

FCC Test Report

Report No.: 2505P37465EC

Applicant: Huizhou speed wireless technology co.,ltd

Address: No.138 Huize Road, Hi-Tech Industrial Park of East River,

Zhongkai Hi-tech District, Huizhou City, Guangdong Province,

China

Product Name: WiFi+BT Module

Product Model: WL00033

Multiple Models: N/A

Trade Mark: N/A

FCC ID: 2BBLK-WL6376B

Standards: FCC CFR Title 47 Part 15C (§15.247)

Test Date: 2025-02-07 to 2025-03-05

Test Result: Complied

Report Date: 2025-03-05

Reviewed by:

Approved by:

Abel Chen

Project Engineer

Jacob Kong

Jacob Gong

Manager

Prepared by:

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-006/V1.2 Page 1 of 125

Announcement

- 1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 4. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2025-03-05	Original

Report Template: TR-4-E-006/V1.2 Page 2 of 125

Contents

1	Gene	ral Info	ormation	4
	1.1	Client	t Information	4
	1.2	Produ	uct Description of EUT	4
	1.3	Anter	nna information	4
	1.4	Relat	ed Submittal(s)/Grant(s)	5
	1.5	Meas	urement Uncertainty	5
	1.6	Labor	ratory Location	5
	1.7		Methodology	
2	Desc		of Measurement	
	2.1	•	Configuration	
	2.2		Auxiliary Equipment	
	2.3		connecting Cables	
	2.4		Diagram of Connection between EUT and AE	
	2.4		Setup	
			·	
	2.6		Procedure	
	2.7		urement Method	
	2.8		urement Equipment	
3	Test		S	
	3.1	Test S	Summary	13
	3.2	Limit		14
	3.3	AC Li	ne Conducted Emissions Test Data	15
	3.4	Radia	ated emission Test Data	17
	3.5	RF C	onducted Test Data	105
	3	3.5.1	20 dB Emission Bandwidth	105
	3	3.5.2	99% Occupied Bandwidth	105
	3	3.5.3	Maximum Conducted Peak Output Power	106
	3	3.5.4	Channel separation	106
	3	3.5.5	Number of hopping Frequency	106
	3	3.5.6	Time of occupancy (dwell time)	107
	3	3.5.7	100 kHz Bandwidth of Frequency Band Edge	107
4	Test	Setup I	Photo	124
5	E.U.T	Photo		125

1 General Information

1.1 Client Information

Applicant:	Huizhou speed wireless technology co.,ltd
Address:	No.138 Huize Road, Hi-Tech Industrial Park of East River, Zhongkai Hi-tech District, Huizhou City, Guangdong Province, China
Manufacturer:	Huizhou speed wireless technology co.,ltd
Address:	No.138 Huize Road, Hi-Tech Industrial Park of East River, Zhongkai Hi-tech District, Huizhou City, Guangdong Province, China

1.2 Product Description of EUT

The EUT is WiFi+BT Module that contains BT, BLE, 2.4G and 5G WLAN radios, this report covers the full testing of the BT radio.

Sample Serial Number	2XWU-1(BT path 1) for CE test, 2XWU-2(BT path 1), 2XWU-4(BT path 2), 2XWU-5 (BT path 3) for RE test&RF test(assigned by WATC)
Sample Received Date	2025-01-22
Sample Status	Good Condition
Frequency Range	2402MHz - 2480MHz
Maximum Conducted Peak Output Power	9.71dBm
Modulation Technology	GFSK, π/4 DQPSK, 8DPSK
Spatial Streams	SISO (1TX, 1RX)
Antenna Gain#	5.85dBi
Power Supply	DC 3.3V
Adapter Information	N/A
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The BT antenna is an external antenna with I-PEX connect, please see product external photos for details.

1.4 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment Class: DTS, FCC ID: 2BBLK-WL6376B FCC Part 15, Subpart E, Equipment Class: NII, FCC ID: 2BBLK-WL6376B

1.5 Measurement Uncertainty

Para	meter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Conduc	cted Emissions	±3.14dB
	Below 30MHz	±2.78dB
Emissions, Radiated	Below 1GHz	±4.84dB
	Above 1GHz	±5.44dB
Emissions, Conducted		1.75dB
Conducted Power		0.74dB
Frequency Error		150Hz
Bandwidth		0.34%
Power Spectral Density		0.74dB

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2013

Unless otherwise stated there are no any additions to, deviations, or exclusions from the method

Report Template: TR-4-E-006/V1.2 Page 5 of 125

2 Description of Measurement

2.1 Test Configuration

Operating channels:								
Channel No.	Frequency (MHz)	Channel No. Frequency Channel No. (MHz)		Frequency (MHz)				
0	2402	39	2441	76	2478			
1	2403	40	2442	77	2479			
				78	2480			
38	2440			/	/			

According to ANSI C63.10-2013 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

Test Mode:						
Transmitting mode:	Keep the EUT in	continuous transmittir	ng with modulation			
Exercise software [#] :	WCN Combo To	ol				
		Po	ower Level Setting [#]			
Mode	Data rate	Low Channel	Middle Channel	High Channel		
GFSK	1Mbps	7	7	7		
π/4 DQPSK	2Mbps	7	7	7		
8DPSK 3Mbps 7 7 7						
The exercise softwar	The exercise software and the maximum power setting that provided by manufacturer.					

Worst-Case Configuration:

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report

The device have three antenna path designs, all the path signals is from same input, each path can be selected to activate/deactivate by connect/disconnect a 0Ω resistance, detail please refer the EUT photo, only one path will be selected to use at a time.

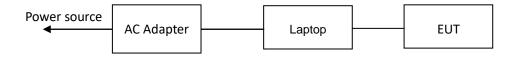
For RF conducted test, three path output power was tested, full test was performed on the path which has maximum output power

For AC power line conducted emission and radiated emission 9kHz-1GHz were performed with the EUT transmits at the channel with highest output power among the three paths as worst-case scenario.

For radiated emission above 18GHz was performed with the EUT transmits at the channel with highest output power of each path as worst-case scenario.

For radiated emissions below 30MHz, three antenna orientations (parallel, perpendicular, gound-parallel) were tested, only record the worse case test data in report.

Report Template: TR-4-E-006/V1.2 Page 6 of 125

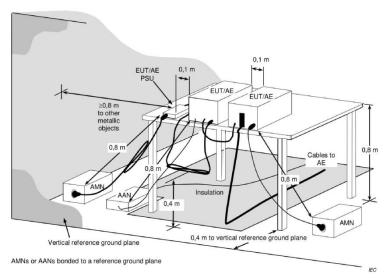

2.2 Test Auxiliary Equipment

Manufacturer	Description	Model	Serial Number
Dell	Laptop	unknown	unknown
Dell	AC Adapter	unknown	unknown

2.3 Interconnecting Cables

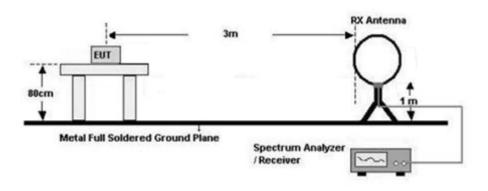
Manufacturer	Description	Length(m)	From	То	
unknown	USB extension cable	1.0	Laptop	EUT	
Dell	AC Power Cable	ver Cable 1.5 Power source		AC Adapter	
Dell	DC Power Cable	1.5	AC Adapter	Laptop	

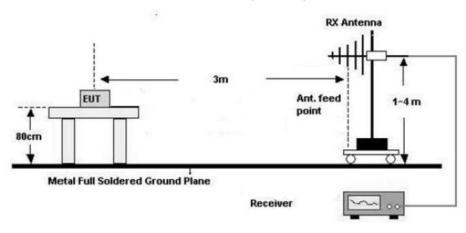
2.4 Block Diagram of Connection between EUT and AE


Note: for reference only, the actual connection setup used for testing please refer to the test photos.

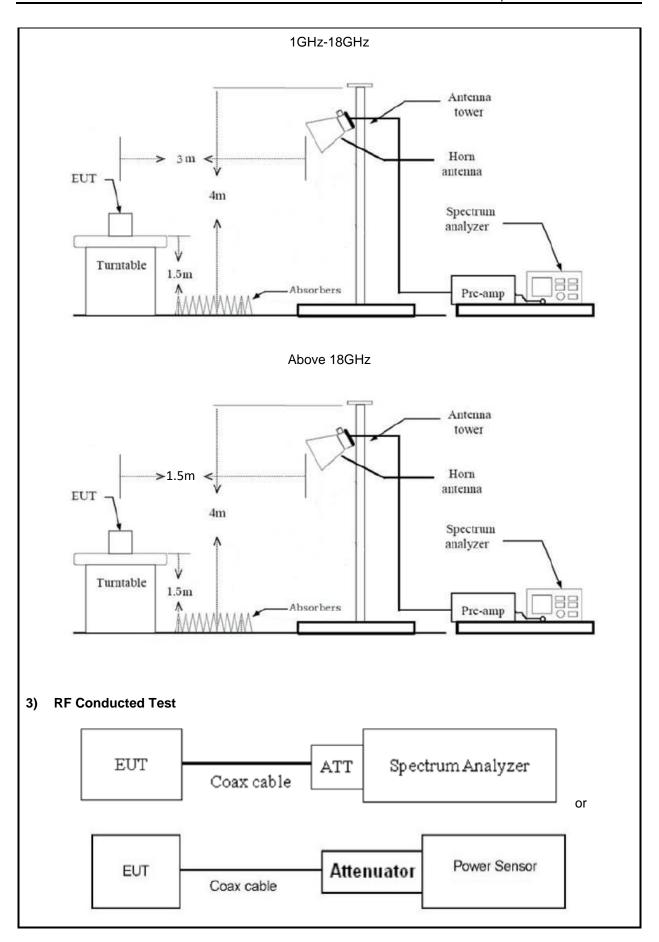
Report Template: TR-4-E-006/V1.2 Page 7 of 125

2.5 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:


Below 30MHz (3m SAC)

30MHz-1GHz (3m SAC)

2.6 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- Both sides of A.C. line are checked for maximum conducted interference. In order to find the
 maximum emission, the relative positions of equipment and all of the interface cables must be
 changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)
- 3. The RBW/VBW of receiver is set to 200Hz/1kHz for 9kHz to 150kHz range, to 9kHz/30kHz for 150kHz to 30MHz range for scan Peak emission, 200Hz/9kHz IF BW was used for final measurement in the Quasi-peak or average detection mode for frequency range 9~150kHz/150kHz~30MHz respectively.
- 4. If the Peak emission complies with the QP limit, then perform final measurement is optional.

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. The RBW/VBW of receiver is set to 100kHz/300kHz for scan Peak emission, 120kHz IF BW was used for final measurement in the Quasi-peak detection mode.
- 4. If the Peak emission complies with the QP limit, then perform final measurement is optional.

c) For above 1GHz:

- The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room.
 The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal

Report Template: TR-4-E-006/V1.2 Page 10 of 125

polarizations.

- 3. The RBW/VBW of spectrum analyzer is set to 1MHz/3MHz for scan Peak emission, for measured average emission, reduce the VBW to 10Hz. (Note: a high VBW (for example 1kHz) may used to scan average emissions to avoid long sweep time.)
- 4. If the Peak emission complies with the Average limit, then perform average measurement is optional.
- 5. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 6. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

RF Conducted Test:

- 1. The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or Spectrum analyzer) through Attenuator and RF cable.
- 2. The cable assembly insertion loss of 8.0dB (including 6.0 dB Attenuator and 2.0dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 2.0dB was assumed as worst case. This was later verified to be true by laboratory. (if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes.

2.7 Measurement Method

Description of Test	Measurement Method		
AC Line Conducted Emissions	ANSI C63.10-2013 Section 6.2		
Maximum Conducted Output Power	ANSI C63.10-2013 Section 7.8.5		
20 dB Emission Bandwidth	ANSI C63.10-2013 Section 6.9.2		
99% Occupied Bandwidth	ANSI C63.10-2013 Section 6.9.3		
Channel separation	ANSI C63.10-2013 Section 7.8.2		
Number of hopping Frequency	ANSI C63.10-2013 Section 7.8.3		
Time of occupancy (dwell time)	ANSI C63.10-2013 Section 7.8.4		
100kHz Bandwidth of Frequency Band Edge	ANSI C63.10-2013 Section 7.8.7.2&6.10		
Radiated emission	ANSI C63.10-2013 Section 7.8&6.3&6.4&6.5&6.6		

Report Template: TR-4-E-006/V1.2 Page 11 of 125

2.8 Measurement Equipment

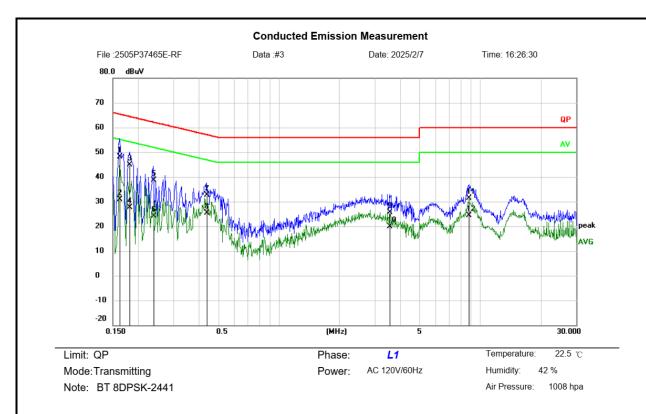
ROHDE&	Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date		
SCHWARZ RECEIVER ESR 101817 2024/6/4 2025/6/3 R&S LISN ENV216 101748 2024/6/4 2025/6/3 N/A Coaxial Cable NO.12 N/A 2024/6/4 2025/6/3 Farad Test Software EZ-EMC Ver. / / R&S EMI test receiver ESR3 102758 2024/6/4 2025/6/3 ROHDE& SPECTRUM SCHWARZ ANALYZER FSV40-N 101608 2024/6/4 2025/6/3 SONOMA INSTRUMENT Low frequency amplifier 310 186014 2024/6/4 2025/6/3 COM-POWER Amplifier PAM-0118P 531 2024/6/4 2025/6/3 SCHWARZBECK Log - periodic wideband antenna 1313-1A 4010611 2024/2/7 2025/8/6 SCHWARZBECK Log - periodic wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn Antenna ARH-1223-02 1007726-03 2023/7/6 2026/7/9 Oulitong		AC Line Conducted Emission Test						
N/A Coaxial Cable NO.12 N/A 2024/6/4 2025/6/3			ESR	101817	2024/6/4	2025/6/3		
Radiated Emission Test	R&S	LISN	ENV216	101748	2024/6/4	2025/6/3		
Radiated Emission Test	N/A	Coaxial Cable	NO.12	N/A	2024/6/4	2025/6/3		
R&S EMI test receiver ESR3 102758 2024/6/4 2025/6/3 ROHDE& SCHWARZ SPECTRUM ANALYZER FSV40-N 101608 2024/6/4 2025/6/3 SONOMA INSTRUMENT Low frequency amplifier 310 186014 2024/6/4 2025/6/3 A.H. Systems PREAMPLIFIER PAM-0118P 531 2024/6/4 2025/6/3 COM-POWER Amplifier PAM-840A 461306 2024/8/7 2025/8/6 BACL Loop Antenna 1313-1A 4010611 2024/2/7 2025/8/6 SCHWARZBECK Log - periodic wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn Antenna AHA-118S 3015 2023/7/6 2026/7/5 Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A </td <td>Farad</td> <td>Test Software</td> <td>EZ-EMC</td> <td></td> <td>1</td> <td>/</td>	Farad	Test Software	EZ-EMC		1	/		
ROHDE& SCHWARZ SPECTRUM ANALYZER FSV40-N 101608 2024/6/4 2025/6/3 SONOMA INSTRUMENT Low frequency amplifier 310 186014 2024/6/4 2025/6/3 A.H. Systems PREAMPLIFIER PAM-0118P 531 2024/6/4 2025/6/3 COM-POWER Amplifier PAM-840A 461306 2024/8/7 2025/8/6 BACL Loop Antenna 1313-1A 4010611 2024/2/7 2025/8/6 SCHWARZBECK Log - periodic wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn antenna AHA-118S 3015 2023/7/6 2026/7/5 Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Ulknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A			Radiated Emissio	n Test				
SCHWARZ ANALYZER FSV40-N 101608 2024/6/4 2025/6/3 SONOMA INSTRUMENT Low frequency amplifier 310 186014 2024/6/4 2025/6/3 A.H. Systems PREAMPLIFIER PAM-0118P 531 2024/6/4 2025/6/3 COM-POWER Amplifier PAM-840A 461306 2024/8/7 2025/8/6 BACL Loop Antenna 1313-1A 4010611 2024/2/7 2025/8/6 SCHWARZBECK Log - periodic wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn antenna AHA-118S 3015 2023/7/6 2026/7/5 Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Oulitong Band Reject Filter OBSF-2400-248 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB tetnuator 10dB 10-1 2024/6/4 2025/6/3	R&S	EMI test receiver	ESR3	102758	2024/6/4	2025/6/3		
INSTRUMENT			FSV40-N	101608	2024/6/4	2025/6/3		
COM-POWER Amplifier PAM-840A 461306 2024/8/7 2025/8/6 BACL Loop Antenna 1313-1A 4010611 2024/2/7 2027/2/6 SCHWARZBECK Log - periodic wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn antenna AHA-118S 3015 2023/7/6 2026/7/5 Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Oulitong Band Reject Filter OBSF-2400-248 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable </td <td></td> <td></td> <td>310</td> <td>186014</td> <td>2024/6/4</td> <td>2025/6/3</td>			310	186014	2024/6/4	2025/6/3		
BACL Loop Antenna 1313-1A 4010611 2024/2/7 2027/2/6 SCHWARZBECK Log - periodic wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn antenna AHA-118S 3015 2023/7/6 2026/7/5 Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Oulitong Band Reject Filter OBSF-2400-248 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable	A.H. Systems	PREAMPLIFIER	PAM-0118P	531	2024/6/4	2025/6/3		
SCHWARZBECK Log - periodic wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn antenna AHA-118S 3015 2023/7/6 2026/7/5 Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Oulitong Band Reject Filter OBSF-2400-248 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable <t< td=""><td>COM-POWER</td><td>Amplifier</td><td>PAM-840A</td><td>461306</td><td>2024/8/7</td><td>2025/8/6</td></t<>	COM-POWER	Amplifier	PAM-840A	461306	2024/8/7	2025/8/6		
SCHWARZBECK wideband antenna VULB 9163 9163-872 2023/7/7 2026/7/6 Astro Antenna Ltd Horn antenna AHA-118S 3015 2023/7/6 2026/7/5 Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Oulitong Band Reject Filter OBSF-2400-248 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 <	BACL	Loop Antenna	1313-1A	4010611	2024/2/7	2027/2/6		
Ducommun technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Oulitong Band Reject Filter OBSF-2400-248 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / ROHDE& SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	SCHWARZBECK		VULB 9163	9163-872	2023/7/7	2026/7/6		
technologies Horn Antenna ARH-4223-02 1007726-03 2023/7/10 2026/7/9 Oulitong Band Reject Filter OBSF-2400-248 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/8/7 2025/8/6 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / ROHDE& SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2026/7/5		
Oulitong Band Reject Filter 3.5-50N OE02103119 2024/6/4 2025/6/3 Unknown 6.7G High Pass Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/8/7 2025/8/6 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / ROHDE& SPECTRUM SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3		Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2026/7/9		
Unknown Filter Unknown 6.7G 2024/6/4 2025/6/3 Unknown 10dB attenuator 10dB 10-1 2024/6/4 2025/6/3 N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/8/7 2025/8/6 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / ROHDE& SPECTRUM SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	Oulitong	Band Reject Filter		OE02103119	2024/6/4	2025/6/3		
N/A Coaxial Cable NO.9 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.13 N/A 2024/8/7 2025/8/6 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / RF Conducted Test ROHDE& SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	Unknown		Unknown	6.7G	2024/6/4	2025/6/3		
N/A Coaxial Cable NO.13 N/A 2024/8/7 2025/8/6 N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / RF Conducted Test ROHDE& SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	Unknown	10dB attenuator	10dB	10-1	2024/6/4	2025/6/3		
N/A Coaxial Cable NO.15 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / RF Conducted Test ROHDE& SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	N/A	Coaxial Cable	NO.9	N/A	2024/6/4	2025/6/3		
N/A Coaxial Cable NO.16 N/A 2024/6/4 2025/6/3 N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / RF Conducted Test ROHDE& SPECTRUM SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	N/A	Coaxial Cable	NO.13	N/A	2024/8/7	2025/8/6		
N/A Coaxial Cable NO.17 N/A 2024/6/4 2025/6/3 Audix Test Software E3 191218 V9 / / RF Conducted Test ROHDE& SPECTRUM SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	N/A	Coaxial Cable	NO.15	N/A	2024/6/4	2025/6/3		
Audix Test Software E3 191218 V9 / / RF Conducted Test ROHDE& SPECTRUM SCHWARZ SPECTRUM ANALYZER FSV40 101419 2024/6/4 2025/6/3	N/A	Coaxial Cable	NO.16	N/A	2024/6/4	2025/6/3		
RF Conducted Test ROHDE& SPECTRUM SCHWARZ ANALYZER FSV40 101419 2024/6/4 2025/6/3	N/A	Coaxial Cable	NO.17	N/A	2024/6/4	2025/6/3		
ROHDE& SPECTRUM FSV40 101419 2024/6/4 2025/6/3	Audix	Test Software	E3	191218 V9	/	/		
SCHWARZ ANALYZER FSV40 101419 2024/6/4 2025/6/3			RF Conducted	Test				
narda 6dB attenuator 603-06-1 N/A 2024/6/4 2025/6/3			FSV40	101419	2024/6/4	2025/6/3		
	narda	6dB attenuator	603-06-1	N/A	2024/6/4	2025/6/3		

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

3 Test Results

3.1 Test Summary

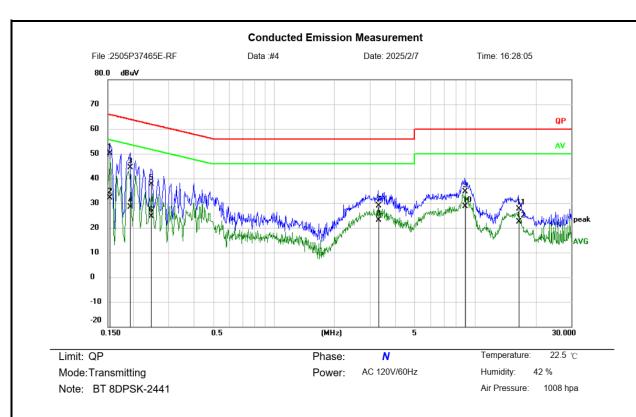
FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247 (a)(1)	20dB Emission Bandwidth	Compliance
-	99% Occupied Bandwidth	Report only
§15.247 (a)(1)	Channel separation	Compliance
§15.247 (a)(1)(iii)	Number of hopping Frequency	Compliance
§15.247 (a)(1)(iii)	Time of occupancy (dwell time)	Compliance
§15.247(b)(1)	Maximum Conducted Output Power	Compliance
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliance
§15.205, §15.209, §15.247(d)	Radiated emission	Compliance


3.2 Limit

Test items	Limit
AC Line Conducted Emissions	See details §15.207 (a)
Conducted Output Power	For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.
Channel separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Number of hopping Frequency	Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.
Time of occupancy (dwell time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spurious Emissions, 100kHz Bandwidth of Frequency Band Edge	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.3 AC Line Conducted Emissions Test Data

Test Date:	2025-02-07	Test By:	Ryan Zhang
Environment condition:	Temperature: 22.5°C; Relative	Humidity:42%; ATM Pr	essure: 100.8kPa



Receiver Setting: 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

No. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over Limit		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1620	37.51	10.57	48.08	65.36	-17.28	QP	
2	0.1620	20.32	10.57	30.89	55.36	-24.47	AVG	
3	0.1819	34.32	10.62	44.94	64.40	-19.46	QP	
4	0.1819	17.09	10.62	27.71	54.40	-26.69	AVG	
5	0.2380	28.06	10.67	38.73	62.17	-23.44	QP	
6	0.2380	13.44	10.67	24.11	52.17	-28.06	AVG	
7	0.4380	21.91	10.68	32.59	57.10	-24.51	QP	
8	0.4380	14.59	10.68	25.27	47.10	-21.83	AVG	
9	3.5620	15.16	10.57	25.73	56.00	-30.27	QP	
10	3.5620	9.33	10.57	19.90	46.00	-26.10	AVG	
11	8.8060	20.96	10.50	31.46	60.00	-28.54	QP	
12	8.8060	13.86	10.50	24.36	50.00	-25.64	AVG	

*:Maximum data x:Over limit !:over margin Engineer Signature: Ryan

Receiver Setting: 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over Limit			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1539	39.70	10.45	50.15	65.79	-15.64	QP		
2		0.1539	21.60	10.45	32.05	55.79	-23.74	AVG		
3		0.1940	33.90	10.46	44.36	63.86	-19.50	QP		
4		0.1940	17.97	10.46	28.43	53.86	-25.43	AVG		
5		0.2460	27.15	10.52	37.67	61.89	-24.22	QP		
6		0.2460	14.07	10.52	24.59	51.89	-27.30	AVG		
7		3.3060	18.30	10.46	28.76	56.00	-27.24	QP		
8		3.3060	12.74	10.46	23.20	46.00	-22.80	AVG		
9		8.9100	24.01	10.53	34.54	60.00	-25.46	QP		
10		8.9100	18.04	10.53	28.57	50.00	-21.43	AVG		
11		16.4060	17.02	10.73	27.75	60.00	-32.25	QP		
12		16.4060	11.73	10.73	22.46	50.00	-27.54	AVG		

Remark:

Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

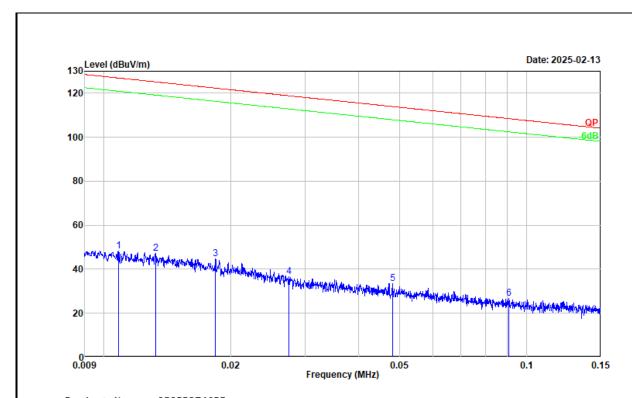
x:Over limit

Correct Factor(dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

!:over margin

Over Limit = Measurement - Limit

*:Maximum data


Engineer Signature: Ryan

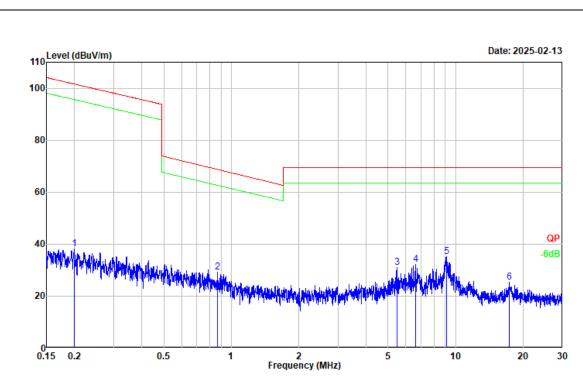
3.4 Radiated emission Test Data

9 kHz-30MHz:

Test Date:	2025-02-13	Test By:	Bard Huang
Environment condition:	Temperature: 21.4°C; Relative	Humidity:45%; ATM Pr	essure: 101.2kPa

Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 21.4℃/45%R.H./101.2kPa


Tested by : Bard Huang Polarization : PARALLEL Remark : BT 3DH5 2441

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	0.011	11.75	36.69	48.44	126.91	-78.47	Peak
2	0.013	11.98	35.14	47.12	125.15	-78.03	Peak
3	0.018	12.71	31.90	44.61	122.32	-77.71	Peak
4	0.027	10.34	26.17	36.51	118.85	-82.34	Peak
5	0.048	12.73	20.79	33.52	113.95	-80.43	Peak
6	0.091	11.32	15.57	26.89	108.43	-81.54	Peak

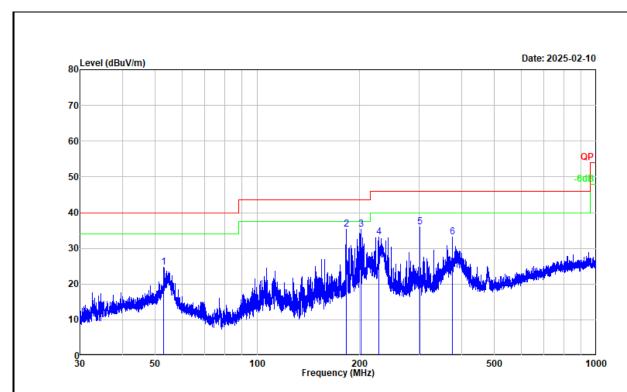
Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit
SA setting: RBW/VBW: 200Hz/1kHz, DET: PK

Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 21.4℃/45%R.H./101.2kPa

Tested by : Bard Huang Polarization : PARALLEL Remark : BT3DH5 2441


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	0.200	25.99	12.17	38.16	101.60	-63.44	Peak	
2	0.868	27.55	1.74	29.29	68.72	-39.43	Peak	
3	5.464	35.07	-4.02	31.05	69.54	-38.49	Peak	
4	6.636	36.35	-4.03	32.32	69.54	-37.22	Peak	
5	9.136	38.89	-3.64	35.25	69.54	-34.29	Peak	
6	17.379	28.45	-3.25	25.20	69.54	-44.34	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain
 Result = Reading + Factor
 Over Limit = Result - Limit
SA setting: RBW/VBW: 9kHz/30kHz, DET: PK

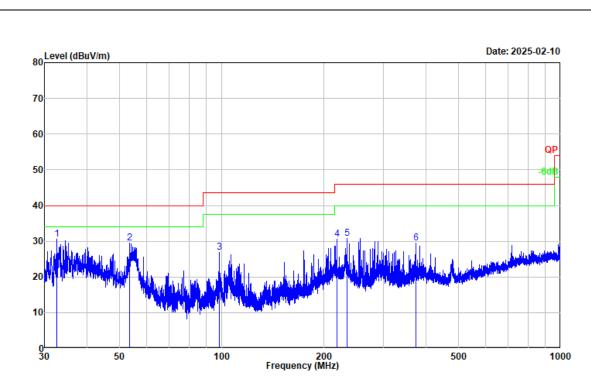
30MHz-1GHz:

Test Date:	2025-02-10	Test By:	Luke Li
Environment condition:	Temperature: 20.4°C; Relative	Humidity:36%; ATM Pres	ssure: 101.6kPa

Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : $20.4^{\circ}\text{C}/36\%\text{R.H.}/101.6\text{kPa}$

Tested by : Luke Li Polarization : horizontal : BT 3DH5 2441 Remark


No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	53.061	36.86	-12.21	24.65	40.00	-15.35	Peak	
2	183.201	50.68	-15.27	35.41	43.50	-8.09	Peak	
3	202.544	49.10	-13.72	35.38	43.50	-8.12	Peak	
4	228.090	46.18	-13.05	33.13	46.00	-12.87	Peak	
5	301.687	47.26	-11.25	36.01	46.00	-9.99	Peak	
6	376.598	42.37	-9.28	33.09	46.00	-12.91	Peak	

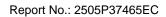
Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VBW: 100kHz/300kHz, DET: PK Final measure: RBW: 120kHz, DET: QP

Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : $20.4^{\circ}\text{C}/36\%\text{R.H.}/101.6\text{kPa}$


Tested by : Luke Li Polarization : vertical Remark : BT3DH5 2441

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	32.591	45.69	-15.12	30.57	40.00	-9.43	Peak
2	53.599	41.88	-12.33	29.55	40.00	-10.45	Peak
3	98.443	41.13	-14.31	26.82	43.50	-16.68	Peak
4	218.404	44.14	-13.59	30.55	46.00	-15.45	Peak
5	234.374	43.58	-12.78	30.80	46.00	-15.20	Peak
6	374.623	38.77	-9.32	29.45	46.00	-16.55	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VBW: 100kHz/300kHz, DET: PK Final measure: RBW: 120kHz, DET: QP

Above 1GHz:

Path 1:

Test Date:	2025-02-17	Test By:	Bard Huang
Environment condition:	Temperature: 23°C; Relative H	umidity:62%; ATM Pres	ssure: 101.5kPa

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark				
GFSK											
Low Channel											
4804.000	47.50	horizontal	-2.42	45.08	74.00	-28.92	Peak				
4804.000	48.29	vertical	-2.42	45.87	74.00	-28.13	Peak				
Middle Channel											
4882.000	48.52	horizontal	-1.86	46.66	74.00	-27.34	Peak				
4882.000	47.63	vertical	-1.86	45.77	74.00	-28.23	Peak				
High Channel											
4960.000	47.50	horizontal	-1.70	45.80	74.00	-28.20	Peak				
4960.000	47.78	vertical	-1.70	46.08	74.00	-27.92	Peak				
			π/4 DQ	PSK							
Low Channel											
4804.000	48.12	horizontal	-2.42	45.70	74.00	-28.30	Peak				
4804.000	47.90	vertical	-2.42	45.48	74.00	-28.52	Peak				
		<u> </u>	Middle C	hannel	1						
4882.000	47.09	horizontal	-1.86	45.23	74.00	-28.77	Peak				
4882.000	47.27	vertical	-1.86	45.41	74.00	-28.59	Peak				
			High Ch	annel			<u> </u>				
4960.000	47.36	horizontal	-1.70	45.66	74.00	-28.34	Peak				
4960.000	48.73	vertical	-1.70	47.03	74.00	-26.97	Peak				
			8DPS	SK							
		ı	Low Ch	annel	T		Γ				
4804.000	47.01	horizontal	-2.42	44.59	74.00	-29.41	Peak				
4804.000	47.09	vertical	-2.42	44.67	74.00	-29.33	Peak				
	Middle Channel										
4882.000	48.36	horizontal	-1.86	46.50	74.00	-27.50	Peak				
4882.000	47.28	vertical	-1.86	45.42	74.00	-28.58	Peak				

Report No.: 2505P37465EC

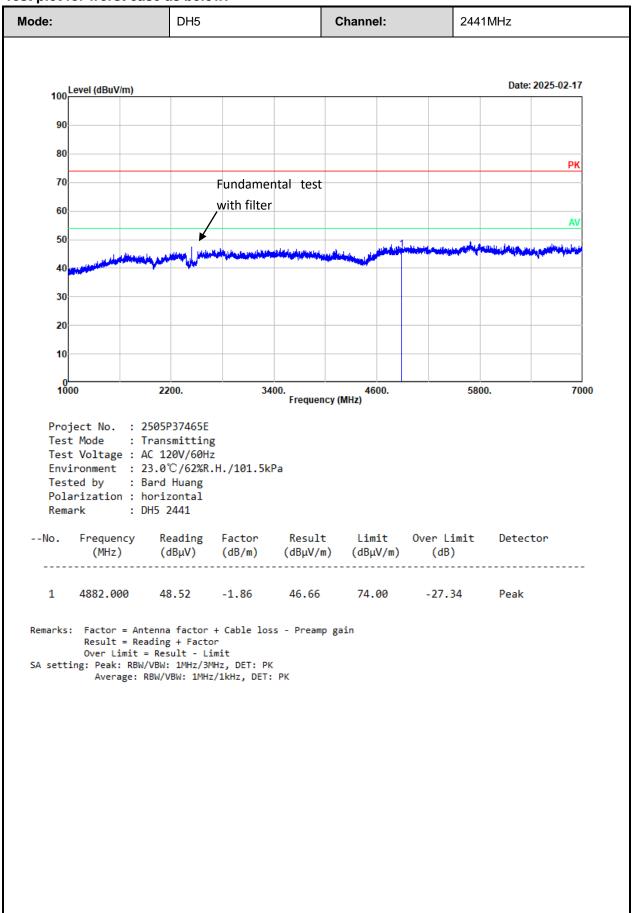
High Channel										
4960.000	48.51	horizontal	-1.70	46.81	74.00	-27.19	Peak			
4960.000	47.36	vertical	-1.70	45.66	74.00	-28.34	Peak			

Remark:

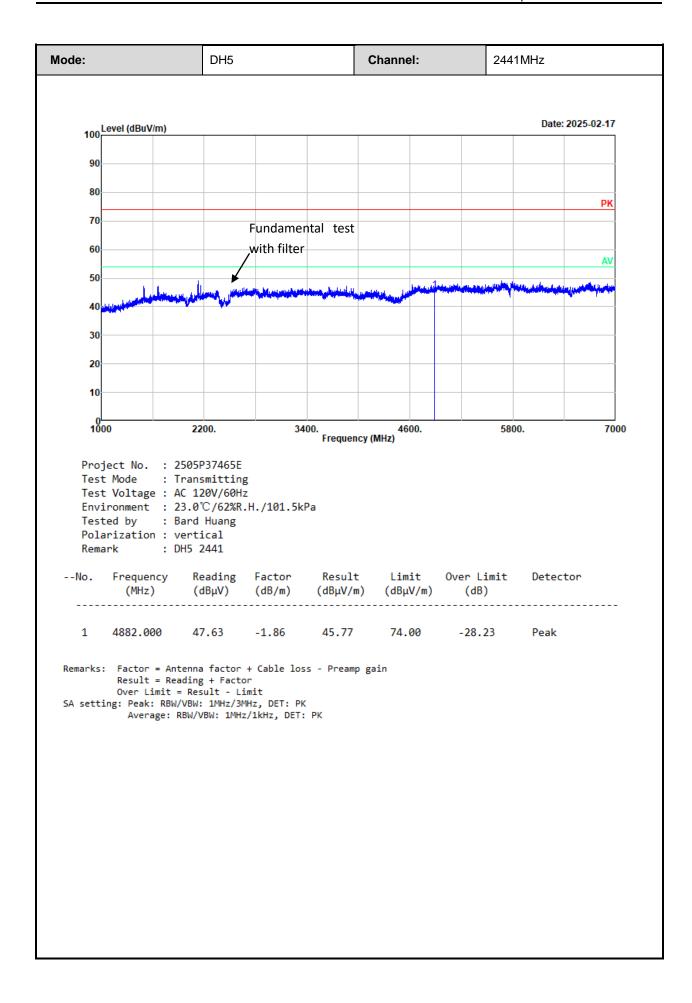
Corrected Amplitude= Reading level + corrected Factor

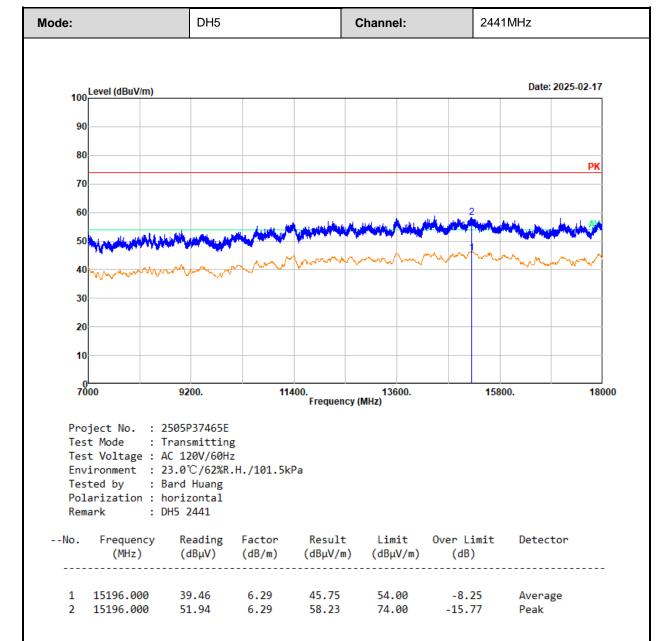
Corrected Factor = Antenna factor + Cable loss - Amplifier gain

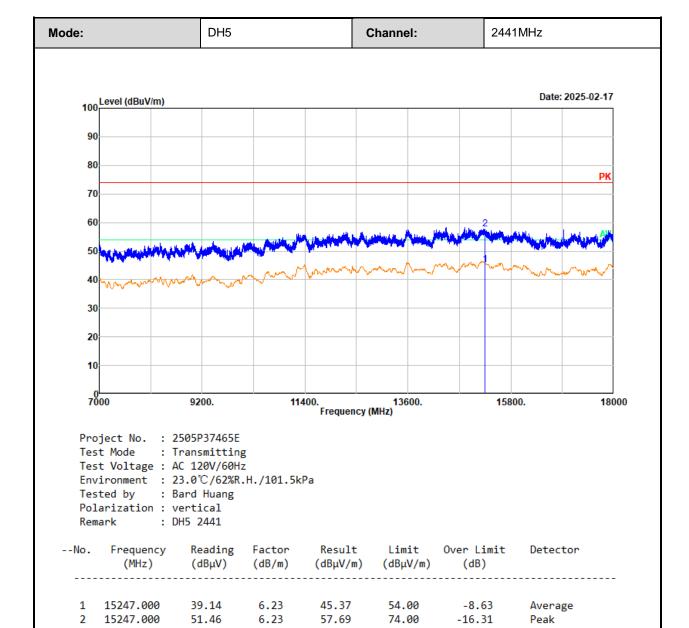
Margin = Corrected Amplitude - Limit


For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.

The emission levels of other frequencies that were lower than the limit 20dB not show in test report.


For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

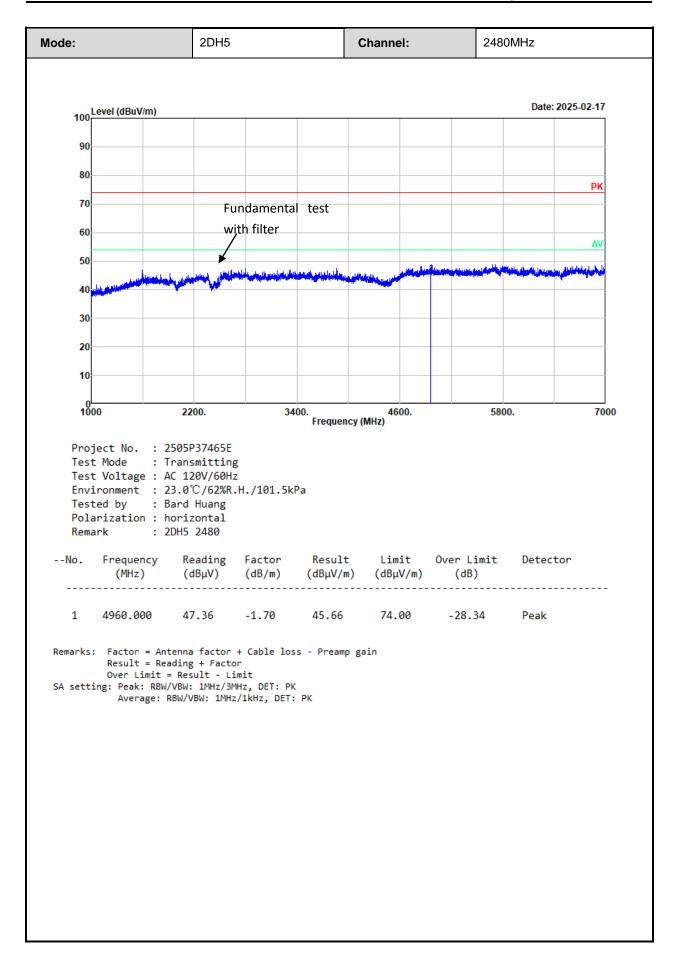

Test plot for worst case as below:


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

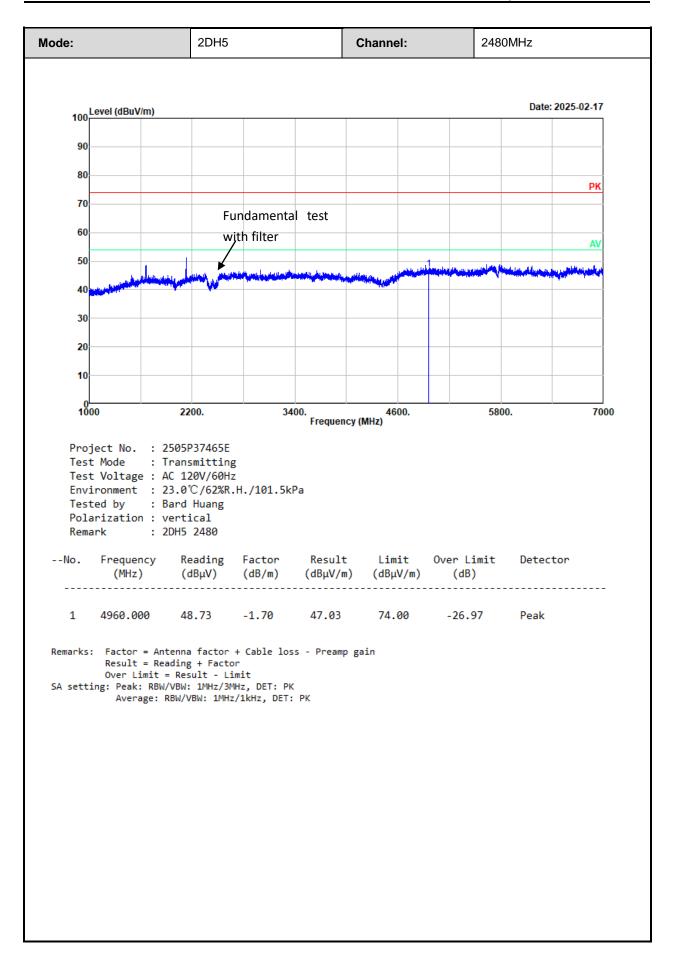
Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK Average: RBW/VBW: 1MHz/1kHz, DET: PK

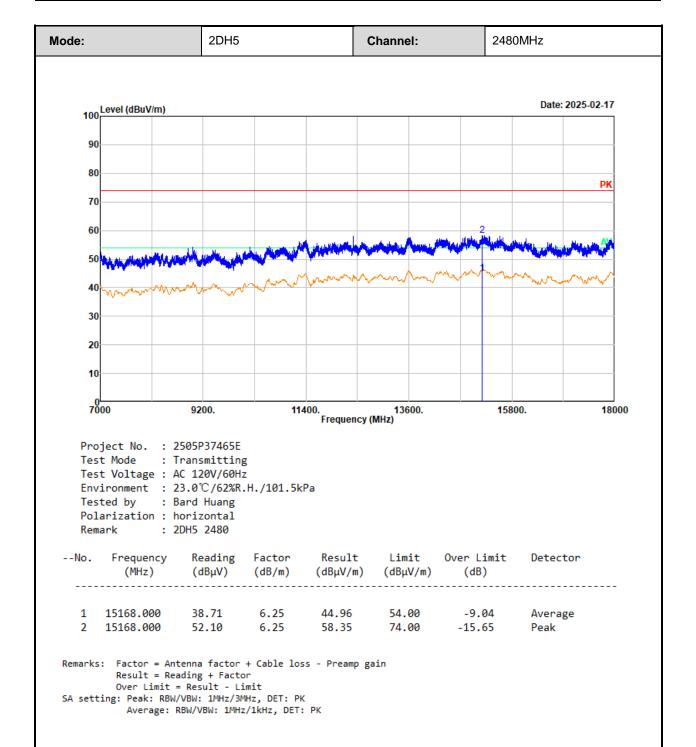
Peak

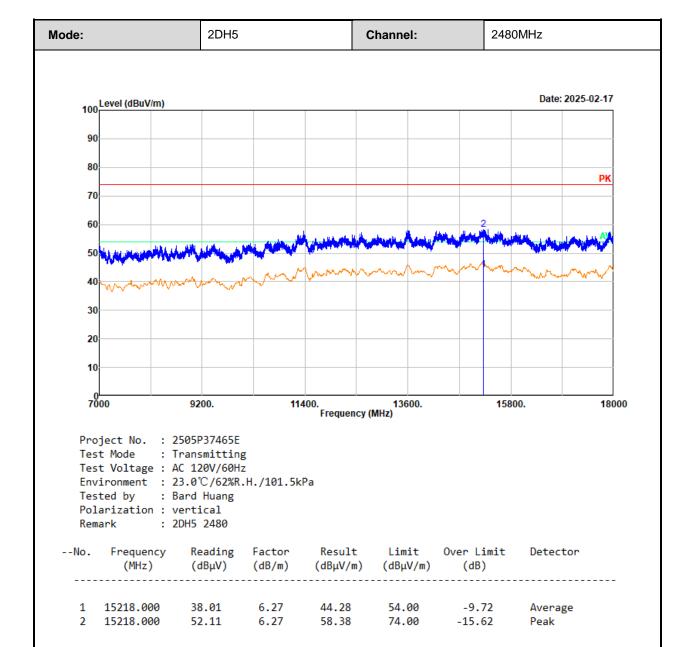


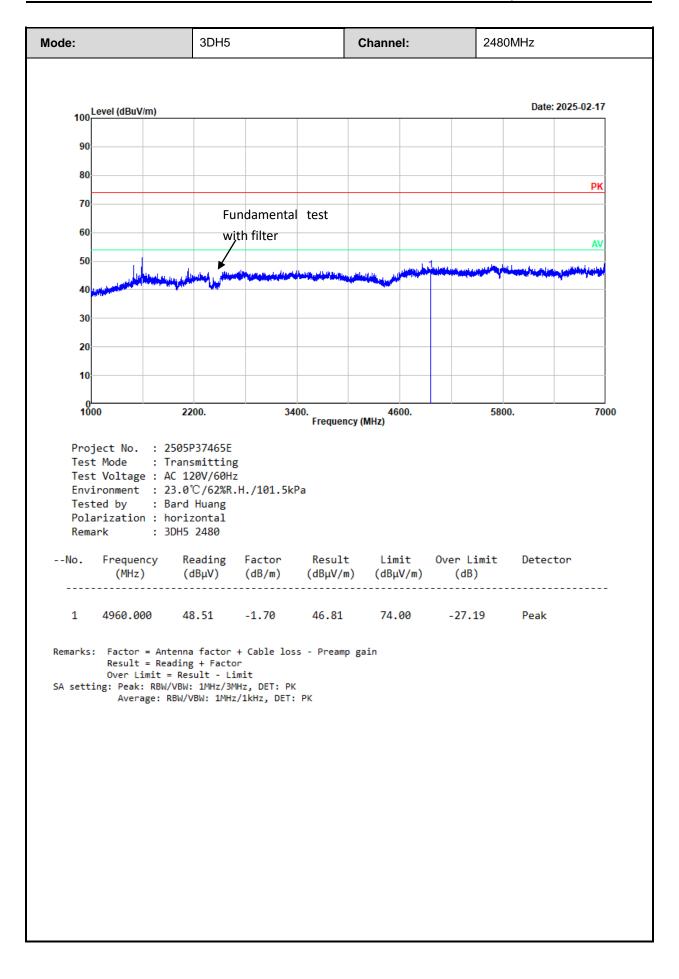
Remarks: Factor = Antenna factor + Cable loss - Preamp gain


Result = Reading + Factor Over Limit = Result - Limit

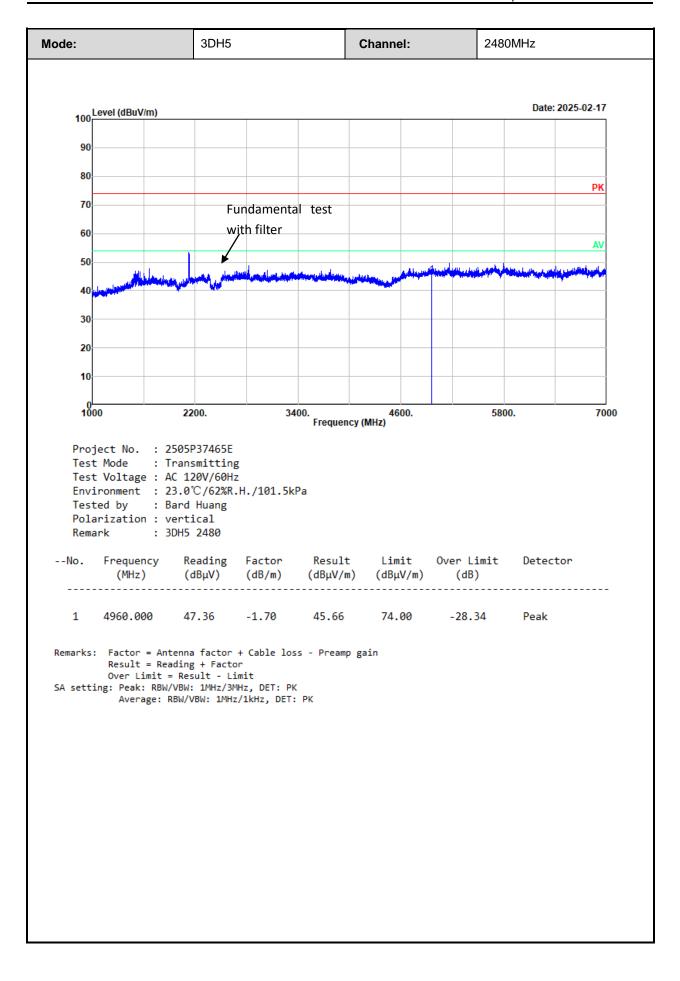
SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK Average: RBW/VBW: 1MHz/1kHz, DET: PK



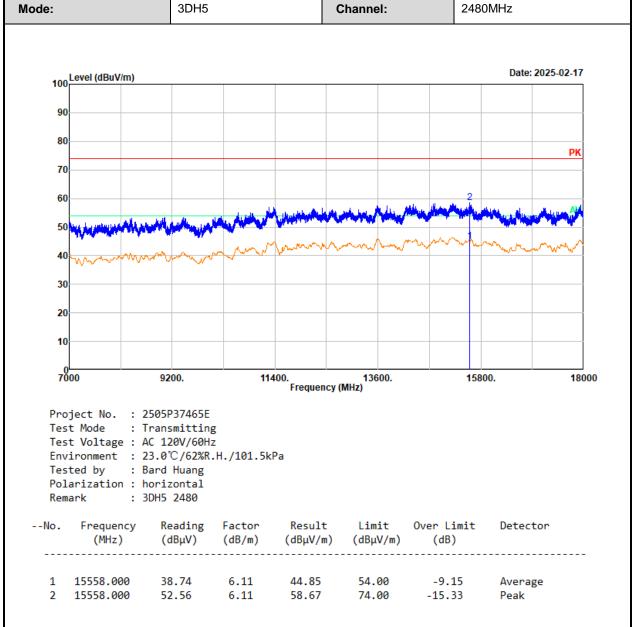


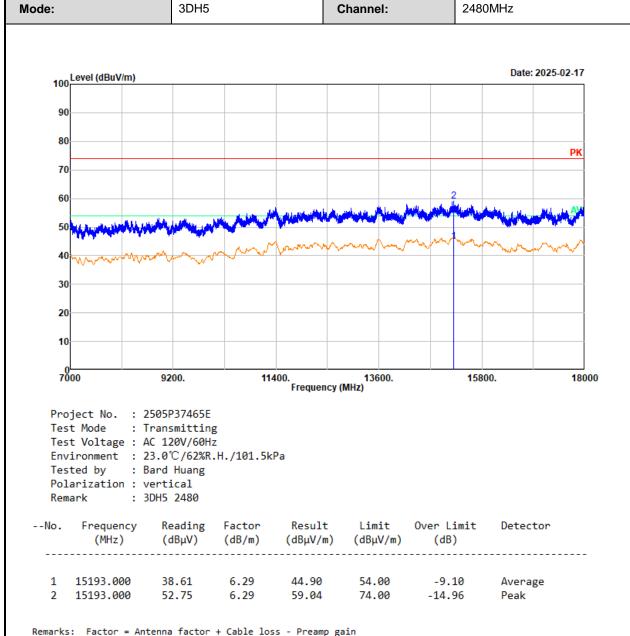

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit


SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK

Average: RBW/VBW: 1MHz/1kHz, DET: PK

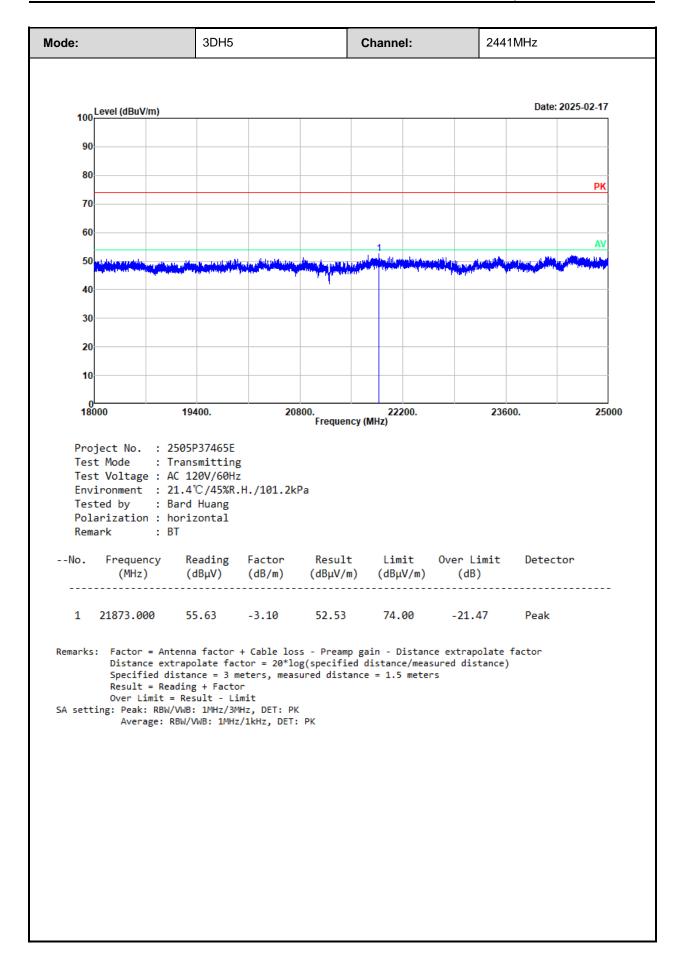


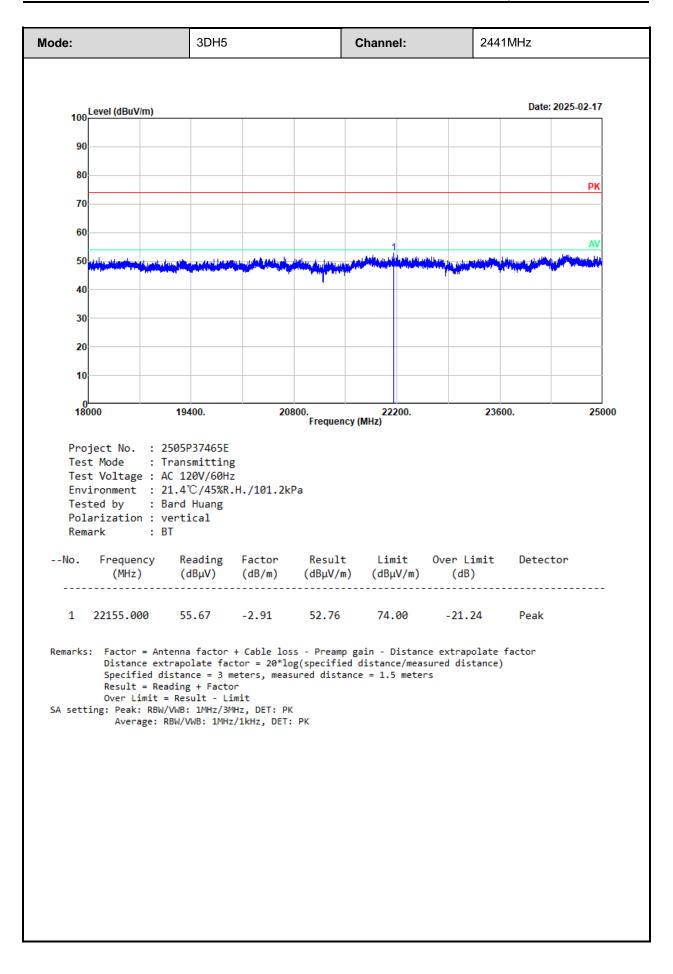


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

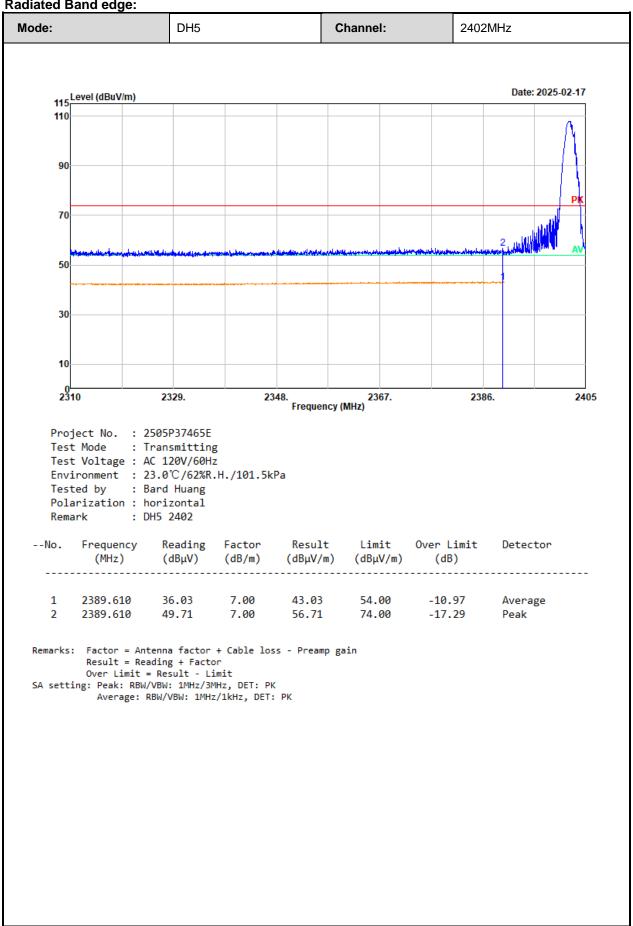
Result = Reading + Factor Over Limit = Result - Limit

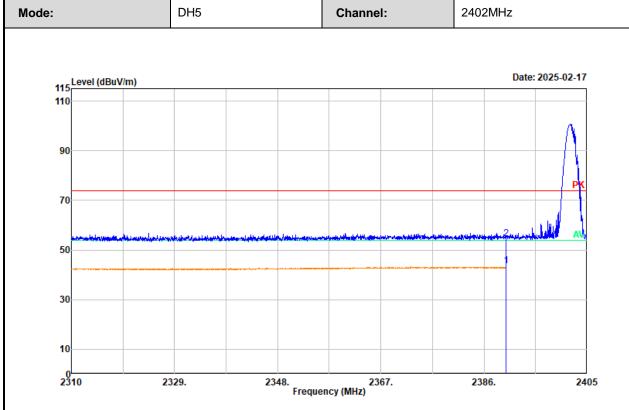
SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK
Average: RBW/VBW: 1MHz/1kHz, DET: PK




Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK Average: RBW/VBW: 1MHz/1kHz, DET: PK



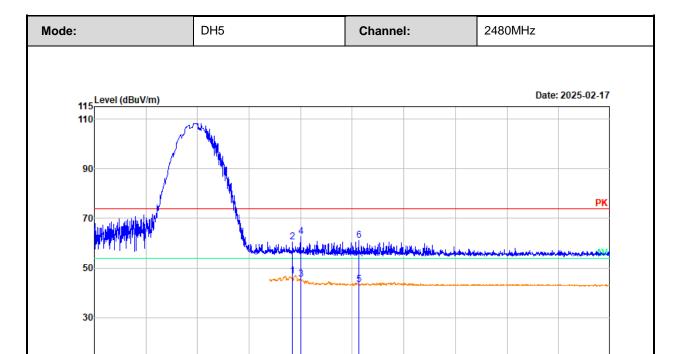


Radiated Band edge:

Environment : $23.0\,^{\circ}\text{C/62}$ %R.H./101.5kPa

Tested by : Bard Huang Polarization : vertical Remark : DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2389.990	36.57	7.00	43.57	54.00	-10.43	Average
2	2389.990	47.68	7.00	54.68	74.00	-19.32	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

10

2475

Project No. : 2505P37465E
Test Mode : Transmitting
Test Voltage : AC 120V/60Hz

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

2480.

Tested by : Bard Huang Polarization : horizontal Remark : DH5 2480

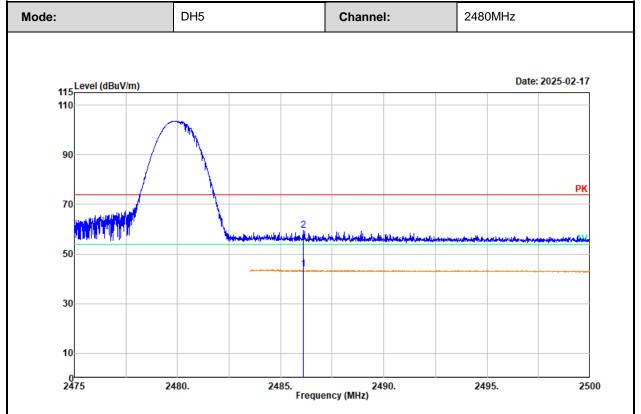
No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2484.592	39.62	7.20	46.82	54.00	-7.18	Average
2	2484.592	53.31	7.20	60.51	74.00	-13.49	Peak
3	2484.992	38.39	7.20	45.59	54.00	-8.41	Average
4	2484.992	55.51	7.20	62.71	74.00	-11.29	Peak
5	2487.819	35.96	7.21	43.17	54.00	-10.83	Average
6	2487.819	53.75	7.21	60.96	74.00	-13.04	Peak

2485. Frequency (MHz)

2490.

2495.

2500

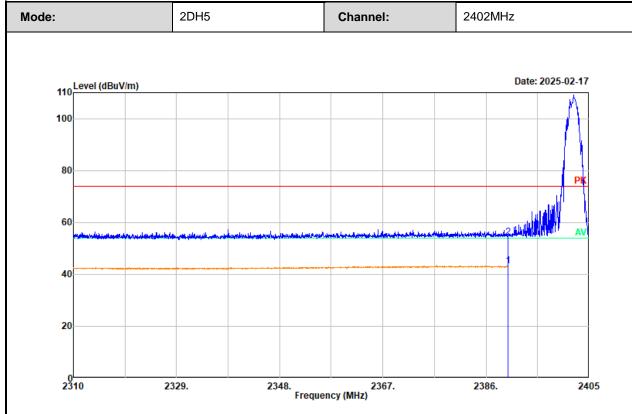

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK Average: RBW/VBW: 1MHz/1kHz, DET: PK

Report Template: TR-4-E-006/V1.2

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

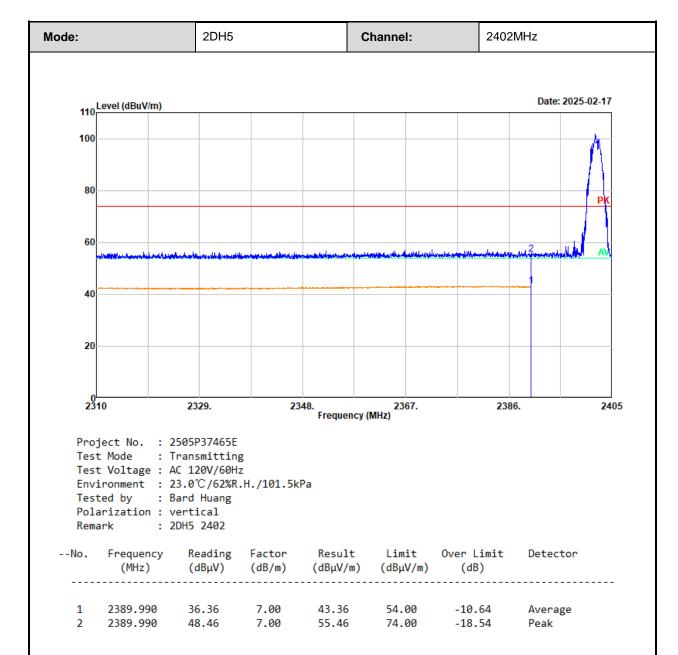

Polarization : vertical Remark : DH5 2480

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector	
1	2486.081	36.67	7.20	43.87	54.00	-10.13	Average	
2	2486.081	52.26	7.20	59.46	74.00	-14.54	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

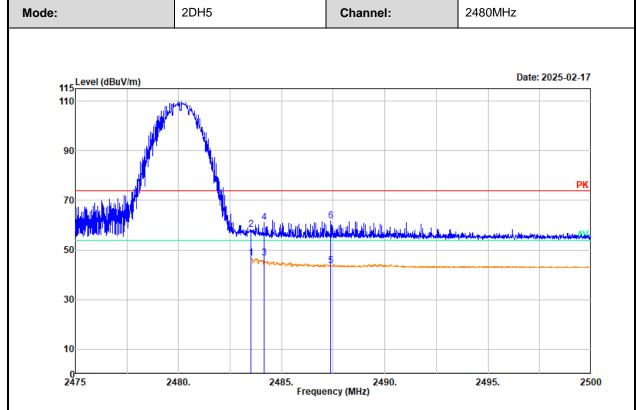
Result = Reading + Factor

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang


Polarization : horizontal Remark : 2DH5 2402

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2389.990	36.09	7.00	43.09	54.00	-10.91	Average
2	2389.990	47.35	7.00	54.35	74.00	-19.65	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

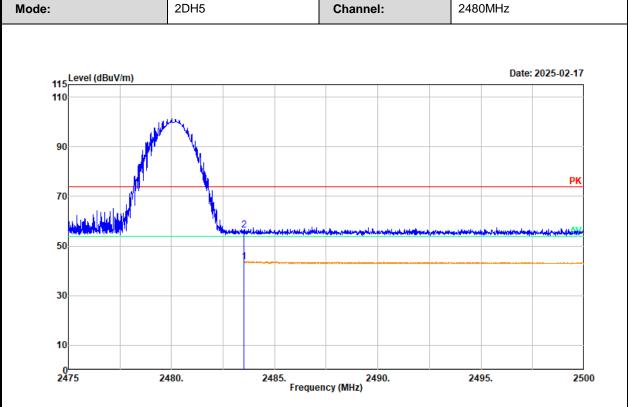

Result = Reading + Factor

Result = Reading + Factor Over Limit = Result - Limit

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

Tested by : Bard Huang Polarization : horizontal Remark : 2DH5 2480

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2483.500	39.54	7.20	46.74	54.00	-7.26	Average
2	2483.500	50.95	7.20	58.15	74.00	-15.85	Peak
3	2484.150	39.48	7.20	46.68	54.00	-7.32	Average
4	2484.150	53.93	7.20	61.13	74.00	-12.87	Peak
5	2487.387	36.41	7.20	43.61	54.00	-10.39	Average
6	2487.387	54.66	7.20	61.86	74.00	-12.14	Peak

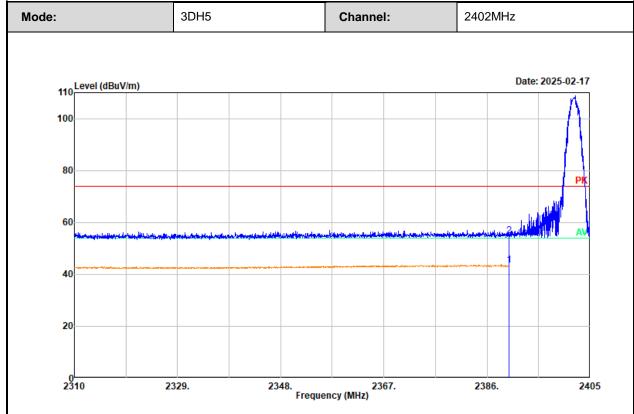

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK
Average: RBW/VBW: 1MHz/1kHz, DET: PK

Report Template: TR-4-E-006/V1.2

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

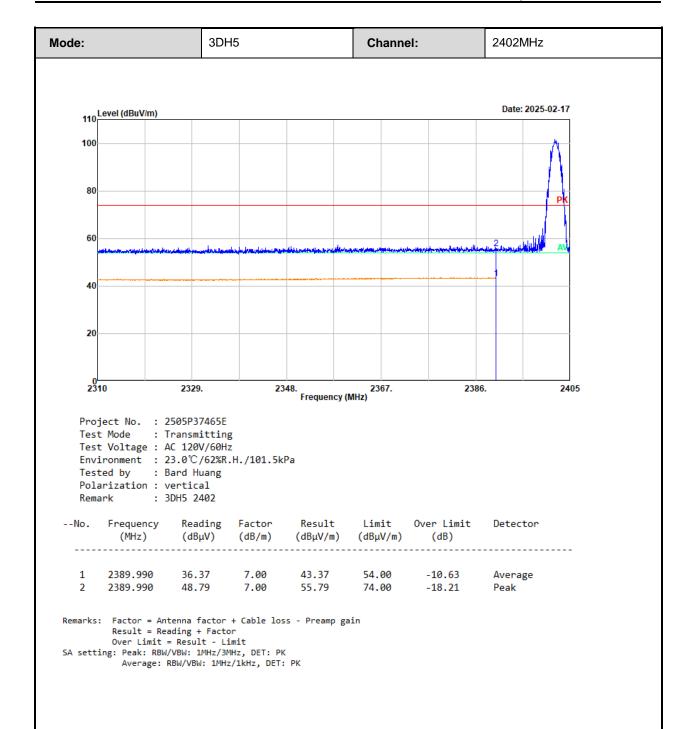

Polarization : vertical Remark : 2DH5 2480

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2483.500	36.42	7.20	43.62	54.00	-10.38	Average
2	2483.500	49.23	7.20	56.43	74.00	-17.57	Peak

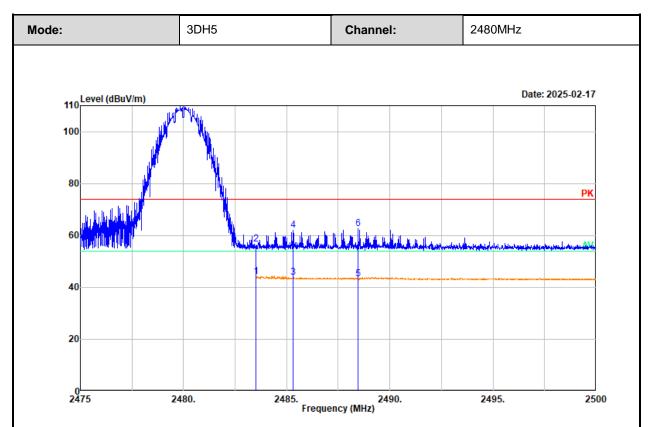
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

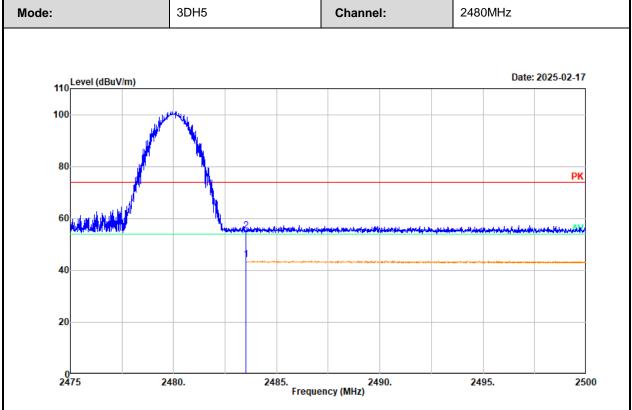

Polarization : horizontal Remark : 3DH5 2402

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	2389.990	36.59	7.00	43.59	54.00	-10.41	Average	
2	2389.990	47.78	7.00	54.78	74.00	-19.22	Peak	


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

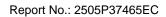
Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang


Tested by : Bard Huang Polarization : horizontal Remark : 3DH5 2480

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2483.500	37.00	7.20	44.20	54.00	-9.80	Average
2	2483.500	49.43	7.20	56.63	74.00	-17.37	Peak
3	2485.325	36.58	7.20	43.78	54.00	-10.22	Average
4	2485.325	54.85	7.20	62.05	74.00	-11.95	Peak
5	2488.450	36.09	7.21	43.30	54.00	-10.70	Average
6	2488.450	55.54	7.21	62.75	74.00	-11.25	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit

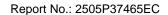

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

Polarization : vertical Remark : 3DH5 2480

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1 2	2483.500 2483.500	36.94 48.06	7.20 7.20	44.14 55.26	54.00 74.00	-9.86 -18.74	Average Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor



Path 2:

Test Date:	2025-02-13~2025-02-17	Test By:	Bard Huang
Environment condition:	Temperature: 20.9~23°C; Rela 101.2~101.5kPa	tive Humidity:56~62%;	ATM Pressure:

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
			GFS	SK			
			Low Ch	annel			
4804.000	48.05	horizontal	-2.42	45.63	74.00	-28.37	Peak
4804.000	47.96	vertical	-2.42	45.54	74.00	-28.46	Peak
			Middle C	hannel			
4882.000	48.40	horizontal	-1.86	46.54	74.00	-27.46	Peak
4882.000	49.47	vertical	-1.86	47.61	74.00	-26.39	Peak
			High Ch	annel			
4960.000	50.19	horizontal	-1.70	48.49	74.00	-25.51	Peak
4960.000	50.48	vertical	-1.70	48.78	74.00	-25.22	Peak
			π/4 DQ	PSK			
			Low Ch	annel			
4804.000	49.39	horizontal	-2.42	46.97	74.00	-27.03	Peak
4804.000	47.77	vertical	-2.42	45.35	74.00	-28.65	Peak
			Middle C	hannel			
4882.000	48.38	horizontal	-1.86	46.52	74.00	-27.48	Peak
4882.000	48.33	vertical	-1.86	46.47	74.00	-27.53	Peak
			High Ch	annel			
4960.000	50.19	horizontal	-1.70	48.49	74.00	-25.51	Peak
4960.000	49.38	vertical	-1.70	47.68	74.00	-26.32	Peak
			8DPS	SK .			
			Low Ch	annel			
4804.000	46.88	horizontal	-2.42	44.46	74.00	-29.54	Peak
4804.000	48.30	vertical	-2.42	45.88	74.00	-28.12	Peak
			Middle C	hannel			
4882.000	47.75	horizontal	-1.86	45.89	74.00	-28.11	Peak
4882.000	49.05	vertical	-1.86	47.19	74.00	-26.81	Peak
			High Ch	annel			
4960.000	50.03	horizontal	-1.70	48.33	74.00	-25.67	Peak
4960.000	49.49	vertical	-1.70	47.79	74.00	-26.21	Peak

Report Template: TR-4-E-006/V1.2

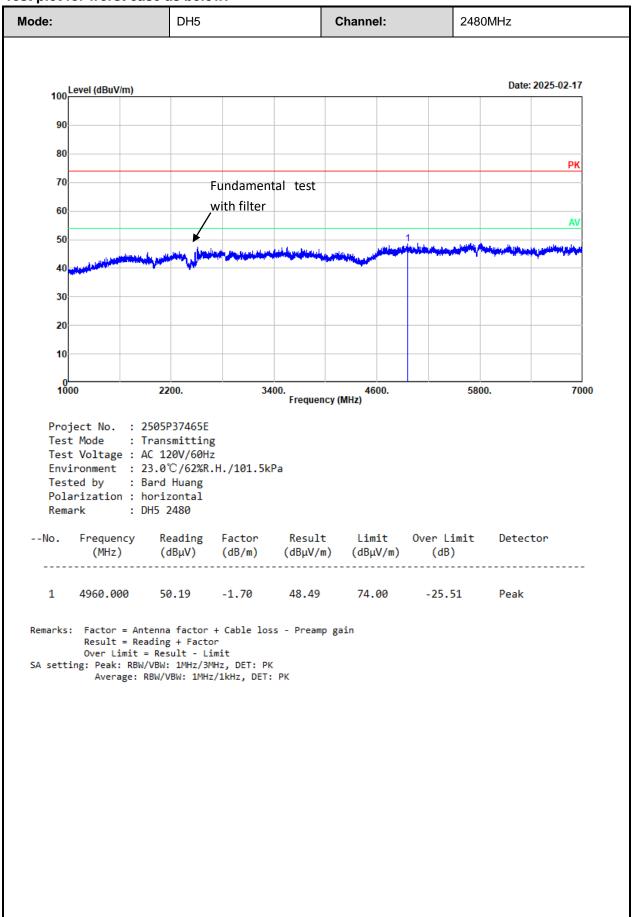
Remark:

Corrected Amplitude= Reading level + corrected Factor

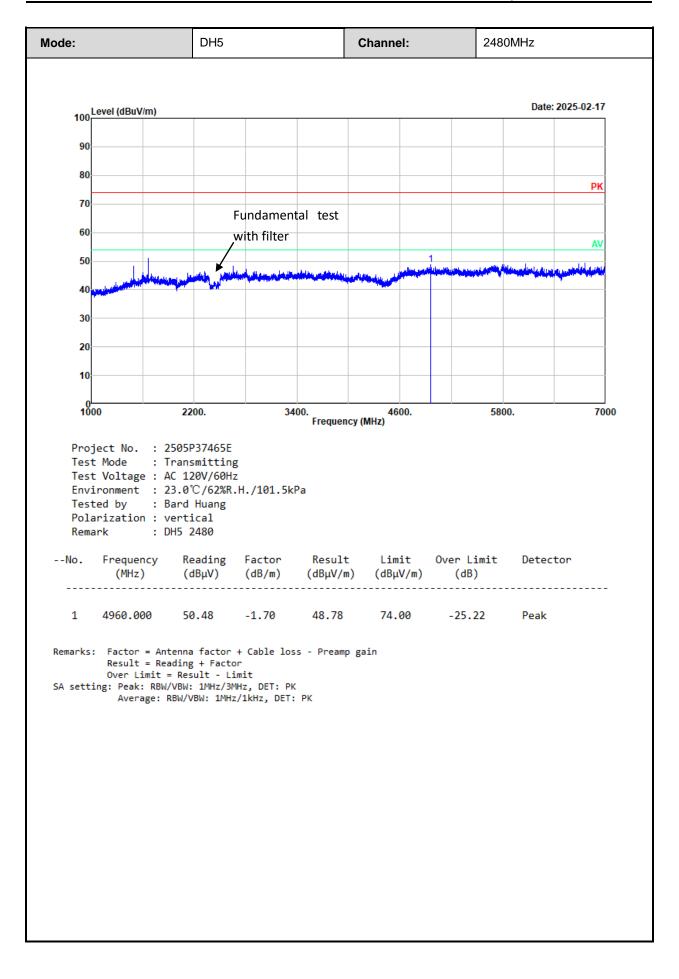
Corrected Factor = Antenna factor + Cable loss - Amplifier gain

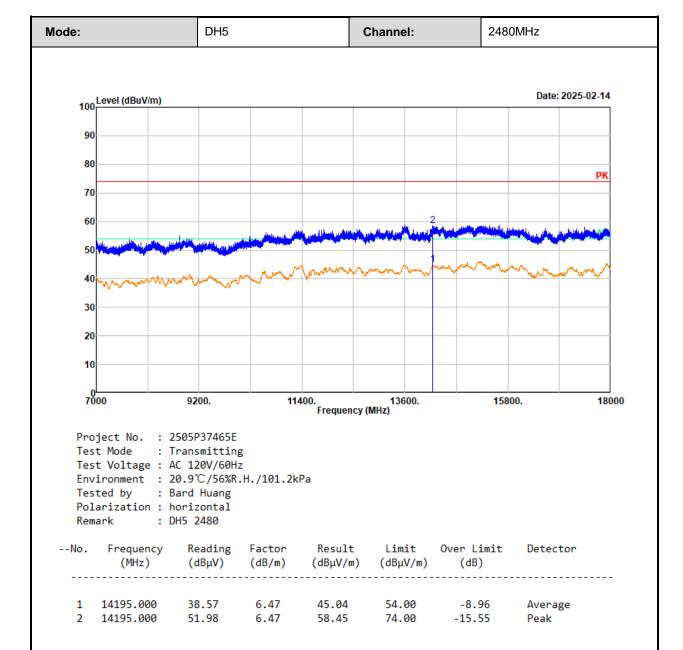
Margin = Corrected Amplitude - Limit

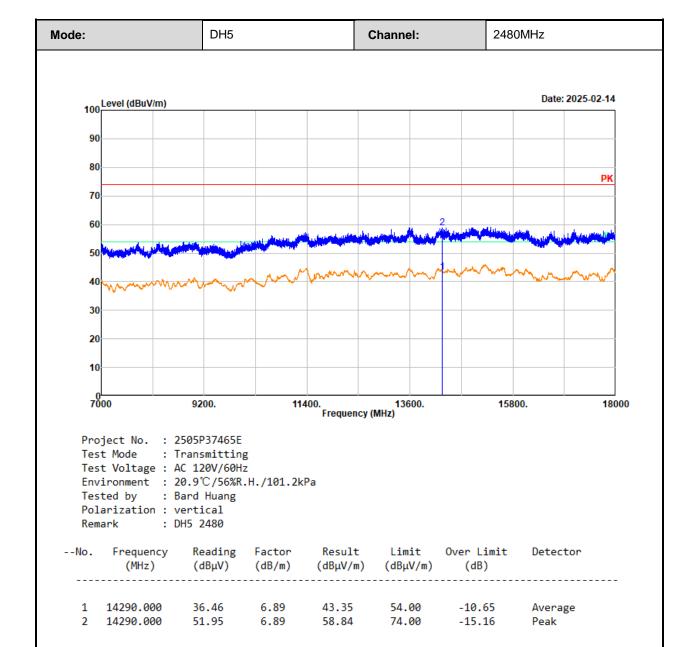
For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.


The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

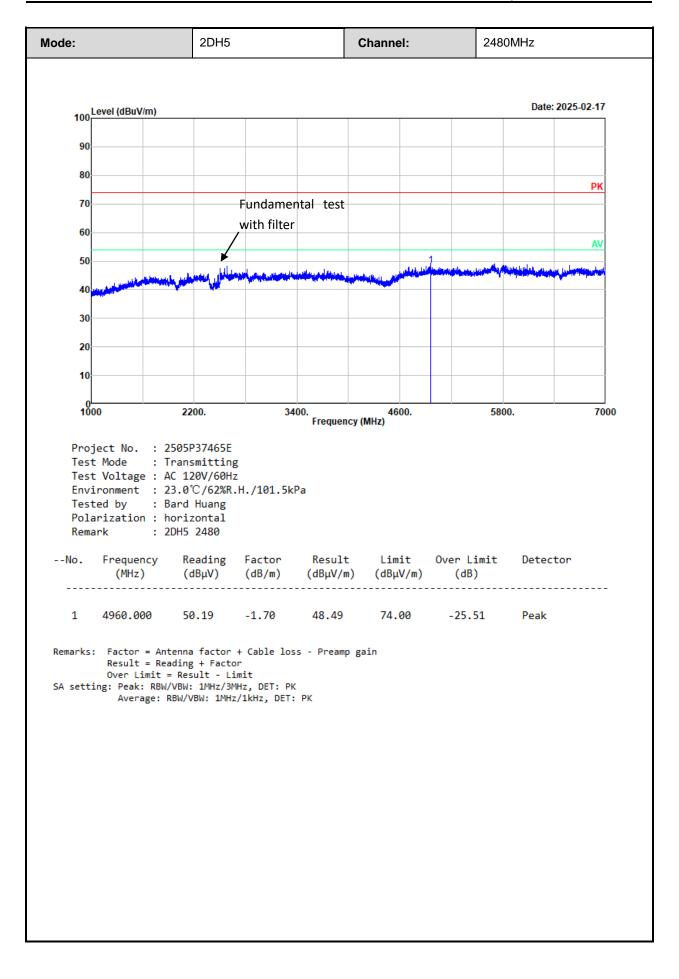
For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.


Report Template: TR-4-E-006/V1.2 Page 50 of 125

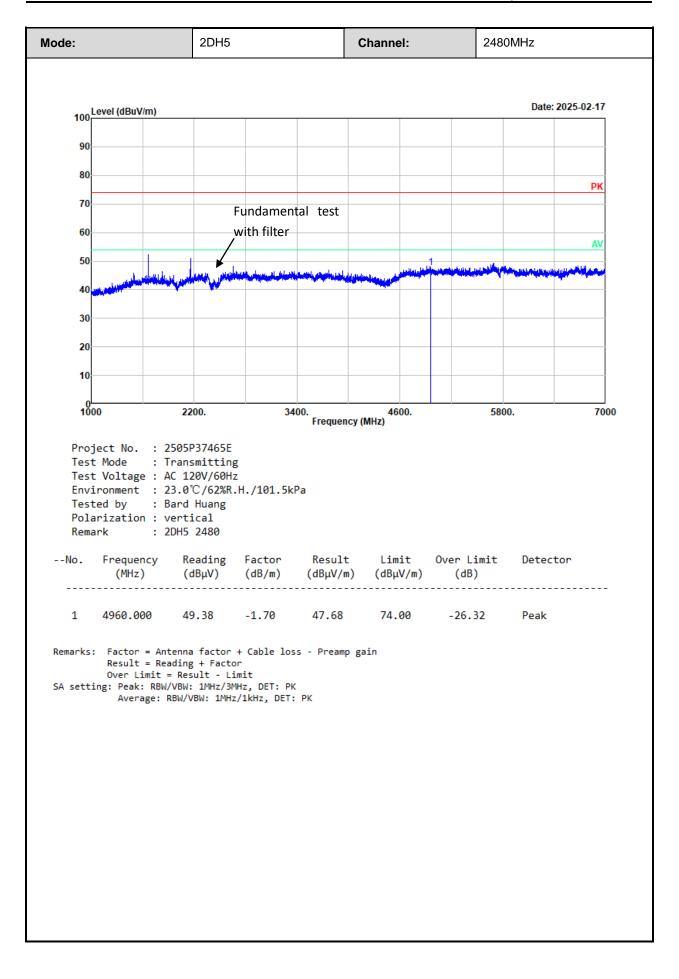

Test plot for worst case as below:



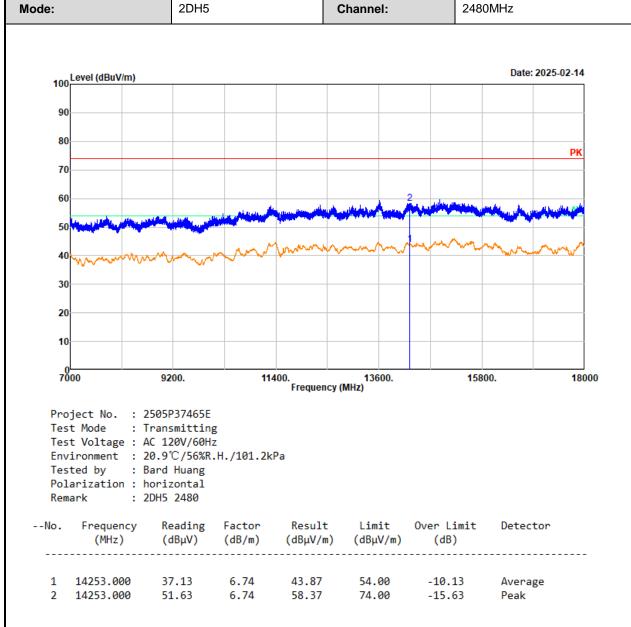
Result = Reading + Factor Over Limit = Result - Limit

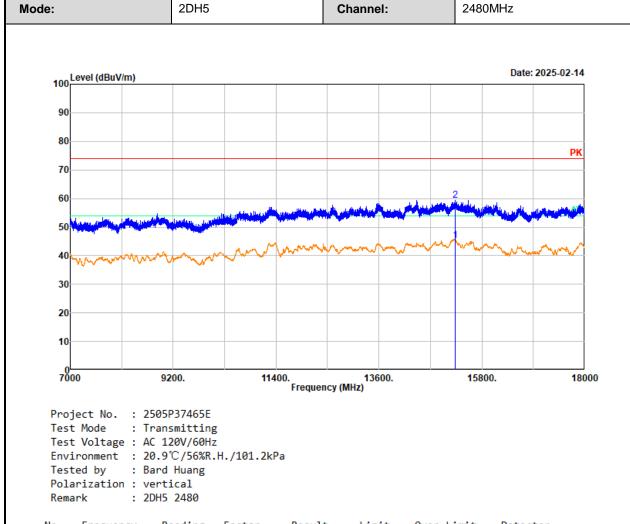


Result = Reading + Factor Over Limit = Result - Limit

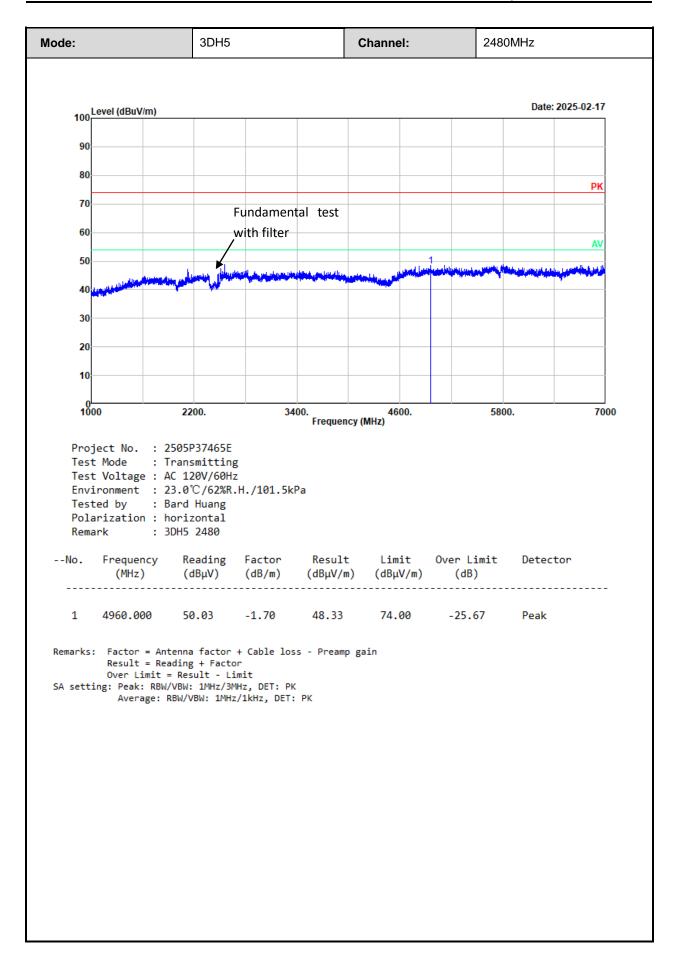

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK

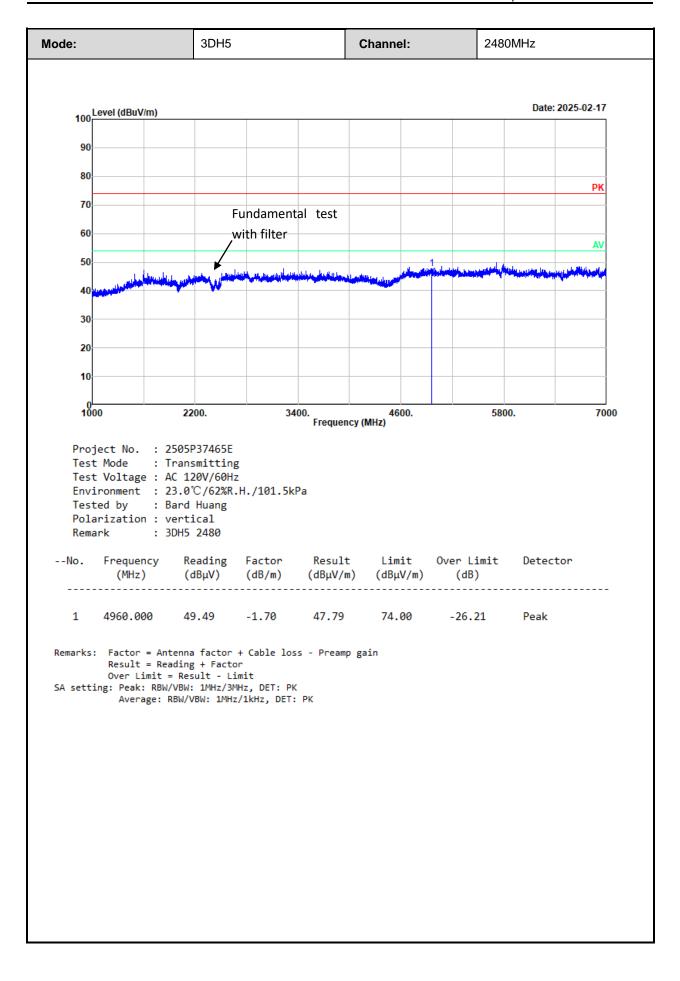
Average: RBW/VBW: 1MHz/1kHz, DET: PK



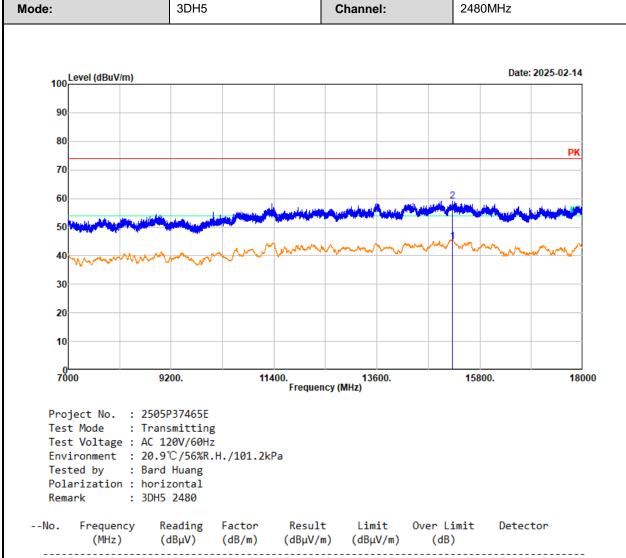


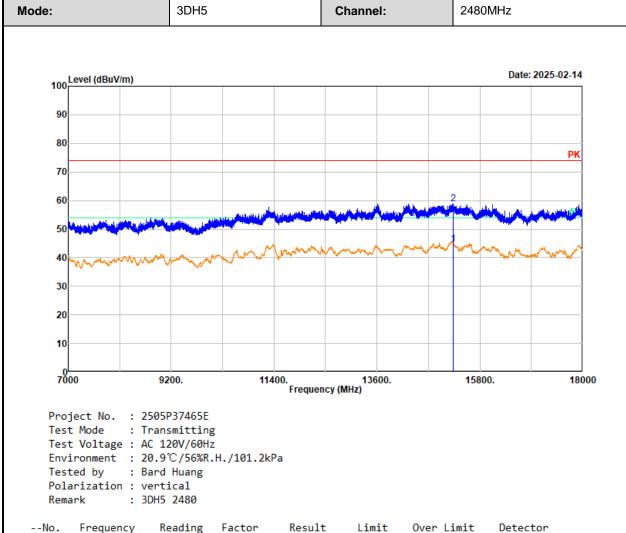
Result = Reading + Factor Over Limit = Result - Limit




No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1 2	15234.000 15234.000	38.95 53.16	6.25 6.25	45.20 59.41	54.00 74.00	-8.80 -14.59	Average Peak	

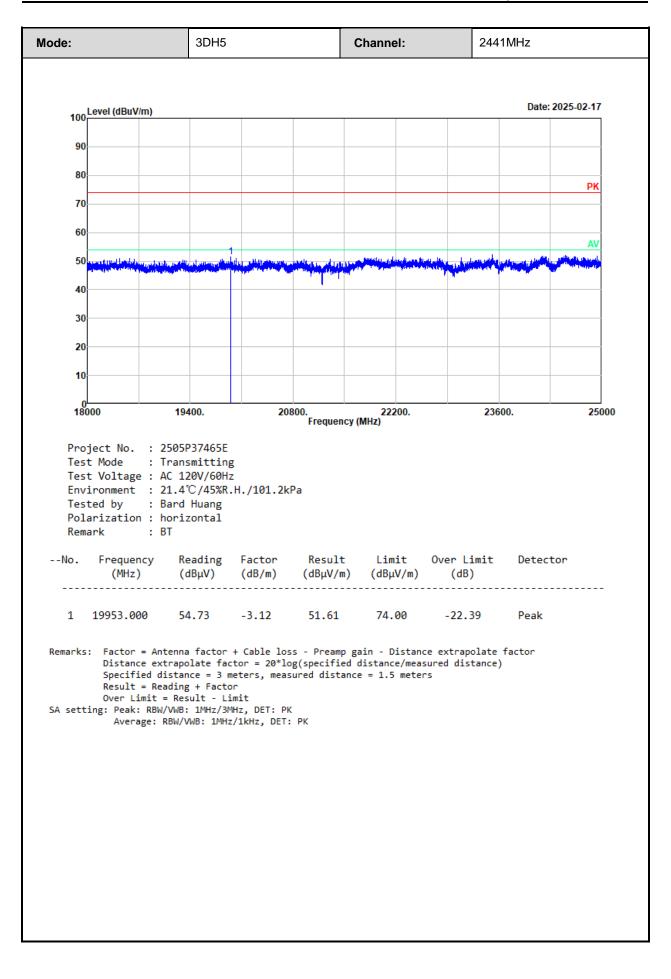
Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

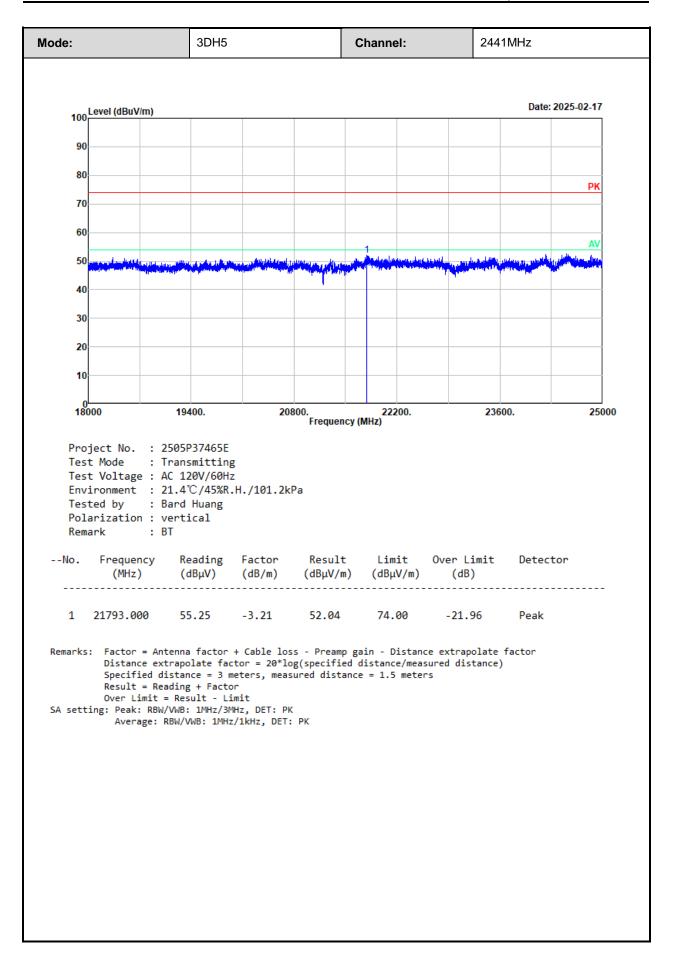




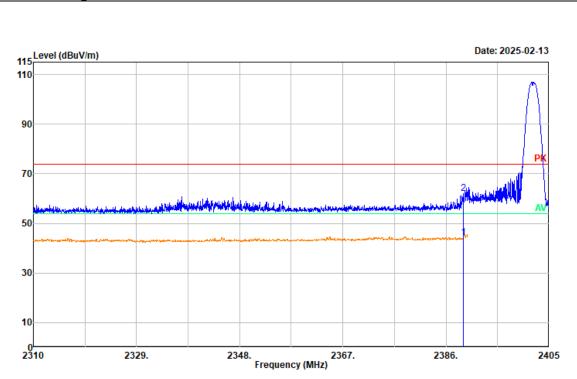
1 15217.000 38.58 6.27 44.85 54.00 -9.15 Average 2 15217.000 52.87 6.27 59.14 74.00 -14.86 Peak	110.	(MHz)	(dBµV)		(dBμV/m)	(dB)	Detector.	
	_			 				

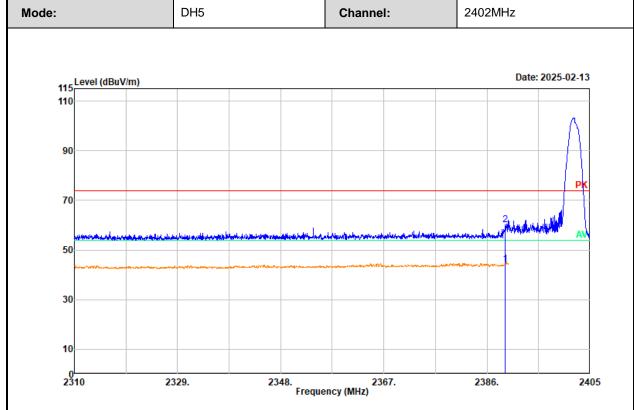
Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor




No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector	
1 2	15233.000 15233.000	38.54 52.50	6.25 6.25	44.79 58.75	54.00 74.00	-9.21 -15.25	Average Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor



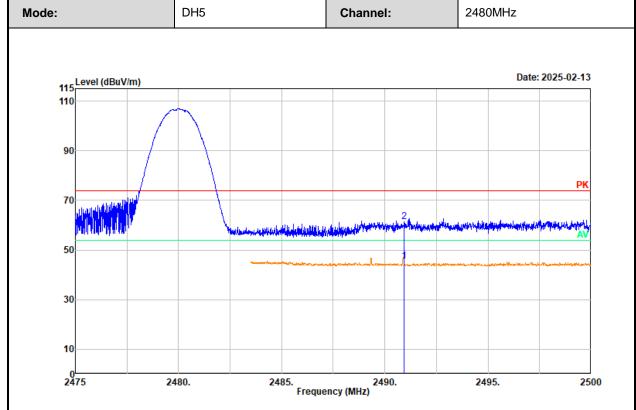

Environment : 20.9℃/56%R.H./101.2kPa Tested by : Bard Huang

Polarization : horizontal : DH5 2402 Remark

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)		Over Limit (dB)	Detector
1	2389.183	37.16	7.00	44.16	54.00	-9.84	Average
2	2389.183	55.01	7.00	62.01	74.00	-11.99	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Environment : 20.9° C/56%R.H./101.2kPa

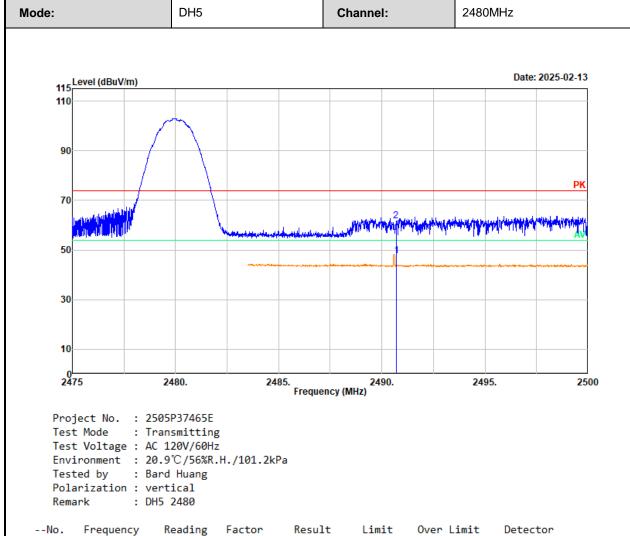

Tested by : Bard Huang Polarization : vertical Remark : DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	2389.325	37.30	7.00	44.30	54.00	-9.70	Average	
2	2389.325	53.25	7.00	60.25	74.00	-13.75	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

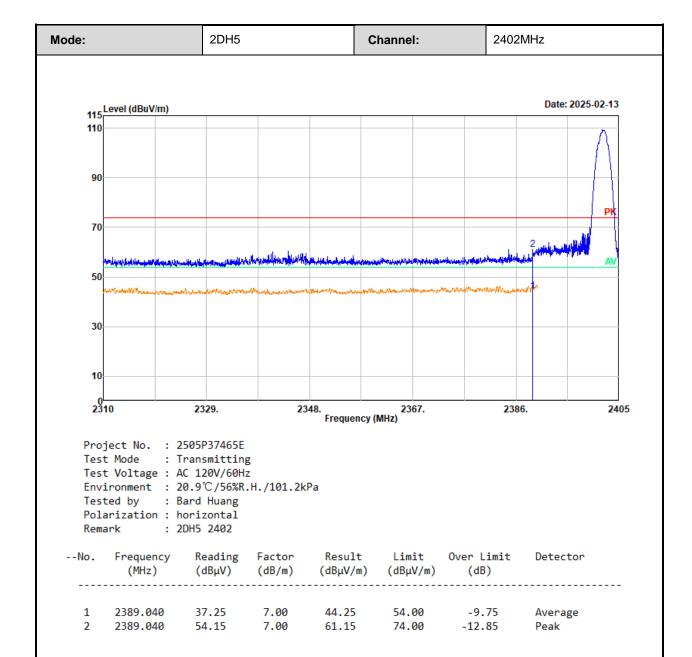
Environment : $20.9^{\circ}/56\%R.H./101.2kPa$ Tested by : Bard Huang


Polarization : horizontal Remark : DH5 2480

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2490.938	38.29	7.22	45.51	54.00	-8.49	Average
2	2490.938	54.15	7.22	61.37	74.00	-12.63	Peak

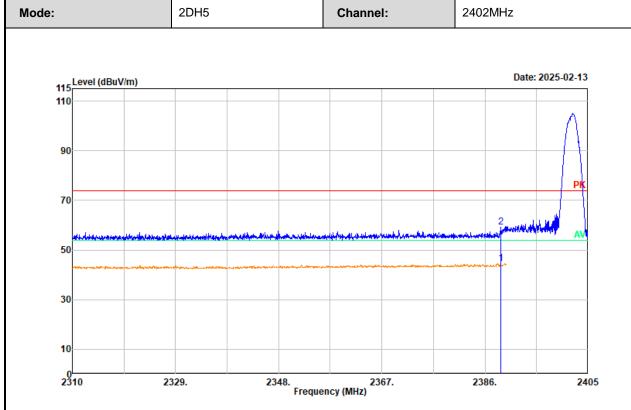
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor


--No. Frequency Reading Factor Result Limit Over Limit Detector (MHz) (dBμV) (dB/m) (dBμV/m) (dBμV/m) (dB)

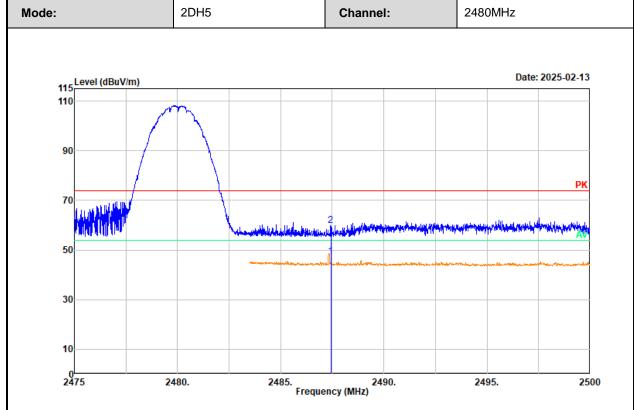
1 2490.688 40.41 7.22 47.63 54.00 -6.37 Average 2 2490.688 54.59 7.22 61.81 74.00 -12.19 Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor


Result = Reading + Factor Over Limit = Result - Limit

Result = Reading + Factor Over Limit = Result - Limit

Environment : 20.9° C/56%R.H./101.2kPa

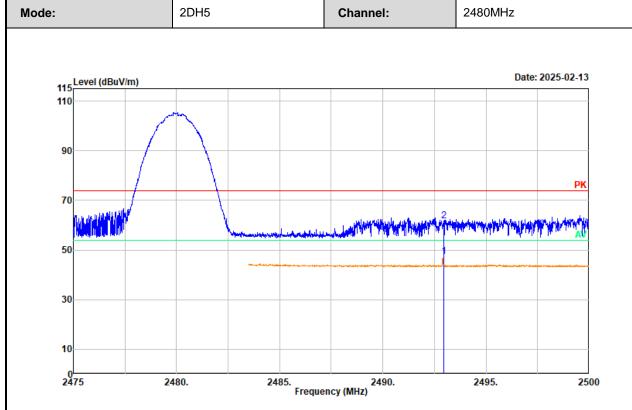

Tested by : Bard Huang Polarization : vertical Remark : 2DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2388.897	37.49	7.00	44.49	54.00	-9.51	Average
2	2388.897	52.32	7.00	59.32	74.00	-14.68	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Environment : $20.9^{\circ}/56\%R.H./101.2kPa$ Tested by : Bard Huang

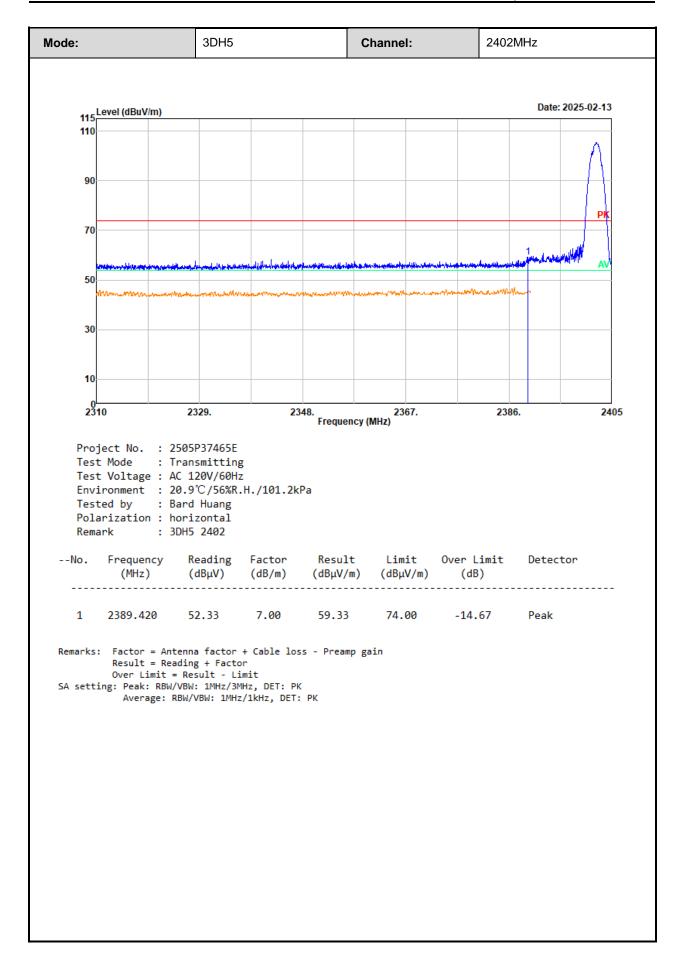

Polarization : horizontal Remark : 2DH5 2480

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2487.425	40.24	7.20	47.44	54.00	-6.56	Average
2	2487.425	52.79	7.20	59.99	74.00	-14.01	Peak

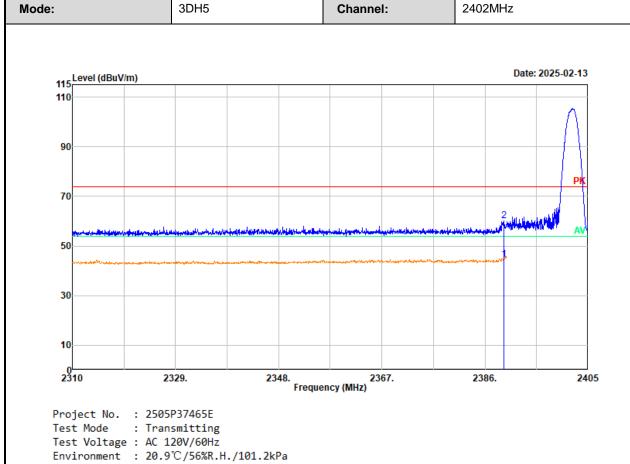
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

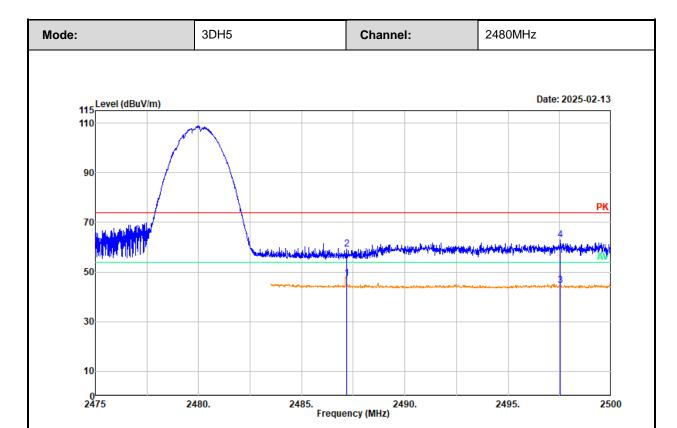
Environment : $20.9^{\circ}/56\%R.H./101.2kPa$ Tested by : Bard Huang


Polarization : vertical Remark : 2DH5 2480

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2492.938	40.24	7.23	47.47	54.00	-6.53	Average
2	2492.938	54.38	7.23	61.61	74.00	-12.39	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

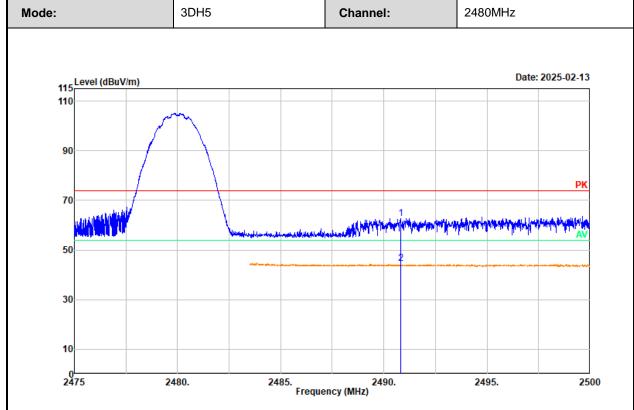

Tested by : Bard Huang Polarization : vertical Remark : 3DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector	
1	2389.468	37.67	7.00	44.67	54.00	-9.33	Average	
2	2389.468	53.16	7.00	60.16	74.00	-13.84	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

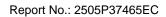
Environment : $20.9^{\circ}/56\%R.H./101.2kPa$ Tested by : Bard Huang


Polarization : horizontal Remark : 3DH5 2480

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	2487.188	40.31	7.20	47.51	54.00	-6.49	Average
2	2487.188	52.11	7.20	59.31	74.00	-14.69	Peak
3	2497.525	37.25	7.25	44.50	54.00	-9.50	Average
4	2497.525	55.56	7.25	62.81	74.00	-11.19	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

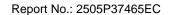

Environment : $20.9^{\circ}/56\%R.H./101.2kPa$ Tested by : Bard Huang

Polarization : vertical Remark : 3DH5 2480

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	2490.813	55.55	7.22	62.77	74.00	-11.23	Peak	
2	2490.813	37.41	7.22	44.63	54.00	-9.37	Average	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor



Path 3:

Test Date:	2025-02-13~2025-02-17	Test By:	Bard Huang
Environment condition:	Temperature: 20.9~23°C; Rela 101.2~101.5kPa	tive Humidity:56~62%;	ATM Pressure:

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark				
			GFS	SK							
Low Channel											
4804.000	48.95	horizontal	-2.42	46.53	74.00	-27.47	Peak				
4804.000	48.30	vertical	-2.42	45.88	74.00	-28.12	Peak				
	Middle Channel										
4882.000	47.80	horizontal	-1.86	45.94	74.00	-28.06	Peak				
4882.000	48.60	vertical	-1.86	46.74	74.00	-27.26	Peak				
High Channel											
4960.000	48.33	horizontal	-1.70	46.63	74.00	-27.37	Peak				
4960.000	48.31	vertical	-1.70	46.61	74.00	-27.39	Peak				
			π/4 DQ	PSK							
Low Channel											
4804.000	47.77	horizontal	-2.42	45.35	74.00	-28.65	Peak				
4804.000	48.98	vertical	-2.42	46.56	74.00	-27.44	Peak				
			Middle C	hannel							
4882.000	47.67	horizontal	-1.86	45.81	74.00	-28.19	Peak				
4882.000	47.34	vertical	-1.86	45.48	74.00	-28.52	Peak				
			High Ch	annel							
4960.000	48.35	horizontal	-1.70	46.65	74.00	-27.35	Peak				
4960.000	48.27	vertical	-1.70	46.57	74.00	-27.43	Peak				
			8DPS	SK							
			Low Ch	annel							
4804.000	47.06	horizontal	-2.42	44.64	74.00	-29.36	Peak				
4804.000	47.59	vertical	-2.42	45.17	74.00	-28.83	Peak				
	1		Middle C	hannel	-						
4882.000	48.46	horizontal	-1.86	46.60	74.00	-27.40	Peak				
4882.000	48.19	vertical	-1.86	46.33	74.00	-27.67	Peak				
			High Ch	annel	-		•				
4960.000	47.37	horizontal	-1.70	45.67	74.00	-28.33	Peak				
4960.000	47.12	vertical	-1.70	45.42	74.00	-28.58	Peak				

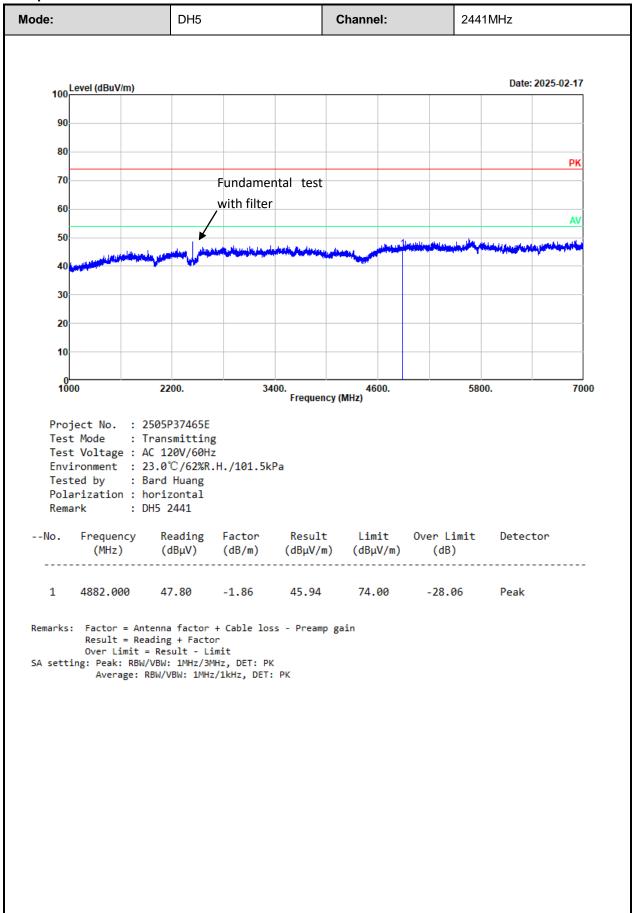
Remark:

Corrected Amplitude= Reading level + corrected Factor

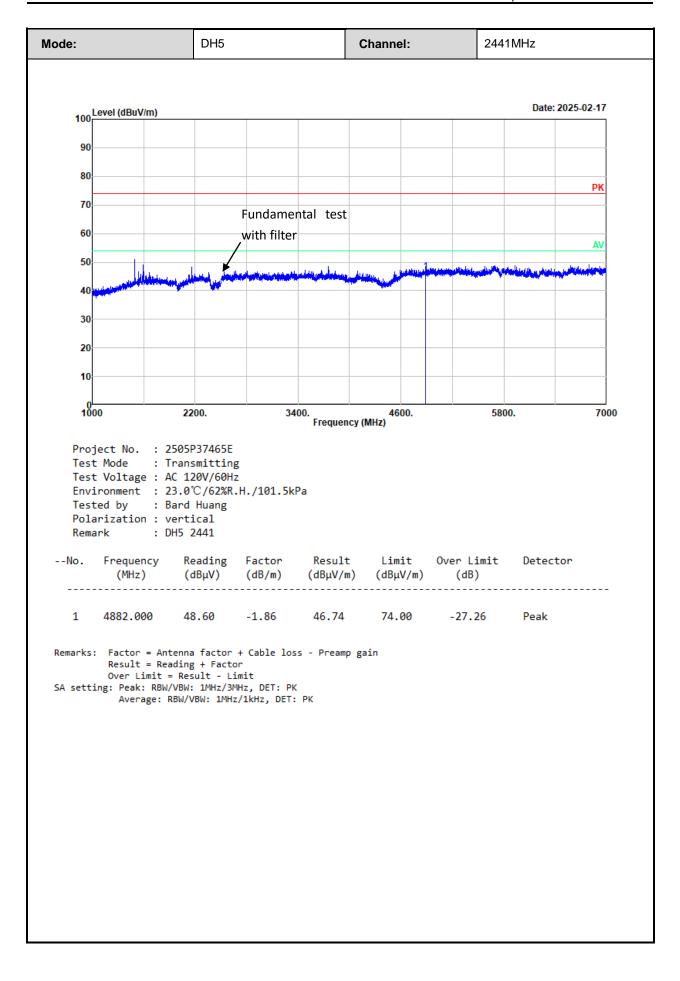
Corrected Factor = Antenna factor + Cable loss - Amplifier gain

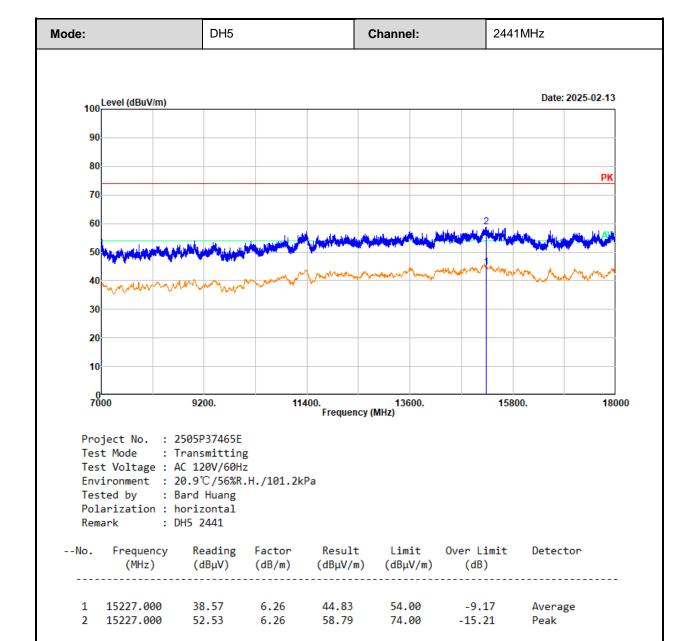
Margin = Corrected Amplitude - Limit

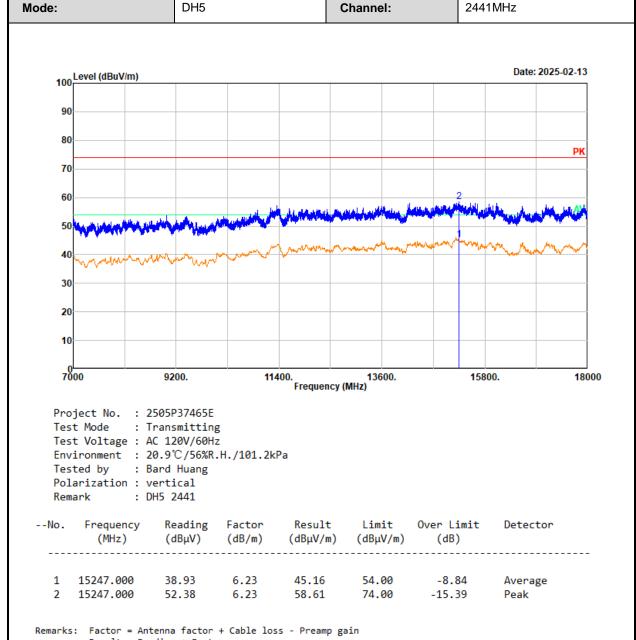
For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.


The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

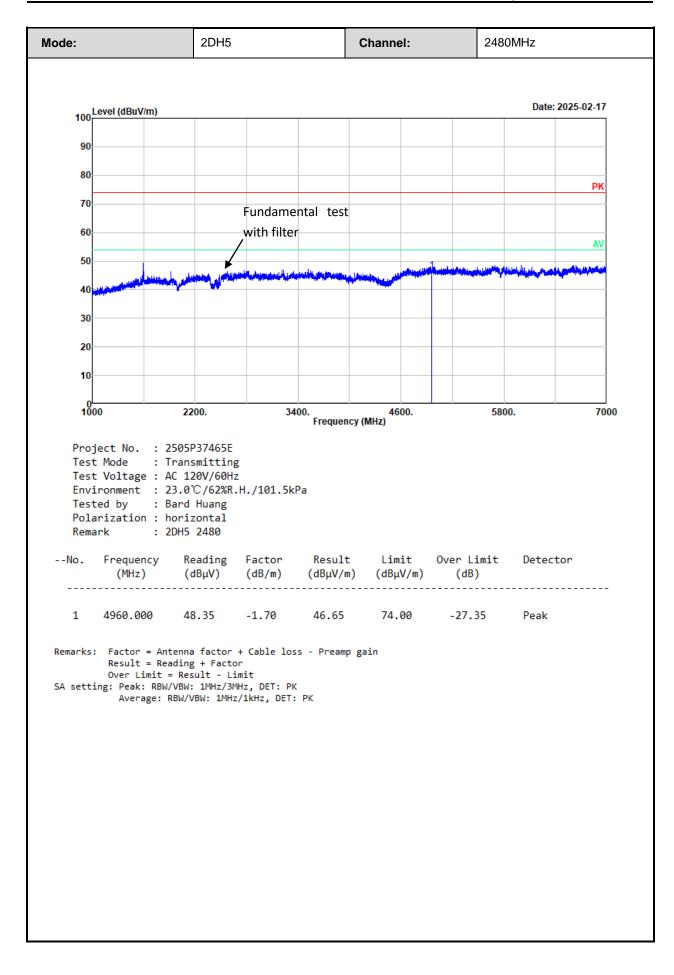
For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

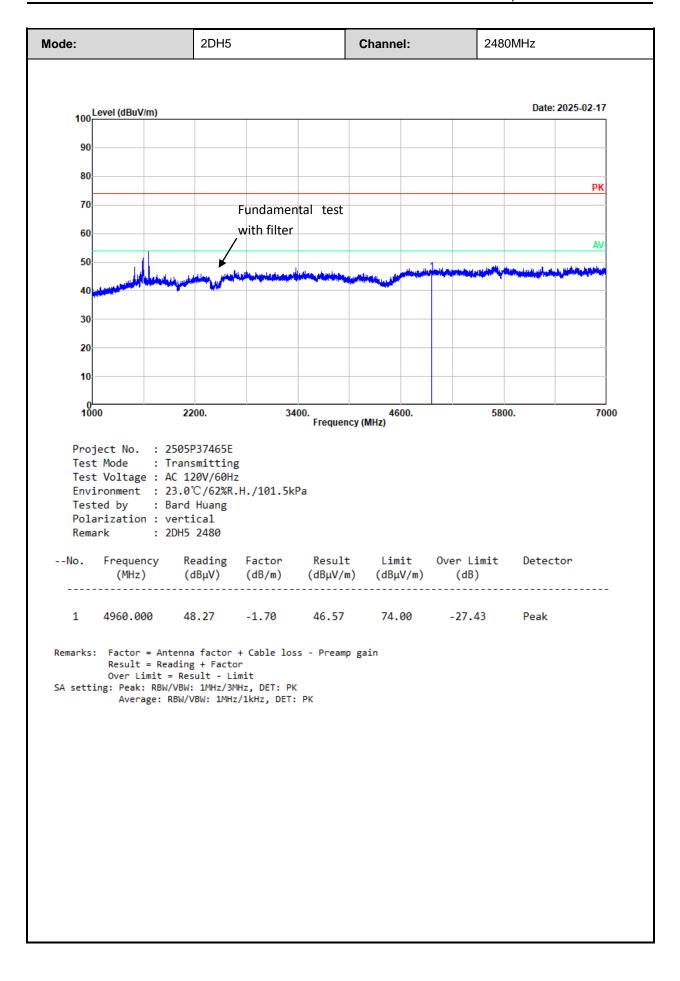

Report Template: TR-4-E-006/V1.2 Page 78 of 125


Test plot for worst case as below:

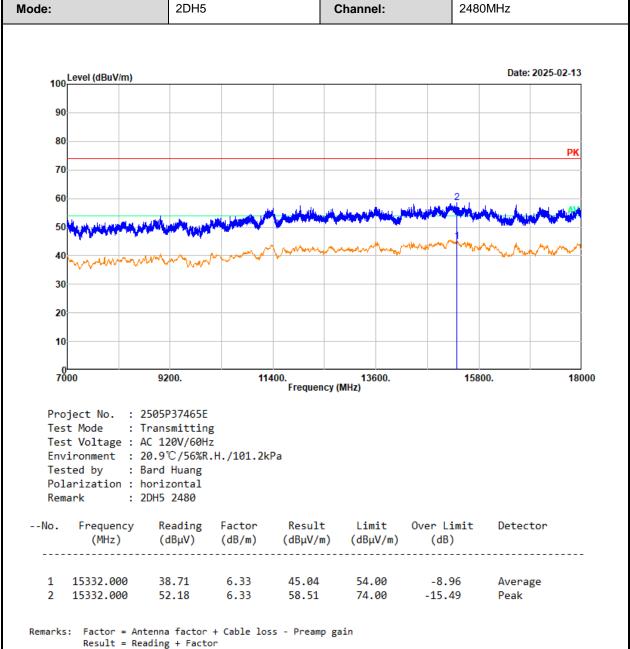


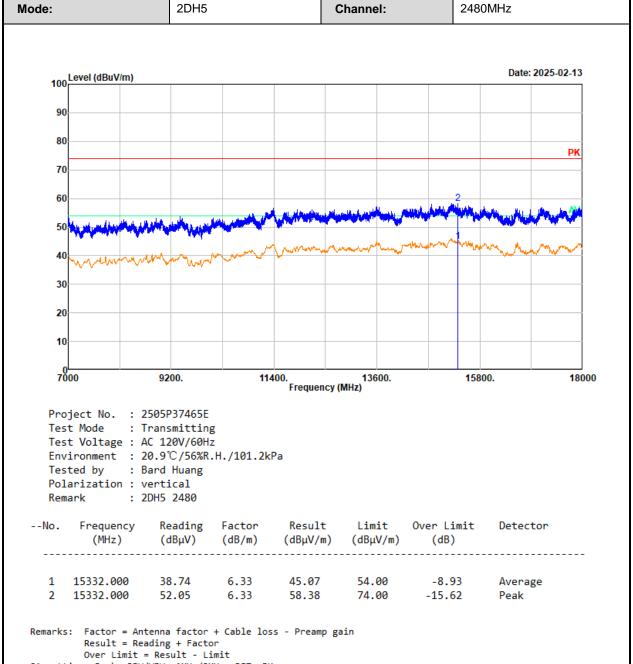
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

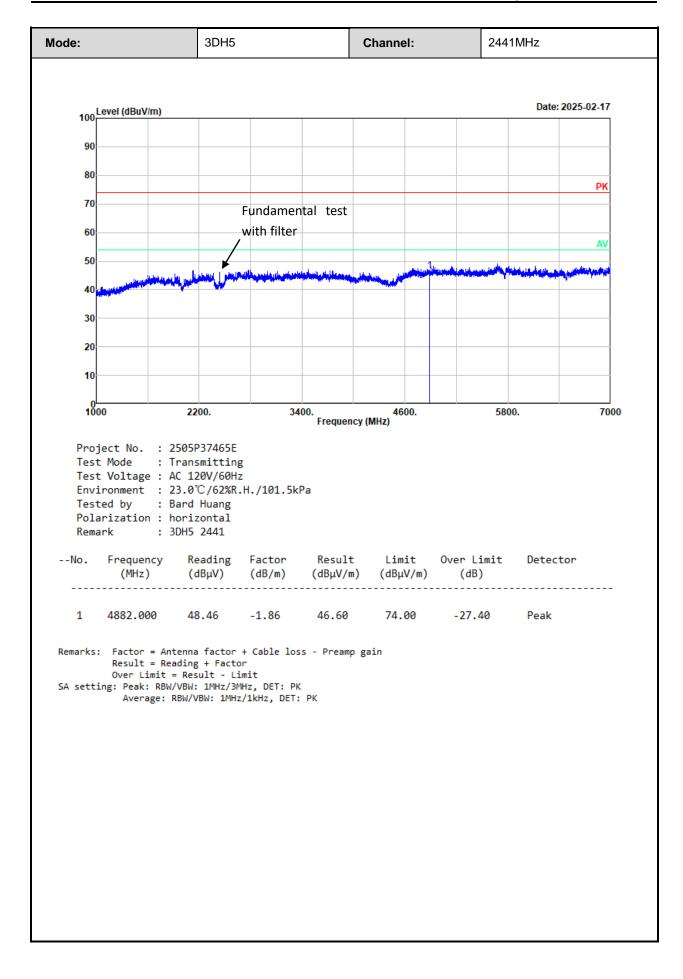

Result = Reading + Factor Over Limit = Result - Limit



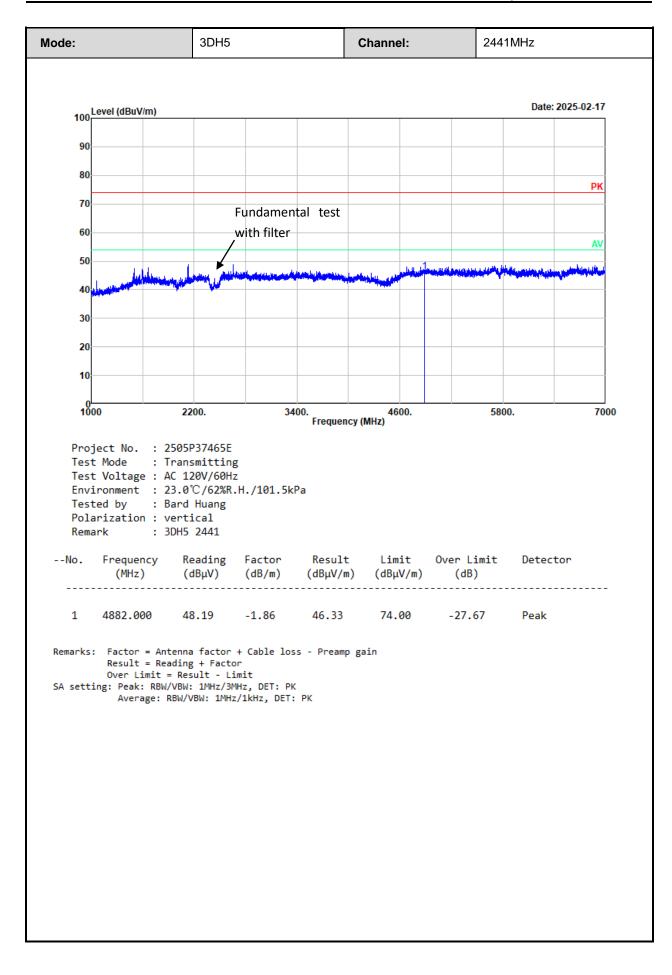
Result = Reading + Factor Over Limit = Result - Limit

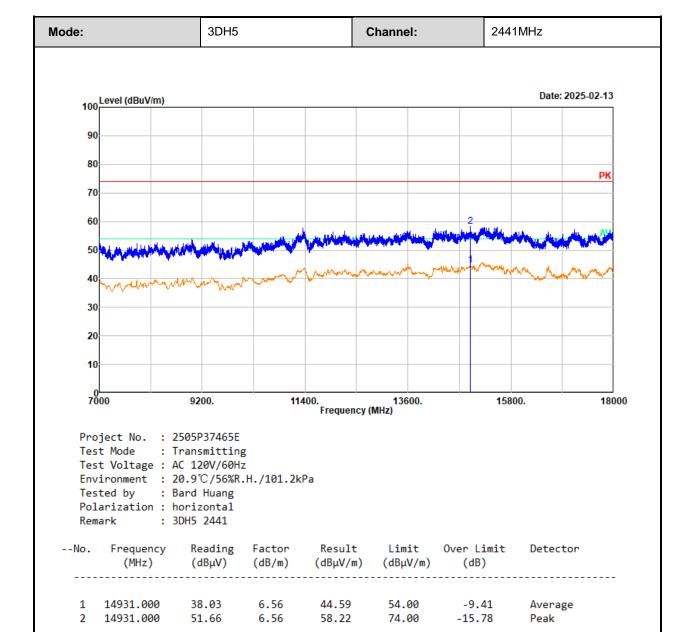


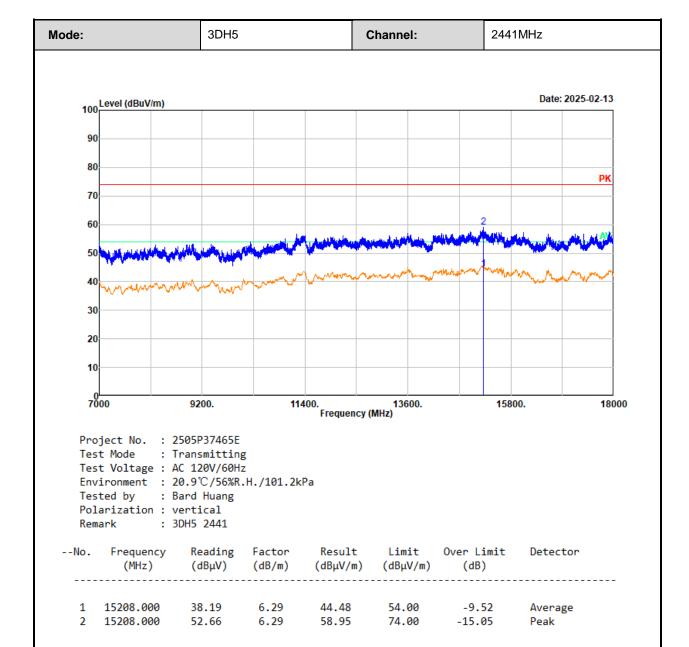




Result = Reading + Factor
Over Limit = Result - Limit

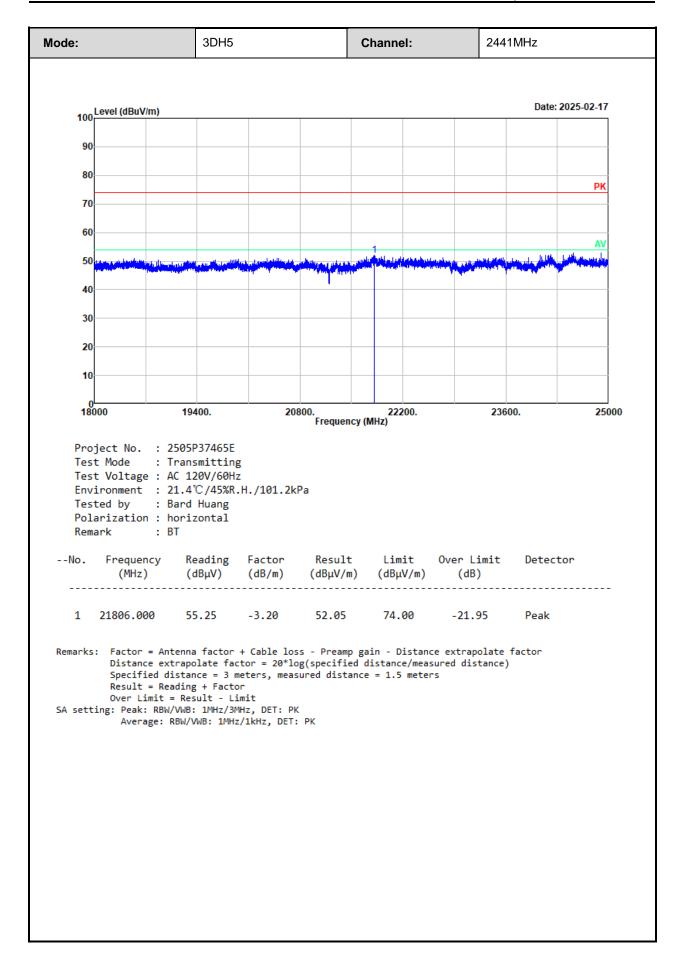




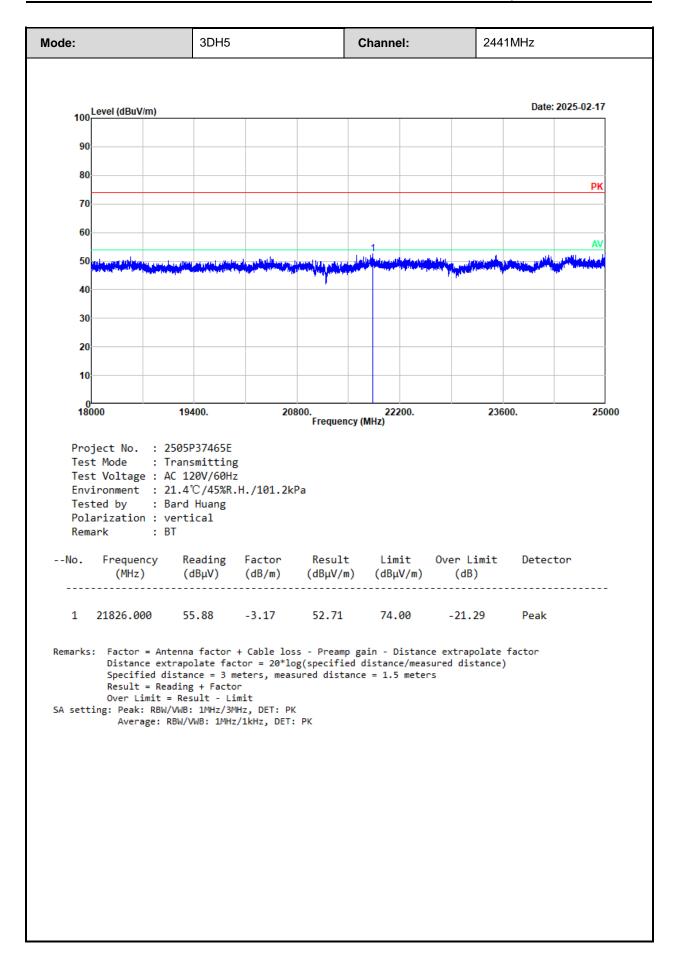


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

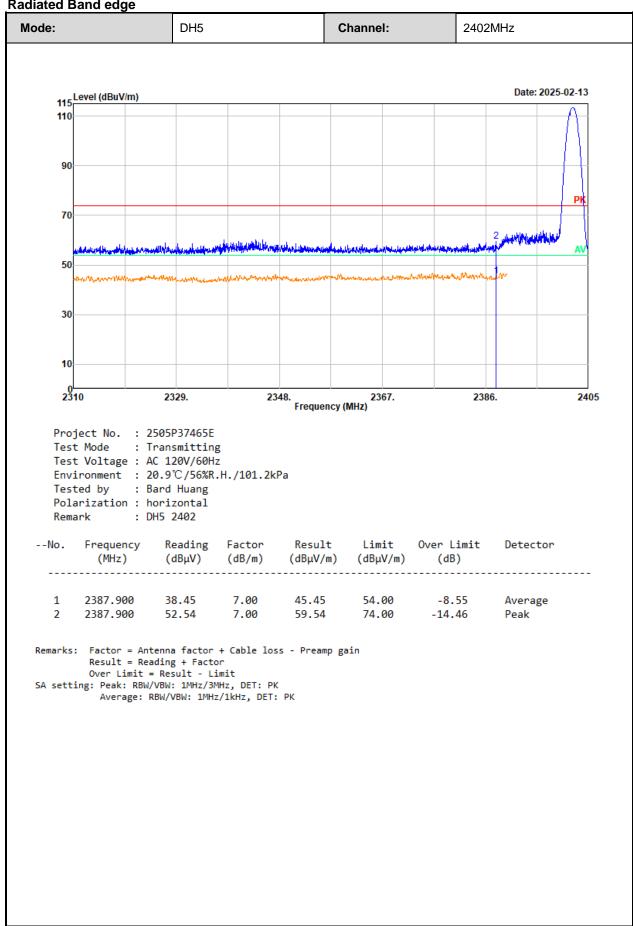
Result = Reading + Factor Over Limit = Result - Limit

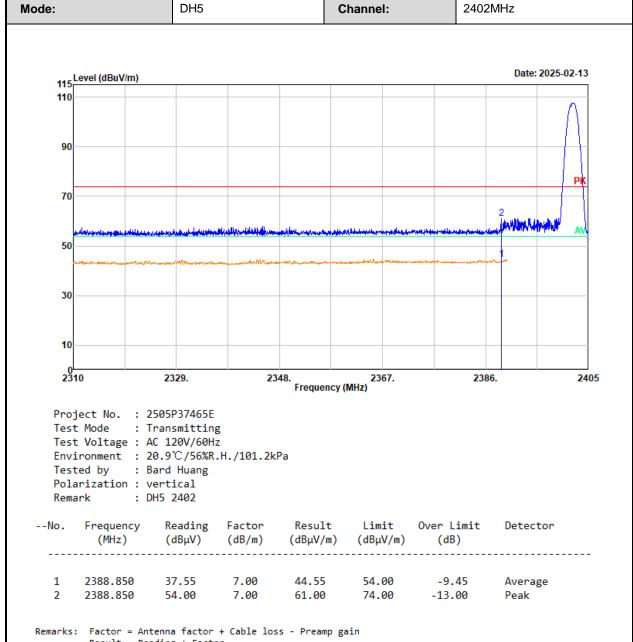

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit

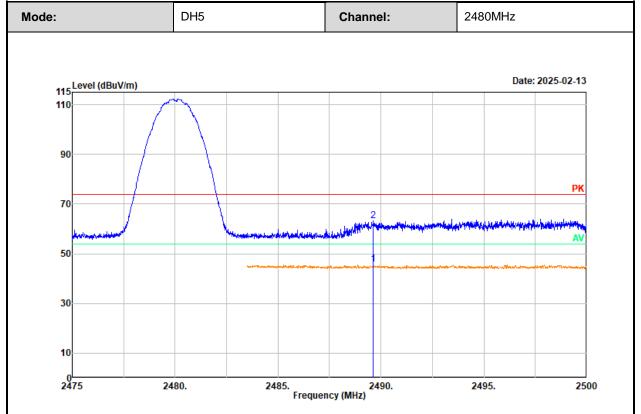

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK

Average: RBW/VBW: 1MHz/1kHz, DET: PK

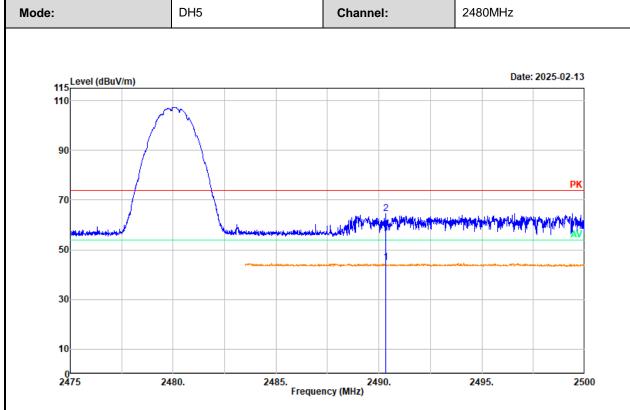




Radiated Band edge



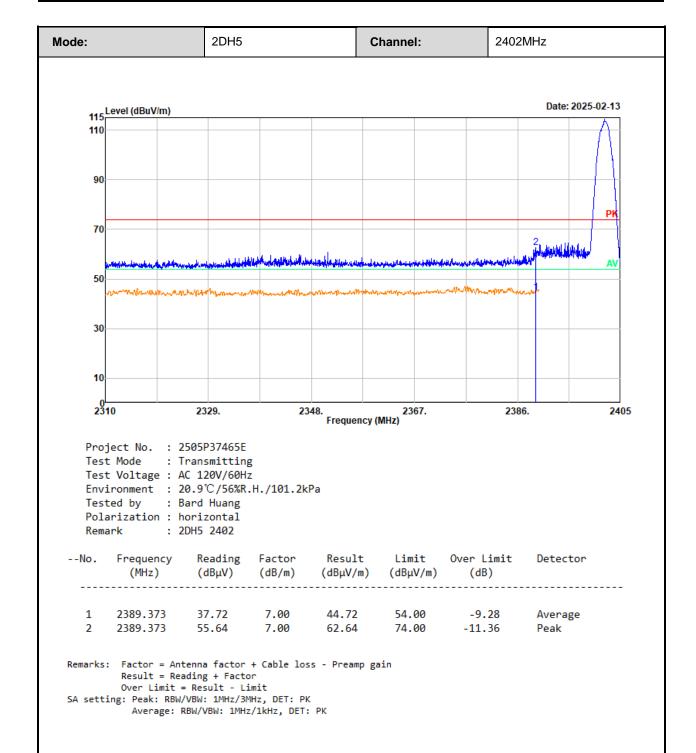
Result = Reading + Factor Over Limit = Result - Limit


Environment : 20.9° C/56%R.H./101.2kPa

Tested by : Bard Huang Polarization : horizontal Remark : DH5 2480

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1 2	2489.625 2489.625	38.55 56.05	7.21 7.21	45.76 63.26	54.00 74.00	-8.24 -10.74	Average Peak	

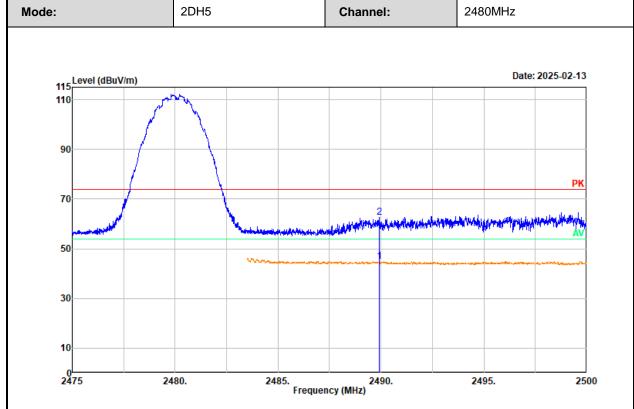
Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor


Environment : 20.9° C/56%R.H./101.2kPa

Tested by : Bard Huang Polarization : vertical Remark : DH5 2480

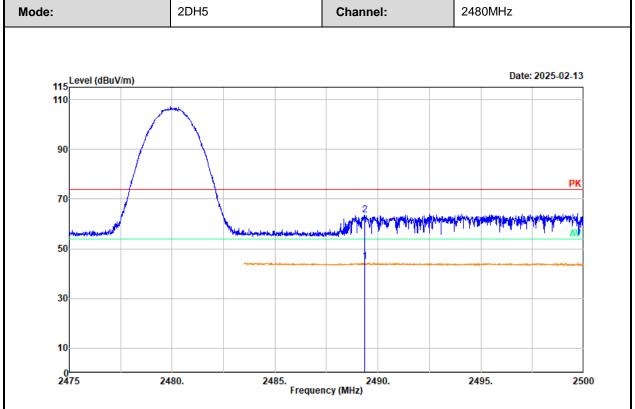
No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	2490.325	37.56	7.22	44.78	54.00	-9.22	Average	
2	2490.325	57.23	7.22	64.45	74.00	-9.55	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor



Remarks: Factor = Antenna factor + Cable loss - Preamp gain

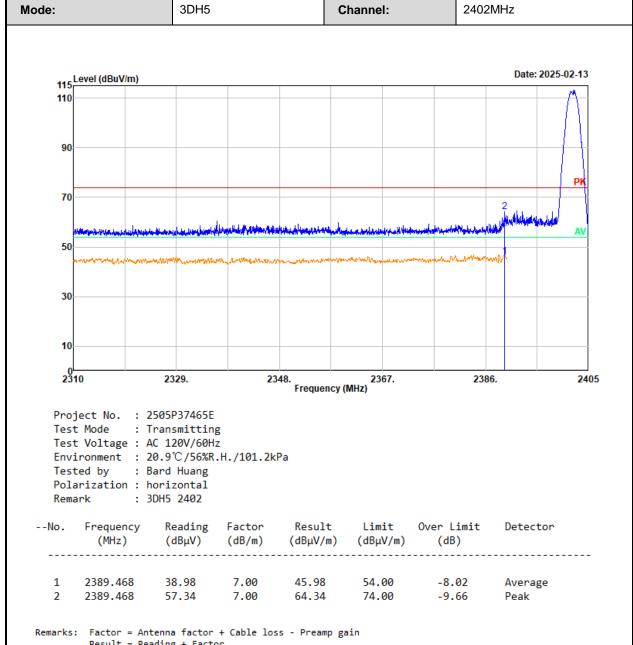
Result = Reading + Factor Over Limit = Result - Limit


Environment : 20.9° C/56%R.H./101.2kPa

Tested by : Bard Huang Polarization : horizontal Remark : 2DH5 2480

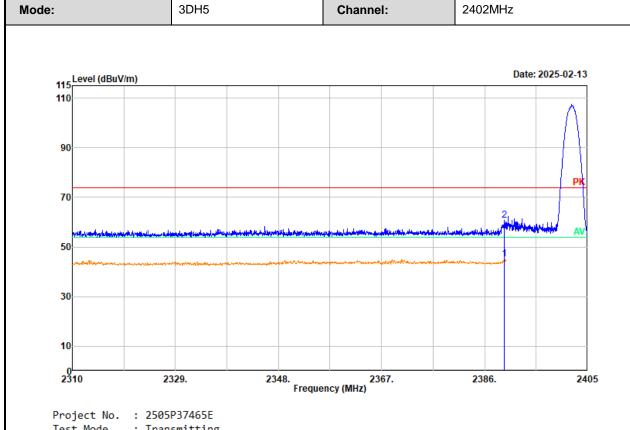
No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2489.913	37.57	7.21	44.78	54.00	-9.22	Average
2	2489.913	55.40	7.21	62.61	74.00	-11.39	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor


Environment : 20.9° C/56%R.H./101.2kPa

Tested by : Bard Huang Polarization : vertical Remark : 2DH5 2480

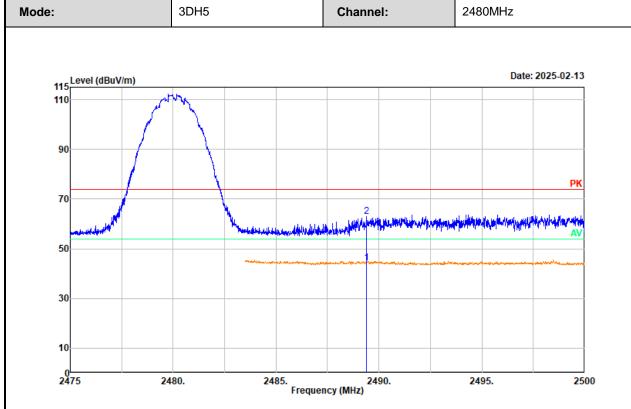
No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2489.363	37.66	7.21	44.87	54.00	-9.13	Average
2	2489.363	56.41	7.21	63.62	74.00	-10.38	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Result = Reading + Factor Over Limit = Result - Limit

Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : $20.9^{\circ}/56\%R.H./101.2kPa$


Tested by : Bard Huang Polarization : vertical Remark : 3DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2389.610	38.30	7.00	45.30	54.00	-8.70	Average
2	2389.610	53.65	7.00	60.65	74.00	-13.35	Peak

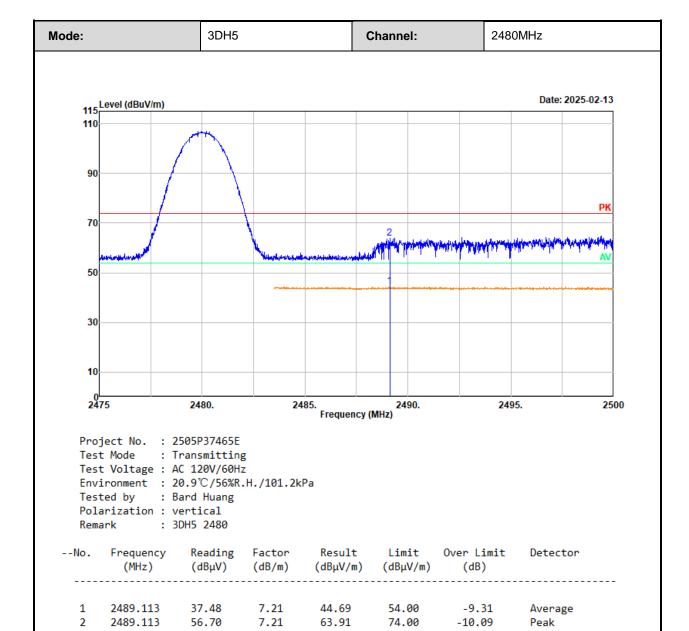
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Environment : 20.9° C/56%R.H./101.2kPa

Tested by : Bard Huang Polarization : horizontal Remark : 3DH5 2480

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2489.387	37.20	7.21	44.41	54.00	-9.59	Average
2	2489.387	55.87	7.21	63.08	74.00	-10.92	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit
SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK
Average: RBW/VBW: 1MHz/1kHz, DET: PK

Report Template: TR-4-E-006/V1.2

Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

2

3.5 RF Conducted Test Data

Test Date:	2025-02-25~2025-03-05	Ryan Zhang	
Environment condition:	Temperature: 23.7~23.9°C;Rel	•	

3.5.1 20 dB Emission Bandwidth

Mode	Channel	Result (MHz)	
	Low	0.823	
DH1	Middle	0.829	
	High	0.814	
	Low	1.267	
2DH1	Middle	1.267	
	High	1.270	
3DH1	Low	1.279	
	Middle	1.276	
	High	1.279	

3.5.2 99% Occupied Bandwidth

Mode	Channel	99% OBW (MHz)	
	Low	0.723	
DH1	Middle	0.726	
	High	0.720	
	Low	1.164	
2DH1	Middle	1.161	
	High	1.167	
3DH1	Low	1.161	
	Middle	1.164	
	High	1.164	

Report Template: TR-4-E-006/V1.2 Page 105 of 125

3.5.3 Maximum Conducted Peak Output Power

Mode		Result(dBm)			Limit	
	Channel	Path 1	Path 2	Path 3	(dBm)	Verdict
	Low	7.27	7.25	6.19	21.00	Pass
DH1	Middle	7.08	7.09	5.76	21.00	Pass
	High	7.10	6.76	6.10	21.00	Pass
2DH1	Low	9.67	9.04	7.37	21.00	Pass
	Middle	9.37	8.77	7.50	21.00	Pass
	High	9.36	8.68	8.14	21.00	Pass
3DH1	Low	9.68	9.21	7.81	21.00	Pass
	Middle	9.71	9.27	8.09	21.00	Pass
	High	9.53	8.89	7.68	21.00	Pass

3.5.4 Channel separation

Mode	Channel	Result (MHz)	Limit (MHz)	Verdict
DH1	Low	0.999	0.853	Pass
	Middle	1.001	0.851	Pass
	High	1.001	0.853	Pass

Note: test only performed on BDR(GFSK) mode, as EDR(π /4 DQPSK, 8DPSK) mode has the same channel plan to the BDR mode.

3.5.5 Number of hopping Frequency

Mode	Channel	Result	Limit	Verdict
DH1	Hopping	79	15	Pass
2DH1	Hopping	79	15	Pass
3DH1	Hopping	79	15	Pass

Report Template: TR-4-E-006/V1.2 Page 106 of 125

3.5.6 Time of occupancy (dwell time)

Mode	Channel	Pulse width	Dwell time	Limit	Verdict
Wiode	Channel	(ms)	(s)	(s)	verdict
DH1	Hopping	0.379	0.121	0.400	Pass
DH3	Hopping	1.643	0.263	0.400	Pass
DH5	Hopping	2.903	0.310	0.400	Pass
2DH1	Hopping	0.394	0.126	0.400	Pass
2DH3	Hopping	1.646	0.263	0.400	Pass
2DH5	Hopping	2.908	0.310	0.400	Pass
3DH1	Hopping	0.395	0.126	0.400	Pass
3DH3	Hopping	1.646	0.263	0.400	Pass
3DH5	Hopping	2.903	0.310	0.400	Pass

Note:

DH1:Dwell time=Pulse width (ms) × (1600/2/79) ×31.6 s

DH3:Dwell time=Pulse width (ms) × (1600/4/79) ×31.6 s

DH5:Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

2DH1: Dwell time=Pulse width (ms) × (1600/2/79) ×31.6 s

2DH3: Dwell time=Pulse width (ms) × (1600/4/79) ×31.6 s

2DH5: Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

3DH1: Dwell time=Pulse width (ms) × (1600/2/79) ×31.6 s

3DH3: Dwell time=Pulse width (ms) × (1600/4/79) ×31.6 s

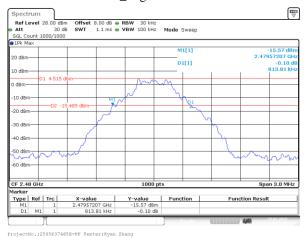
3DH5: Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

3.5.7 100 kHz Bandwidth of Frequency Band Edge

Mode	Channel	Result (dB)	Limit (dB)	Verdict
	Low	51.95	20.00	Pass
DH1	High	56.77	20.00	Pass
DHI	Hopping_Lower	54.83	20.00	Pass
	Hopping_Upper	56.73	20.00	Pass
	Low	53.53	20.00	Pass
2DH1	High	56.92	20.00	Pass
ZDHI	Hopping_Lower	52.15	20.00	Pass
	Hopping_Upper	56.86	20.00	Pass
3DH1	Low	52.16	20.00	Pass
	High	56.65	20.00	Pass
	Hopping_Lower	54.15	20.00	Pass
	Hopping_Upper	56.59	20.00	Pass

Report Template: TR-4-E-006/V1.2 Page 107 of 125

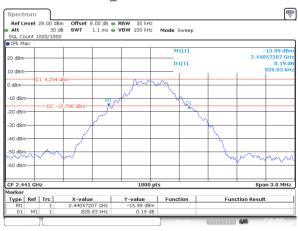
Test Plots:


20 dB Emission Bandwidth:

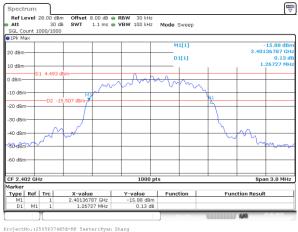
DH1_Low 0.823MHz


Date: 25.FEB.2025 15:55:36

DH1_High 0.814MHz


Date: 25.FEB.2025 16:03:18

2DH1_Middle 1.267MHz

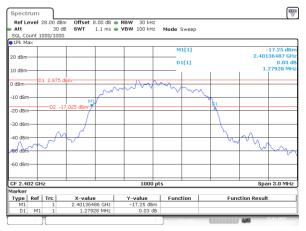

ProjectNo.:2505P37465E-RF Tester:Ryan Zhang

DH1_Middle 0.829MHz

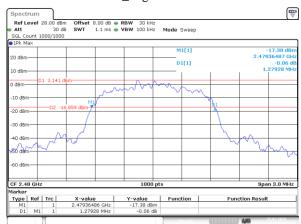
Date: 25.FEB.2025 16:01:03

2DH1_Low 1.267MHz

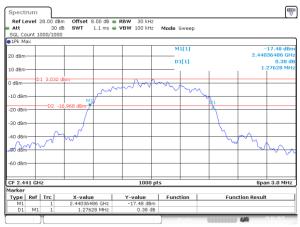
Date: 25.FEB.2025 16:07:04


2DH1_High 1.270MHz

ProjectNo.:2505P37465E-RF Tester:Ryan Zhang



3DH1_Low 1.279MHz


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 16:25:03

3DH1_High 1.279MHz

ProjectNo.:2505p37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 16:32:58

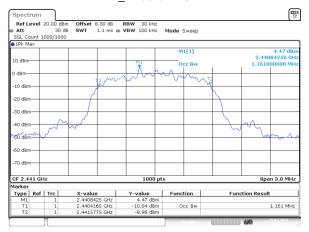
3DH1_Middle 1.276MHz



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 16:30:50

99% Occupied Bandwidth:

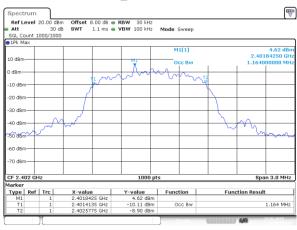
DH1_Low 0.723MHz


Date: 25.FEB.2025 15:58:36

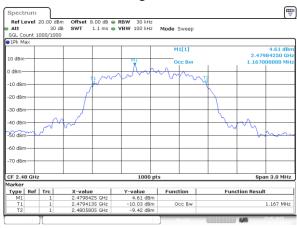
DH1_High 0.720MHz

Date: 25.FEB.2025 16:05:00

2DH1_Middle 1.161MHz


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 16:18:26

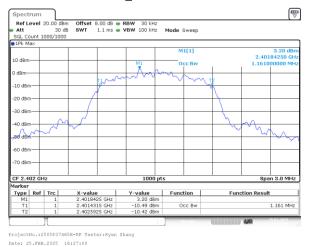
DH1_Middle 0.726MHz


Date: 25.FEB.2025 16:01:22

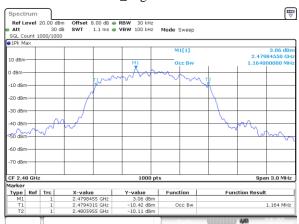
2DH1_Low 1.164MHz

Date: 25.FEB.2025 16:08:59

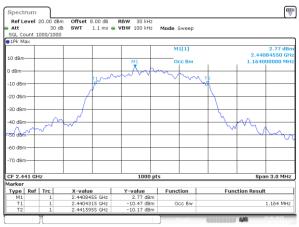
2DH1_High 1.167MHz



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


Date: 25.FEB.2025 16:22:13

3DH1_Low 1.161MHz

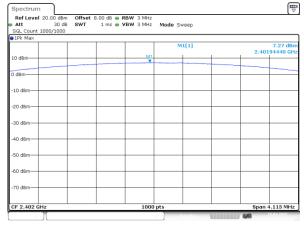


3DH1_High 1.164MHz

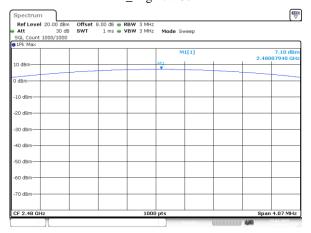
ProjectNo.:2505F37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 16:34:33

3DH1_Middle 1.164MHz

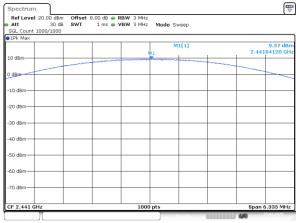
ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


Date: 25.FEB.2025 16:31:09

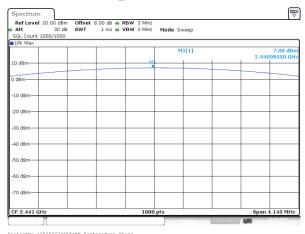
Maximum Conducted Peak Output Power:


Path 1:

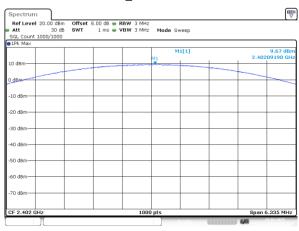
DH1_Low 7.27dBm


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang

DH1_High 7.10dBm

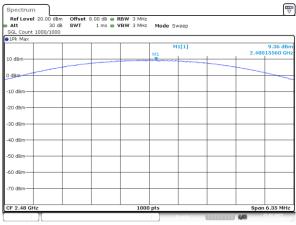

Date: 25.FEB.2025 16:05:16

2DH1_Middle 9.37dBm



Date: 25.FEB.2025 16:19:18

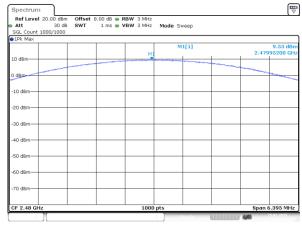
DH1_Middle 7.08dBm



2DH1 Low 9.67dBm

Date: 25.FEB.2025 16:09:15

2DH1_High 9.36dBm


Date: 25.FEB.2025 16:22:29

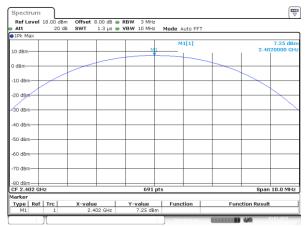
3DH1_Low 9.68dBm



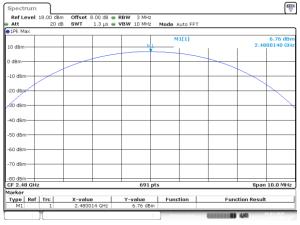
$3DH1_High\ 9.53dBm$

ProjectNo.:2505p37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 16:34:49

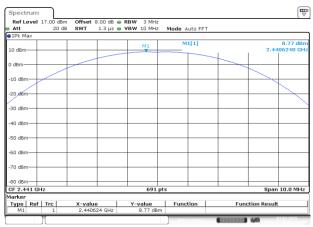
3DH1_Middle 9.71dBm



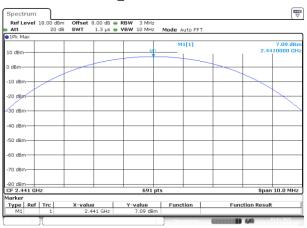
ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 16:31:24


Path 2:

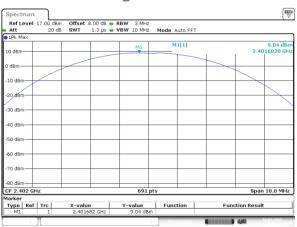
DH1_Low 7.25dBm


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 3.MAR.2025 16:25:26

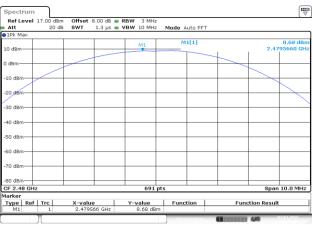
DH1_High 6.76dBm


Date: 3.MAR.2025 16:20:05

2DH1_Middle 8.77dBm

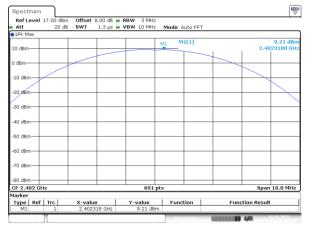

ProjectNo.:2505F37465E-RF Tester:Ryan Zhang Date: 3.MAR.2025 16:27:29

DH1_Middle 7.09dBm

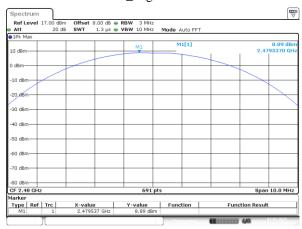

ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 3.MAR.2025 16:24:05

2DH1_Low 9.04dBm

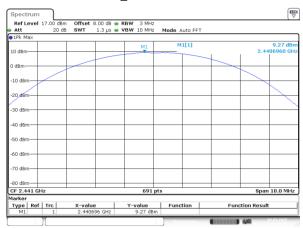
Date: 3.MAR.2025 16:26:30


2DH1_High 8.68dBm

ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 3.MAR.2025 16:28:47



3DH1_Low 9.21dBm


ProjectNo.:2505F37465E-RF Tester:Ryan Zhan Date: 3.MAR.2025 16:30:49

3DH1_High 8.89dBm

ProjectNo.:2505F37465E-RF Tester:Ryan Zhang Date: 3.MAR.2025 16:29:28

3DH1_Middle 9.27dBm

ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 3.MAR.2025 16:30:08