

TEST REPORT

	FCC Part 27		
Report Reference No	CTL1909098011-WF10		
Compiled by: (position+printed name+signature)	Happy Guo (File administrators)	Happy Nice	Guo
Tested by: (position+printed name+signature)	Nice Nong (Test Engineer)	Nice	Nong
Approved by: (position+printed name+signature)	Ivan Xie (Manager)	Trem	Die
Product Name	Master Roam GLobal Pocket Wifi T	6	
Model/Type reference	T6		
List Model(s)	N/A		
Trade Mark	Master Roam		
FCC ID	2AU4T-T6		
Applicant's name	Shanghai TUGE Data Technologi	es Co., Ltd.	
Address of applicant	Building C, No.888, Huanhu West 2 Pudong New District, Shanghai, Ch		ui New Town,
Test Firm	Shenzhen CTL Testing Techno	ology Co., Ltd	ı.
Address of Test Firm	Floor 1-A, Baisha Technology Nanshan District, Shenzhen, Ch		, Shahexi Road,
Test specification	FCC CFR Title 47 Part 2, Part 2 EIA/TIA 603-D: 2010 KDB 971168 D01	27	
TRF Originator	Shenzhen CTL Testing Technology	ogy Co., Ltd.	
Master TRF	Dated 2011-01		
Date of receipt of test item	Sep. 30, 2019		
Date of sampling	Sep. 30, 2019		
Date of Test Date	Sep. 30, 2019-Nov. 07, 2019		
Data of Issue	Nov. 08, 2019		
Result	Pass		
Shonzhon CTL Tosting Tochnolog	v Co Ltd All rights received		

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Toot Bonort No.	CTI 4000000044 WE40	Nov. 08, 2019
Test Report No. :	CTL1909098011-WF10	Date of issue

Equipment under Test : Master Roam GLobal Pocket Wifi T6

Model /Type : T6

Listed Models : N/A

Applicant : Shanghai TUGE Data Technologies Co., Ltd.

Address : Building C, No.888, Huanhu West 2nd Road, Nanhui New

Town, Pudong New District, Shanghai, China

Manufacturer : Hui Zhou fortuneship technology Company Limited

Address : NO.86, Hechang 7th West Road, Zhong Kai Hi-tech

Development District, Huizhou City, Guangdong Province,

P.R.China (Phase II plant)

Test result	Pass *
-------------	--------

^{*}In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Report No.: CTL1909098011-WF10

	1110 011			
Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2019-11-08	CTL1909098011-WF10	Tracy Qi
		100		
	- 1			
				- P T
	. 0 1			
	B B			
				A 9"
	1		1	l

Report No.: CTL1909098011-WF10

Contents

<u> </u>	SUMMARI	
1.1	TEST STANDARDS	5
1.2	Test Description	5
1.3	Test Facility	6
1.4	Statement of the measurement uncertainty	6
<u>2</u>	GENERAL INFORMATION	7
2.1	Environmental conditions	7
2.2	General Description of EUT	7
2.3	Description of Test Modes	7
2.4	Equipments Used during the Test	7
2.5	Related Submittal(s) / Grant (s)	8
2.6	Modifications	8
<u>3</u>	TEST CONDITIONS AND RESULTS	9
3.1	Output Power	9
3.2	Peak-to-Average Ratio (PAR)	12
3.3	Occupied Bandwidth and Emission Bandwidth	13
3.4	Band Edge compliance	14
3.5	Spurious Emission	15
3.6	Frequency Stability under Temperature & Voltage Variations	19
<u>4</u>	TEST SETUP PHOTOS OF THE EUT	
<u>5</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT 错	误! 未定义书签。

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

TIA/EIA 603 D June 2010:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01: v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: —American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 27.50(h)(2)	Pass
Peak-to-Average Ratio	Part 27.50(a)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 27.53(m)	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(m)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(m)	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(m)	Pass
Frequency stability	Part 2.1055 Part 27.54	Pass

V1.0 Page 6 of 22 Report No.: CTL1909098011-WF10

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9518B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9518B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 **GENERAL INFORMATION**

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Name:	Master Roam GLobal Pocket Wifi T6
Model/Type reference:	T6
Power supply:	DC 3.8V from battery
Hardware version:	ET612-MB-V0.2
Software version:	Android 7.0
LTE	
Operation Band:	FDD-LTE: Band 2/4/5/7/12/17 TDD-LTE: Band 38/41
Modulation Type:	QPSK, 16QAM
Release Version:	Release 9
Category:	Cat 4
Antenna type:	FPC antenna
Antenna gain:	3dBi

Note: For more details, refer to the user's manual of the EUT.

Note1: This report only reports band 41.

2.3 Description of Test Modes

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

2.4 Equipments Used during the Test

occu dannig un				
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Sunol Sciences Corp.	JB1	A061713	2019/05/20	2020/05/19
Sunol Sciences Corp.	JB1	A061714	2019/05/20	2020/05/19
R&S	ESCI	103710	2019/05/20	2020/05/19
Agilent	E4407B	MY41440676	2019/05/20	2020/05/19
Agilent	N9020	US46220290	2019/05/20	2020/05/19
Keysight	N9020A	N9020A MY53420874		2020/05/19
EM Electronics	Controller EM 1000	N/A	2019/05/20	2020/05/19
Sunol Sciences Corp.	DRH-118	A062013	2019/05/20	2020/05/19
Sunol Sciences Corp.	DRH-118	A062014	2019/05/20	2020/05/19
SCHWARZBECK	FMZB1519	1519-037	2019/05/20	2020/05/19
Agilent	8349B	3008A02306	2019/05/20	2020/05/19
Agilent	8447D	2944A10176	2019/05/20	2020/05/19
Gangxing	CTH-608	02	2019/05/20	2020/05/19
	Manufacturer Sunol Sciences Corp. Sunol Sciences Corp. R&S Agilent Agilent Keysight EM Electronics Sunol Sciences Corp. Sunol Sciences Corp. SCHWARZBECK Agilent Agilent	Sunol Sciences Corp. Sunol Sciences Corp. R&S ESCI Agilent Agilent N9020 Keysight N9020A EM Electronics Sunol Sciences Corp. SCHWARZBECK Agilent Agilent Agilent 8349B Agilent 8447D	Manufacturer Model No. Serial No. Sunol Sciences Corp. JB1 A061713 Sunol Sciences Corp. JB1 A061714 R&S ESCI 103710 Agilent E4407B MY41440676 Agilent N9020 US46220290 Keysight N9020A MY53420874 EM Electronics Controller EM 1000 N/A Sunol Sciences Corp. DRH-118 A062013 Sunol Sciences Corp. DRH-118 A062014 SCHWARZBECK FMZB1519 1519-037 Agilent 8349B 3008A02306 Agilent 8447D 2944A10176	Manufacturer Model No. Serial No. Calibration Date Sunol Sciences Corp. JB1 A061713 2019/05/20 Sunol Sciences Corp. JB1 A061714 2019/05/20 R&S ESCI 103710 2019/05/20 Agilent E4407B MY41440676 2019/05/20 Agilent N9020 US46220290 2019/05/20 Keysight N9020A MY53420874 2019/05/20 EM Electronics Controller EM 1000 N/A 2019/05/20 Sunol Sciences Corp. DRH-118 A062013 2019/05/20 Sunol Sciences Corp. DRH-118 A062014 2019/05/20 SCHWARZBECK FMZB1519 1519-037 2019/05/20 Agilent 8349B 3008A02306 2019/05/20 Agilent 8447D 2944A10176 2019/05/20

Report No.: CTL1909098011-WF10

2.5 Related Submittal(s) / Grant (s)

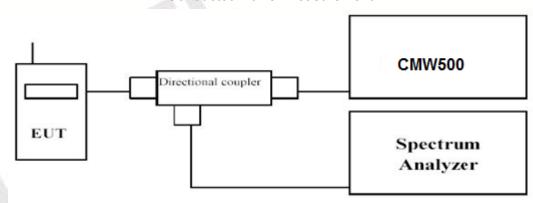
This submittal(s) (test report) is intended to comply with of the Part 27 Rules.

2.6 Modifications

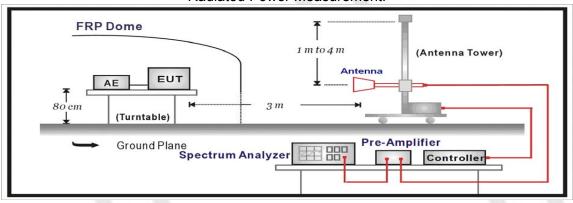
No modifications were implemented to meet testing criteria.

V1.0 Page 9 of 22 Report No.: CTL1909098011-WF10

3 TEST CONDITIONS AND RESULTS


3.1 Output Power

LIMIT


According to §27.50 (h) (2): Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. Test site anechoic chamber refer to ANSI C63.4.

TEST RESULTS

Conducted Measurement: See Appendix A.

Radiated Measurement:

Remark:

V1.0

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Aq}(dB)+G_a(dBi)$

LTE TDD Band 41_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2498.5	-20.19	3.65	10.77	34.50	21.43	33.01	11.58	V
2593.0	-20.16	3.71	11.10	34.44	21.67	33.01	11.34	V
2687.5	-20.09	3.78	11.05	34.40	21.58	33.01	11.43	V

LTE TDD Band 41 Channel Bandwidth 10MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2501.0	-20.34	3.65	10.77	34.50	21.28	33.01	11.73	V
2593.0	-20.47	3.71	11.10	34.44	21.36	33.01	11.65	V
2685.0	-20.48	3.78	11.05	34.40	21.19	33.01	11.82	V

LTE TDD Band 41_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2503.5	-20.94	3.65	10.77	34.50	20.68	33.01	12.33	V
2593.0	-20.47	3.71	11.10	34.44	21.36	33.01	11.65	V
2682.5	-19.84	3.78	11.05	34.40	21.83	33.01	11.18	V

LTE TDD Band 41 Channel Bandwidth 20MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2506.0	-20.54	3.65	10.77	34.50	21.08	33.01	11.93	V
2593.0	-20.66	3.71	11.10	34.44	21.17	33.01	11.84	V
2680.0	-20.62	3.78	11.05	34.40	21.05	33.01	11.96	V

LTE TDD Band 41_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2498.5	-20.76	3.65	10.77	34.50	20.86	33.01	12.15	V
2593.0	-20.80	3.71	11.10	34.44	21.03	33.01	11.98	V
2687.5	-20.49	3.78	11.05	34.40	21.18	33.01	11.83	V

LTE TDD Band 41_Channel Bandwidth 10MHz_16QAM

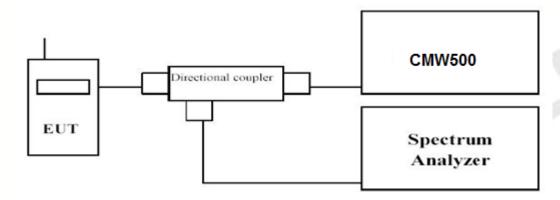
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2501.0	-20.84	3.65	10.77	34.50	20.78	33.01	12.23	V
2593.0	-20.67	3.71	11.10	34.44	21.16	33.01	11.85	V
2685.0	-20.58	3.78	11.05	34.40	21.09	33.01	11.92	V

LTE TDD Band 41_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2503.5	-20.51	3.65	10.77	34.50	21.11	33.01	11.90	V
2593.0	-21.07	3.71	11.10	34.44	20.76	33.01	12.25	V
2682.5	-20.60	3.78	11.05	34.40	21.07	33.01	11.94	V

LTE TDD Band 41_Channel Bandwidth 20MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2506.0	-20.51	3.65	10.77	34.50	21.11	33.01	11.90	V
2593.0	-20.97	3.71	11.10	34.44	20.86	33.01	12.15	V
2680.0	-20.53	3.78	11.05	34.40	21.14	33.01	11.87	V


V1.0 Page 12 of 22 Report No.: CTL1909098011-WF10

3.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

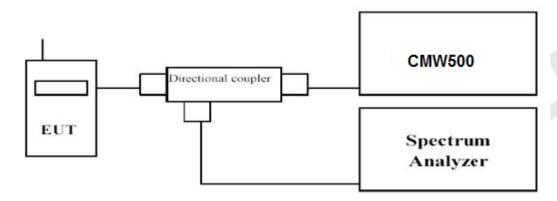
TEST CONFIGURATION

TEST PROCEDURE

According to KDB971168 D01 Power Meas License Digital Systems v02r02: Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from: PAPR (dBm) - P_{Avg} (dBm).

TEST RESULTS

See Appendix B.


3.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

V1.0

N/A

TEST CONFIGURATION

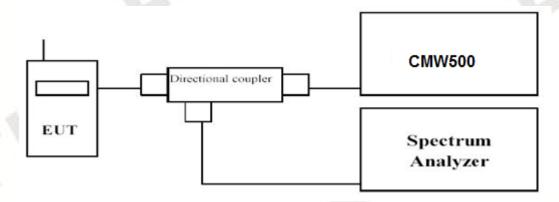
TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

See Appendix C.


3.4 Band Edge compliance

LIMIT

According to Part 27.83(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Report No.: CTL1909098011-WF10

TEST CONFIGURATION

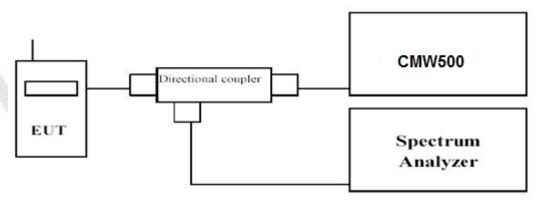
TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

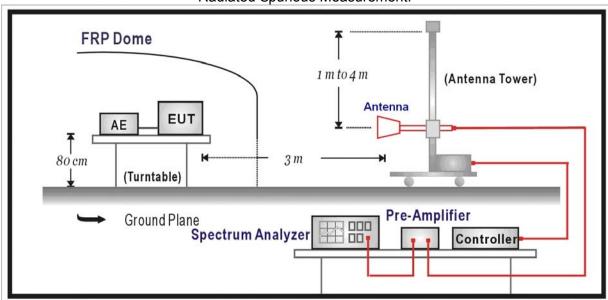
TEST RESULTS

See Appendix D.

V1.0 Page 15 of 22 Report No.: CTL1909098011-WF10


3.5 Spurious Emission

LIMIT


According to Part 27.83(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.

e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.

f. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
	0.000009~0.000015	1KHz	3KHz	Auto
LTE TDD Band 41	0.000015~0.03	10KHz	30KHz	Auto
	0.03~27.0*	1 MHz	3 MHz	Auto

Radiated Spurious Measurement:

- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.
- 2. We tested from 9KHz to 27GHz and recorded 9KHz at 26GHz as the emission values from 26GHz to 27GHz too lower.

Conducted Measurement: See Appendix E.

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41 @ QPSK
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. We were not recorded other points as values lower than limits.
- 4. Margin = Limit EIRP

LTE TDD Band 41_Channel Bandwidth 5MHz_QPSK_ Low Channel

				<u> </u>				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
4997.0	-34.89	6.86	3.00	12.88	-28.87	-25.00	3.87	Н
7495.5	-37.98	7.01	3.00	11.73	-33.26	-25.00	8.26	H
4997.0	-32.55	6.86	3.00	12.88	-26.53	-25.00	1.53	V
7495.5	-36.55	7.01	3.00	11.73	-31.83	-25.00	6.83	V

LTE TDD Band 41_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-34.09	6.70	3.00	13.21	-27.58	-25.00	2.58	Н
7779.0	-37.75	7.28	3.00	12.10	-32.93	-25.00	7.93	Н
5186.0	-32.80	6.70	3.00	13.21	-26.29	-25.00	1.29	V
7779.0	-36.50	7.28	3.00	12.10	-31.68	-25.00	6.68	V

LTE TDD Band 41_Channel Bandwidth 5MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5375.0	-35.41	6.77	3.00	13.49	-28.69	-25.00	3.69	Н
8062.5	-37.62	7.52	3.00	11.61	-33.53	-25.00	8.53	Н
5375.0	-33.10	6.77	3.00	13.49	-26.38	-25.00	1.38	V
8062.5	-35.43	7.52	3.00	11.61	-31.34	-25.00	6.34	V

LTE TDD Band 41_Channel Bandwidth 10MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5002.0	-35.70	6.86	3.00	12.88	-29.68	-25.00	4.68	Н
7503.0	-39.58	7.01	3.00	11.73	-34.86	-25.00	9.86	Н
5002.0	-34.65	6.86	3.00	12.88	-28.63	-25.00	3.63	V
7503.0	-38.26	7.01	3.00	11.73	-33.54	-25.00	8.54	V

LTE TDD Band 41_Channel Bandwidth 10MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-35.13	6.70	3.00	13.21	-28.62	-25.00	3.62	Н
7779.0	-38.21	7.28	3.00	12.10	-33.39	-25.00	8.39	Н
5186.0	-34.04	6.70	3.00	13.21	-27.53	-25.00	2.53	V
7779.0	-36.71	7.28	3.00	12.10	-31.89	-25.00	6.89	V

LTE TDD Band 41_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5370.0	-36.00	6.77	3.00	13.49	-29.28	-25.00	4.28	H
8055.0	-37.48	7.52	3.00	11.61	-33.39	-25.00	8.39	H
5370.0	-34.13	6.77	3.00	13.49	-27.41	-25.00	2.41	V
8055.0	-36.35	7.52	3.00	11.61	-32.26	-25.00	7.26	V

LTE TDD Band 41_Channel Bandwidth 15MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5007.0	-34.28	6.86	3.00	12.88	-28.26	-25.00	3.26	Н
7510.5	-38.35	7.01	3.00	11.73	-33.63	-25.00	8.63	Н
5007.0	-32.58	6.86	3.00	12.88	-26.56	-25.00	1.56	V
7510.5	-36.61	7.01	3.00	11.73	-31.89	-25.00	6.89	V

LTE TDD Band 41_Channel Bandwidth 15MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-35.9	6.70	3.00	13.21	-29.39	-25.00	4.39	H
7779.0	-38.16	7.28	3.00	12.10	-33.34	-25.00	8.34	Н
5186.0	-33.14	6.70	3.00	13.21	-26.63	-25.00	1.63	V
7779.0	-36.74	7.28	3.00	12.10	-31.92	-25.00	6.92	V

LTE TDD Band 41_Channel Bandwidth 15MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5365.0	-35.24	6.77	3.00	13.49	-28.52	-25.00	3.52	Н
8047.5	-37.45	7.52	3.00	11.61	-33.36	-25.00	8.36	Н
5365.0	-34.26	6.77	3.00	13.49	-27.54	-25.00	2.54	V
8047.5	-36.51	7.52	3.00	11.61	-32.42	-25.00	7.42	V

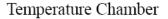
LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK_ Low Channel

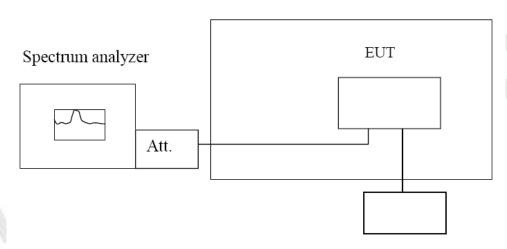
	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	5012.0	-34.27	6.86	3.00	12.88	-28.25	-25.00	3.25	Н
Ī	7518.0	-37.95	7.01	3.00	11.73	-33.23	-25.00	8.23	H
	5012.0	-32.85	6.86	3.00	12.88	-26.83	-25.00	1.83	V
Ī	7518.0	-36.61	7.01	3.00	11.73	-31.89	-25.00	6.89	V

LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK_ Middle Channel

	<u> </u>							
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-35.9	6.70	3.00	13.21	-29.39	-25.00	4.39	Н
7779.0	-37.5	7.28	3.00	12.10	-32.68	-25.00	7.68	Н
5186.0	-34.04	6.70	3.00	13.21	-27.53	-25.00	2.53	V
7779.0	-36.64	7.28	3.00	12.10	-31.82	-25.00	6.82	V

LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK_ High Channel


Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5360.0	-38.97	6.77	3.00	13.49	-32.25	-25.00	7.25	Н
8040.0	-37.42	7.52	3.00	11.61	-33.33	-25.00	8.33	Н
5360.0	-34.86	6.77	3.00	13.49	-28.14	-25.00	3.14	V
8040.0	-35.62	7.52	3.00	11.61	-31.53	-25.00	6.53	V


3.6 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §27.50(a), §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 4, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark:

1. We tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case.

LTE Band 41, 5MHz bandwidth (worst case of all bandwidths)

Frequency Error vs Voltage

i i oquonoy Enior	ro ronago				
Voltage	Frequency	error (Hz)	Frequency	Limit	
(V)	QPSK	16QAM	QPSK	16QAM	(ppm)
3.23	-3.39	3.42	-0.00131	0.00132	± 2.50
3.80	1.65	2.56	0.00064	0.00099	±2.50
4.37	1.36	4.68	0.00052	0.00180	±2.50

Frequency Error vs Temperature

Temperature	Frequency	error (Hz)	Frequency	error (ppm)	Limit
(℃)	QPSK	16QAM	QPSK	16QÁM	(ppm)
-30°	0.14	-1.80	0.00005	-0.00069	±2.50
-20°	-2.20	-6.33	-0.00085	-0.00244	±2.50
-10°	-5.85	-0.42	-0.00226	-0.00016	±2.50
0°	-8.67	-4.30	-0.00334	-0.00166	±2.50
10°	2.28	1.74	0.00088	0.00067	±2.50
20°	2.38	9.95	0.00092	0.00384	±2.50
30°	4.88	-7.93	0.00188	-0.00306	±2.50
40°	-0.85	-6.08	-0.00033	-0.00234	±2.50
50°	-0.51	8.33	-0.00020	0.00321	±2.50

4 Test Setup Photos of the EUT

V1.0

V1.0 Page 22 of 22 Report No.: CTL1909098011-WF10

5 External and Internal Photos of the EUT

Please reference to the test report No.: CTL1909098011-WF01