

# Report No.: BLA-EMC-202502-A3803

Page 31 of 108

### 6.12.2 Test setup

Below 1GHz:



Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com



#### 6.12.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 40GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown. Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 33 of 108

1000.000

(C)

%RH

### 6.12.4 Test data

#### Below 1GHz



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| 1   | 38.3462            | 0.50              | 19.24            | 19.74             | 40.00             | -20.26         | QP       | P   |        |
| 2   | 70.8315            | 1.52              | 16.66            | 18.18             | 40.00             | -21.82         | QP       | P   |        |
| 3   | 114.9167           | -0.89             | 18.02            | 17.13             | 43.50             | -26.37         | QP       | Ρ   |        |
| 4   | 279.0436           | 10.42             | 19.19            | 29.61             | 46.00             | -16.39         | QP       | Р   |        |
| 5 * | 501.1789           | 7.41              | 25.32            | 32.73             | 46.00             | -13.27         | QP       | Ρ   |        |
| 6   | 711.6734           | 1.88              | 28.61            | 30.49             | 46.00             | -15.51         | QP       | Ρ   |        |

\*·Maximum data **v**:Over limit l:over margin

**Test Result: Pass** 

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Mode: 5.8G TX

Note:



Page 34 of 108



\*·Maximum data x·Over limit Lover margin

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 35 of 108

### Above 1GHz:



| No. | Mk | k. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 4701.250 | 40.36            | 5.06              | 45.42            | 74.00  | -28.58 | peak     |         |
| 2   |    | 5747.000 | 38.53            | 10.11             | 48.64            | 74.00  | -25.36 | peak     |         |
| 3   |    | 6945.500 | 37.60            | 12.64             | 50.24            | 74.00  | -23.76 | peak     |         |
| 4   | *  | 8097.000 | 38.84            | 11.79             | 50.63            | 74.00  | -23.37 | peak     |         |
| 5   |    | 10576.25 | 37.00            | 13.63             | 50.63            | 74.00  | -23.37 | peak     |         |
| 6   |    | 11490.00 | 35.26            | 14.81             | 50.07            | 74.00  | -23.93 | peak     |         |

| *:Maximum | data  | x:Over limit    | !:over margin |                    |       | (Reference Only |
|-----------|-------|-----------------|---------------|--------------------|-------|-----------------|
| Receiver: | ESR_  | _1              |               | Spectrum Analyzer: | FSP40 |                 |
| A mtamma. | F7 04 | 1000 40 400 000 |               |                    |       |                 |

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 36 of 108



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 4736.500 | 39.27            | 5.43              | 44.70            | 74.00  | -29.30 | peak     |         |
| 2   |    | 6369.750 | 39.84            | 10.51             | 50.35            | 74.00  | -23.65 | peak     |         |
| 3   |    | 8014.750 | 38.69            | 11.63             | 50.32            | 74.00  | -23.68 | peak     |         |
| 4   | *  | 9448.250 | 38.56            | 13.10             | 51.66            | 74.00  | -22.34 | peak     |         |
| 5   | 1  | 10552.75 | 36.89            | 13.67             | 50.56            | 74.00  | -23.44 | peak     |         |
| 6   |    | 11490.00 | 36.28            | 14.81             | 51.09            | 74.00  | -22.91 | peak     |         |

| *:Maximum da | ata x:Over limit     | l:over margin |                    |       | Reference Only |
|--------------|----------------------|---------------|--------------------|-------|----------------|
| Receiver:    | ESR_1                |               | Spectrum Analyzer: | FSP40 |                |
| A            | E7 0400D 40 400 0004 |               |                    |       |                |

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 37 of 108



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 4724.750 | 40.86            | 5.31              | 46.17            | 74.00  | -27.83 | peak     |         |
| 2   |    | 6358.000 | 40.39            | 10.30             | 50.69            | 74.00  | -23.31 | peak     |         |
| 3   |    | 7004.250 | 42.11            | 9.52              | 51.63            | 74.00  | -22.37 | peak     |         |
| 4   |    | 8003.000 | 39.49            | 11.61             | 51.10            | 74.00  | -22.90 | peak     |         |
| 5   |    | 9753.750 | 37.53            | 13.80             | 51.33            | 74.00  | -22.67 | peak     |         |
| 6   | *  | 11570.00 | 37.11            | 14.80             | 51.91            | 74.00  | -22.09 | peak     |         |

| *:Maximum | data x:Over limit   | !:over margin |                    |       | <pre> Reference Only</pre> |
|-----------|---------------------|---------------|--------------------|-------|----------------------------|
| Receiver: | ESR_1               |               | Spectrum Analyzer: | FSP40 |                            |
| A         | E7 0400D 40 400 000 |               |                    |       |                            |

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 38 of 108



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |    | 4066.750 | 40.54            | 3.32              | 43.86            | 74.00  | -30.14 | peak     |         |
| 2   |    | 5829.250 | 38.69            | 9.97              | 48.66            | 74.00  | -25.34 | peak     |         |
| 3   | *  | 7004.250 | 41.83            | 9.52              | 51.35            | 74.00  | -22.65 | peak     |         |
| 4   |    | 9013.500 | 39.16            | 12.15             | 51.31            | 74.00  | -22.69 | peak     |         |
| 5   |    | 9753.750 | 37.45            | 13.80             | 51.25            | 74.00  | -22.75 | peak     |         |
| 6   |    | 11570.00 | 36.19            | 14.80             | 50.99            | 74.00  | -23.01 | peak     |         |

| *:Maximum | data x:Over limit   | !:over margin |                    |       | (Reference Only |
|-----------|---------------------|---------------|--------------------|-------|-----------------|
| Receiver: | ESR_1               |               | Spectrum Analyzer: | FSP40 |                 |
| A         | E7 0400D 40 400 000 |               |                    |       |                 |

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 39 of 108



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over                  |          |         |
|-----|----|----------|------------------|-------------------|------------------|--------|-----------------------|----------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB                    | Detector | Comment |
| 1   |    | 5829.250 | 39.19            | 9.97              | 49.16            | 74.00  | -24.84                | peak     |         |
| 2   |    | 6969.000 | 39.40            | 12.58             | 51.98            | 74.00  | -22.02                | peak     |         |
| 3   |    | 8249.750 | 39.95            | 11.20             | 51.15            | 74.00  | -22.85                | peak     |         |
| 4   | *  | 9377.750 | 39.00            | 13.01             | 52.01            | 74.00  | - <mark>21.9</mark> 9 | peak     |         |
| 5   |    | 10623.25 | 38.30            | 13.42             | 51.72            | 74.00  | -22.28                | peak     |         |
| 6   |    | 11650.00 | 36.42            | 14.12             | 50.54            | 74.00  | -23.46                | peak     |         |

| *:Maximum | data        | x:Over limit     | l:over margin |                    |       | (Reference Only |
|-----------|-------------|------------------|---------------|--------------------|-------|-----------------|
| Receiver: | ESR         | _1               |               | Spectrum Analyzer: | FSP40 |                 |
| A         | <b>F7</b> 0 | 4000 40 400 0004 |               |                    |       |                 |

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 40 of 108



| No. | M | k. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|---|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
| _   |   | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |   | 5711.750 | 38.69            | 11.17             | 49.86            | 74.00  | -24.14 | peak     |         |
| 2   | * | 7004.250 | 41.94            | 9.52              | 51.46            | 74.00  | -22.54 | peak     |         |
| 3   |   | 8202.750 | 39.49            | 11.48             | 50.97            | 74.00  | -23.03 | peak     |         |
| 4   |   | 9695.000 | 37.68            | 13.51             | 51.19            | 74.00  | -22.81 | peak     |         |
| 5   |   | 10552.75 | 37.62            | 13.67             | 51.29            | 74.00  | -22.71 | peak     |         |
| 6   |   | 11650.00 | 36.30            | 14.12             | 50.42            | 74.00  | -23.58 | peak     |         |

| *:Maximum | data x:Over limit  | l:over margin |                    |       | Reference Only |
|-----------|--------------------|---------------|--------------------|-------|----------------|
| Receiver: | ESR_1              |               | Spectrum Analyzer: | FSP40 |                |
| A mtamma. | E7 0400D 40 400 00 |               |                    |       |                |

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



### 6.13 Radiated emissions which fall in the restricted bands

| Test Standard          | 47 CFR Part 15, Subpart E 15.407 |
|------------------------|----------------------------------|
| Test Method            | KDB 789033 D02 II G              |
| Test Mode (Pre-Scan)   | ТХ                               |
| Test Mode (Final Test) | ТХ                               |

### 6.13.1 Limit

| Frequency(MHz) | Field<br>strength(microvolts/meter) | Measurement<br>distance(meters) |
|----------------|-------------------------------------|---------------------------------|
| 0.009-0.490    | 2400/F(kHz)                         | 300                             |
| 0.490-1.705    | 24000/F(kHz)                        | 30                              |
| 1.705-30.0     | 30                                  | 30                              |
| 30-88          | 100                                 | 3                               |
| 88-216         | 150                                 | 3                               |
| 216-960        | 200                                 | 3                               |
| Above 960      | 500                                 | 3                               |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



# Report No.: BLA-EMC-202502-A3803

Page 42 of 108

### 6.13.2 Test setup

Below 1GHz:



Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



#### 6.13.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

#### Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



### Report No.: BLA-EMC-202502-A3803

Page 44 of 108

#### 6.13.4 Test data



| *:Maximum | data | x:Over limit    | !:over margin |                    |       | (Reference Only |
|-----------|------|-----------------|---------------|--------------------|-------|-----------------|
| Receiver: | ESF  | _1              |               | Spectrum Analyzer: | FSP40 |                 |
| Antonno   | F7 ( | 4000 40 400 000 |               |                    |       |                 |

74.00 -25.10

74.00 -24.30

peak

peak

**Test Result: Pass** 

3

4

\*

5725.000

5850.000

42.54

42.94

6.36

6.76

48.90

49.70

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481



Page 45 of 108



| No. | M | k. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|---|----------|------------------|-------------------|------------------|--------|--------|----------|---------|
|     |   | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |   | 5350.000 | 44.40            | 5.21              | 49.61            | 74.00  | -24.39 | peak     |         |
| 2   |   | 5460.000 | 43.40            | 5.91              | 49.31            | 74.00  | -24.69 | peak     |         |
| 3   |   | 5725.000 | 42.91            | 6.36              | 49.27            | 74.00  | -24.73 | peak     |         |
| 4   | * | 5850.000 | 43.07            | 6.76              | 49.83            | 74.00  | -24.17 | peak     |         |

|          | *:Maximum c | lata | x:Over limit     | !:over margin |                    |       | (Reference Only |
|----------|-------------|------|------------------|---------------|--------------------|-------|-----------------|
|          | Receiver:   | ESR  | _1               |               | Spectrum Analyzer: | FSP40 |                 |
|          | A mtamma.   | F7 0 | 1000 10 100 0004 |               |                    |       |                 |
| Test Res | ult: Pass   |      |                  |               |                    |       |                 |

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 46 of 108



| No. | М | k. Fre | eq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|---|--------|-----|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |   | MH     | z   | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   | * | 5850.0 | 00  | 42.60            | 6.76              | 49.36            | 74.00  | -24.64 | peak     |         |  |



Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



Page 47 of 108



| No. | M | k. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|---|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |   | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   | * | 5850.000 | 43.11            | 6.76              | 49.87            | 74.00  | -24.13 | peak     |         |  |



Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com



### 6.14 DFS: Channel Closing Transmission Time

| Test Standard          | 47 CFR Part 15, Subpart E 15.407(h)(2) |
|------------------------|----------------------------------------|
| Test Method            | KDB 905462 D02 Section 7.8.3           |
| Test Mode (Pre-Scan)   | ТХ                                     |
| Test Mode (Final Test) | ТХ                                     |

### 6.14.1 Limit

200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period (should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. It is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions)

### 6.14.2 Test setup



#### 6.14.3 Procedure

- 1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



Page 49 of 108

- 3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4) EUT will associate with the master at channel. The file i<sup>°</sup>iperf.exei± specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.
- 7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

6.14.4 Test data

N/A

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



Page 50 of 108

### 6.15DFS: Non-occupancy period

| Test Standard          | 47 CFR Part 15, Subpart E 15.407(h)(2) |
|------------------------|----------------------------------------|
| Test Method            | KDB 905462 D02 Section 7.8.3           |
| Test Mode (Pre-Scan)   | ТХ                                     |
| Test Mode (Final Test) | ТХ                                     |

#### 6.15.1 Limit

Minimum 30 minutes

#### 6.15.2 Test setup



#### 6.15.3 Procedure

- 1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.
- 3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4) EUT will associate with the master at channel. The file i°iperf.exei± specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



Page 51 of 108

- 5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.
- 7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

6.15.4 Test data

N/A

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



Page 52 of 108

# 7 Appendix A

# 7.1 Duty Cycle

| Condition | Mode | Frequency (MHz) | Antenna | Duty Cycle (%) | Correction Factor (dB) |
|-----------|------|-----------------|---------|----------------|------------------------|
| NVNT      | GFSK | 5745            | Ant1    | 100            | 0                      |
| NVNT      | GFSK | 5785            | Ant1    | 100            | 0                      |
| NVNT      | GFSK | 5825            | Ant1    | 100            | 0                      |
| NVNT      | GFSK | 5745            | Ant2    | 100            | 0                      |
| NVNT      | GFSK | 5785            | Ant2    | 100            | 0                      |
| NVNT      | GFSK | 5825            | Ant2    | 100            | 0                      |
| NVNT      | GFSK | 5745            | Ant1    | 100            | 0                      |
| NVNT      | GFSK | 5785            | Ant1    | 100            | 0                      |
| NVNT      | GFSK | 5825            | Ant1    | 100            | 0                      |
| NVNT      | GFSK | 5745            | Ant2    | 100            | 0                      |
| NVNT      | GFSK | 5785            | Ant2    | 100            | 0                      |
| NVNT      | GFSK | 5825            | Ant2    | 100            | 0                      |

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



Page 53 of 108

| RT                | RF 50 Ω AC                          | S         | ENSE:INT                        | ALIGN AUTO   |       | 04:43:14 PM Feb 25, 2025                         |
|-------------------|-------------------------------------|-----------|---------------------------------|--------------|-------|--------------------------------------------------|
| enter F           | req 5.74500000                      | PNO: Fast | Trig: Free Run<br>#Atten: 30 dB | Avg Type: Lo | g-Pwr | TRACE 1 2 3 4 5<br>TYPE WWWWWWW<br>DET P N N N N |
| dB/div            | Ref Offset 2.98 dB<br>Ref 20.00 dBm |           |                                 |              |       |                                                  |
| 0.0               |                                     |           |                                 |              |       |                                                  |
|                   |                                     |           |                                 |              |       |                                                  |
| .0                |                                     |           |                                 |              |       | 2                                                |
| 0                 |                                     |           |                                 |              |       |                                                  |
| 0                 |                                     |           |                                 |              |       |                                                  |
| 0                 |                                     |           |                                 |              |       |                                                  |
| 0                 |                                     |           |                                 |              |       |                                                  |
|                   |                                     |           |                                 |              |       |                                                  |
| .0                |                                     |           |                                 |              |       |                                                  |
| nter 5.<br>s BW 1 | .745000000 GHz<br>1.0 MHz           | #VBV      | V 3.0 MHz                       |              | Sweep | Span 0 Hz<br>100.0 ms (10001 pts                 |
|                   |                                     |           |                                 | STATUS       | •     |                                                  |

### Duty Cycle NVNT GFSK 5745MHz Ant1

## Duty Cycle NVNT GFSK 5785MHz Ant1

| Agilent Spect       | rum Analyzer - Swept SA             |           |                        |                              |          |                        |         |                |                                       |
|---------------------|-------------------------------------|-----------|------------------------|------------------------------|----------|------------------------|---------|----------------|---------------------------------------|
| Center F            | RF 50 Ω AC                          | 0 GHz     |                        | ENSE:INT                     | AL       | IGNAUTO<br>Avg Type: I | Log-Pwr | 04:38:13<br>TI | 3 PM Feb 25, 2025<br>RACE 1 2 3 4 5 6 |
| Contor I            | 100 0.10000000                      | PN<br>IFG | 10: Fast ↔<br>Gain:Low | Trig: Free F<br>#Atten: 30 d | lun<br>B | -                      | -       |                | DET P N N N N N                       |
| 10 dB/div           | Ref Offset 3.16 dB<br>Ref 20.00 dBm |           |                        |                              |          |                        |         |                |                                       |
| 10.0                |                                     |           |                        |                              |          |                        |         |                |                                       |
| 0.00                |                                     |           |                        |                              |          |                        |         |                |                                       |
| -10.0               |                                     |           |                        |                              |          |                        |         |                |                                       |
| -20.0               |                                     |           |                        |                              |          |                        |         |                |                                       |
| -30.0               |                                     |           |                        |                              |          |                        |         |                |                                       |
| -40.0               |                                     |           |                        |                              |          | 2                      |         |                |                                       |
| -50.0               |                                     |           |                        |                              |          |                        |         |                |                                       |
| -60.0               |                                     |           |                        |                              |          |                        |         |                |                                       |
| -70.0               |                                     |           |                        |                              |          |                        |         |                |                                       |
| Center 5.<br>Res BW | 785000000 GHz<br>1.0 MHz            |           | #VB\                   | W 3.0 MHz                    |          |                        | Sweep   | 100.0 ms       | Span 0 Hz<br>(10001 pts)              |
| MSG                 |                                     |           |                        |                              |          | STATUS                 |         |                |                                       |

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



Page 54 of 108



## Duty Cycle NVNT GFSK 5825MHz Ant1

### Duty Cycle NVNT GFSK 5745MHz Ant2

| Agilent Spec       | trum Analyzer - Swept SA            |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
|--------------------|-------------------------------------|----------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|
| LXIR T             | RF 50 Ω AC                          |                                  | SENSE:INT                         | ALIGNAUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 05:04:38 PM Feb 25, 20                                                                                          |
| Center I           | Freq 5.745000000                    | GHz<br>PNO: Fast ↔<br>IFGain:Low | - Trig: Free Run<br>#Atten: 30 dB | Avg Type: L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | og-Pwr | TYPE WWWWWW<br>DET P N N N                                                                                      |
| 10 dB/div          | Ref Offset 2.69 dB<br>Ref 20.00 dBm |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
|                    |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| 10.0               |                                     |                                  |                                   | an and decomposition of the local of the local decision of the loc |        | an an fair an an Anna a |
| 0.00               |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| -10.0              |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| -20.0              |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| -30.0              |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| -40.0              |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| -50.0              |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| -60.0              |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| -70.0              |                                     |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                 |
| Center 5<br>Res BW | .745000000 GHz<br>1.0 MHz           | #VE                              | SW 3.0 MHz                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep  | Span 0 F<br>100.0 ms (10001 pt                                                                                  |
| MSG                |                                     |                                  |                                   | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                 |

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481



Page 55 of 108



### Duty Cycle NVNT GFSK 5785MHz Ant2

### Duty Cycle NVNT GFSK 5825MHz Ant2

| Agilent Spectrum Analyzer - Swept SA          |                                                        |                   |                                                    |
|-----------------------------------------------|--------------------------------------------------------|-------------------|----------------------------------------------------|
| UX/RT RF 50Ω AC                               | SENSE:INT                                              | ALIGNAUTO         | 05:16:04 PM Feb 25, 2025                           |
| Center Freq 5.825000000 GHz                   | PNO: Fast ↔ Trig: Free Run<br>IFGain:Low #Atten: 30 dB | Avg Type: Log-Pwr | TRACE 1 2 3 4 5 6<br>TYPE WWWWWWW<br>DET P N N N N |
| Ref Offset 3.14 dB<br>10 dB/div Ref 20.00 dBm |                                                        |                   |                                                    |
|                                               |                                                        |                   |                                                    |
|                                               |                                                        |                   |                                                    |
| 0.00                                          |                                                        |                   |                                                    |
| -10.0                                         |                                                        |                   |                                                    |
| -20.0                                         |                                                        |                   |                                                    |
| -30.0                                         |                                                        |                   |                                                    |
| -40.0                                         |                                                        |                   |                                                    |
| -50.0                                         |                                                        |                   |                                                    |
| -60.0                                         |                                                        |                   |                                                    |
| -70.0                                         |                                                        |                   |                                                    |
| Center 5.825000000 GHz<br>Res BW 1.0 MHz      | #VBW 3.0 MHz                                           | Sweep             | Span 0 Hz<br>100.0 ms (10001 pts                   |
| MSG                                           |                                                        | STATUS            |                                                    |

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481



Page 56 of 108



### Duty Cycle NVNT GFSK 5745MHz Ant1

### Duty Cycle NVNT GFSK 5785MHz Ant1

| Agilent Spectrum Analyze           | er - Swept SA                                                                                                           |                             |                                   |           |                          |                           |             |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|-----------|--------------------------|---------------------------|-------------|
| <b>LXI</b> RT RF                   | 50Ω AC                                                                                                                  |                             | SENSE:INT                         | ALIGNAUTO | Dented under an an andre | 04:52:15 PM Feb 25,       | , 2025      |
| Center Freq 5.7                    | 85000000 GHz                                                                                                            | PNO: Fast +++<br>IFGain:Low | . Trig: Free Run<br>#Atten: 30 dB | Avg Type: | Log-Pwr                  | TYPE WWW<br>DET P N N     | 1456<br>    |
| Ref Offs<br>10 dB/div Ref 20       | set 3.16 dB<br>.00 dBm                                                                                                  |                             |                                   |           |                          |                           |             |
|                                    |                                                                                                                         |                             |                                   |           |                          |                           |             |
| 10.0                               | ىكەرلەر بىلەت يۇلغا دىلەر ئىلۇ بىر <sup>1</sup> ە دەكەر يەركەي <mark>بىلەر ( دەسىل بىر</mark> دە) بەر بەر دۆرىي مەسىلىن |                             |                                   |           |                          |                           |             |
| 0.00                               |                                                                                                                         |                             |                                   |           |                          |                           |             |
| -10.0                              |                                                                                                                         |                             |                                   |           |                          |                           |             |
| -20.0                              |                                                                                                                         |                             |                                   |           |                          | с <u> </u>                |             |
| -30.0                              |                                                                                                                         |                             |                                   |           |                          |                           |             |
| -40.0                              |                                                                                                                         |                             |                                   |           |                          |                           |             |
| -50.0                              |                                                                                                                         |                             |                                   |           |                          |                           |             |
| -60.0                              |                                                                                                                         |                             |                                   |           |                          |                           |             |
| -70.0                              |                                                                                                                         |                             |                                   |           |                          |                           |             |
| Center 5.7850000<br>Res BW 1.0 MHz | 000 GHz                                                                                                                 | #VB                         | W 3.0 MHz                         |           | Sweep                    | Span (<br>100.0 ms (10001 | 0 Hz<br>pts |
| MSG                                |                                                                                                                         |                             |                                   | STATUS    |                          |                           |             |

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481



Page 57 of 108



## Duty Cycle NVNT GFSK 5825MHz Ant1

### Duty Cycle NVNT GFSK 5745MHz Ant2

| Agilent Spectrum Analyzer - Swept SA          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|
| K R T RF 50Ω AC                               | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIGNAUTO                                                                                    | 05:19:39 PM Feb 25, 2025                 |
| Center Freq 5.745000000 C                     | FHZ<br>PNO: Fast ↔ Trig: Free Run<br>IFGain:Low #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Avg Type: Log-Pwr                                                                            | DET P N N N N                            |
| Ref Offset 2.69 dB<br>10 dB/div Ref 20.00 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| 10.0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| 10.0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
|                                               | and the new participation of the new participa | allevice & Accord (Allevice) (Allevice (Allevice)) allevice (Allevice (Allevice (Allevice))) | an a |
| -10.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| -20.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | <u>.</u>                                 |
| -30.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| -40.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| -50.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| -60.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| -70.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                          |
| Center 5.745000000 GHz<br>Res BW 1.0 MHz      | #VBW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sweep                                                                                        | Span 0 Hz<br>100.0 ms (10001 pts         |
| MSG                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                                                                       |                                          |

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481



Page 58 of 108



### Duty Cycle NVNT GFSK 5785MHz Ant2

### Duty Cycle NVNT GFSK 5825MHz Ant2

| 10 dB/div<br>Log<br>10.0<br>-10.0 | RF 50 @ AC   eq 5.82500000   Ref Offset 3.14 dB   Ref 20.00 dBm                                                | OO GHz                                                                                                          | PNO: Fast<br>FGain:Low | SENSE:INT<br>. Trig: Free R<br>#Atten: 30 d | un<br>B | GNAUTO<br>Avg Type: L | og-Pwr | 05:23:58<br>TF | 8 PMFeb 25, 2025<br>RACE 1 2 3 4 5 6<br>TYPE WWWWWWW<br>DET P N N N N N |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|---------|-----------------------|--------|----------------|-------------------------------------------------------------------------|
| 10 dB/div<br>Log<br>10.0          | eq 5.82500000<br>Ref Offset 3.14 dB<br>Ref 20.00 dBm                                                           | JO GHZ                                                                                                          | PNO: Fast ++           | . Trig: Free R<br>#Atten: 30 d              | un<br>B | Avg Type: L           | og-Pwr | TF             | TYPE WWWWWWW<br>DET P NNNN                                              |
| 10 dB/div<br>10.0                 | Ref Offset 3.14 dB<br>Ref 20.00 dBm                                                                            | 3                                                                                                               |                        |                                             |         |                       |        |                |                                                                         |
| 10.0<br>0.00<br>-10.0             |                                                                                                                |                                                                                                                 |                        |                                             |         | (0)                   |        |                |                                                                         |
| -10.0                             |                                                                                                                |                                                                                                                 |                        |                                             |         |                       |        |                |                                                                         |
| -10.0                             | and built of the second se |                                                                                                                 |                        |                                             |         |                       |        |                |                                                                         |
| -10.0                             |                                                                                                                | n an in the second s |                        |                                             |         |                       |        |                |                                                                         |
| -20.0                             |                                                                                                                |                                                                                                                 |                        |                                             |         |                       |        | -              |                                                                         |
|                                   |                                                                                                                |                                                                                                                 |                        |                                             |         |                       |        |                |                                                                         |
| -30.0                             |                                                                                                                |                                                                                                                 |                        |                                             |         |                       |        |                |                                                                         |
| -40.0                             |                                                                                                                |                                                                                                                 |                        |                                             |         | 2                     |        |                |                                                                         |
| -50.0                             |                                                                                                                |                                                                                                                 |                        |                                             |         |                       |        |                |                                                                         |
| -60.0                             |                                                                                                                |                                                                                                                 |                        |                                             |         |                       |        | -              |                                                                         |
| -70.0                             |                                                                                                                |                                                                                                                 |                        |                                             |         |                       |        |                |                                                                         |
| Center 5.82<br>Res BW 1.0         | 25000000 GHz                                                                                                   |                                                                                                                 | #\/P                   | W 2 0 ML-                                   |         |                       |        | -              | Span 0 Hz                                                               |
| MSG                               | 0 MHz                                                                                                          |                                                                                                                 | #VD                    | WV J.U WIHZ                                 |         |                       | Sweep  | 100.0 ms       | (10001 pts)                                                             |

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481



Page 59 of 108

| Condition | Mode | Frequency (MHz) | Antenna | Conducted Power (dBm) | Limit (dBm) | Verdict |
|-----------|------|-----------------|---------|-----------------------|-------------|---------|
| NVNT      | GFSK | 5745            | Ant1    | 12.178                | 30          | Pass    |
| NVNT      | GFSK | 5785            | Ant1    | 13.267                | 30          | Pass    |
| NVNT      | GFSK | 5825            | Ant1    | 13.502                | 30          | Pass    |
| NVNT      | GFSK | 5745            | Ant2    | 12.699                | 30          | Pass    |
| NVNT      | GFSK | 5785            | Ant2    | 12.915                | 30          | Pass    |
| NVNT      | GFSK | 5825            | Ant2    | 13.762                | 30          | Pass    |
| NVNT      | GFSK | 5745            | Ant1    | 12.31                 | 30          | Pass    |
| NVNT      | GFSK | 5785            | Ant1    | 12.947                | 30          | Pass    |
| NVNT      | GFSK | 5825            | Ant1    | 13.574                | 30          | Pass    |
| NVNT      | GFSK | 5745            | Ant2    | 12.429                | 30          | Pass    |
| NVNT      | GFSK | 5785            | Ant2    | 12.95                 | 30          | Pass    |
| NVNT      | GFSK | 5825            | Ant2    | 13.745                | 30          | Pass    |

## 7.2 Maximum Conducted Output Power

Blue Asia of technical Services (Shenzhen) Co., Ltd.



Page 60 of 108



### Power NVNT GFSK 5745MHz Ant1

Power NVNT GFSK 5785MHz Ant1



Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com