

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... MAX24070168P01-R01

FCC ID.....: 2BKJR-CEM05B

Compiled by

(position+printed name+signature)..:

e)...: □

Engineer/ Cindy Zheng

Supervised by

(position+printed name+signature)..:

Manager/Haley Wen

Haley wen

Approved by

(position+printed name+signature)..:
Date of issue.....

RF Manager/ Vivian Jiang

November 20, 2024

Testing Laboratory Name...... MAXLAB Testing Co., Ltd

Shenzhen, Guangdong, 518052, People's Republic of China

Applicant's name...... CLOUDRAY(JIANGSU) CO., LTD

District, Nanjing city, China

Test specification....::

Standard FCC Part 15.247

KDB558074 D01 15.247 Meas Guidance v05r02

MAXLAB Testing Co., Ltd All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the MAXLAB Testing Co., Ltdis acknowledged as copyright owner and source of the material. MAXLAB Testing Co., Ltdtakes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: LASER ENGR AVING MACHINE

Trade Mark.....: Cloudray

Manufacturer...... Dongguan Xinjia Laser Technology Co., Ltd.

Model/Type reference.....: CEM05B

Listed Models: CEM03B, CEM10B, CEM20B, CAM03B, CAM05B, CAM10B,

CAM20B, CPM03B, CPM05B, CPM10B, CPM20B, BM1, BM1 Pro,

BM1 Lite, BX1, BX1 Pro, BX1 Lite, BS1, BS1 Pro, BS1 Lite

Modulation Type.....: CCK/ DSSS/ OFDM

Operation Frequency.....: From 2412 - 2462MHz

Rating...... DC 12V

Result.....: PASS

TEST REPORT

Equipment under Test : LASER ENGR AVING MACHINE

Model /Type : CEM05B

Series Model No. CEM03B, CEM10B, CEM20B, CAM03B, CAM05B, CAM10B,

CAM20B, CPM03B, CPM05B, CPM10B, CPM20B, BM1, BM1 Pro,

BM1 Lite, BX1, BX1 Pro, BX1 Lite, BS1, BS1 Pro, BS1 Lite

Model Declaration : All the models are electrical identical including the same software

parameter and hardware design, same mechanical structure and

design, the only difference is the model named different.

Applicant : CLOUDRAY(JIANGSU) CO., LTD

Address : 6/F, Building 3, No. 3118, Ji Yin Avenue, U Valley Jiulong Lake, Jiang

District, Nanjing city, China

Manufacturer : Dongguan Xinjia Laser Technology Co., Ltd.

Address : Room 602, No.419, Jinxing Road, Liaobu Town, Dongguan City,

Guangdong Province

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1	1E51 STANDARDS	 	4
_	SUMMARY		
2	SUMMART	 	3
'n.	la, la, la,		_
2.1	General Remarks		5
2.2	Product Description		5
2.3	Equipment Under Test		5
2.4	Short description of the Equipment under Test (EUT		5
2.5	EUT operation mode		6
2.6	Block Diagram of Test Setup		6
2.7	Related Submittal(s) / Grant (s)		6
2.8	Modifications		6
_	TEST ENVIRONMENT		-
3	TEST ENVIRONMENT	 	/
3.1	Address of the test laboratory		7
3.2	Test Facility		7
3.3	Environmental conditions		7
3.4	Test Description		8
3.5	Statement of the measurement uncertainty		8
3.6	Equipments Used during the Test		9
W.c			
4	TEST CONDITIONS AND RESULTS	 	11
4.1	AC Power Conducted Emission		11
4.2	Radiated Emission		14
4.3	Maximum Peak Conducted Output Power		21
4.4	Power Spectral Density		22
4.5	6dB Bandwidth		25
4.6	Out-of-band Emissions		28
4.7	Antenna Requirement		35
	10 10 10 10		
_	7507 057110 0110700 05 71111-		
5	TEST SETUP PHOTOS OF THE EUT	 	3 6
^	DUOTOS OF THE FUT		2.7

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

Report No.: BSL24070168P01-R01

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	October 28, 2024	2
Testing commenced on	10	October 28, 2024	
Testing concluded on	1	November 20, 2024	

2.2 Product Description

Product Name:	LASER ENGR AVING MACHINE
Model/Type reference:	CEM05B
Power supply:	DC12V, 4A 48W
testing sample ID:	MAX24070168P01-R01-1# (Engineer sample), MAX24070168P01-R01-2# (Normal sample)
Hardware version:	V1.0
Software version:	V1.0
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)/ 802.11n(H40)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/ 802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7
Channel separation:	5MHz
Antenna type:	FPC antenna
Antenna gain:	0.69dBi

2.3 Equipment Under Test

Power supply system utilised

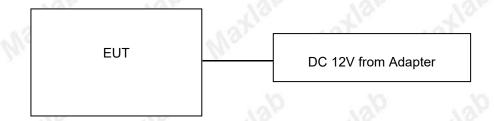
Power supply voltage	7/10	0	230V / 50 Hz	0	120V / 60Hz
35 1/35	.00	•	12V DC	0	24 V DC
In.	100	0	Other (specified in b	lank below)

2.4 Short description of the Equipment under Test (EUT)

This is CEM05B LASER ENGR AVING MACHINE.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode


The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

Report No.: BSL24070168P01-R01

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1 4/10	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		90.
6	2437	Vo. Vo.	Alo.
7	2442	400	400

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

MAXLAB Testing Co., Ltd

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

Report No.: BSL24070168P01-R01

3.2 Test Facility

FCC-Registration No.: 562200 Designation Number: CN1338

MAX Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 4707.01

MAX Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
/0	
Humidity:	45 %
T 405	ADT ADT
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
135	134
Humidity:	44 %
To allo	"ILO.
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission

Temperature:	24 ° C		
	Vo. 7/0.		
Humidity:	44 %		
411.0	Mr.		
Atmospheric pressure:	950-1050mbar		

3.4 Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Report No.: BSL24070168P01-R01

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11n(40MHz)/OFDM	13.5Mbps	3/6/9
Band Edge	11b/DSSS	1 Mbps	1/11
	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11
o, ollo, ollo,	11n(40MHz)/OFDM	13.5Mbps	3/9

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the MAXLAB Testing Co., Ltdquality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for MAXLAB Testing Co., Ltd

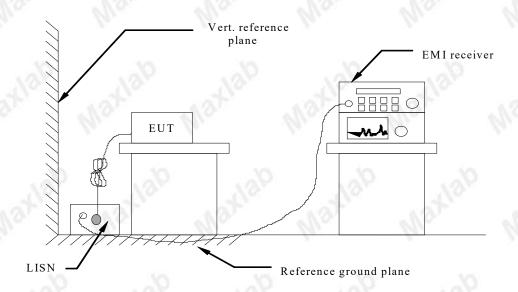
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.82 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Transmitter power conducted	1~40GHz	0.57 dB	(1)
Conducted spurious emission	1~40GHz	1.60 dB	(1)
OBW	1~40GHz	25 Hz	(1)

Report No.: BSL24070168P01-R01

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Equipments Used during the Test

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	ROHDE&SCHWA RZ	ESPI 3	100379	2024-10-26	2025-10-25
Absorbing Clamp	ROHDE&SCHWA RZ	MDS-21	100126	2024-10-26	2025-10-25
Electrostatic analog generator	LIONCEL	ESD-203B	0210502	2024-10-26	2025-10-25
Signal Generator	HP	8648A	3633A02081	2024-10-26	2025-10-25
Amplifier	A&R	500A100	17034	2024-10-26	2025-10-25
Amplifier	A&R	100W/1000M1	17028	2024-10-26	2025-10-25
Isotropic Field Monitor	A&R	FM2000	16829	2024-10-26	2025-10-25
Isotropic Field Probe	A&R	FLW220100	16755	2024-10-26	2025-10-25
Biconic Antenna	EMCO	EVOD PROTANK8	9507-2534	2024-10-26	2025-10-25
Log-periodic Antenna	A&R	AT1080	16812	2024-10-26	2025-10-25
Injection Clamp	EMTEST	F-2031-23MM	368	2024-10-26	2025-10-25
Attenuator	EMTEST	ATT6	0010222a	2024-10-26	2025-10-25
Computer	IBM	8434	1S8434KCE99BL XLO*	-1/3.	-
Oscillator	KENWOOD	AG-203D	3070002	2024-10-26	2025-10-25
Spectrum Analyzer	HAMEG	HM5012	1/1/2-	1/4	-
Power Supply	LW	APS1502	-	-	-
5K VA AC Power Source	California Instruments	5001iX	56060	2024-10-26	2025-10-25
CDN	EM TEST	CDN M2/M3	7.0.	2024-10-26	2025-10-25
Attenuation	EM TEST	ATT6/75	- A P	2024-10-26	2025-10-25
Resistance	EM TEST	R100	ollo-	2024-10-26	2025-10-25
Electromagnetic Injection Clamp	LITTHI	EM101	35708	2024-10-26	2025-10-25
Inductive Components	EM TEST	MC2630	0'6 0	2024-10-26	2025-10-25
Antenna	EM TEST	MS100	-1/0	2024-10-26	2025-10-25
Signal Generator	ROHDE&SCHWA RZ	SMT03	100029	2024-10-26	2025-10-25
Power DJ MIXER	AR	150W1000	300999	2024-10-26	2025-10-25
Field probe	Holaday	HI-6005	105152	2024-10-26	2025-10-25
Bilog Antenna	Chase	CBL6111C	2576	2024-10-26	2025-10-25
Loop Antenna	EMCO	6502	00042960	2024-10-26	2025-10-25
ESPI Test Receiver	ROHDE&SCHWA RZ	ESI7	838786/013	2024-10-26	2025-10-25
3m OATS	- ///	77/2	N/A	2024-10-26	2025-10-25
Horn Antenna	SCHWARZBECK	VULB9168	N/A	2024-10-26	2025-10-25
Horn Antenna	SCHWARZBECK	BBHA9120D	N/A	2024-10-26	2025-10-25
Power Sensor	Anritsu	MA2491A	32263	2024-10-26	2025-10-25
Power Sensor	Agilent	U2021XA	MY5365004	2024-10-26	2025-10-25
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2024-10-26	2025-10-25
9*6*6 Anechoic			N/A	2021-08-21	2025-8-20
Test Receiver	Rohde&Schwarz	ESC17(9kHz- 7GHz)	100336	2024-10-26	2025-10-25
Broadband antenna	Schwarzbeck	VULB9168	01222	2024-10-26	2025-10-25



ng Co., Ltd.	Report No.: BSL24070168P01-R01					
Schwarzbeck	BBHA9120D	02476	2024-10-26	2025-10-25		
Schwarzbeck	BBV9745	00250	2024-10-26	2025-10-25		
N/A	TRLA-01018G440B	21081001	2024-10-26	2025-10-25		
SKET	9m*6m*6m	2021082304	2021-8-23	2024-8-22		
M&G	ARC92570	N/A	2024-10-26	2025-10-25		
ROHDE&SCHWA RZ	FSP 9kHz-40GHz	N/A	2024-10-26	2025-10-25		
Synthesizer ROHDE&SCHWA RZ		N/A	2024-10-26	2025-10-25		
R&S	ENV216	308	2024-10-26	2025-10-25		
R&S	ENV216	314	2024-10-26	2025-10-25		
	Schwarzbeck Schwarzbeck N/A SKET M&G ROHDE&SCHWA RZ ROHDE&SCHWA RZ R&S	Schwarzbeck BBHA9120D Schwarzbeck BBV9745 N/A TRLA-01018G440B SKET 9m*6m*6m M&G ARC92570 ROHDE&SCHWA RZ FSP 9kHz-40GHz ROHDE&SCHWA RZ CMW500 R&S ENV216	Schwarzbeck BBHA9120D 02476 Schwarzbeck BBV9745 00250 N/A TRLA-01018G440B 21081001 SKET 9m*6m*6m 2021082304 M&G ARC92570 N/A ROHDE&SCHWA RZ FSP 9kHz-40GHz N/A ROHDE&SCHWA RZ CMW500 N/A R&S ENV216 308	Schwarzbeck BBHA9120D 02476 2024-10-26 Schwarzbeck BBV9745 00250 2024-10-26 N/A TRLA-01018G440B 21081001 2024-10-26 SKET 9m*6m*6m 2021082304 2021-8-23 M&G ARC92570 N/A 2024-10-26 ROHDE&SCHWA RZ FSP 9kHz-40GHz N/A 2024-10-26 ROHDE&SCHWA RZ CMW500 N/A 2024-10-26 R&S ENV216 308 2024-10-26		

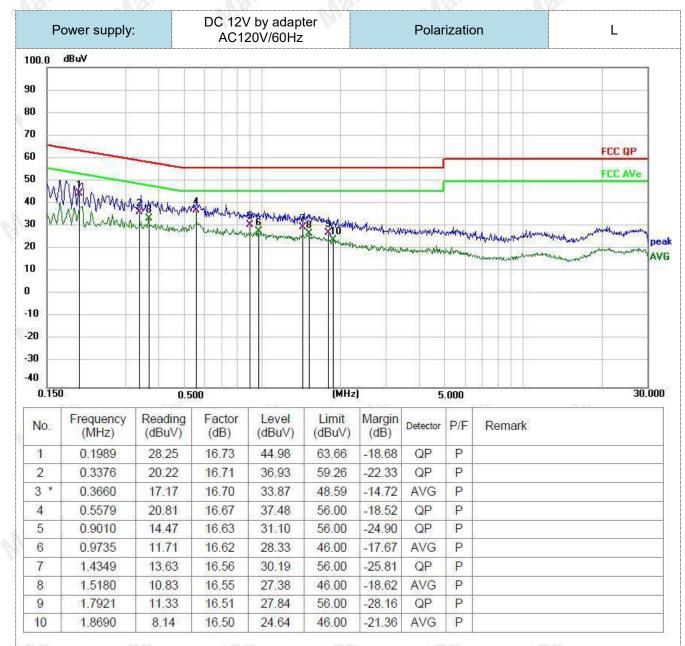
4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

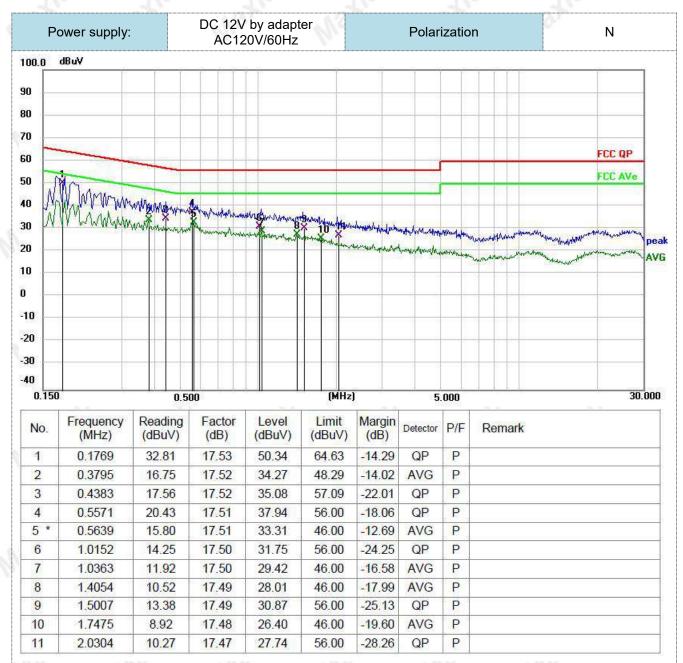
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.


AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						

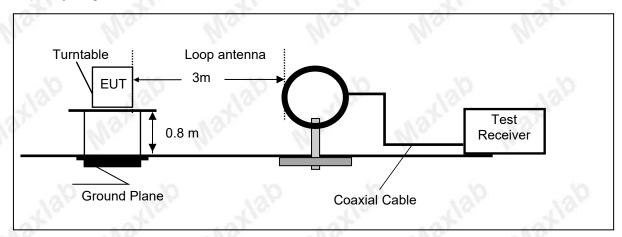

TEST RESULTS

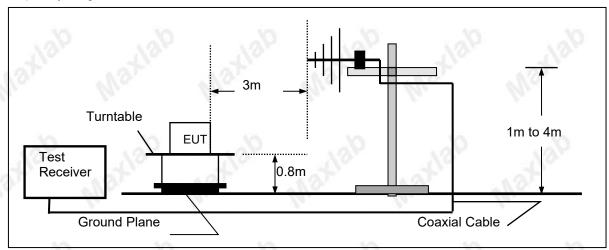
Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) Mode all have been tested, only worse case 802.11b mode is reported.

Note:1).Level ($dB\mu V$)= Reading ($dB\mu V$)+ Factor (dB)

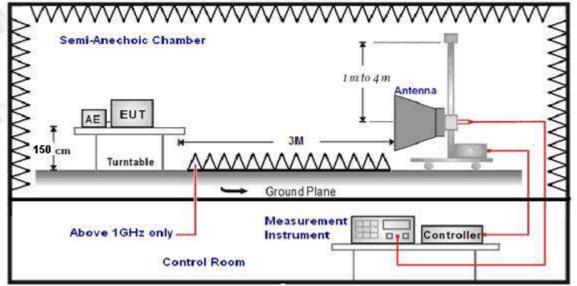
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	16///52

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	1, /4, /4,

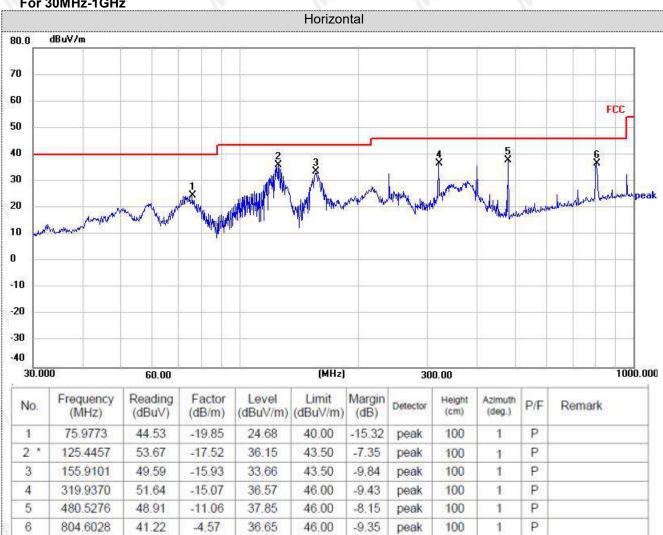
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

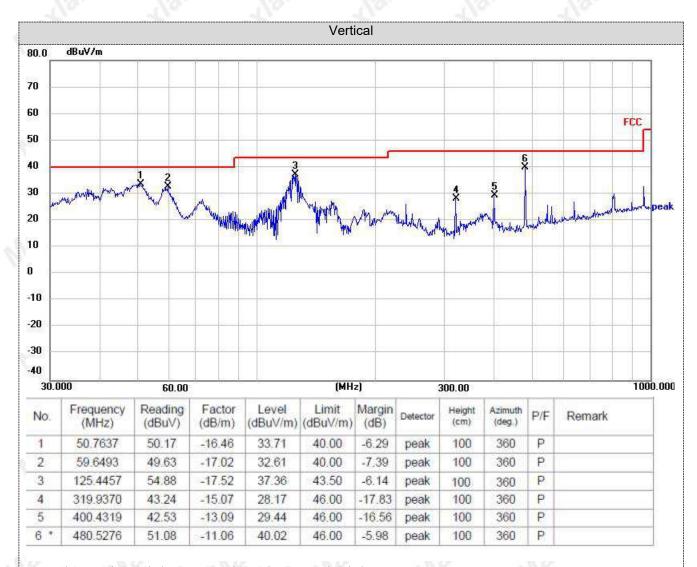
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Report No.: BSL24070168P01-R01

TEST RESULTS

Remark:


- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz
Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) Mode all have been tested, only worse case 802.11b

Report No.: BSL24070168P01-R01

mode is reported	(above 1GHz)

Freque	ncy(MHz):		2412		Polarity: HORIZONTAL		HORIZONTAL		\L
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	56.22	PK	74	17.78	60.58	32.40	5.11	41.87	-4.36
4824.00	46.18	ΑV	54	7.82	50.54	32.40	5.11	41.87	-4.36
7236.00	54.61	PK	74	19.39	55.24	36.58	6.43	43.64	-0.63
7236.00	44.72	AV	54	9.28	45.35	36.58	6.43	43.64	-0.63

- 10.10										
Freque	Frequency(MHz):			2412		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4824.00	56.09	PK	74	17.91	60.45	32.40	5.11	41.87	-4.36	
4824.00	46.09	AV	54	7.91	50.45	32.40	5.11	41.87	-4.36	
7236.00	54.52	PK	74	19.48	55.15	36.58	6.43	43.64	-0.63	
7236.00	44.99	AV	54	9.01	45.62	36.58	6.43	43.64	-0.63	

oll o	112	7	oll o	oll o		allo.	ell.o			
Freque	ncy(MHz):		24	2437		Polarity:		HORIZONTAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4874.00	56.30	PK	74	17.70	60.25	32.56	5.34	41.85	-3.95	
4874.00	46.52	AV	54	7.48	50.47	32.56	5.34	41.85	-3.95	
7311.00	55.49	PK	74	18.51	55.85	36.54	6.81	43.71	-0.36	
7311.00	45.33	AV	54	8.67	45.69	36.54	6.81	43.71	-0.36	

Freque	Frequency(MHz):		2437		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	56.29	PK	74	17.71	60.24	32.56	5.34	41.85	-3.95
4874.00	46.20	ΑV	54	7.80	50.15	32.56	5.34	41.85	-3.95
7311.00	55.10	PK	74	18.90	55.46	36.54	6.81	43.71	-0.36
7311.00	45.49	AV	54	8.51	45.85	36.54	6.81	43.71	-0.36

Frequency(MHz):		24	62	Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	57.39	PK	74	16.61	60.85	32.73	5.64	41.83	-3.46
4924.00	47.17	AV	54	6.83	50.63	32.73	5.64	41.83	-3.46
7386.00	55.78	PK	74	18.22	55.84	36.50	7.23	43.79	-0.06
7386.00	45.12	AV	54	8.88	45.18	36.50	7.23	43.79	-0.06

Frequency(MHz):		24	62	Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	57.42	PK	74	16.58	60.88	32.73	5.64	41.83	-3.46
4924.00	47.38	AV	54	6.62	50.84	32.73	5.64	41.83	-3.46
7386.00	55.59	PK	74	18.41	55.65	36.50	7.23	43.79	-0.06
7386.00	45.46	AV	54	8.54	45.52	36.50	7.23	43.79	-0.06

Report No.: BSL24070168P01-R01

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) Mode all have been tested, only worse case 802.11b mode is reported

Report No.: BSL24070168P01-R01

Freque	Frequency(MHz):		24	12	Pola	arity:	Н	IORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	52.12	PK	74	21.88	62.54	27.42	4.31	42.15	-10.42
2390.00	50.16	AV	54	3.84	60.58	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)		24	12	Pola	arity:		VERTICAL	•
Frequency (MHz)	Emis Lev (dBu	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	48.23	PK	74	25.77	58.65	27.42	4.31	42.15	-10.42
2390.00	45.82	AV	54	8.18	56.24	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	240	62	Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	44.47	PK	74	29.53	54.58	27.70	4.47	42.28	-10.11
2483.50	42.23	AV	54	11.77	52.34	27.70	4.47	42.28	-10.11
Freque	Frequency(MHz):		240	62	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	40.03	PK	74	33.97	50.14	27.70	4.47	42.28	-10.11
2483.50	38.58	AV	54	15.42	48.69	27.70	4.47	42.28	-10.11

Note:

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

4.3 Maximum Peak Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Report No.: BSL24070168P01-R01

Test Configuration

Test Results

Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	9.51		
802.11b	06	9.38	30.00	Pass
water water	11	9.31		
	01	13.48	Die	Pass
802.11g	06	13.25	30.00	
10. 00.	11	13.37		
	01	13.01	1	Pass
802.11n(HT20)	06	12.93	30.00	
	11	13.11		
	03	5.12	30.00 P)
802.11n(HT40)	06	5.40		Pass
	09	5.34	Ms.	

Note:

- 1) Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2) Test results including cable loss.
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

4.4 Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

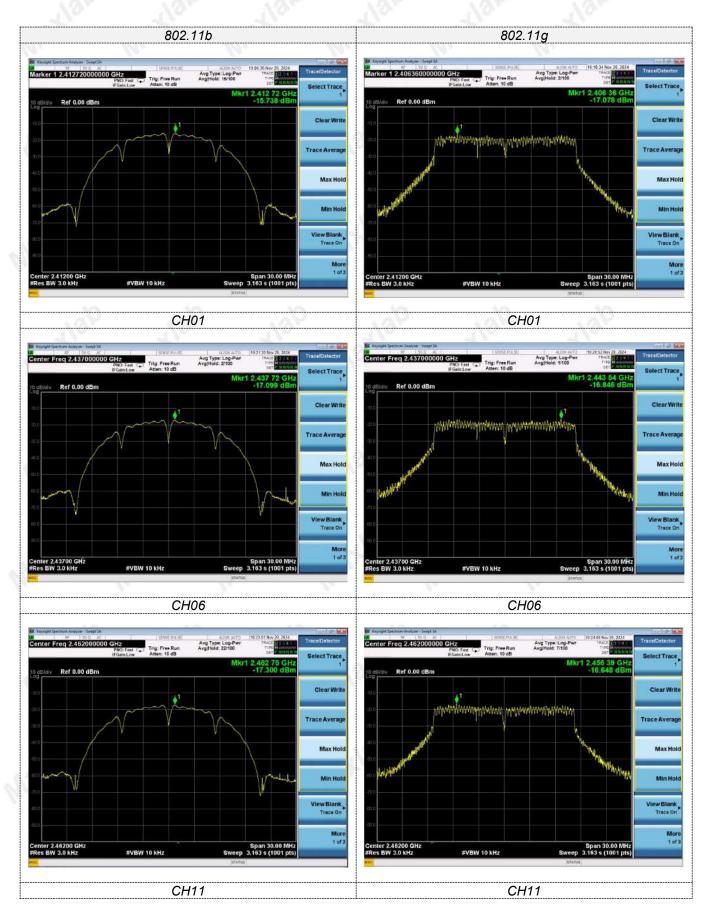
1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

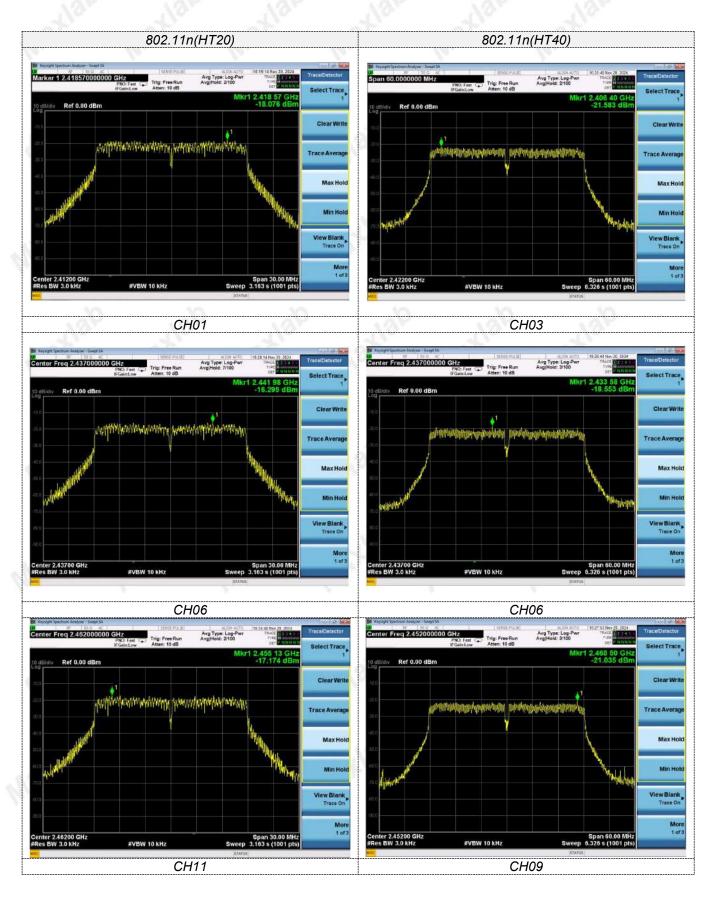
Report No.: BSL24070168P01-R01

- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

EUT	SPECTRUM
95	ANALYZER


Test Results


Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
1/3/	01	-15.738	1/3.		
802.11b	06	-17.099	8.00	Pass	
0/10	11	-17.300	11/0		
1	01	-17.078	P. 7.		
802.11g	06	-16.846	8.00	Pass	
100	11	-16.648	10		
	01	-18.076	13 N	Pass	
802.11n(HT20)	06	-16.295	8.00		
io. "Vic	11	-17.174	S. "U.S.		
La.	03	-21.583	la.		
802.11n(HT40)	06	-18.553	8.00	Pass	
	09	-21.035			

Note:

- 1) Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- Test results including cable loss;
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

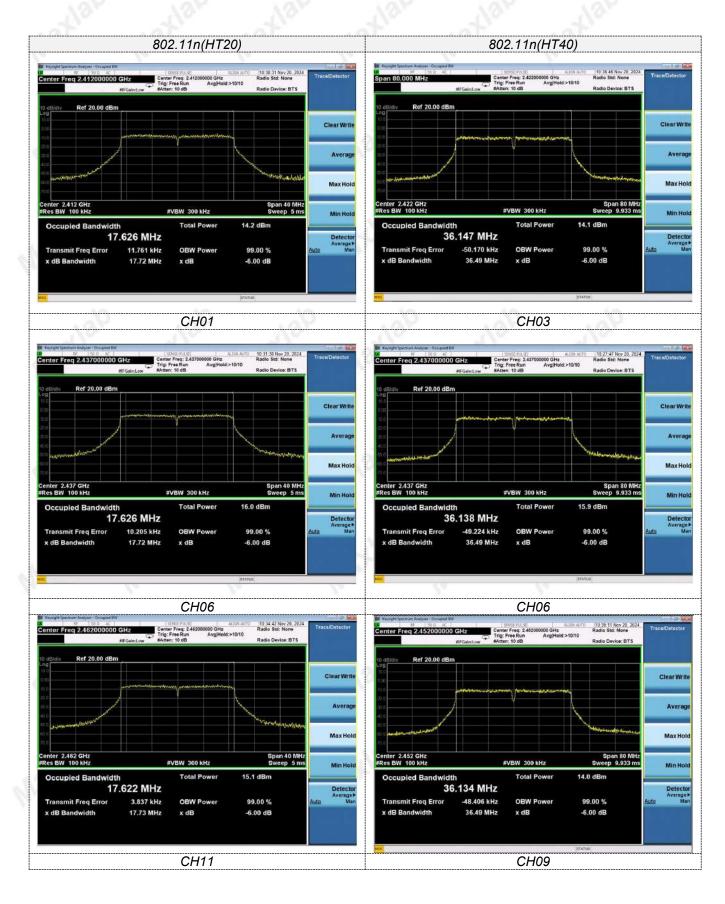
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Report No.: BSL24070168P01-R01

Test Configuration

Test Results


Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	10.13		
802.11b	06	10.13	≥500	Pass
1/0.	11	10.13	1/0, "()	
101	01	16.55	180	
802.11g	06	16.56	≥500	Pass
	11	16.56		
100	01	17.72	(A)	^
802.11n(HT20)	06	17.72	≥500	Pass
A1, A1	11	17.73		
802.11n(HT40)	03	36.49	ello.	
	06	36.49	≥500	Pass
	09	36.49		

Note:

- 1) Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- 2) Test results including cable loss;
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

4.6 Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Report No.: BSL24070168P01-R01

Test Procedure

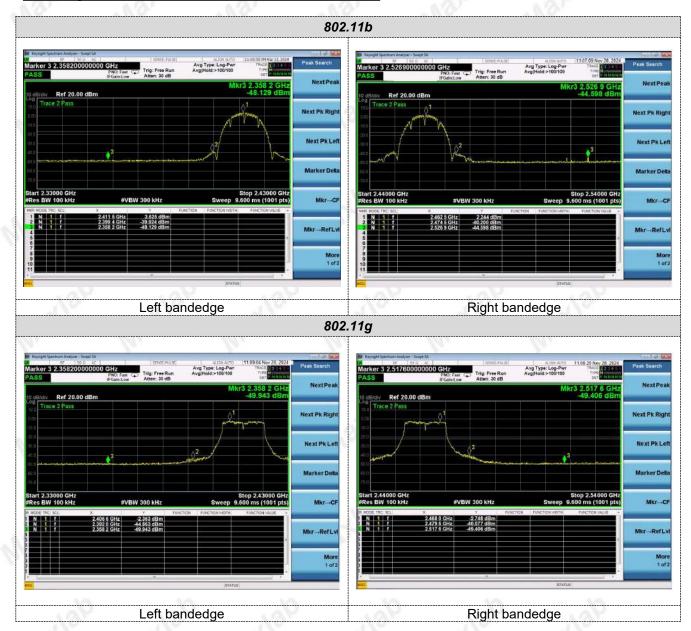
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.


Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows:





Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

Report No.: BSL24070168P01-R01

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 0.69dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, MAXLAB Testing Co., Ltd does not assume any responsibility.

5 Test Setup Photos of the EUT

6 Photos of the EUT

Reference to the re	port ANNEX A of external photos and ANNEX B of internal photos.
	********************* End of Report ************************************

Report No.: BSL24070168P01-R01