Certificate Number: 1449-02

CGISS EME Test Laboratory

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report

	Attention: Date of Report: Report Revision: Device Manufacturer: Device Description: FCC ID: Device Model:	Federal Communication Con March 18, 2002 Rev. O Motorola HT1250LS 2.5W Portable To ABZ99FT5000 PMUF1105A	
	Test Period:	<u>2/28/02 – 3/14/02</u>	
	Test Engineer:	Stephen Whalen Sr. EME Test Engineer	
	Author:	Michael Sailsman EME Regulatory Affairs Liaison	
		ed herein, the undersigned certifies th and international reference standard	
•	Enger		Date Approved

Page 1 of 54 Form-SAR-Rpt-B9

TABLE OF CONTENTS

- 1.0 Introduction
- 2.0 Reference Standards and Guidelines
- 3.0 Description of Test Sample
 - 3.1 Test Signal
 - 3.2 Test Output Power
- 4.0 Description of Test Equipment
 - 4.1 Description of SAR Measurement System
 - 4.2 Description of Phantom
 - 4.2.1 Body Phantom
 - 4.3 Simulated Tissue Properties
 - 4.3.1 Type of Simulated Tissue
 - 4.3.2 Simulated Tissue Composition
 - 4.4 Test condition
- 5.0 Description of Test Procedure
 - 5.1 Description of Test Positions
 - 5.2 Probe Scan Procedures
- 6.0 Measurement Uncertainty
- 7.0 SAR Test Results
- 8.0 Conclusion

Form-SAR-Rpt-B9 Page 2 of 54

TABLE OF CONTENTS (Cont.)

Appendix A: Data Results

Appendix B: Dipole System Performance Check Results

Appendix C: Calibration Certificates

Appendix D: Illustration of Body-worn Accessories

REVISION HISTORY

Date	Revision	Comments
3/18/02	О	Initial release

Form-SAR-Rpt-B9 Page 3 of 54

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (S.A.R.) measurements performed at the CGISS EME Test Lab for the HT1250LS, model PMUF1105A, FCC ID ABZ99FT5000.

The applicable exposure environment is Occupational/Controlled.

The test results included herein represent the highest SAR levels applicable to this product and clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8.0 mW/g per the requirements of 47 CFR 2.1093(d).

2.0 Reference Standards and Guidelines

This product is designed to comply with the following national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; 47CFR part 2 sub-part J
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-1999 Edition
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6. Limits of Human Exposure to Terminal frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, 1999
- Australian Communications Authority Terminal communications (Electromagnetic Radiation -Human Exposure) Standard 2001
- ANATEL, Brazil Regulatory Authority, Resolution 256 (April 11, 2001) "additional requirements for SMR, cellular and PCS product certification."

Form-SAR-Rpt-B9 Page 4 of 54

3.0 Description of Test Sample

The HT1250LS, model PMUF1105A is a hand held portable transceiver with LTR/Passport, and DTMF capabilities. The intended use of the radio is as a hand-held Push-To-Talk (PTT) transceiver held one to two inches away from the users lips or with approved accessories.

The radio operates on traditional Trunked radio systems, PassPort trunked systems (an enhanced trunking protocol for wide area dispatch), LTR trunked systems (a transmission based trunking protocol for single site trunking) and Conventional radio systems (single channel unit to unit communications).

The transmit frequency band for the HT1250LS is 746-794MHz. The rated power of the device is 2.5W with a maximum conducted power output of 3W.

The sample devices tested for this report represents identical prototypes to those intended for production.

Form-SAR-Rpt-B9 Page 5 of 54

The HTT1250LS radio is offered with the following options and accessories:

Batteries:

HNN9008AR NiMH High Capacity Battery

HNN9009AR NiMH Ultra High Capacity Battery

HNN9010AR NiMH Ultra High Capacity Battery Factory Mutual

HNN9011AR NiCd High Capacity Battery Factory Mutual

HNN9012AR NiCd High Capacity Battery

HNN9013BR Lithium Ion Battery

Antennas:

NAF5083A Whip Dipole 746-794MHz ½ wave length -0.5dBi gain

Body-Worn Accessory:

HLN9844A Spring Belt Clip (for 1.5" belt loop)

HLN9714A Spring Belt Clip

HLN9952A Belt Clip Carry Holder

HLN9701B Case, Nylon

HLN9690A Case, Std Leather, Short, DTMF, Swivel, Thin Batt's

HLN9652A Case, Std Leather, Short, Plain, Belt Loop, thin Batt's

HLN9665A Case, Standard leather, Short, Plain, Belt Loop, Std Batt's

HLN9670A Case, Standard Leather, Short, Plain, Swivel, Thin Battery

HLN9676A Case, Standard Leather, Short, Plain, Swivel, Std Battery

HLN9677A Case, Std Leather, Short, DTMF, Belt Loop, Thin Batt's

HLN9689A Case, Std Leather, Short, DTMF, Belt Loop, Std Batt's

HLN9694A Case, Std Leather, Short, DTMF, Swivel, Std Batt's

HLN9946A Limited Keypad, Hard Leather, W/ Belt Loop, Std Battery

HLN9945A Limited Keypad, Hard Leather, W/ Belt Loop, Thin Battery

HLN9955A Limited Keypad, Hard Leather, W/ Swivel, Thin Battery

HLN9998A Limited Keypad, Hard Leather, W/ Swivel, Std Battery

HLN9985B Waterproof Bag

HLN6602A Universal Chest Pack

RLN4815A Fanny Pack Carry Accessory (Universal Radio Pack)

PMLN4280A Carry Case (Full Thin Leather)

PMLN4281A Carry Case (Basic Thin Leather)

NTN5243A Carry Strap

Audio Accessories:

BDN6641A Ear Microphone (Gray) requires AARMN4044 OR AARMN4045 Interface Module -

FM Approved

BDN6677A Ear Microphone (Black) requires AARMN4044 or AARMN4045 interface module BDN6678A Ear Microphone (Beige) requires AARMN4044 or AARMN4045 interface module)

Form-SAR-Rpt-B9 Page 6 of 54

T277.2744.0.5.4	
ENLN4135A	PTT Module
ENMN4010A	
ENMN4011A	
ENMN4012A	
ENMN4013A	1 Wire Flexible Ear Receiver
ENMN4014A	3-Wire Min Lapel Kit, Black
ENMN4015A	Lightweight Headset
ENMN4016A	Medium Weight Behind-the-head Headset with PTT
ENMN4017A	3-Wire Min Lapel Kit, Beige
HLN9716B	Audio Accessory Adapter for GP300 accessories
HLN9717A	3.5 mm Accessory Adapter
HMN9052D	Remote Speaker Microphone (Standard)
HMN9053D	Noise Canceling Remote Speaker Microphone
NTN1722A	Integrated Ear Microphone/Receiver System with PTT
NTN1723A	Integrated Ear Microphone/Receiver System with Palm PT
NTN1724A	Integrated Ear Microphone/Receiver System with Ring PTT
NTN8370A	Extreme Noise Earpiece Adapter Kit
	(use with AARMN4021, AARMN4022, AARMN4028 & AARMN4029)
NTN8371A	Low Noise Earpiece Adapter Kit
	(use with AARMN4021, AARMN4022, AARMN4028 & AARMN4029)
PMLN4418A	Ear bud with PTT microphone
RKN4097A	In-Line PTT Adapter Cable for use with RMN4051, RMN4052 & RMN4053 Headsets
RLN4885A	Receive Only Ear bud with 3.5mm plug
	(for use with HMN9053)
RLN4922A	Completely Discrete Earpiece Kit (for use with 2 wire earpieces)
RLN4941A	Receive Earpiece with tube, rubber ear tip and 3.5mm plug
	(For use with HMN9053)
	Ultra Light Headset with Streamlined Boom Microphone
	Light Weight Headset W/Boom Mic and In-Line PTT
	Medium Weight Over the Head Dual Muff Headset w/ Noise Canceling Mic & In-Line
	Heavy Weight Headset, w/ boom microphone
	Earpiece W/O Volume Control
	2 Wire Earpiece W/ Mic and PTT
	Ear piece W/O Volume Control
	2 Wire Ear piece W/Mic and PTT
AARMN4031A	Lightweight Headset with Boom Microphone
	(no In-Line PTT) (VOX operational only on conventional channel)
RMN4044A	Ear Microphone Interface Module for PTT Only
RMN4045A	Ear Microphone System, Push to Talk w/ Voice
RMN4048A	Bone Vibrator Headset
RMN4051A	2-Way Hard-hat Mount Headset, Black - Noise Reduction
RMN4052A	Tactical Headband-Style Headset, Gray - Noise Reduction
RMN4053A	Tactical hard-hat Mount Headset, Gray - Noise Reduction
RMN4054A	Receive-Only Hard-hat Mount Headset with 3.5mm right angle plug –
	Noise Reduction Rating - 22dB
RMN4055A	Receive-Only Headband-Style Headset with 3.5mm right angle plug
WADN4190B	Flexible ear receiver w/ coiled cable

Form-SAR-Rpt-B9 Page 7 of 54

For use with the HMN9053, HMN9054, & HMN9057 RSM and PSM

HKN9055A Remote Speaker Microphone Replacement Cable
0180358B38 Finger Push to Talk for Ear Microphone FM Approved
0180300E83 Body Switch Push to Talk for Ear Microphone System

3.1 Test Signal

Test Signal mode:

Test Mode X	Base Station	Simulator
-------------	--------------	-----------

Transmission Mode:

CW	X
Native Transmission	
TDMA	
Other	

3.2 Test Output Power

The radio's output power was measured before and after each test. An HP E4419B power meter (calibration date 1/23/02) was used to measure the power output.

4.0 Description of Test Equipment

4.1.0 Descriptions of SAR Measurement System

The laboratory utilizes a Dosimetric Assessment System (DASY3TM) S.A.R. measurement system manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The S.A.R. measurements were conducted with probe model/serial number ET3DV6/SN1547. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the system performance test results, probe calibration, and dipole validation certificates are included in APPENDIX B and C. The table below summarizes the system performance check results for the highest S.A.R. scans reported herein normalized to 1W.

Note that the reference S.A.R. value presented below for head and body tissue represents the latest measured system performance target obtained during system validation.

Form-SAR-Rpt-B9 Page 8 of 54

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #	System Perf. Result when normalized to 1W (mW/g)	Reference SAR @ 1W (mW/g)	Test Date/s
1547	IEEE Head	11/16/01	D835V2	10.64	9.74 +/- 10%	3/11/02
1547	FCC Body	11/16/01	D835V2	11.02 +/- 0.28	10.82 +/- 10%	2/28 - 3/14 2002

The DASY3TM system is operated per the instructions in the DASY3TM Users Manual. The complete manual is available directly from SPEAGTM.

4.2 Description of Phantom

4.2.1 Body and Face Phantom:

Flat Phantom:

A rectangular shaped box made of high-density polyethylene (HDPE) with a dielectric constant of 2.26 and a loss tangent of less than .00031. The phantom is mounted on a wooden supporting structure that has a loss tangent of < 0.05. The structure has a 67 x 26 centimeter opening at its center to allow positioning the DUT to the flat phantom's surface. The supporting structure is assembled with wooden pegs and glue. The table below shows the flat phantom dimensions.

Length	80cm
Width	30cm
Height	20cm
Surface Thickness	0.2cm

4.3 Simulated Tissue Properties:

4.3.1 Type of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01 - 01) to OET Bulletin 65 (Edition 97 - 01).

Simulated Tissue	Body Position
FCC Body	Abdomen
IEEE Head	Face

Form-SAR-Rpt-B9 Page 9 of 54

4.3.2 Simulated Tissue Composition

Ingredients (%) Frequency 835 MHz				
	Body	Head		
De ionized -Water	53.06	40.45		
Sugar	44.9	57		
Salt	0.94	1.45		
HEC	1	1		
Dowicil75	0.1	0.1		

Characterization of Simulated tissue materials and ambient conditions:

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within 5% of target parameters at the center of the transmit band. This measurement is done using the Agilent (HP) probe kit model 85070C and a HP8753D Network Analyzer.

Target tissue parameters

	Body		Не	ead
	Di-electric Conductivity		Di-electric	Conductivity
Frequency (MHz)	Constant	- S/m	Constant	- S/m
770 MHz	55.46	0.96	41.84	0.89

4.4.0 Test conditions:

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth in the phantom used for measurements was 15cm +/- 0.5cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below represents the average environmental conditions during the SAR tests reported herein.

Form-SAR-Rpt-B9 Page 10 of 54

Ambient Temperature	21.5 °C
Relative Humidity	51.36 %
Tissue Temperature	20.4 °C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated. However, the lab environment is sufficiently protected such that no S.A.R. impacting interference has been experienced to date.

5.0 Description of Test Procedure

The S.A.R test matrix used for this radio included the body worn accessories listed in section 3.0 that offer the closest separation distance as well as those that contain unique metallic components. Also included in the test matrix were all audio accessories offered for this radio that were determined to be unique. The rationale for determining which audio and body worn accessories were included in the test matrix is described in Appendix D. Note that audio accessory model HLN9716B described in section 3.0 as an adaptor for the GP300 radio was included in the test matrix. A GP300 remote speaker microphone (the standard audio accessory for the GP300) was tested with the adaptor. The single antenna and all batteries offered for this product were included in the test matrix as well. The maximum power output of the HT1250LS radio is 3 watts. The transmit power of the tested radio was pre-adjusted to the maximum output allowed by the production alignment procedures. Power output measurements were taken before and after each S.A.R. scan. Each S.A.R. scan was taken with a fully charged battery. Measurements were performed at the low, middle, and high frequencies of the transmit band using the worst-case S.A.R. performance configurations from the body worn and audio accessory testing. The radio was operating in a continuous wave (CW) test mode for all measurements.

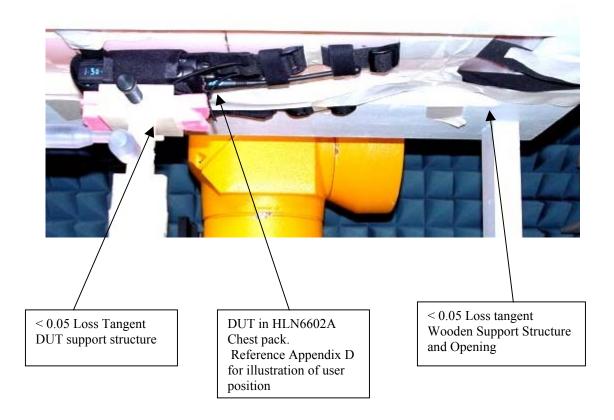
5.1 Device Test Positions

Reference Figure 1 for the device orientation and position that exhibited the highest S.A.R. performance. Figure 2 depicts an overall perspective of the system setup and support structure.

5.1.0 Abdomen

A flat phantom containing simulated body tissue consistent with applicable standards was used to assess S.A.R. performance of the radio.

5.1.1 Face


A flat phantom containing simulated head tissue consistent with applicable standards was used to assess S.A.R. performance of the radio at the face.

5.1.2 2.5cm

A flat phantom containing simulated body tissue consistent with applicable standards was used to assess S.A.R. performance of the radio in the front and back positions at 2.5cm from the phantom.

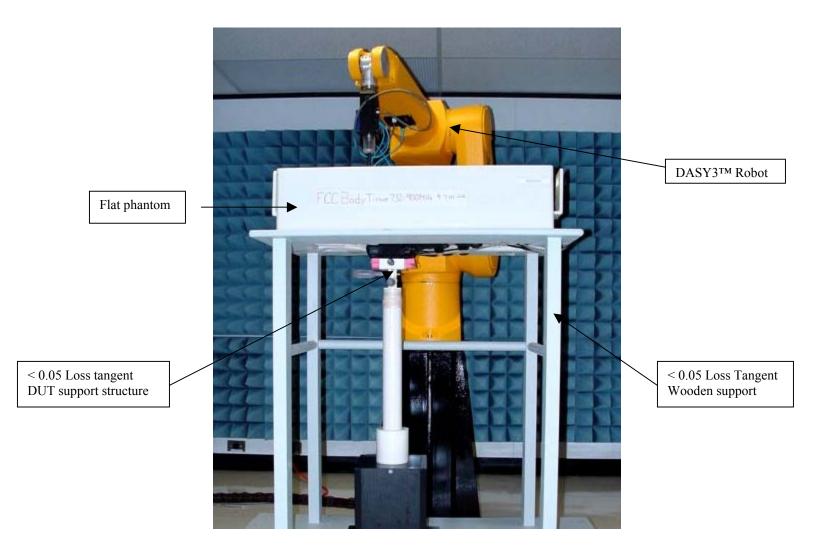

Form-SAR-Rpt-B9 Page 11 of 54

Figure 1: Highest S.A.R. configuration

Form-SAR-Rpt-B9 Page 12 of 54

Figure 2: Robot Test System

Form-SAR-Rpt-B9 Page 13 of 54

5.2 Probe Scan Procedures

The E-field probe is first scanned in a coarse grid over a large area inside the phantom in order to locate the interpolated maximum S.A.R. distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

6.0 Measurement Uncertainty:

The table below lists the uncertainty estimate of the possible errors that are associated with the measurement system.

Uncertainty Description	Standard Uncertainty
Probe Uncertainty	
- Axial Isotropy	± 2.4 %
- Spherical Isotropy	± 4.8 %
- Spatial Resolution	± 0.5 %
- Linearity Error	± 2.7 %
- Calibration Error	± 8 %
Evaluation Uncertainty	
- Data Acquisition Error	± 0.60 %
- ELF and RF Disturbances	± 0.25 %
- Conductivity Assessment	± 5 %
Spatial Peak SAR Evaluation Uncertainty	
- Extrapolation and boundary effects	± 3%
- Probe positioning	± 1 %
- Integration and cube orientation	± 3 %
- Cube shape inaccuracies	± 1.2 %
- Device positioning	± 1.0 %

The Total Measurement Uncertainty is \pm 12.1 %. The Expanded Measurement Uncertainty is \pm 24.2 % (k=2)

Form-SAR-Rpt-B9 Page 14 of 54

7.0 SAR Test Results:

All S.A.R. results obtained by the tests described in Section 5.0 are listed in section 7.1 below. The bolded result indicates the highest observed S.A.R. performance. DASY3TM S.A.R. measurement scans are provided in APPENDIX A for all of the highest measured S.A.R. results.

7.1 SAR results at the abdomen:

Run #/Radio S/N	Freq.	Antenna	Battery	Body worn	Audio Acc.		End Power (mW)	Measured 1g-SAR (mW/g)	Calc. 1g- SAR (mW/g)
SAR performance assessment of Batteries									
Ab_R1_020301-04/ WQCWB03X	776		HNN9008A	HLN9714A Belt clip	HMN9052D	3.08	2.76	2.77	1.55
Ab_R1_020301-05/ WQCWB03X	776		HNN9009A	HLN9714A Belt clip	HMN9052D	3.07	2.75	2.36	1.32
Ab_R1_020301-06/ WQCWB03X	776		HNN9010A	HLN9714A Belt clip	HMN9052D	3.03	2.67	2.35	1.33
Ab_R1_020301-07/ WQCWB03X	776	NAF5083A	HNN9011A	HLN9714A Belt clip	HMN9052D	2.93	2.58	2.22	1.26
Ab_R1_020301-08/ WQCWB03X	776	NAF5083A	HNN9012A	HLN9714A Belt clip	HMN9052D	2.97	2.7	2.38	1.31
Ab_R1_020228-07/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A Belt clip	HMN9052D	2.98	2.56	3.18	1.85
Assessment of body v	vorn ac	cessories wit	h highest SA	R test configur	ation above				
Ab_R1_020301-09/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9844A Belt clip	HMN9052D	2.93	2.59	2.65	1.50
Ab_R1_020301-10/ WQCWB03X	776	NAF5083A	HNN9013B	PMLN4280A Leather case	HMN9052D	2.93	2.58	1.96	1.11
Ab_R1_020301-11/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9701B Nylon case	HMN9052D	3.01	2.61	2.10	1.21
Ab_R1_020301-12/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9677A Std case w/ belt clip	HMN9052D	2.97	2.65	1.22	0.68
Ab_R1_020301-13/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9677A & NTN5243A carry strap	HMN9052D	2.97	2.64	1.20	0.68
Ab_R1_020304-02/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9690 Std case w/ swivel	HMN9052D	2.96	2.59	0.63	0.36
Ab_R1_020304-03/ WQCWB03X	776	NAF5083A	HNN9013B	RLN4815A Fanny Pack	HMN9052D	2.98	2.57	1.73	1.00
Ab_R1_020304-05/ WQCWB03X	776	NAF5083A	HNN9013B	HLN6602A Chest pack	None	2.95	2.63	9.39	5.27

Form-SAR-Rpt-B9 Page 15 of 54

Body worn accessory a	assessr	nent at the b	and edges wi	th worst case S	SAR test configu	ration			
Ab R1 020314-02/	~ ~ ~			HLN6602A					
WQCWB03X	746	NAF5083A	HNN9013B	Chest pack	None	3.03	2.68	9.27	5.24
Ab R1 020314-03/				HLN6602A					
WQCWB03X	794	NAF5083A	HNN9013B	Chest pack	None	2.99	2.71	9.64	5.32
SAR assessment of au	dio acc	essories							
Ab_R1_020306-02/					RMN4052A w/				
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RKN4097A	2.99	2.58	3.29	1.91
Ab R1 020306-03/					RMN4051A w/				
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RKN4097A	3.02	2.59	3.28	1.91
Ab_R1_020306-04/					RMN4053A w/				
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RKN4097A	2.99	2.35	3.21	1.81
5					ENMN4011A				
Ab_R1_020306-07/	776	NIA DECOS A	11NN10012D	III NIO7144	W/	2.01	2.62	2.02	1 72
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	ENLN4135A	3.01	2.63	3.03	1.73
					ENMN4012A w/				
Ab R1 020306-05/					Breezed head				
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	Set	3.02	2.62	3.21	1.85
Ab R1 020304-10/									
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	ENMN4014A	2.93	2.61	3.01	1.69
Ab_R1_020306-09/					HLN9716B w/				
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	HMN9725D	3.04	2.63	3.15	1.82
Ab_R1_020307-06/	77.6	314 55002 4	ID D 10012D	111 2107144	HMN9053D w/	2.01	264	2.07	1.60
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	WADN4190B	3.01	2.64	2.97	1.69
Ab_R1_020307-07/ WQCWB03X	776	NIAE5082A	HNN9013B	HLN9714A	NTN1722A	3.02	2.62	3.09	1.78
Ab R1 020307-08/	770	NATSUOSA	11111190131	IILN9/14A	INTINI/ZZA	3.02	2.02	3.07	1.76
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	NTN1723A	3.01	2.64	2.57	1.47
Ab R1 020307-09/	7,70	1 11 11 0 0 0 0 1 1	111 (17) 0132	1121() / 1 111	1(11(1),2511	2.01	2.0.	2.07	1,
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	NTN1724A	3.01	2.61	3.21	1.85
Ab_R1_020304-06/									
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	PMLN4418A	2.96	2.58	3.52	2.02
Ab_R1_020304-07/									
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RMN4018B	2.96	2.6	3.45	1.96
Ab_R1_020306-08/	776	NIA E 7002 A	ID D10012D	III NO7144	A A DA DI 4022 A	2.02	2.62	2.00	1.70
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	AARMN4022A	3.03	2.63	3.09	1.78
Ab_R1_020305-05/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RMN4019A	3.04	2.65	3.14	1.80
Ab_R1_020305-04/	770	IVAI JUUJA	IIIVIVOISD	IILN)/IAA	KWINTOIDA	3.04	2.03	3.17	1.00
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RMN4048A	2.97	2.62	3.05	1.73
					RMN4045A w/				
Ab_R1_020307-10/					BDN6677 &				
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	0180300E83	3.01	2.66	3.09	1.75
					RMN4044 w/				
Ab_R1_020308-02/	77.	31455000	ID D 100125		BDN6641 &	2.02		2.24	1.50
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	0180358B38	3.03	2.74	3.24	1.79
Ab_R1_020305-03/	776	NIAE5002 A	HMM0012D	Ш МО7144	ENIMBIAGICA	2 02	256	2 17	1 07
WQCWB03X	//0	NACSU83A	HNN9013B	HLN9714A	ENMN4016A	3.02	2.56	3.17	1.87
Ab_R1_020305-02/ WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RMN4020A	3.03	2.62	3.28	1.90
	770	1111 JUUJA	1111170131	111/1//17/1	RLN4922A w/	5.05	2.02	5.20	1.70
Ab R1 020307-05/									

Form-SAR-Rpt-B9 Page 16 of 54

Ab_R1_020305-06/ WQCWB03X	776	NA E5092 A	HNN9013B	HLN9714A	ENMN4015	2.95	2.59	3.22	1.83	
	770	INALIGUOSA	1111119013D	11LN9/14A	EINIVIIN4013	2.93	2.39	3.22	1.03	
Ab_R1_020304-08/	776	NIAEGOOAA	IDD10012D	III NIO7144	END (D) (4010 A	2.06	2.52	2.21	1.01	
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	ENMN4010A	2.86	2.53	3.21	1.81	
Ab_R1_020307-04/										
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	ENMN4013A	2.99	2.62	3.25	1.85	
Ab_R1_020306-06/										
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	RMN4031B	3.04	2.61	3.32	1.93	
Ab R1 020304-09/										
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	AARMN4017A	2.98	2.6	3.31	1.90	
Ab R1 020306-010/					RMN4054A w/					
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	HLN9716B	3.01	2.58	3.41	1.99	
Ab R1 020307-02/					RMN4055A w/					
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	HLN9716B	3.00	2.61	3.28	1.89	
Ab R1 020307-03/										
WQCWB03X	776	NAF5083A	HNN9013B	HLN9714A	AARMN4028A	3.01	2.64	3.38	1.93	
Assessment at 2.5cm	using v	vorst case SA	R test config	uration from a	udio accessories	testing	•			
Ab R1 020308-05/				Back 2.5cm	PMLN4418A					
WQCWB03X	776	NAF5083A	HNN9013B	from antenna	Ear bud	3.04	2.63	7.56	4.37	
Ab R1 020308-06/				Front 2.5cm	PMLN4418A					
WQCWB03X	776	NAF5083A	HNN9013B	from antenna	Ear bud	3.01	2.61	7.1	4.09	
Assessment of highest S.A.R. audio accessories configuration at the band edges.										
Ab R1 020308-03/					PMLN4418A					
WQCWB03X	746	NAF5083A	HNN9013B	HLN9714A	ear bud	2.98	2.71	2.52	1.39	
Ab_R1_020308-04/					PMLN4418A					
WQCWB03X	794	NAF5083A	HNN9013B	HLN9714A	ear bud	3.03	2.71	3.75	2.10	

7.2 S.A.R. results at the Face

Run #/Radio S/N	Freq.	Antenna	Battery	Initial Power (mW)	End Power (mW)	Measured 1g-SAR (mW/g)	Calc. 1g-SAR (mW/g)		
Face_R1_020311-02/ WQCWB03X	776	NAF5083A	HNN9008A	3.08	2.73	2.16	1.22		
Face_R1_020311-03/ WQCWB03X		NAF5083A	HNN9009A	3.11	2.75	2.51	1.42		
Face_R1_020311-04/ WQCWB03X		NAF5083A	HNN9010A	3.09	2.72	2.47	1.40		
Face_R1_020311-05/ WQCWB03X		NAF5083A	HNN9011A	3.03	2.68	2.47	1.40		
Face_R1_020311-06/ WQCWB03X		NAF5083A	HNN9012A	3.09	2.76	2.57	1.44		
Face_R1_020311-07/ WQCWB03X		NAF5083A	HNN9013B	3.03	2.65	2.28	1.30		
Assessment of S.A.R. performance at the band edges									
Face_R1_020311-08/ WQCWB03X	746	NAF5083A	HNN9012A	3.1	2.83	1.79	0.98		
Face_R1_020311-09/ WQCWB03X		NAF5083A	HNN9012A	3.11	2.78	2.76	1.54		

Form-SAR-Rpt-B9 Page 17 of 54

7.3 Peak SAR location

The peak S.A.R. was observed near the center of the antenna. Refer to APPENDIX A for detailed S.A.R. scan distributions.

7.4 SAR Results

The calculated 1-gram averaged S.A.R. value is determined by taking the ratio of the measured initial power and the end power and multiplying the ratio by 50% (duty cycle) of the measured SAR results. For this device the Calculated 1-gram averaged peak S.A.R. becomes:

$$\begin{array}{ll} \text{Calculated 1-gram} \\ \text{Average Peak SAR} & = \frac{P_{initial}}{P_{end}} & x \text{ D1 x SAR}_{meas}. \end{array}$$

Abdomen

Calculated 1-gram
Average Peak SAR =
$$\frac{2.99\text{W}}{2.71\text{W}}$$
 x .50 x 9.64 = 5.32 mW/g

Face

Maximum
Calculated 1-gram
Average Peak SAR
$$= \frac{3.11W}{2.78W} \times .50 \times 2.76 = 1.54 \text{ mW/g}$$

P_{initial} = Initial power measured P_{end} = Lowest measured power at end of SAR

SAR_{meas}. = Measured 1 gram averaged peak SAR

D1 = the transmission mode duty cycle, i.e., the ratio of the service mode and the tested mode.

8.0 Conclusion

The highest Operational Maximum Calculated 1-gram average SAR values found for the two-way radio device model number PMUD1761A were:

At the abdomen: 5.32 mW/g

At the face: 1.54 mW/g

These test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of **8.0 mW/g** per the requirements of 47 CFR 2.1093(d)

Form-SAR-Rpt-B9 Page 18 of 54

APPENDIX A DATA RESULTS

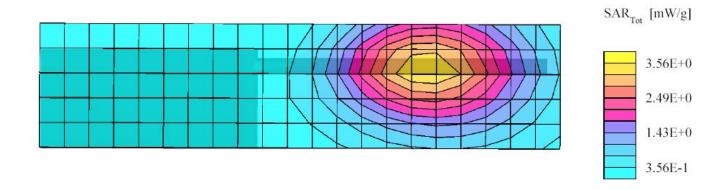
Form-SAR-Rpt-B9 Page 19 of 54

HT1250LS 700MHz; Test Date: 02/28/02 Motorola CGISS EME Laboratory

Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020228-07 Tissue Temp: 20.1 (Celsius) TX Freq: 776 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B Accessories: Belt clip HLN9714A Audio: RSM HMN9052D


Flat Phantom; Device Section; Position: (90°,0°);

Probe: ET3DV6 - SN1547; ConvF(6.30,6.30,6.30); Probe cal date: 11/16/01; Crest factor: 1.0; FCC Body_770MHz: $\sigma =$

 $0.92 \text{ mho/m } \epsilon = 53.5 \text{ } \rho = 1.00 \text{ g/cm}3; \text{ DAE SN: } 363 \text{ DAE Cal Date: } 08/22/01$

Cube 7x7x7: SAR (1g): 3.18 mW/g, SAR (10g): 2.30 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 234.0, 48.0, 4.0

Form-SAR-Rpt-B9 Page 20 of 54

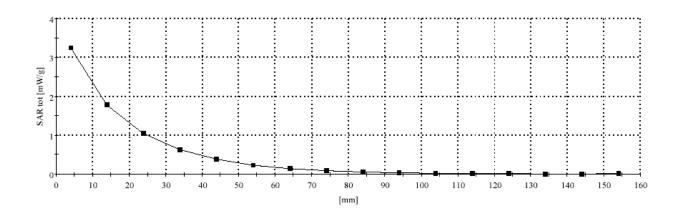
HT1250LS 700MHZ; Test Date 2/28/02

Motorola CGISS EME Lab

Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020228-07 Tissue Temp: 20.1 (Celsius)

TX Freq: 776 MHz


Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B Accessories: Belt clip HLN9714A Audio: RSM HMN9052D

Flat Phantom Phantom; Section; Position: ; Frequency: 776 MHz

Probe: ET3DV6 - SN1547; ConvF(6.30,6.30,6.30); Crest factor: 1.0; FCC Body_770MHz: σ= 0.92 mho/m ε= 53.5 ρ= 1.00

g/cm3; DAE3: 363-V1 DAE Cal Date: 08/22/01

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 10.0,

Form-SAR-Rpt-B9 Page 21 of 54

HT1250LS 700MHz; Test Date: 03/14/02

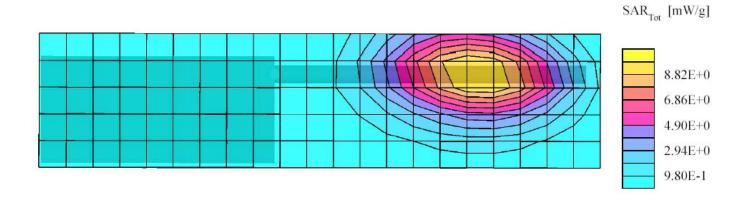
Motorola CGISS EME Lab

Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020314-03 Tissue Temp: 19.9 (Celsius)

TX Freq: 794 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B Accessories: Chest Pack HLN6602A Audio: None


Flat Phantom; Device Section; Position: (90°,0°);

Probe: ET3DV6 - SN1547; ConvF(6.30,6.30,6.30); Probe cal date: 11/16/01; Crest factor: 1.0; FCC Body_770MHz: $\sigma = 11/16/01$

 $0.93 \text{ mho/m } \epsilon = 53.5 \ \rho = 1.00 \text{ g/cm3}; \text{ DAE3: } 363\text{-V1 DAE Cal Date: } 08/22/01$

Cube 7x7x7: SAR (1g): 9.64 mW/g, SAR (10g): 6.56 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 246.0, 52.5, 4.0

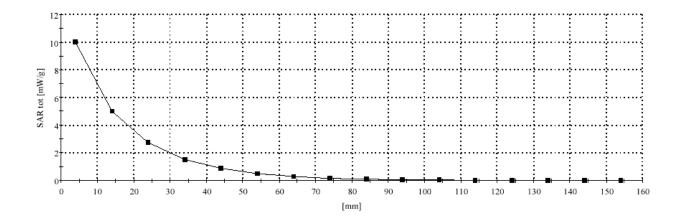
Form-SAR-Rpt-B9 Page 22 of 54

HT1250LS 700MHz; Test Date 3/14/02

Motorola CGISS EME Lab

Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020314-03 Tissue Temp: 19.9 (Celsius) TX Freq: 794 MHz


Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B Accessories: Chest Pack HLN6602A Audio: None

Flat Phantom; Frequency: 794 MHz

Probe: ET3DV6 - SN1547; ConvF(6.30,6.30,6.30); Crest factor: 1.0; FCC Body_770MHz: $\acute{o} = 0.93$ mho/m $\mathring{a}r = 53.5$ $\~n = 1.00$

g/cm3; DAE3: 363-V1 DAE Cal Date: 08/22/01

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 10.0,

Form-SAR-Rpt-B9 Page 23 of 54

HT1250LS 700MHz; Test Date: 03/04/02

Motorola CGISS EME Lab

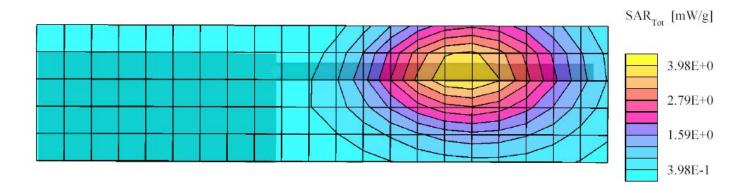
Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020304-06 Tissue Temp: 20.5 (Celsius)

TX Freq: 776 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B

Accessories: Belt clip HLN9714A Audio: Ear bud W/PTT PMLN4418A


Flat Phantom; Position: (90°,0°);

Probe: ET3DV6 - SN1547; ConvF (6.30,6.30,6.30); Probe cal date: 11/16/01; Crest factor: 1.0; FCC Body_770MHz: $\sigma =$

 $0.93 \text{ mho/m } \epsilon = 54.5 \ \rho = 1.00 \ \text{g/cm3}; DAE3: 363-V1 DAE Cal Date: 08/22/01$

Cube 7x7x7: SAR (1g): 3.52 mW/g, SAR (10g): 2.54 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 235.5, 49.5, 4.0

Form-SAR-Rpt-B9 Page 24 of 54

HT1250LS 700MHz; Test Date 3/04/02

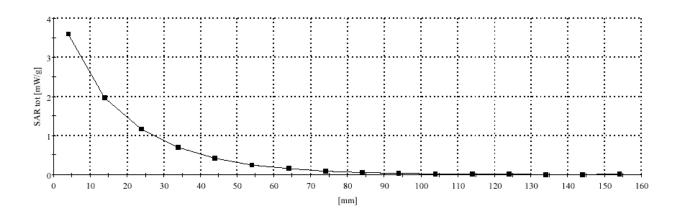
Motorola CGISS EME Lab

Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020304-06 Tissue Temp: 20.5 (Celsius)

TX Freq: 776 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B


Accessories: Belt clip HLN9714A Audio: Ear bud W/PTT PMLN4418A

Flat Phantom; Frequency: 776 MHz

Probe: ET3DV6 - SN1547; ConvF (6.30,6.30,6.30); Crest factor: 1.0; FCC Body_770MHz: σ = 0.93 mho/m ϵ = 54.5 ρ = 1.00

g/cm3; DAE3: 363-V1 DAE Cal Date: 08/22/01

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 10.0,

Form-SAR-Rpt-B9 Page 25 of 54

HT1250LS 700MHz; Test Date: 03/08/02

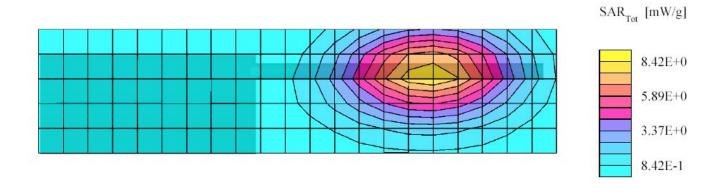
Motorola CGISS EME Lab

Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020308-05 Tissue Temp: 20.3 (Celsius)

TX Freq: 776 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B


Accessories: Audio: Ear bud PMLN4418A

Back of radio facing phantom with antenna @ 2.5cm Flat Phantom; Device Section; Position: (90°,0°);

Probe: ET3DV6 - SN1547; ConvF(6.30,6.30,6.30); Probe cal date: 11/16/01; Crest factor: 1.0; FCC Body_770MHz: $\sigma =$

0.92 mho/m ε = 53.4 ρ = 1.00 g/cm3; DAE3: SN363-V1 DAE Cal Date: 08/22/01 Cube 7x7x7: SAR (1g): 7.56 mW/g, SAR (10g): 5.28 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 237.0, 48.0, 4.0

Form-SAR-Rpt-B9 Page 26 of 54

HT1250LS 700MHz; Test Date: 3/08/02

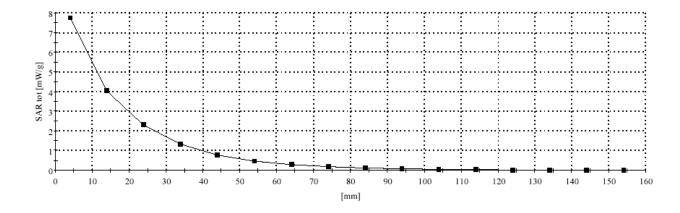
Motorola CGISS EME Lab

Model #: PMUF1105A SN: WQCWB03X

Run #: Ab_R1_020308-05 Tissue Temp: 20.3 (Celsius) Phantom #: 80302002A TX Freq: 776 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9013B

Accessories: Audio: Ear bud PMLN4418A


Back of radio facing phantom with antenna @ 2.5cm

Flat Phantom; Frequency: 776 MHz

Probe: ET3DV6 - SN1547; ConvF(6.30,6.30,6.30); Probe cal date: 11/16/01; Crest factor: 1.0; FCC Body_770MHz: $\sigma = 0.92$

mho/m ε = 53.4 ρ = 1.00 g/cm₃; DAE3: SN363-V1 DAE Cal Date: 08/22/01

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 10.0,

Form-SAR-Rpt-B9 Page 27 of 54

HT1250LS 700MHz; Test Date: 03/11/02 Motorola CGISS EME Lab

Model #: PMUF1105A SN: WQCWB03X

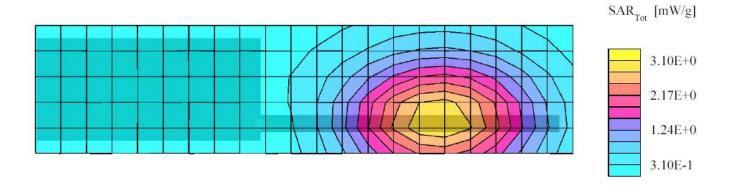
Run #: Face_R1_020311-09 Tissue Temp: 20.7 (Celsius)

TX Freq: 794 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9012A

Accessories: Carry case: None Audio: None

Radio @ 2.5cm from phantom


Flat Phantom; Device Section; Position: (90°,0°);

Probe: ET3DV6 - SN1547; ConvF(6.50,6.50,6.50); Probe cal date: 11/16/01; Crest factor: 1.0; IEEE Head_770 MHz: $\sigma =$

 $0.85 \text{ mho/m } \epsilon = 43.3 \ \rho = 1.00 \ \text{g/cm}^3; \ DAE3: \ SN363-V1 \ DAE \ Cal \ Date: \ 08/22/01$

Cube 7x7x7: SAR (1g): 2.76 mW/g, SAR (10g): 1.98 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 237.0, 19.5, 4.0

Form-SAR-Rpt-B9 Page 28 of 54

HT1250LS 700MHz; Test Date: 3/11/02

Motorola CGISS EME Lab

Run #: Face_R1_020311-09

Model #: PMUF1105A SN: WQCWB03X

Tissue Temp: 20.7 (Celsius)

TX Freq: 794 MHz

Antenna: NAF5083A 1/2wave Battery Kit: HNN9012A

Accessories: Carry case: None Audio: None

Radio @ 2.5cm from phantom Flat Phantom; Frequency: 776 MHz

Probe: ET3DV6 - SN1547; ConvF(6.50,6.50,6.50); Crest factor: 1.0; IEEE Head_770 MHz: σ = 0.85 mho/m ϵ = 43.3 ρ = 1.00

g/cm3; DAE3: SN363-V1 DAE Cal Date: 08/22/01

Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 10.0,

Form-SAR-Rpt-B9 Page 29 of 54

APPENDIX B

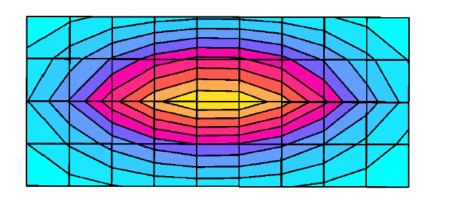
Dipole System Performance Check Results

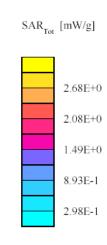
Form-SAR-Rpt-B9 Page 30 of 54

SPEAG Dipole D835V2 - SN 427; Test Date:02/28/02 Motorola CGISS EME Lab

Model #: D835V2 SN: 427 Run #: Sys Val_R1_020228-01 Tissue Temp: 20.1 (Celsius)

TX Freq: 835 MHz Input Power; 250mW Target at 1W is 10.82


Flat Phantom; Probe: ET3DV6 - SN1547; Probe Cal Date: 11/16/01ConvF(6.20,6.20,6.20); Crest factor: 1.0; FCC Body_835


MHz: $\sigma = 0.99$ mho/m $\varepsilon = 52.6$ $\rho = 1.00$ g/cm3; DAE3: SN363-V1 DAE Cal Date: 08/22/01

Cube 7x7x7: Peak: 4.48 mW/g, SAR (1g): 2.82 mW/g, SAR (10g): 1.80 mW/g, (Worst-case extrapolation)

Penetration depth: 12.2 (10.8, 14.0) [mm]

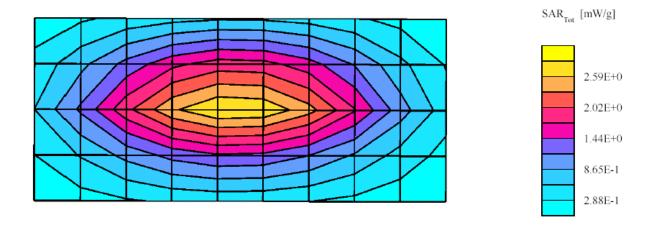
Power drift: -0.01 dB

Form-SAR-Rpt-B9 Page 31 of 54

SPEAG Dipole D835V2 - SN 427. Test Date:03/04/02 Motorola CGISS EME Lab

Run #: Sys Val_R1_020304-01 Tissue Temp: 20.5 (Celsius)

TX Freq: 835 MHz Input Power; 250mW Target at 1W is 10.82


Flat Phantom; Probe: ET3DV6 - SN1547; Probe Cal Date: 11/16/01ConvF(6.20,6.20,6.20); Crest factor: 1.0; FCC Body_835

MHz: $\sigma = 1.00$ mho/m $\epsilon = 54.0$ $\rho = 1.00$ g/cm3; DAE3: SN363-V1 DAE Cal Date: 08/22/01

Cube 7x7x7: Peak: 4.32 mW/g, SAR (1g): 2.72 mW/g, SAR (10g): 1.74 mW/g, (Worst-case extrapolation)

Penetration depth: 12.2 (10.8, 14.0) [mm]

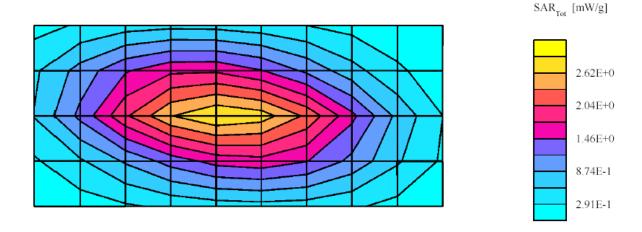
Power drift: -0.00 dB

Form-SAR-Rpt-B9 Page 32 of 54

SPEAG Dipole D835V2 - SN 427; Test Date:03/08/02 Motorola CGISS EME Lab

Run #: Sys Val_R1_020308-01 Tissue Temp: 20.3 (Celsius)

TX Freq: 835 MHz Input Power; 250mW Target at 1W is 10.82


Flat Phantom; Probe: ET3DV6 - SN1547; Probe Cal Date: 11/16/01ConvF(6.20,6.20,6.20); Crest factor: 1.0; FCC Body_835

MHz: $\sigma = 0.99$ mho/m $\epsilon = 53.2$ $\rho = 1.00$ g/cm3; DAE3: SN363-V1 DAE Cal Date: 08/22/01

Cube 7x7x7: Peak: 4.25 mW/g, SAR (1g): 2.68 mW/g, SAR (10g): 1.71 mW/g, (Worst-case extrapolation)

Penetration depth: 12.2 (10.8, 14.0) [mm]

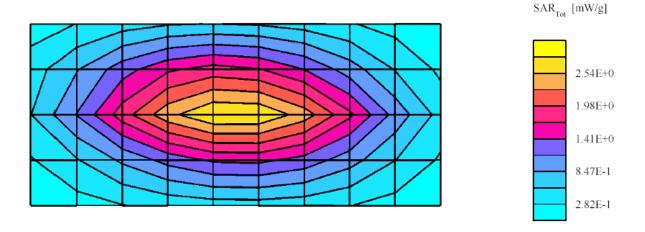
Power drift: -0.01 dB

Form-SAR-Rpt-B9 Page 33 of 54

SPEAG Dipole D835V2 - SN 427; Test Date:03/11/02

Run #: Sys Val_R1_020311-01 Tissue Temp: 20.7 (Celsius)

TX Freq: 835 MHz Input Power; 250mW Target at 1W is 9.74


Flat Phantom; Probe: ET3DV6 - SN1547; Probe Cal Date: 11/16/01ConvF(6.40,6.40,6.40); Crest factor: 1.0; IEEE Head 835

MHz: $\sigma = 0.92$ mho/m $\epsilon = 42.4$ $\rho = 1.00$ g/cm3; DAE3: SN363-V1 DAE Cal Date: 08/22/01

Cube 7x7x7: Peak: 4.26 mW/g, SAR (1g): 2.66 mW/g, SAR (10g): 1.69 mW/g, (Worst-case extrapolation)

Penetration depth: 11.9 (10.6, 13.6) [mm]

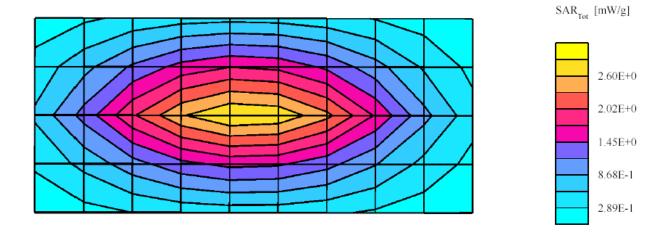
Power drift: -0.00 dB

Form-SAR-Rpt-B9 Page 34 of 54

SPEAG Dipole D835V2 - SN 427; Test Date:03/14/02

Run #: Sys Val_R1_020314-01 Tissue Temp: 19.9 (Celsius)

TX Freq: 835 MHz Input Power; 250mW Target at 1W is 10.82


Flat Phantom; Probe: ET3DV6 - SN1547; Probe Cal Date: 11/16/01ConvF(6.20,6.20,6.20); Crest factor: 1.0; FCC Body_835

MHz: $\sigma = 0.99$ mho/m $\epsilon = 52.7$ $\rho = 1.00$ g/cm3; DAE3: SN363-V1 DAE Cal Date: 08/22/01

Cube 7x7x7: Peak: 4.33 mW/g, SAR (1g): 2.70 mW/g, SAR (10g): 1.72 mW/g, (Worst-case extrapolation)

Penetration depth: 12.2 (10.7, 14.1) [mm]

Power drift: -0.00 dB

Form-SAR-Rpt-B9 Page 35 of 54

APPENDIX C

Calibration Certificates

Form-SAR-Rpt-B9 Page 36 of 54

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6	
Serial Number:	1547	
Place of Calibration:	Zurich	
Date of Calibration:	November 16, 2001	
Calibration Interval:	12 months	

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Nikoloski Neviana

Approved by:

Mikoloski Neviana

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1547
Place of Assessment:	Zurich
Date of Assessment:	November 17, 2001
Probe Calibration Date:	November 16, 2001

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1547

Conversion factor (± standard deviation)

vF 7.4 ± vF 7.4 ±	$\sigma = 0.87 \text{ mho/m}$ (body tissue) 8% $\varepsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue) 8% $\varepsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue)
vF 7.4 ±	8% $\varepsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue) 8% $\varepsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue) 8% $\varepsilon_r = 56.7$
	8% $\epsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue) $\epsilon_r = 56.7$
∨F 7.2 ±	8% $\varepsilon_{r} = 56.7$
	AND THE PROPERTY OF THE PROPER
vF 6.3 ±	$\sigma = 0.97 \text{ mho/m}$
vF 6.2 ±	$\sigma = 0.97 \text{ mho/m}$
vF 6.0 ±	$\sigma = 1.06 \text{ mho/m}$
vF 5.5 ±	(body tissue) 8% $\epsilon_r = 54.0$ $\sigma = 1.30 \text{ mho/m}$
vF 4.8 ±	(body tissue) 8% ε _r = 53.3 σ = 1.52 mho/m
vF 4.0 ±	(body tissue) 8% $\varepsilon_r = 52.7$ $\sigma = 1.95 \text{ mho/m}$
	vF 6.2 ± vF 6.0 ± vF 4.8 ± vF 4.0 ±

Page 2 of 4

November 17, 2001

Dosimetric E-Field Probe ET3DV6 SN:1547

Conversion factor (± standard deviation)

150 2 55	2	_	
150 MHz	ConvF	$8.6 \pm 8\%$	$\varepsilon_{\rm r} = 52.3$
			$\sigma = 0.76 \text{ mho/m}$
			(head tissue)
236 MHz	ConvF	$7.8 \pm 8\%$	$\varepsilon_{\rm r} = 48.3$
			$\sigma = 0.82 \text{ mho/m}$
			(head tissue)
300 MHz	ConvF	$7.4 \pm 8\%$	$\varepsilon_r = 45.3$
		(C2/07/ 02 /28/08)	$\sigma = 0.87 \text{ mho/m}$
			(head tissue)
			(near tissue)
350 MHz	ConvF	$7.3\pm8\%$	$\varepsilon_r = 44.7$
			$\sigma = 0.87 \text{ mho/m}$
			(head tissue)
100 MHz	ConvF	$7.2 \pm 8\%$	$\varepsilon_r = 44.4$
			$\sigma = 0.87 \text{ mho/m}$
			(head tissue - CENELEC)
150 MHz	ConvF	$7.1 \pm 8\%$	$\varepsilon_r = 43.5$
			$\sigma = 0.87 \text{ mho/m}$
			(head tissue)
'84 MHz	ConvF	$6.5 \pm 8\%$	$\varepsilon_{\rm r} = 41.8$
			$\sigma = 0.90 \text{ mho/m}$
			(head tissue)
35 MHz	ConvE	$6.4 \pm 8\%$	$\varepsilon_r = 41.5$
	Conn	W-1 = 0 /0	$\sigma = 0.90 \text{ mho/m}$
			(head tissue)
			(nead tissue)
35 MHz	ConvF	$6.4 \pm 8\%$	$\varepsilon_{\rm r} = 42.5$
			$\sigma = 0.98 \text{ mho/m}$
			(head tissue - CENELEC)
25 MHz	ConvF	$6.2\pm8\%$	$\varepsilon_r = 41.5$
			$\sigma = 0.98 \text{ mho/m}$
			(head tissue)
OO MILI-	(A) Same	2.50	
00 MHz	ConvF	$6.3 \pm 8\%$	$\varepsilon_r = 42.3$
			$\sigma = 0.99 \text{ mho/m}$
			(head tissue - CENELEC)

Page 3 of 4

November 17, 2001

Dosimetric E-Field Probe ET3DV6 SN:1547

Conversion factor (± standard deviation)

1500 MHz

ConvF

 $5.8 \pm 8\%$

 $\varepsilon_r = 40.4$

 $\sigma = 1.23 \text{ mho/m}$

(head tissue)

1900 MHz

ConvF

 $5.2 \pm 8\%$

 $\epsilon_r = 40.0$

 $\sigma = 1.40 \text{ mho/m}$

(head tissue)

2450 MHz

ConvF 4.4 ± 8%

 $\varepsilon_r = 39.2$

 $\sigma = 1.80 \text{ mho/m}$

(head tissue)

Page 4 of 4

November 17, 2001

Form-SAR-Rpt-B9 Page 41 of 54

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

835 MHz System Validation Dipole

Type:	D835V2
Serial Number:	427
Place of Calibration:	Zurich
Date of Calibration:	Nov. 2, 2000
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by: Wikolosik: Neviana

Approved by: John Kahia

Table 7.1 – Numerical reference SAR values for reference dipole and flat phantom. All values are normalized to a forward power of 1 W.

Frequency (MHz)	1 g SAR	10 g SAR	local SAR at surface (above feedpoint)	local SAR at surface (y=2cm offset from feedpoint)
300	3.0	2.0	4.4	2.1
450	4.9	3.3	7.2	3.2
835	9,5	6.2	14.1	4.9
900	10.8	6.9	16.4	5.4
1450	29.0	16.0	50,2	6.5
1800	38.1	19.8	69.5	6.8
1900	39.7	20.5	72,1	6.6
2000	41.1	21.1	74.6	6.5
2450	52.4	24.0	104.2	7.7
3000	63.8	25.7	140.2	9.5

Form-SAR-Rpt-B9 Page 43 of 54

SYSTEM VALIDATION

Date: Lab Location: Robot System:	_2/12/02 _CGISS _CGISS-1	Frequency (N Mixture Type Ambient Ten	3 1	835 IEBE Head_ 22
Probe Serial #:	1547	Tissue Temp		21.0
DAE Serial #:	_363	110000 101112	. (),	
Tissue Characteristics		Phantom Type/SN:	_ACL4	0232002A
Permitivity:	40.2	Distance:	15mr	n
Conductivity:	0.89			
Reference Source; Reference SN:	_D835V2(<u>Dipol</u> (27	e/Handset)		
Power to Dipole:	250 mW			
Power Output (radio): _	N/A mW			
Target SAR Value: (normalized to 1.0 W)	9.5_mW/g	,6.2 mW	/g (10g av	/g.)
Measured SAR Value: Power Drift:	2.43 mW 01_ dB	7/g,1.55_ mW/	/g (10g av	/g.)
Measured SAR Value: (normalized to 1.0 W, with drift compensation)	9.74 mW	//g,6.21 mW	v/g (10g a	vg.)
Percent Difference From	n Target (must be wi	ithin System Uncertain		_2.5 % (1g avg) _0.2 % (10g avg)
Test performed by:	Stephen Whalen	Initial: <u>S</u>	(M 2/	12/02

Form-SAR-Rpt-B9

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	2/12/2002	Frequency (MHz):	835	
Lab Location:	CGISS	Mixture Type:	FCC Body	1108 . <u>22.0</u> 0
Robot System:	CGISS 1	Ambient Temp.(°C):_	22	328
Probe Serial #:	1547	Tissue Temp.(°C):	20.5	
DAE Serial #:	363		· min regroup de service	
Tissue Characteristics				
Permitivity:	52.6	Phantom Type/SN:	80302002A	
Conductivity:	1.00	Distance (mm):	15	2
Reference Source:	D835V2	(Dipole)		
Reference SN:	427			
Power to Dipole:	250 mW			
Measured SAR Value:	2	2.7 mW/g, 1.72 n	1W/g (10g avg.)	
Power Drift:	<u>-0.</u>	01 dB		
New Target/Measured				
SAR Value:	and the second s	82 mW/g, 6.90 n	nW/g (10g avg.)	
(normalized to 1.0 W, including	ng drift)			
Test performed by:	Stephe	n C. Whalen Ir	nitial: Scv	2/27/02

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	2/12/2002	Frequency (MHz):	835	
Lab Location:	CGISS	Mixture Type:	IEEE Head	
Robot System:	CGISS 1	Ambient Temp.(°C	22	
Probe Serial #:	1547	Tissue Temp.(°C):	21	
DAE Serial #:	363	Ti		
Tissue Characteristics				
Permitivity:	40.2	Phantom Type/SN:	ACL40232002A	
Conductivity:	0.89	Distance (mm):	15	
Reference Source:	D835V2	(Dipole)		
Reference SN:	427	∓: :		
Power to Dipole:	250 mW			
Measured SAR Value:	2.43	mW/g, 1.5	5 mW/g (10g avg.)	
Power Drift:	-0.01	dB		
New Target/Measured				
SAR Value: (normalized to 1.0 W, including	The state of the s	mW/g,6.2	1 mW/g (10g avg.)	
Test performed by:	Stephen	C. Whalen	Initial: Saw	2/27/02

APPENDIX D: Illustration of Body-Worn Accessories

The purpose of this appendix is to illustrate the body worn carry accessories tested for the HT1250LS model PMUD1761A. The radio that was used in the following photos represents the device used to obtain the results presented herein.

Photo 1. Model PMLN4280A Full Thin Leather Front View

Photo 2. Model PMLN4280A Full Thin Leather Side view

Photo 3. Model PMLN4280A Full Thin Leather Back view

Photo 4. Model HLN9690A Standard Leather case with swivel Front view

Photo 5. Model HLN9690A Standard Leather case with swivel Side view

Photo 6. Model HLN9690A Standard Leather case with swivel Back view

Form-SAR-Rpt-B9 Page 47 of 54

Photo 7. Model HLN9701B Nylon Case Front view

Photo 8. Model HLN9701B Nylon Case Side view

Photo 9. Model HLN9701B Nylon Case Back view

Photo 10. Model HLN9677A Standard case w/ belt loop Front view

Photo 11. Model HLN9677A Standard case w/ belt loop Side view

Photo 12. Model HLN9677A Standard case w/ belt loop Back view

Form-SAR-Rpt-B9 Page 48 of 54

Photo 13. Model HLN9714A Belt Clip Back view

Photo 14. Model HLN9844A Belt clip Back view

Photo 15. Model HLN6602A Chest Pack Side view Normal user position

Photo 16. Model HLN6602A Chest Pack Front view Normal user position

Photo 17. Model RLN4815A Fanny Pack Front view Normal user position

Form-SAR-Rpt-B9 Page 49 of 54

The following table provides information regarding the accessories offered for the HT1250LS. Justification for why specific accessories were not included in the test matrix is presented.

				Separation
				distance - base
				of antenna to
Accessories	Madal	Camananta	including model in test	
Type	Model	Comments	plan	surface. (mm)
Body-worn	HLN9677A	Tested	NA	36
Body-worn	HLN9690A	Tested	NA	52
Body-worn	HLN6602A	Tested	NA	20
Body-worm	HENOUSEA	Tested	IVA	20
Body-worn	HLN9701B	Tested	NA	31
Body-worn	HLN9714A	Tested	NA	23
Body-worn	HLN9844A	Tested	NA	24
			Plastic case – no metal	
			components. Greater separation distance when	
			used with HLN9714A or	
Body-worn	HLN9952A	Not Tested	HLN9844	30
			Waterproof carry bag only.	
Body-worn	HLN9985B	Not Tested	No intended radio operation.	NA
		TF 4 1 /		
Body-worn	NTN5243A	Tested w/ HLN9677A	NA	NA
			Similar to PMLN4280A.	
Doder	DMI NI4201 A	Not Tastad	Contain same metallic	20
Body-worn	PMLN4281A	Not Tested	components	29
Body-worn	RLN4815A	Tested	NA NA	35
			Similar to HLN9677A. Contain same metallic	
Body-worn	HLN9945A	Not Tested	components	=>36
			Similar to HLN9946A.	
Body-worn	HLN9689A	Not Tested	Contain same metallic components	=>36

Form-SAR-Rpt-B9 Page 50 of 54

Audio	ENMN4015A	Tested	NA	NA
Audio	ENMN4010A	Tested	NA	NA
Audio	ENMN4013A	Tested	NA	NA
Audio	RMN4055A	Tested with HLN9716B GP300 adapter	NA	NA
Audio	RMN4054A	Tested with HLN9716B GP300 adapter	NA	NA
Audio	AARMN4031B	Tested	NA	NA
Audio	AARMN4028A	Tested	NA	NA
Audio	AARMN4017A	Tested	NA	NA
Body-worn	PMLN4280A	Tested	NA	29
Body-worn	HLN9998A	Not Tested	Similar to HLN9690A. Contain same metallic components	=>52
Body-worn	HLN9955A	Not Tested	Similar to HLN9690A. Contain same metallic components	=>52
Body-worn	HLN9694A	Not Tested	Similar to HLN9690A. Contain same metallic components	=>52
Body-worn	HLN9676A	Not Tested	Similar to HLN9690A. Contain same metallic components	=>52
Body-worn	HLN9670A	Not Tested	Similar to HLN9690A. Contain same metallic components	=>52
Body-worn	HLN9652A	Not Tested	Similar to HLN9677A. Contain same metallic components	=>52
Body-worn	HLN9665A	Not Tested	Similar to HLN9677A. Contain same metallic components	=>36
Body-worn	HLN9946A	Not Tested	Similar to HLN9677A. Contain same metallic components	=>36

Form-SAR-Rpt-B9 Page 51 of 54

Audio	AARMN4021A	Not tested	Similar to AARMN4028A	NA
Audio	ENMN4016A	Tested	NA	NA
		Tested w/		
Audio	BDN6641A	RMN4044A	NA	NA
		Tested w/		
Audio	BDN6677A	RMN4045A	NA	NA
			Similar to BDN6677A	
Audio	BDN6678A	Not Tested	(different color)	NA
		Tested w/		
Audio	ENLN4135A	ENMN4011A	NA	NA
		Tested With		
Audio	ENMN4011A	ENLN4135A	NA	NA
Audio	ENMN4012A	Tested	NA	NA
Audio	ENMN4014A	Tested	NA	NA
			Similar to ENMN4014A	
Audio	ENMN4017A	Not Tested Tested w/	(different color)	NA
		HMN9725D		
Audio	HLN9716B	GP300 adapter Tested w/	NA	NA
		NTN1722A/1723		
Audio	HLN9717A	A/1724A	NA	NA
Audio	HMN9052D	Tested	NA	NA
A 1.	III DIOCCOD	Tested w/	D.T.A.	3.7.4
Audio	HMN9053D	WADN4190B	NA	NA
منانم	NITNI 1700 A	Tostad	NIA	NI A
Audio	NTN1722A	Tested	NA	NA
Andia	NTN1722 A	Testad	NA	NI A
Audio	NTN1723A	Tested	NA	NA
Audio	NTN1724A	Tested	NA	NA
Auulu	11111/27/1	103104	11/1	11/1

Form-SAR-Rpt-B9 Page 52 of 54

Audio	NTN8370A	Not Tested	Similar to WADN4190A Receive only ear piece.	NA
			g: ::	
Audio	NTN8371A	Not Tested	Similar to WADN4190A Receive only ear piece	NA
Audio	INTINOS/IA	Not rested	Receive only car piece	IVA
Audio	PMLN4418A	Tested	NA	NA
		Tested w/ RMN4051A/		
Audio	RKN4097A	4052A/4053A	NA	NA
A 1°	DI M4007 A	N (T / 1	Similar to WADN4190B	NIA
Audio	RLN4885A	Not Tested	(Receive only ear piece)	NA
		Tested w/		
Audio	RLN4922A	ENMN4014A	NA	NA
Audio	RLN4941A	Not Tested	Similar to WADN4190B (Receive only ear piece)	NA
Audio	KLN4941A	Not Tested	(Receive only ear piece)	IVA
Audio	AARMN4018B	Tested	NA	NA
Audio	AARMN4019A	Tested	NA	NA
		_ ,		
Audio	AARMN4020A	Tested	NA	NA
Audio	AARMN4022A	Tested	NA	NA
Audio	A A D M N 14020 A	Not Tostad	Similar to AADMNIA022A	NΙΛ
Audio	AARMN4029A	Not Tested Tested w/	Similar to AARMN4022A	NA
		0180358B38 &		
Audio	RMN4044A	BDN6641A	NA	NA
		Tested w/		
Audio	RMN4045A	0180300E83 & BDN6677A	NA	NA
124410	14.11,101011	221.007711		* 14 *
		_		
Audio	RMN4048A	Tested	NA	NA
		Tested		
Audio	RMN4051A	With RKN4097A	NA	NA
Andia	DMN14052 A	Tested	NIA	NIA
Audio	RMN4052A	With RKN4097A	NA	NA

Form-SAR-Rpt-B9 Page 53 of 54

Audio	RMN4053A	Tested w/ RKN4097A	NA	NA
		Tested w/		
Audio	WADN4190B	HMN9053D	NA	NA
			Remote Speaker Mic.	
Audio	HKN9055A	Not Tested	Replacement cable	NA
		Tested w/		
Audio	0180358B38	RMN4044A	NA	NA
		Tested w/		
Audio	0180300E83	RMN4045A	NA	NA

Form-SAR-Rpt-B9 Page 54 of 54