908.6 | 60 | 914.4 | | 3 | 903 | 32 | 908.8 | 61 | 914.6 | | 4 | 903.2 | 33 | 909 | 62 | 914.8 | | 5 | 903.4 | 34 | 909.2 | 63 | 915 | | 6 | 903.6 | 35 | 909.4 | 64 | 915.2 | | 7 | 903.8 | 36 | 909.6 | 65 | 915.4 | | 8 | 904 | 37 | 909.8 | 66 | 915.6 | | 9 | 904.2 | 38 | 910 | 67 | 915.8 | | 10 | 904.4 | 39 | 910.2 | 68 | 916 | | 11 | 904.6 | 40 | 910.4 | 69 | 916.2 | | 12 | 904.8 | 41 | 910.6 | 70 | 916.4 | | 13 | 905 | 42 | 910.8 | 71 | 916.6 | | 14 | 905.2 | 43 | 911 | 72 | 916.8 | | 15 | 905.4 | 44 | 911.2 | 73 | 917 | | 16 | 905.6 | 45 | 911.4 | 74 | 917.2 | | 17 | 905.8 | 46 | 911.6 | 75 | 917.4 | | 18 | 906 | 47 | 911.8 | 76 | 917.6 | | 19 | 906.2 | 48 | 912 | 77 | 917.8 | | 20 | 906.4 | 49 | 912.2 | 78 | 918 | | 21 | 906.6 | 50 | 912.4 | 79 | 918.2 | | 22 | 906.8 | 51 | 912.6 | 80 | 918.4 | | 23 | 907 | 52 | 912.8 | 81 | 918.6 | | 24 | 907.2 | 53 | 913 | 82 | 918.8 | | 25 | 907.4 | 54 | 913.2 | 83 | 919 | | 26 | 907.6 | 55 | 913.4 | 84 | 919.2 | | 27 | 907.8 | 56 | 913.6 | 85 | 919.4 | | 28 | 908 | 57 | 913.8 | 86 | 919.6 | FCC ID: HLZ-AMM Page Number: 9 of 55 | Channel | Frequency | Channel | Frequency | Channel |
Frequency | |---------|-----------|---------|-----------|---------|-----------| | 87 | 919.8 | 101 | 922.6 | 115 | 925.4 | | 88 | 920 | 102 | 922.8 | 116 | 925.6 | | 89 | 920.2 | 103 | 923 | 117 | 925.8 | | 90 | 920.4 | 104 | 923.2 | 118 | 926 | | 91 | 920.6 | 105 | 923.4 | 119 | 926.2 | | 92 | 920.8 | 106 | 923.6 | 120 | 926.4 | | 93 | 921 | 107 | 923.8 | 121 | 926.6 | | 94 | 921.2 | 108 | 924 | 122 | 926.8 | | 95 | 921.4 | 109 | 924.2 | 123 | 927 | | 96 | 921.6 | 110 | 924.4 | 124 | 927.2 | | 97 | 921.8 | 111 | 924.6 | 125 | 927.4 | | 98 | 922 | 112 | 924.8 | 126 | 927.6 | | 99 | 922.2 | 113 | 925 | | | | 100 | 922.4 | 114 | 925.2 | | | FCC ID: HLZ-AMM Page Number: 10 of 55 ## 2.5. Test Configuration This device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. #### 2.6. Test Software The test utility software used during testing was "SerialPort Test". ## 2.7. EMI Suppression Device(s)/Modifications No EMI suppression device(s) were added and/or no modifications were made during testing. ## 2.8. Labeling Requirements #### Per 2.1074 & 15.19; Docket 95-19 The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location. FCC ID: HLZ-AMM Page Number: 11 of 55 #### 3. DESCRIPTION of TEST #### 3.1. Evaluation Procedure The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 D01v05 were used in the measurement of the **Air Monitor MATE**. Deviation from measurement procedure......None #### 3.2. AC Line Conducted Emissions The line-conducted facility is located inside an 9'x4'x3' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50uH$ Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure. The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment which determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements. An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013. Line conducted emissions test results are shown in Section 7.8. FCC ID: HLZ-AMM Page Number: 12 of 55 #### 3.3. Radiated Emissions The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found. Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, which produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height. Radiated emissions test results are shown in Section 7.6 & 7.7. FCC ID: HLZ-AMM Page Number: 13 of 55 ## 4. ANTENNA REQUIREMENTS #### **Excerpt from §15.203 of the FCC Rules/Regulations:** "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." - The antenna of the **Air Monitor MATE**, is permanently attached. - There are no provisions for connection to an external antenna. #### Conclusion: The EUT unit complies with the requirement of §15.203. Antenna List | No. | Brand | Part No. | Antenna Type | Peak Gain | |-----|-------|------------|--------------|-----------| | 1 | acer | A0100205+A | РСВ | -6.17dBi | FCC ID: HLZ-AMM Page Number: 14 of 55 ## 5. TEST EQUIPMENT CALIBRATION DATE ## Conducted Emissions - SR2 | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |--------------------|--------------|-----------------------------|-------------|----------------|----------------| | Two-Line V-Network | R&S | ENV216 | MRTTWA00020 | 1 year | 2022/4/28 | | Cable | Rosnol | N1C50-RG400-B
1C50-500CM | MRTTWE00013 | 1 year | 2022/6/20 | | EMI Test Receiver | R&S | ESR3 | MRTTWA00009 | 1 year | 2022/3/24 | #### Radiated Emissions – AC1 | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |--------------------------|--------------|---------------|-----------------|----------------|----------------| | Broadband TRILOG Antenna | SCHWARZBECK | VULB 9162 | MRTTWA00001 | 1 year | 2021/10/5 | | EMI Test Receiver | R&S | ESR3 | MRTTWA00009 | 1 year | 2022/3/24 | | Acitve Loop Antenna | Schwarzbeck | FMZB 1519B | MRTTWA00002 | 1 year | 2022/5/6 | | Broadband Horn antenna | SCHWARZBECK | BBHA 9120D | MRTTWA00003 | 1 year | 2022/4/21 | | Breitband Hornantenna | Schwarzbeck | BBHA 9170 | MRTTWA00004 | 1 year | 2022/4/28 | | Broadband Amplifier | Schwarzbeck | BBV 9721 | MRTTWA00006 | 1 year | 2022/4/26 | | Broadband Preamplifier | SCHWARZBECK | BBV 9718 | MRTTWA00005
 1 year | 2022/4/21 | | Cable | HUBERSUHNER | SF106 | MRTTWE00010 | 1 year | 2022/6/15 | | Cable | Rosnol | K1K50-UP0264- | MRTTWE00012 | 1,400 | 2022/6/20 | | Cable | KUSHOI | K1K50-4M | WIR I I WEU0012 | 1 year | 2022/6/20 | ## Conducted Test Equipment – SR2 | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |---------------------------|--------------|----------|-------------|----------------|----------------| | EXA Signal Analyzer | KEYSIGHT | N9010A | MRTTWA00012 | 1 year | 2021/10/14 | | EXA Signal Analyzer | KEYSIGHT | N9010B | MRTTWA00074 | 1 year | 2022/7/19 | | USB Wideband Power Sensor | KEYSIGHT | U2021XA | MRTTWA00015 | 1 year | 2022/3/24 | ## Test Software | Software | Version | Function | |----------|-----------|-------------------| | e3 | 9.160520a | EMI Test Software | | ЕМІ | V3 | EMI Test Software | FCC ID: HLZ-AMM Page Number: 15 of 55 #### 6. MEASUREMENT UNCERTAINTY Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Conducted Emission-Power Line Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 0.15MHz~30MHz: ± 2.53dB ### Radiated Spurious Emission Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 9kHz~30MHz: ± 3.92dB 30MHz~1GHz: ± 4.25dB 1GHz~18GHz: ± 4.40dB 18GHz~40GHz: ± 4.45dB #### Frequency Error Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±78.4Hz #### **Conducted Power** Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB #### **Conducted Spurious Emission** Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):± 2.65 dB #### Occupied Bandwidth Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 3.3% #### Temp. / Humidity Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/ ±3% #### DC Voltage Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.3% FCC ID: HLZ-AMM Page Number: 16 of 55 ## 7. TEST RESULT ## 7.1. Summary Product Name: Air Monitor MATE FCC Classification: (DTS) Digital Transmission System | FCC Part
Section(s) | Test Description | Test Limit | Test
Condition | Test
Result | Reference | |------------------------|--|------------------------------------|-------------------|----------------|-------------| | 15.247(a)(2) | 6dB Bandwidth | ≥ 500kHz | | Pass | Section 7.2 | | 15.247(b)(3) | Output Power | ≤ 30.00dBm | Conducted | Pass | Section 7.3 | | 15.247(e) | Power Spectral Density | ≤ 8.00dBm/3kHz | Conducted | Pass | Section 7.4 | | 15.247(d) | Out-of-Band Emissions | Conducted ≥ 20dBc | | Pass | Section 7.5 | | 15.205
15.209 | Spurious Emission | < FCC 15.209 limits | Radiated | Pass | Section 7.6 | | 15.205
15.209 | Band Edge Measurement | ≤ 74dBuV/m(Peak)≤54dBuV/m(Average) | Radiated | Pass | Section 7.7 | | 15.207 | AC Conducted Emissions
150kHz - 30MHz | < FCC 15.207 limits | Line
Conducted | Pass | Section 7.8 | #### Notes: - Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty. - 2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions. - 3) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest. - 4) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators. FCC ID: HLZ-AMM Page Number: 17 of 55 #### 7.2. 6dB Bandwidth Measurement #### 7.2.1. Test Limit The minimum 6dB bandwidth shall be at least 500 kHz. #### 7.2.2. Test Procedure used KDB 558074 D01v05- Section 8.2 Option 2 ## 7.2.3. Test Setting - The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission. - 2. Set RBW = 100 kHz - 3. VBW ≥ 3 × RBW - 4. Detector = Peak - 5. Trace mode = max hold - 6. Sweep = auto couple - 7. Allow the trace was allowed to stabilize #### 7.2.4. Test Setup FCC ID: HLZ-AMM Page Number: 18 of 55 #### 7.2.5. Test Result | Test Mode | Channel No. | Frequency
(MHz) | 6dB Bandwidth (kHz) | Limit
(kHz) | Result | |-----------|-------------|--------------------|---------------------|----------------|--------| | | 0 | 902.4 | 618.30 | >500 | Pass | | TX | 63 | 915 | 613.00 | >500 | Pass | | | 126 | 927.6 | 621.80 | >500 | Pass | FCC ID: HLZ-AMM Page Number: 19 of 55 ## 7.3. Output Power Measurement #### 7.3.1. Test Limit The maximum out power shall be less 1 Watt (30dBm). #### 7.3.2. Test Procedure Used KDB 558074 D01v05 - Section 9.1.2 & 9.2.3.2 ## 7.3.3. Test Setting ### **Peak Power Measurement** The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector. ### **Average Power Measurement** Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power. ## 7.3.4. Test Setup FCC ID: HLZ-AMM Page Number: 20 of 55 ## 7.3.5. Test Result of Output Power | Test Mode | Frequency
(MHz) | Peak Power
(dBm) | EIRP
(dBm) | Peak Power
Limit
(dBm) | EIRP Limit
(dBm) | |-----------|--------------------|---------------------|---------------|------------------------------|---------------------| | | 902.4 | 17.311 | 13.611 | < 30 | < 36 | | TX | 915 | 17.325 | 13.625 | < 30 | < 36 | | | 927.6 | 17.353 | 13.653 | < 30 | < 36 | #### Note: - 1. Peak Power Output Value = Reading value on power meter (dBm) + cable loss (dBm). - 2. E.I.R.P Power = Peak Power (dBm) + Antenna Gain (dBi). - 3. Antenna Gain = -3.70dBi. FCC ID: HLZ-AMM Page Number: 21 of 55 ## 7.4. Power Spectral Density Measurement #### 7.4.1. Test Limit The maximum permissible power spectral density is 8dBm in any 3 kHz band. #### 7.4.2. Test Procedure Used KDB 558074 D01v05 - Section 10.2 Method PKPSD ## 7.4.3. Test Setting This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance. - a) Set analyzer center frequency to DTS channel center frequency. - b) Set the span to 1.5 times the DTS bandwidth. - c) Set the RBW to: 3 kHz. - d) Set the VBW ≥ 3* RBW. - e) Detector = peak. - f) Sweep time = auto couple. - g) Trace mode = max hold. - h) Allow trace to fully stabilize. - i) Use the peak marker function to determine the maximum amplitude level within the RBW. ## 7.4.4. Test Setup FCC ID: HLZ-AMM Page Number: 22 of 55 #### 7.4.5. Test Result | Test Mode | Frequency
(MHz) | PSD
(dBm) | Limit
(dBm) | Result | |-----------|--------------------|--------------|----------------|--------| | | 902.4 | 7.844 | ≤ 8 | Pass | | TX | 915 | 7.857 | ≤ 8 | Pass | | | 927.6 | 7.452 | ≤ 8 | Pass | FCC ID: HLZ-AMM Page Number: 23 of 55 ## 7.5. Out-of-Band Spurious Emissions Emissions Measurement ## 7.5.1. Test Limit In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on RF conducted measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. #### 7.5.2. Test Procedure Used KDB 558074 D01v05- Section 11.1 & 11.2 ## 7.5.3. Test Settitng - (a) Set instrument center frequency to DTS channel center frequency - (b) Set the span to ≥ 1.5 times the DTS bandwidth - (c) Set the RBW = 100 kHz - (d) Set the VBW \geq 3 x RBW - (e) Detector = peak - (f) Sweep time = auto couple - (g) Trace mode = max hold - (h) Allow trace to fully stabilize ### 7.5.4. Test Setup FCC ID: HLZ-AMM Page Number: 24 of 55 #### 7.5.5. Test Result | Test Mode | Frequency
(MHz) | Limit | Result | |-----------|--------------------|-------|--------| | | 902.4 | 20dBc | Pass | | TX | 915 | 20dBc | Pass | | | 927.6 | 20dBc | Pass | FCC ID: HLZ-AMM Page Number: 25 of 55 FCC ID: HLZ-AMM Page Number: 26 of 55 ## 7.6. Radiated Spurious Emission Measurement #### 7.6.1. Test Limit All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209. | FCC Part 15 Subpart C Paragraph 15.209 | | | | | | | | |--|----------------------|-------------------------------|--|--|--|--|--| | Frequency
[MHz] | Field Strength [V/m] | Measured Distance
[Meters] | | | | | | | 0.009 - 0.490 | 2400/F (kHz) | 300 | | | | | | | 0.490 - 1.705 | 24000/F (kHz) | 30 | | | | | | | 1.705 - 30 | 30 | 30 | | | | | | | 30 - 88 | 100 | 3 | | | | | | | 88 - 216 | 150
 3 | | | | | | | 216 - 960 | 200 | 3 | | | | | | | Above 960 | 500 | 3 | | | | | | #### 7.6.2. Test Procedure Used KDB 558074 D01v05- Section 12.2.3 (quasi-peak measurements) KDB 558074 D01v05- Section 12.2.4 (peak power measurements) KDB 558074 D01v05- Section 12.2.5 (average power measurements) ## 7.6.3. Test Setting #### **Peak Field Strength Measurements** - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = as specified in Table 1 - 3.VBW = 3MHz - 4. Detector = peak - 5. Sweep time = auto couple FCC ID: HLZ-AMM Page Number: 27 of 55 - 6. Trace mode = max hold - 7. Trace was allowed to stabilize Table 1 - RBW as a function of frequency | Frequency | RBW | |---------------|---------------| | 9 ~ 150 kHz | 200 ~ 300 Hz | | 0.15 ~ 30 MHz | 9 ~ 10 kHz | | 30 ~ 1000 MHz | 100 ~ 120 kHz | | > 1000 MHz | 1 MHz | ## **Average Field Strength Measurements** - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2.RBW = 1MHz - 3. VBW ≥ 1/T - 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode - 5. Detector = Peak - 6. Sweep time = auto - 7. Trace mode = max hold - 8. Allow max hold to run for at least 50 times (1/duty cycle) traces FCC ID: HLZ-AMM Page Number: 28 of 55 ## 7.6.4. Test Setup ## 9kHz ~ 30MHz Test Setup: ## 30MHz ~ 1GHz Test Setup: FCC ID: HLZ-AMM Page Number: 29 of 55 ## 1GHz ~ 18GHz Test Setup: ## 18GHz ~25GHz Test Setup: FCC ID: HLZ-AMM Page Number: 30 of 55 Report No.: 2106TW0501-U4 #### 7.6.5. Test Result | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-915MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | No | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | | 60.070 | 2.90 | 20.19 | 23.09 | -16.91 | 40.00 | 100 | 225 | Peak | | 2 | | 143.490 | 16.93 | 16.01 | 32.94 | -10.56 | 43.50 | 100 | 340 | QP | | 3 | * | 239.520 | 18.71 | 20.18 | 38.88 | -7.12 | 46.00 | 100 | 355 | QP | | 4 | | 312.270 | 16.38 | 21.92 | 38.31 | -7.69 | 46.00 | 100 | 205 | QP | | 5 | | 336.520 | 13.19 | 22.76 | 35.96 | -10.04 | 46.00 | 100 | 50 | QP | | 6 | | 844.800 | 5.54 | 31.38 | 36.92 | -9.08 | 46.00 | 100 | 265 | QP | #### Note: - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 31 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-915MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | * | 60.070 | 10.13 | 20.19 | 30.32 | -9.68 | 40.00 | 100 | 55 | QP | | 2 | | 131.850 | 3.89 | 16.24 | 20.13 | -23.37 | 43.50 | 100 | 260 | QP | | 3 | | 240.490 | 5.14 | 20.22 | 25.36 | -20.64 | 46.00 | 100 | 140 | QP | | 4 | | 323.910 | 10.83 | 22.33 | 33.15 | -12.85 | 46.00 | 100 | 305 | QP | | 5 | | 647.890 | 5.29 | 28.58 | 33.87 | -12.13 | 46.00 | 100 | 280 | QP | | 6 | | 849.650 | 2.78 | 31.48 | 34.26 | -11.74 | 46.00 | 100 | 290 | QP | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 32 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | RX-915MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | No | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | | 60.070 | 10.17 | 20.19 | 30.36 | -9.64 | 40.00 | 100 | 240 | QP | | 2 | | 107.600 | 12.01 | 18.82 | 30.83 | -12.67 | 43.50 | 100 | 350 | QP | | 3 | | 143.490 | 16.11 | 16.01 | 32.12 | -11.38 | 43.50 | 100 | 125 | Peak | | 4 | | 239.520 | 15.08 | 20.18 | 35.26 | -10.74 | 46.00 | 100 | 160 | QP | | 5 | | 323.910 | 13.97 | 22.33 | 36.30 | -9.70 | 46.00 | 100 | 95 | QP | | 6 | * | 796.300 | 6.84 | 30.47 | 37.31 | -8.69 | 46.00 | 100 | 305 | QP | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 33 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | RX-915MHz | Test Voltage | AC 120V/60Hz | | No | Frequency
(MHz) | Reading
(dBuV) | C.F
(dB) | Measurement
(dBuV/m) | Margin
(dB) | Limit
(dBuV/m) | Height (cm) | Angle (deg) | Remark
(QP/PK/AV) | |----|--------------------|-------------------|-------------|-------------------------|----------------|-------------------|-------------|-------------|----------------------| | 1 | 47.460 | 3.58 | 21.93 | 25.51 | -14.49 | 40.00 | 100 | 155 | QP | | 2 | 60.070 | 5.30 | 20.19 | 25.49 | -14.51 | 40.00 | 100 | 360 | QP | | 3 | 107.600 | 10.31 | 18.82 | 29.13 | -14.37 | 43.50 | 100 | 340 | QP | | 4 | 275.410 | 5.84 | 20.88 | 26.73 | -19.27 | 46.00 | 100 | 190 | QP | | 5 | 323.910 | 8.85 | 22.33 | 31.18 | -14.82 | 46.00 | 100 | 175 | QP | | 6 | * 647.890 | 7.89 | 28.58 | 36.47 | -9.53 | 46.00 | 100 | 20 | QP | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 34 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-902.4MHz | Test Voltage | AC 120V/60Hz | | No | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|------------|---------|-------|-------------|--------|----------|--------|-------|------------| | INO | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | 1804.656 | 48.67 | -4.03 | 44.64 | -29.36 | 74.00 | 100 | 360 | Peak | | 2 | 2707.469 | 40.06 | -1.67 | 38.39 | -35.61 | 74.00 | 100 | 360 | Peak | | 3 | 6317.313 | 37.40 | 7.93 | 45.33 | -28.67 | 74.00 | 100 | 360 | Peak | | 4 | * 8123.500 | 37.15 | 13.49 | 50.64 | -23.36 | 74.00 | 100 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 35 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | | | |-----------|------------------|----------------------|--------------|--|--| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | | | Test Mode | TX-902.4MHz | Test Voltage | AC 120V/60Hz | | | | No | | Frequency
(MHz) | Reading
(dBuV) | C.F
(dB) | Measurement
(dBuV/m) | Margin
(dB) | Limit
(dBuV/m) | Height (cm) | Angle (deg) | Remark
(QP/PK/AV) | |----|---|--------------------|-------------------|-------------|-------------------------|----------------|-------------------|-------------|-------------|----------------------| | 1 | | 1804.938 | 51.11 | -4.03 | 47.07 | -26.93 | 74.00 | 100 | 360 | Peak | | 2 | | 2707.188 | 43.60 | -1.67 | 41.93 | -32.07 | 74.00 | 100 | 360 | Peak | | 3 | | 7220.969 | 37.32 | 11.78 | 49.10 | -24.90 | 74.00 | 100 | 360 | Peak | | 4 | | 8123.500 | 40.46 | 13.49 | 53.95 | -20.05 | 74.00 | 100 | 360 | Peak | | 5 | | 9022.938 | 37.42 | 14.92 | 52.34 | -21.66 | 74.00 | 100 | 360 | Peak | | 6 | * | 9926.875 | 39.99 | 16.44 | 56.42 | -17.58 | 74.00 | 100 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m)
= Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 36 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | | | |-----------|------------------|----------------------|--------------|--|--| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | | | Test Mode | TX-915MHz | Test Voltage | AC 120V/60Hz | | | | | ١٥ | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |----|----|-------|-----------|---------|----------|-------------|----------|-------|--------|------------|--------| | No | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | | | 1 | * | 1830.531 | 52.98 | -3.96 | 49.02 | -24.98 | 74.00 | 150 | 360 | Peak | | | 2 | | 2744.594 | 41.13 | -1.67 | 39.46 | -34.54 | 74.00 | 150 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 37 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-915MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | | 1829.688 | 55.21 | -3.97 | 51.24 | -22.76 | 74.00 | 150 | 360 | Peak | | 2 | | 2744.875 | 43.45 | -1.67 | 41.78 | -32.22 | 74.00 | 150 | 360 | Peak | | 3 | | 7318.844 | 38.10 | 12.21 | 50.31 | -23.69 | 74.00 | 150 | 360 | Peak | | 4 | * | 8236.000 | 38.38 | 13.54 | 51.92 | -22.08 | 74.00 | 150 | 360 | Peak | | 5 | | 9152.875 | 34.07 | 15.14 | 49.21 | -24.79 | 74.00 | 150 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 38 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | | | |-----------|------------------|----------------------|--------------|--|--| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | | | Test Mode | TX-927.6MHz | Test Voltage | AC 120V/60Hz | | | | Nia | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | No | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | * | 1855.000 | 54.58 | -3.90 | 50.68 | -23.32 | 74.00 | 100 | 360 | Peak | | 2 | | 2782.563 | 41.75 | -1.68 | 40.07 | -33.93 | 74.00 | 100 | 360 | Peak | | 3 | | 7419.531 | 35.19 | 12.66 | 47.85 | -26.15 | 74.00 | 100 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 39 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-927.6MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | * | 1855.281 | 57.04 | -3.90 | 53.14 | -20.86 | 74.00 | 100 | 360 | Peak | | 2 | | 2782.563 | 45.79 | -1.68 | 44.11 | -29.89 | 74.00 | 100 | 360 | Peak | | 3 | | 7419.813 | 39.00 | 12.66 | 51.66 | -22.34 | 74.00 | 100 | 360 | Peak | | 4 | | 8349.625 | 37.31 | 13.59 | 50.90 | -23.10 | 74.00 | 100 | 360 | Peak | | 5 | | 9278.031 | 35.13 | 15.35 | 50.47 | -23.53 | 74.00 | 100 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 40 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | | | |-----------|------------------|----------------------|--------------|--|--| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | | | Test Mode | RX-915MHz | Test Voltage | AC 120V/60Hz | | | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | | 1056.214 | 50.77 | -6.45 | 44.33 | -29.67 | 74.00 | 100 | 360 | Peak | | 2 | | 1162.893 | 46.73 | -6.06 | 40.67 | -33.33 | 74.00 | 100 | 360 | Peak | | 3 | | 1396.254 | 43.72 | -5.21 | 38.51 | -35.49 | 74.00 | 100 | 360 | Peak | | 4 | | 1798.336 | 41.85 | -4.05 | 37.80 | -36.20 | 74.00 | 100 | 360 | Peak | | 5 | | 2600.842 | 38.56 | -1.64 | 36.92 | -37.08 | 74.00 | 100 | 360 | Peak | | 6 | * | 2999.985 | 46.86 | -1.73 | 45.13 | -28.87 | 74.00 | 100 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 41 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | BBHA 9120D | Temp. / Humidity | 24°C /57% | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | RX-915MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | | 1061.115 | 51.62 | -6.43 | 45.19 | -28.81 | 74.00 | 100 | 360 | Peak | | 2 | | 1193.825 | 47.59 | -5.94 | 41.64 | -32.36 | 74.00 | 100 | 360 | Peak | | 3 | | 1797.635 | 44.22 | -4.05 | 40.17 | -33.83 | 74.00 | 100 | 360 | Peak | | 4 | | 1990.024 | 42.52 | -3.55 | 38.97 | -35.03 | 74.00 | 100 | 360 | Peak | | 5 | | 2391.987 | 44.69 | -2.03 | 42.66 | -31.34 | 74.00 | 100 | 360 | Peak | | 6 | * | 2992.320 | 50.01 | -1.73 | 48.28 | -25.72 | 74.00 | 100 | 360 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB) Preamplifier(dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 42 of 55 # 7.7. Radiated Restricted Band Edge Measurement # 7.7.1. Test Limit All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209. | FCC Part 15 Subpart C Paragraph 15.209 | | | | | | | | |--|-------------------------|-------------------------------|--|--|--|--|--| | Frequency
[MHz] | Field Strength
[V/m] | Measured Distance
[Meters] | | | | | | | 0.009 - 0.490 | 2400/F (kHz) | 300 | | | | | | | 0.490 - 1.705 | 24000/F (kHz) | 30 | | | | | | | 1.705 – 30 | 30 | 30 | | | | | | | 30 – 88 | 100 | 3 | | | | | | | 88 – 216 | 150 | 3 | | | | | | | 216 – 960 | 200 | 3 | | | | | | | Above 960 | 500 | 3 | | | | | | # 7.7.2. Test Procedure Used ANSI C63.10-2013 - Section 11.12.1 # 7.7.3. Test Setting # **Peak Field Strength Measurements** - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = as specified in Table 1 - 3. VBW = 3 * RBW - 4. Detector = peak - 5. Sweep time = auto couple - 6. Trace mode = max hold - 7. Trace was allowed to stabilize FCC ID: HLZ-AMM Page Number: 43 of 55 Table 1 - RBW as a function of frequency | Frequency | RBW | |---------------|---------------| | 9 ~ 150 kHz | 200 ~ 300 Hz | | 0.15 ~ 30 MHz | 9 ~ 10 kHz | | 30 ~ 1000 MHz | 100 ~ 120 kHz | | > 1000 MHz | 1 MHz | # Average Field Strength Measurements - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = 1MHz - 3. VBW ≥ 1/T - 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to
"Voltage" regardless of the display mode - 5. Detector = Peak - 6. Sweep time = auto - 7. Trace mode = max hold - 8. Allow max hold to run for at least 50 times (1/duty cycle) traces FCC ID: HLZ-AMM Page Number: 44 of 55 # 7.7.4. Test Setup # 1GHz ~ 18GHz Test Setup: FCC ID: HLZ-AMM Page Number: 45 of 55 Report No.: 2106TW0501-U4 # 7.7.5. Test Result | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-902.4MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | No | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | * | 902.245 | 74.18 | 31.79 | 105.97 | 31.97 | 74.00 | 100 | 30 | Peak | | 2 | | 959.995 | 1.49 | 32.32 | 33.81 | -40.19 | 74.00 | 100 | 30 | Peak | | 3 | | 975.115 | 2.43 | 32.56 | 34.99 | N/A | N/A | 100 | 30 | Peak | #### Note: - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 46 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-902.4MHz | Test Voltage | AC 120V/60Hz | | Nia | | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | No | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | * | 902.140 | 73.89 | 31.79 | 105.68 | 31.68 | 74.00 | 110 | 25 | Peak | | 2 | | 959.995 | 0.00 | 32.32 | 32.31 | -41.69 | 74.00 | 110 | 25 | Peak | | 3 | | 980.890 | 1.78 | 32.65 | 34.42 | N/A | N/A | 110 | 25 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 47 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Horizontal | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-927.6MHz | Test Voltage | AC 120V/60Hz | | Nia | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |-----|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | No | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | 927.360 | 74.38 | 31.98 | 106.36 | N/A | N/A | 100 | 25 | Peak | | 2 | 960.000 | 2.52 | 32.32 | 34.84 | -39.16 | 74.00 | 100 | 25 | Peak | | 3 | * 980.000 | 2.76 | 32.63 | 35.39 | -38.61 | 74.00 | 100 | 25 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 48 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-15 | |-----------|------------------|----------------------|--------------| | Factor | VULB 9162 | Temp. / Humidity | 24°C /57% | | Polarity | Vertical | Site / Test Engineer | AC1 / Kaunaz | | Test Mode | TX-927.6MHz | Test Voltage | AC 120V/60Hz | | No | Frequency | Reading | C.F | Measurement | Margin | Limit | Height | Angle | Remark | |----|-----------|---------|-------|-------------|--------|----------|--------|-------|------------| | No | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (cm) | (deg) | (QP/PK/AV) | | 1 | 927.280 | 73.65 | 31.98 | 105.64 | N/A | N/A | 105 | 20 | Peak | | 2 | 960.000 | 1.98 | 32.32 | 34.30 | -39.70 | 74.00 | 105 | 20 | Peak | | 3 | * 969.600 | 3.00 | 32.47 | 35.47 | -38.53 | 74.00 | 105 | 20 | Peak | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). - 4. The emission levels of other frequencies are very lower than the limit and not show in test report. FCC ID: HLZ-AMM Page Number: 49 of 55 # 7.8. AC Conducted Emissions Measurement # 7.8.1. Test Limit | FCC Part 15 Subpart C Paragraph 15.207 / RSS-Gen Limits | | | | | | | | |---|--------------|-------------------|--|--|--|--|--| | Frequency
(MHz) | QP
(dBµV) | Average
(dBµV) | | | | | | | 0.15 - 0.50 | 66 - 56 | 56 - 46 | | | | | | | 0.50 - 5.0 | 56 | 46 | | | | | | | 5.0 - 30 | 60 | 50 | | | | | | Note 1: The lower limit shall apply at the transition frequencies. Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz. # 7.8.2. Test Setup FCC ID: HLZ-AMM Page Number: 50 of 55 Report No.: 2106TW0501-U4 #### 7.8.3. Test Result | EUT | Air Monitor MATE | Date of Test | 2021-07-08 | |-----------|--------------------------|----------------------|--------------| | Factor | CE_ENV216-L1 (Filter ON) | Temp. / Humidity | 26.9°C /54% | | Polarity | Line1 | Site / Test Engineer | SR2 / volvo | | Test Mode | TX-915MHz | Test Voltage | AC 120V/60Hz | | No | Frequency | Reading | C.F | Measurement | Margin | Limit | Remark | |-----|-----------|---------|------|-------------|--------|----------|------------| | INO | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (QP/PK/AV) | | 1 | 0.168 | 30.76 | 9.61 | 40.37 | -24.68 | 65.06 | QP | | 2 | 0.168 | 10.61 | 9.61 | 20.23 | -34.83 | 55.06 | Average | | 3 | 0.213 | 26.79 | 9.61 | 36.40 | -26.69 | 63.09 | QP | | 4 | 0.213 | 9.67 | 9.61 | 19.28 | -33.81 | 53.09 | Average | | 5 ' | 0.663 | 25.10 | 9.64 | 34.74 | -21.26 | 56.00 | QP | | 6 ' | 0.663 | 14.11 | 9.64 | 23.75 | -22.25 | 46.00 | Average | | 7 | 1.905 | 11.86 | 9.69 | 21.55 | -34.45 | 56.00 | QP | | 8 | 1.905 | 2.84 | 9.69 | 12.52 | -33.48 | 46.00 | Average | | 9 | 7.687 | 4.61 | 9.81 | 14.42 | -45.58 | 60.00 | QP | | 10 | 7.687 | -1.12 | 9.81 | 8.69 | -41.31 | 50.00 | Average | | 11 | 15.745 | 10.93 | 9.93 | 20.86 | -39.14 | 60.00 | QP | | 12 | 15.745 | 0.07 | 9.93 | 10.00 | -40.00 | 50.00 | Average | #### Note: - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). FCC ID: HLZ-AMM Page Number: 51 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-08 | |-----------|-------------------------|----------------------|--------------| | Factor | CE_ENV216-N (Filter ON) | Temp. / Humidity | 26.9°C /54% | | Polarity | Neutral | Site / Test Engineer | SR2 / volvo | | Test Mode | TX-915MHz | Test Voltage | AC 120V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (QP/PK/AV) | | 1 | | 0.159 | 29.74 | 9.62 | 39.35 | -26.16 | 65.52 | QP | | 2 | | 0.159 | 13.78 | 9.62 | 23.40 | -32.12 | 55.52 | Average | | 3 | | 0.249 | 25.38 | 9.62 | 35.00 | -26.79 | 61.79 | QP | | 4 | | 0.249 | 8.90 | 9.62 | 18.51 | -33.28 | 51.79 | Average | | 5 | * | 0.667 | 30.81 | 9.65 | 40.46 | -15.54 | 56.00 | QP | | 6 | * | 0.667 | 21.60 | 9.65 | 31.24 | -14.76 | 46.00 | Average | | 7 | | 1.351 | 17.41 | 9.68 | 27.09 | -28.91 | 56.00 | QP | | 8 | | 1.351 | 5.99 | 9.68 | 15.67 | -30.33 | 46.00 | Average | | 9 | | 3.466 | 16.14 | 9.72 | 25.86 | -30.14 | 56.00 | QP | | 10 | | 3.466 | 3.13 | 9.72 | 12.85 | -33.15 | 46.00 | Average | | 11 | | 21.428 | 7.29 | 10.06 | 17.35 | -42.65 | 60.00 | QP | | 12 | | 21.428 | -0.13 | 10.06 | 9.93 | -40.07 | 50.00 | Average | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). FCC ID: HLZ-AMM Page Number: 52 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-08 | |-----------|--------------------------|----------------------|--------------| | Factor | CE_ENV216-L1 (Filter ON) | Temp. / Humidity | 26.9°C /54% | | Polarity | Line1 | Site / Test Engineer | SR2 / volvo | | Test Mode | TX-915MHz | Test Voltage | AC 240V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Remark | |-----|---|-----------|---------|-------|-------------|--------|----------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (QP/PK/AV) | | 1 | | 0.195 | 21.74 | 9.61 | 31.35 | -32.47 | 63.82 | QP | | 2 | | 0.195 | 3.65 | 9.61 | 13.26 | -40.56 | 53.82 | Average | | 3 | | 0.253 | 19.88 | 9.62 | 29.49 | -32.15 | 61.64 | QP | | 4 | | 0.253 | 3.48 | 9.62 | 13.10 | -38.54 | 51.64 | Average | | 5 | * | 0.550 | 18.09 | 9.63 | 27.72 | -28.28 | 56.00 | QP | | 6 | * | 0.550 | 6.37 | 9.63 | 16.00 | -30.00 | 46.00 | Average | | 7 | | 1.675 | 15.44 | 9.68 | 25.12 | -30.88 | 56.00 | QP | | 8 | | 1.675 | 4.49 | 9.68 | 14.18 | -31.82 | 46.00 | Average | | 9 | | 3.615 | 11.14 | 9.71 | 20.85 | -35.15 | 56.00 | QP | | 10 | | 3.615 | 2.13 | 9.71 | 11.85 | -34.15 | 46.00 | Average | | 11 | | 29.757 | 12.77 | 10.06 | 22.83 |
-37.17 | 60.00 | QP | | 12 | | 29.757 | 0.73 | 10.06 | 10.79 | -39.21 | 50.00 | Average | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). FCC ID: HLZ-AMM Page Number: 53 of 55 | EUT | Air Monitor MATE | Date of Test | 2021-07-08 | |-----------|-------------------------|----------------------|--------------| | Factor | CE_ENV216-N (Filter ON) | Temp. / Humidity | 26.9°C /54% | | Polarity | Neutral | Site / Test Engineer | SR2 / volvo | | Test Mode | TX-915MHz | Test Voltage | AC 240V/60Hz | | No | | Frequency | Reading | C.F | Measurement | Margin | Limit | Remark | |-----|---|-----------|---------|------|-------------|--------|----------|------------| | INO | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dB) | (dBuV/m) | (QP/PK/AV) | | 1 | | 0.163 | 21.22 | 9.62 | 30.84 | -34.45 | 65.28 | QP | | 2 | | 0.163 | 6.81 | 9.62 | 16.43 | -38.86 | 55.28 | Average | | 3 | * | 0.735 | 30.04 | 9.65 | 39.70 | -16.30 | 56.00 | QP | | 4 | * | 0.735 | 22.71 | 9.65 | 32.36 | -13.64 | 46.00 | Average | | 5 | | 1.428 | 21.71 | 9.68 | 31.39 | -24.61 | 56.00 | QP | | 6 | | 1.428 | 12.76 | 9.68 | 22.44 | -23.56 | 46.00 | Average | | 7 | | 3.588 | 15.82 | 9.72 | 25.54 | -30.46 | 56.00 | QP | | 8 | | 3.588 | 7.68 | 9.72 | 17.40 | -28.60 | 46.00 | Average | | 9 | | 5.828 | 12.55 | 9.77 | 22.32 | -37.68 | 60.00 | QP | | 10 | | 5.828 | 6.50 | 9.77 | 16.27 | -33.73 | 50.00 | Average | | 11 | | 13.622 | 13.48 | 9.94 | 23.43 | -36.57 | 60.00 | QP | | 12 | | 13.622 | 2.81 | 9.94 | 12.75 | -37.25 | 50.00 | Average | - 1. " *", means this data is the worst emission level. - 2. C.F (Correction Factor) = Antenna Factor (dB)+ Cable Loss (dB). - 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor). FCC ID: HLZ-AMM Page Number: 54 of 55 # 8. CONCLUSION | The data collected relate only the Item(s) tested | and snow that the Air Monitor MAIE is in | |---|--| | compliance with Part 15C of the FCC Rules. | | | | | | Т | he End ——————————————————————————————————— | | • | no End | FCC ID: HLZ-AMM Page Number: 55 of 55