

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

TEST REPORT

For

Bluetooth Headset

MODEL NUMBER: OTE180R, OTE180L

REPORT NUMBER: 4790716111-2-RF-2

ISSUE DATE: March 14, 2023

FCC ID: BCE-OTE180 IC: 2386C-OTE180

Prepared for

GN Audio USA Inc. (FCC) 900 Chelmsfort St, Tower 2, Floor 8 Lowell, Massachusetts United States 01851

> GN Audio A/S (ISED) Lautrupbjerg 7, 2570 Ballerup, Denmark

> > Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	March 14, 2023	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC 15.203 RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	N/A
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

Note:

1. N/A: In this whole report not applicable.

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

ISED RSS-247 ISSUE 2> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATTES	STATION OF TEST RESULTS	7
2. TEST	METHODOLOGY	8
3. FACIL	ITIES AND ACCREDITATION	8
4. CALIB	BRATION AND UNCERTAINTY	9
4.1.	MEASURING INSTRUMENT CALIBRATION	9
4.2.	MEASUREMENT UNCERTAINTY	9
5. EQUIF	PMENT UNDER TEST	10
5.1.	DESCRIPTION OF EUT	10
5.2.	CHANNEL LIST	10
5.3.	MAXIMUM POWER	
5.4.	TEST CHANNEL CONFIGURATION	12
5.5.	THE WORSE CASE POWER SETTING PARAMETER	12
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	13
5.7.	DESCRIPTION OF TEST SETUP	14
6. MEAS	URING EQUIPMENT AND SOFTWARE USED	15
7. ANTE	NNA PORT TEST RESULTS	18
7.1.	CONDUCTED OUTPUT POWER	
7.2.	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	19
7.3.	CARRIER HOPPING CHANNEL SEPARATION	21
7.4.	NUMBER OF HOPPING FREQUENCY	23
7.5.	TIME OF OCCUPANCY (DWELL TIME)	25
7.6.	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	27
7.7.	DUTY CYCLE	29
8. RADIA	ATED TEST RESULTS	
8.1.	RESTRICTED BANDEDGE	
8.2.	SPURIOUS EMISSIONS(1 GHZ~3 GHZ)	43
8.3.	SPURIOUS EMISSIONS(3 GHZ~18 GHZ)	49
8.4.	SPURIOUS EMISSIONS(9 KHZ~30 MHZ)	61
8.5.	SPURIOUS EMISSIONS(18 GHZ~26 GHZ)	64
8.6.	SPURIOUS EMISSIONS(30 MHZ~1 GHZ)	66
9. ANTEI	NNA REQUIREMENT	68
10.	TEST DATA FOR OTE180L (Left Earbud)	69

<i>10.1.</i> 10.1.1. 10.1.2.	APPENDIX A1: 20DB EMISSION BANDWIDTH Test Result Test Graphs	69
<i>10.2.</i> 10.2.1. 10.2.2.	APPENDIX B1: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	72
<i>10.3.</i> 10.3.1.	APPENDIX C1: MAXIMUM CONDUCTED OUTPUT POWER Test Result	
<i>10.4.</i> 10.4.1. 10.4.2.	APPENDIX D1: CARRIER FREQUENCY SEPARATION Test Result Test Graphs	76
<i>10.5.</i> 10.5.1. 10.5.2.	APPENDIX E1: TIME OF OCCUPANCY Test Result Test Graphs	78
<i>10.6.</i> 10.6.1. 10.6.2.	APPENDIX F1: NUMBER OF HOPPING CHANNELS Test Result Test Graphs	83
<i>10.7.</i> 10.7.1. 10.7.2.	APPENDIX G1: BAND EDGE MEASUREMENTS Test Result Test Graphs	85
<i>10.8.</i> 10.8.1. 10.8.2.	APPENDIX H1: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	
10.9. 10.9.1. 10.9.2.	APPENDIX I1: DUTY CYCLE Test Result Test Graphs	96
10.9.1.	Test Result	96 97
10.9.1. 10.9.2.	Test Result Test Graphs	
10.9.1. 10.9.2. 11. <i>11.1.</i> 11.1.1.	Test Result Test Graphs TEST DATA FOR OTE180R (Right Earbud) APPENDIX A2: 20DB EMISSION BANDWIDTH Test Result	
10.9.1. 10.9.2. 11. <i>11.1.</i> 11.1.1. 11.1.2. <i>11.2.</i> 11.2.1.	Test Result Test Graphs	96 97 98 98 98 98 99 99 101 101 102 104
10.9.1. 10.9.2. 11. <i>11.1.</i> <i>11.1.1.</i> <i>11.1.2.</i> <i>11.2.</i> <i>11.2.1.</i> <i>11.2.2.</i> <i>11.3.</i>	Test Result Test Graphs	96 97 98 98 98 99 101 101 102 104 105 105
10.9.1. 10.9.2. 11. <i>11.1.</i> <i>11.1.1.</i> <i>11.1.2.</i> <i>11.2.</i> <i>11.2.1.</i> <i>11.2.2.</i> <i>11.3.1.</i> <i>11.3.1.</i> <i>11.4.</i> <i>11.4.1.</i>	Test Result	
10.9.1. 10.9.2. 11. <i>11.1.</i> <i>11.1.1.</i> <i>11.1.2.</i> <i>11.2.</i> <i>11.2.1.</i> <i>11.2.2.</i> <i>11.3.1.</i> <i>11.3.1.</i> <i>11.4.</i> <i>11.4.1.</i> <i>11.4.2.</i> <i>11.5.</i> <i>11.5.1.</i>	Test Result	

REPORT NO.: 4790716111-2-RF-2 Page 6 of 126

11.7.2.	Test Graphs	115
<i>11.8.</i> 11.8.1. 11.8.2.	APPENDIX H2: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	
	APPENDIX I2: DUTY CYCLE	125
11.9.2.	Test Graphs	

1. ATTESTATION OF TEST RESULTS

FCC Applicant Information	
Company Name: Address:	GN Audio USA Inc. 900 Chelmsfort St, Tower 2, Floor 8 Lowell, Massachusetts United States 01851
ISED	
Applicant Information	
Company Name: Address:	GN Audio A/S
Address.	Lautrupbjerg 7, 2570 Ballerup, Denmark
Manufacturer Information	
Company Name:	GN Audio A/S
Address:	Lautrupbjerg 7, 2570 Ballerup, Denmark
EUT Information	
EUT Name:	Bluetooth Headset
Model:	OTE180R ,OTE180L
Sample Received Date:	January 17, 2023
Sample Status:	Normal
Sample ID:	5717712

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	Pass			
ISED RSS-247 ISSUE 2	rass			

March 13, 2023 to March 14, 2023

Prepared By:

Date of Tested:

Checked By:

Verry Buany

Denny Huang Senior Project Engineer

Fanny Huang Engineer Project Associate

Approved By:

Hephentino

Stephen Guo Operations Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)		
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)		
Duty Cycle	±0.028%		
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%		
Carrier Frequency Separation	±1.9%		
Maximum Conducted Output Power	±0.743 dB		
Number of Hopping Channel	±1.9%		
Time of Occupancy	±0.028%		
Conducted Band-edge Compliance	±1.328 dB		
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)		
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximate 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Bluetooth Headset
Model		OTE180R ,OTE180L
Power Supply	Battery	DC 3.7V

Frequency Range:	2402 MHz to 2480 MHz		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK, II/4DQPSK, 8DPSK		

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.3. MAXIMUM POWER

OTE180L (Left Earbud)							
Test Mode Frequency (MHz) Channel Number Maximum Peak Output Power (dBm) Maximum EIR (dBm)							
GFSK	2402 ~ 2480	0-78[79]	15.48	13.15			
8DPSK	2402 ~ 2480	0-78[79]	13.90	11.57			

OTE180R (Right Earbud)							
Test ModeFrequency (MHz)Channel NumberMaximum Peak Output Power (dBm)Maximum ElF (dBm)							
GFSK	2402 ~ 2480	0-78[79]	15.65	13.57			
8DPSK	2402 ~ 2480	0-78[79]	14.22	12.14			

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK-DH5	Hopping	
8DPSK-3DH5	Hopping	

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)		
	DH1	27		
GFSK	DH3	183		
	DH5	339		
	2-DH1	54		
∏/4-DQPSK	2-DH3	367		
	2-DH5	679		
	3-DH1	83		
8DPSK	3-DH3	552		
	3-DH5	1021		

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Software Airoha.Tool.Kit								
Modulation Type	Transmit Antenna	Test Software setting value						
	Number	CH 00	CH 39	CH 78				
GFSK	1	61 61 61						
8DPSK	1	57	57 57 57					

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna- Left Earbud	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	LDS Antenna	-2.33
Antenna-Right Earbud	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	1 2402-2480		-2.08

Test Mode	Transmit and Receive Mode	Description				
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receivin antenna.				
∏/4-DQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.				
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.				

Note: The value of the antenna gain was declared by customer.

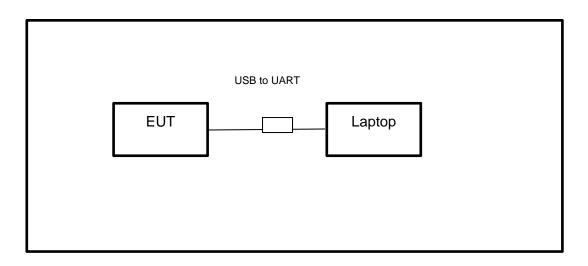
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42	/
2	UART	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	

TEST SETUP

The EUT can work in an engineer mode with software through a laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING EQUIPMENT AND SOFTWARE USED									
	R&S TS 8997 Test System								
Equipment	Manufacturer		Model	No.	Serial No.	Last Cal.		Due. Date	
Power sensor, Power M	leter	R&S	5	OSP1	20	100921	Apr.02,2	2022	Apr.01,2023
Vector Signal Generat	tor	R&S	3	SMBV1	00A	261637	Oct.17, 2	2022	Oct.16, 2023
Signal Generator		R&S	6	SMB10	00A	178553	Oct.17, 2	2022	Oct.16, 2023
Signal Analyzer		R&S	6	FSV4	10	101118	Oct.17, 2	2022	Oct.16, 2023
				Softwar	е				
Description		1	Manut	facturer		Nam	e		Version
For R&S TS 8997 Test	Syste	em Ro	hde 8	Schwar	z	EMC	32 .		10.60.10
	Tonsend RF Test System								
Equipment	Man	ufacturer	Мо	del No.	No. Serial No.		Last Cal.		Due. Date
Wideband Radio Communication Tester		R&S	CN	1W500		155523	Oct.17,	2022	Oct.16, 2023
Wireless Connectivity Tester		R&S	CM	IW270	120	1.0002N75- 102	Sep.28,	2022	Sep.27, 2023
PXA Signal Analyzer	Ke	eysight	NS	9030A	ΜY	/55410512	Oct.17,	2022	Oct.16, 2023
MXG Vector Signal Generator	Ke	eysight	N5	5182B	MΥ	/56200284	Oct.17,	2022	Oct.16, 2023
MXG Vector Signal Generator	Ke	eysight	N5	5172B	MΥ	/56200301	Oct.17,	2022	Oct.16, 2023
DC power supply	Ke	eysight	E3	8642A	MΥ	⁄55159130	Oct.17, 2022		Oct.16, 2023
Temperature & Humidity Chamber	SAN	MOOD	30-CC-2		2088	Oct.17,	2022	Oct.16, 2023	
	Software								
Description		Manufac	turer	Name Versior			Version		
Tonsend SRD Test Syst	tem	Tonse	nd	JS1120-3 RF Test System 2.6.77.0518					

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.17, 2022	Oct.16, 2023
Artificial Mains	ENV216	101983	Oct.17, 2022	Oct.16, 2023	
	NSLK 8126	8126465	Oct.17, 2022	Oct.16, 2023	
Software					
	Description		Manufacturer	Name	Version
Test Software for Conducted Emissions			Farad	EZ-EMC	Ver. UL-3A1

Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.17, 2022	Oct.16, 2023
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.17, 2022	Oct.16, 2023
EMI Measurement Receiver	R&S	ESR26	101377	Oct.17, 2022	Oct.16, 2023
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.17, 2022	Oct.16, 2023
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.17, 2022	Oct.16, 2023
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.17, 2022	Oct.16, 2023
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.17, 2022	Oct.16, 2023
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01202035	Oct.17, 2022	Oct.16, 2023
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	/	/
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	/	/
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	/	/
Band Reject Filter	Wainwright	WRCJV20- 5120-5150-	2	/	/

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

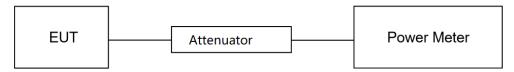
		5350-5380-			
		60SS			
		WRCJV20-			
Band Reject	Wainwright	5440-5470-	1	1	1
Filter	wannwingin	5725-5755-	I	/	/
		60SS			
		WRCJV8-			
Band Reject	Wainwright	2350-2400-	4	1	1
Filter	wainwingin	2483.5-	4	/	/
		2533.5-40SS			
		WRCD5-			
Band Reject		1879-			
Filter	Wainwright	1879.85-	1	/	/
		1880.15-			
		1881-40SS			
		WHJ10-882-			
Notch Filter	Wainwright	980-7000-	1	/	/
		40SS			
Software					
Description			Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

Other Instrument					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.22, 2022	Oct.21, 2023
Barometer	Yiyi	Baro	N/A	Oct.24, 2022	Oct.23, 2023
Attenuator	Agilent	8495B	2814a12853	Oct.18, 2022	Oct.17, 2023

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 ℃	Relative Humidity	51.9%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 3.7V

TEST DATE / ENGINEER

Test Date February 28, 2023 Test By W	Walker Yuan
---------------------------------------	-------------

TEST RESULTS

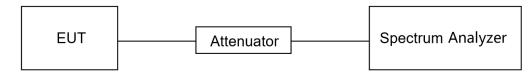
Please refer to section "Test Data" - Appendix C1&C2.

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5	
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

Connect the EUT to the spectrum analyser and use the following settings:

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 ℃	Relative Humidity	51.9%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 3.7V

TEST DATE / ENGINEER

	-	Test Date	February 28, 2023	Test By	Walker Yuan
--	---	-----------	-------------------	---------	-------------

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

Please refer to section "Test Data" - Appendix A1&A2&B1&B2.

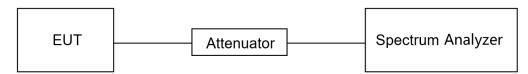
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Span	wide enough to capture the peaks of two adjacent channels	
Detector	Peak	
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.	
VBW	≥RBW	
Trace	Max hold	
Sweep time	Auto couple	

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 ℃	Relative Humidity	51.9%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 3.7V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST DATE / ENGINEER

Test Date February 28, 2023	Test By	Walker Yuan
-----------------------------	---------	-------------

TEST RESULTS

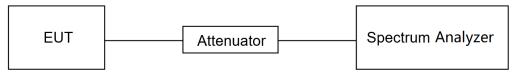
Please refer to section "Test Data" - Appendix D1&D2.

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section Test Item		Limit	
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Number of Hopping Frequency	at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak	
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.	
VBW	≥RBW	
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.	
Trace	Max hold	
Sweep time	Auto couple	

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 ℃	Relative Humidity	51.9%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 3.7V

TEST DATE / ENGINEER

Test Date February 2	8, 2023 Test B	y Walker Yuan
----------------------	----------------	---------------

TEST RESULTS

Please refer to section "Test Data" - Appendix F1&F2.

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

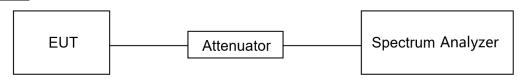
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	1 MHz	
VBW	≥RBW	
Span	Zero span, centered on a hopping channel	
Trace	Max hold	
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel	

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.


For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 ℃	Relative Humidity	51.9%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 3.7V

TEST DATE / ENGINEER

Test Date	February 28, 2023	Test By	Walker Yuan
-----------	-------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix E1&E2.

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

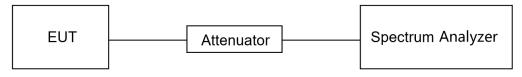
Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


Shan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 ℃	Relative Humidity	51.9%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 3.7V

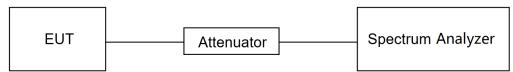
TEST DATE / ENGINEER

h			
Test Date	February 28, 2023	Test By	Walker Yuan

TEST RESULTS

Please refer to section "Test Data" - Appendix G1&G2&H1&H2.

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 ℃	Relative Humidity	51.9%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 3.7V

TEST DATE / ENGINEER

Test Date February 28, 2023 Te	Test By	Walker Yuan
--------------------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix I1&I2.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strer (dBuV/m Quasi-) at 3 m
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	S00 Peak Average 74 54		Average 54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz			
Frequency Magnetic field strength (H-Field) (µA/m) Measurement distance (m)			
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300	
490 - 1705 kHz	63.7/F (F in kHz)	30	
1.705 - 30 MHz	0.08	30	

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
18.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		

Note 1: Certain frequency bands listed in table / and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7- <mark>1</mark> 56.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

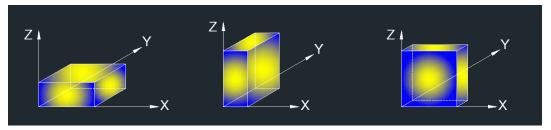
The setting of the spectrum analyser

RBW	1 MHz
	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For Band edge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Horizontal and Vertical have been tested, only the worst data was recorded in the report.

8. All modes and channels have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission 1 GHz-3 GHz: Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes and channels have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission 3 GHz-18 GHz : Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes and channels have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission 9 kHz-30 MHz:

Note:

1.Measurement = Reading Level + Correct Factor.

 $(dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5).$

2. If the Peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3.All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes and channels have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission 18 GHz-26 GHz: Note:

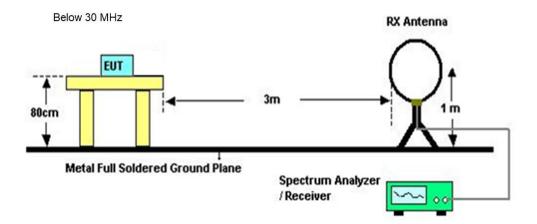
1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

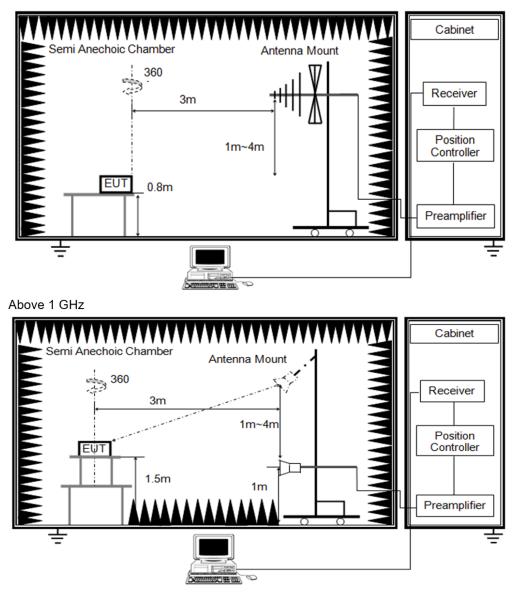
3. Peak: Peak detector.

4. All modes and channels have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission 30MHz-1GHz: Note:


1. Result Level = Read Level + Correct Factor.

2. If the Peak values are less than the QP limit, the QP result is deemed to comply with QP limit.


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

4. All modes and channels have been tested, only the worst data was recorded in the report.

TEST SETUP

Below 1 GHz and above 30 MHz

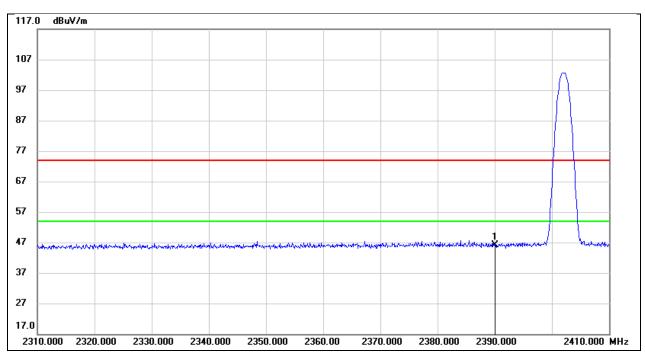
TEST ENVIRONMENT

Temperature	25.3 ℃	Relative Humidity	65%
Atmosphere Pressure	101kPa	Test Voltage	

TEST DATE / ENGINEER

Test Date	February 28, 2023	Test By	Rex Huang
-----------	-------------------	---------	-----------

TEST RESULTS

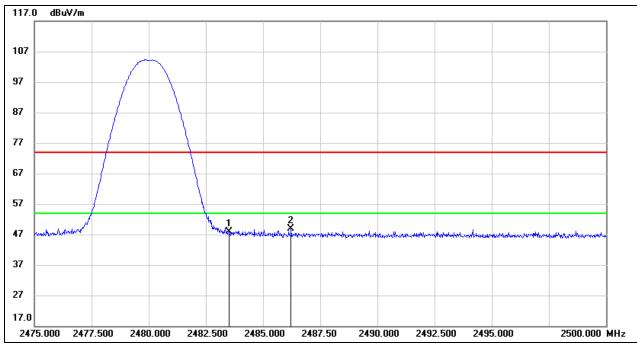

Note: Two model (OTE180R, OTE180L) have been tested, only the worst-case model OTE180R test data recorded in this report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.1. RESTRICTED BANDEDGE

Test Mode:	GFSK PK	Channel:	2402
Polarity:	Horizontal	Test Voltage:	DC 3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.95	32.16	46.11	74.00	-27.89	peak

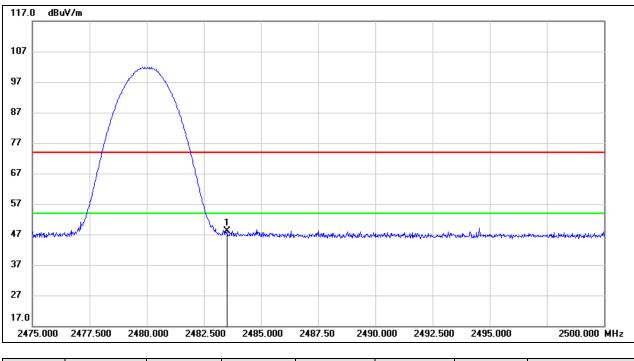


est Mode:	Mode: GFSK PK Channe		2402	
Polarity:	Vertical	Test Voltage:	DC 3.7V	
117.0 dBu¥/m				
107				
7			A	
77				
7				
7				
7				
- manun of the late for the section of the section	ungkasanan geleriket din generaliset kaskat kaskan kan diserte meter meter meter meter meter meter meter meter Ter	handellande van die gewennen van die fande en werde die see die die see die die see die die see die see die van Naam die see die	and the state of the state	
7				
17.0 2310.000 2320.000 2330.	000 2340.000 2350.000 236	60.00 2370.000 2380.000 2	2390.000 2410.000 MH	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.35	32.16	45.51	74.00	-28.49	peak

Test Mode:	GFSK PK	Channel:	2480
Polarity:	Vertical	Test Voltage:	DC 3.7V

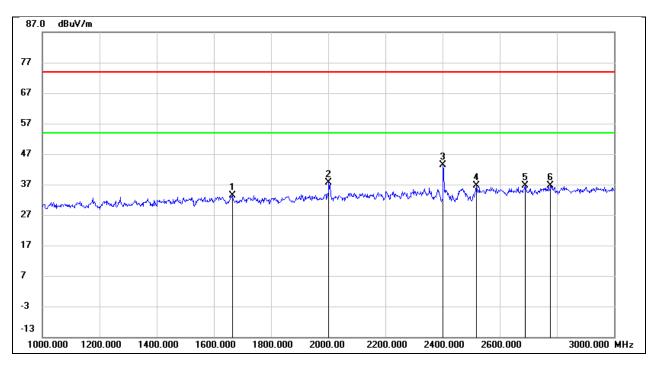
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.45	32.44	47.89	74.00	-26.11	peak
2	2486.225	16.40	32.44	48.84	74.00	-25.16	peak



Fest Mode:	8DPSK PK	Channel:	2402	
Polarity:	Vertical	cal Test Voltage: DC 3.7		
117.0 dBuV/m				
107				
)7			Α	
87				
7				
57				
57				
7 water and the second should be a	an the construction of the const	an ference and the state of the second and the state of the second and the second and the second and the second	nonspringer whom	
37				
27				
	0.000 2340.000 2350.000 236	60.00 2370.000 2380.000	2390.000 2410.000 MH	

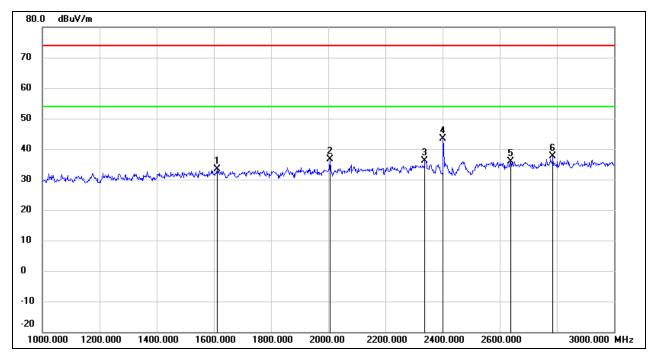
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.45	32.16	45.61	74.00	-28.39	peak

Test Mode:	8DPSK PK	Channel:	2480
Polarity:	Vertical	Test Voltage:	DC 3.7V

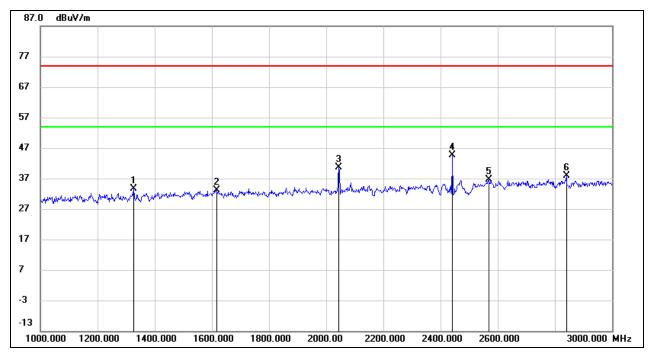


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.58	32.44	48.02	74.00	-25.98	peak

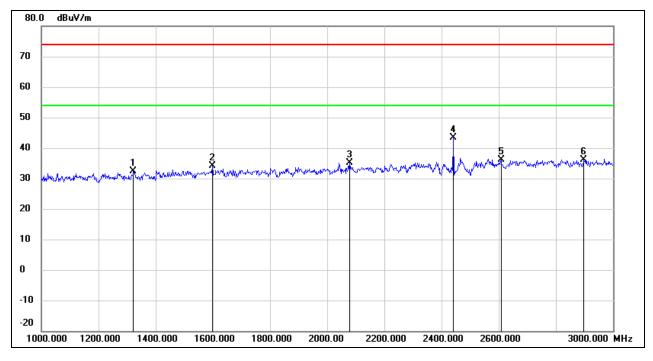
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)


Test Mode:	GFSK	Channel:	2402
Polarity:	Horizontal	Test Voltage:	DC 3.7V

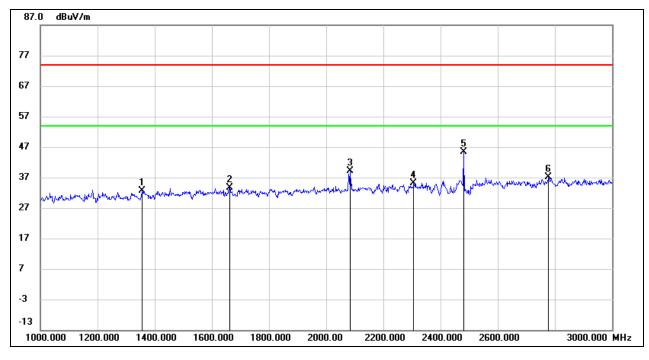
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1666.000	45.64	-12.16	33.48	74.00	-40.52	peak
2	2002.000	48.70	-11.05	37.65	74.00	-36.35	peak
3	2402.000	52.36	-8.99	43.37	74.00	-30.63	peak
4	2518.000	45.13	-8.44	36.69	74.00	-37.31	peak
5	2688.000	44.52	-7.92	36.60	74.00	-37.40	peak
6	2778.000	44.31	-7.66	36.65	74.00	-37.35	peak


Test Mode:	GFSK	Channel:	2402
Polarity:	Vertical	Test Voltage:	DC 3.7V

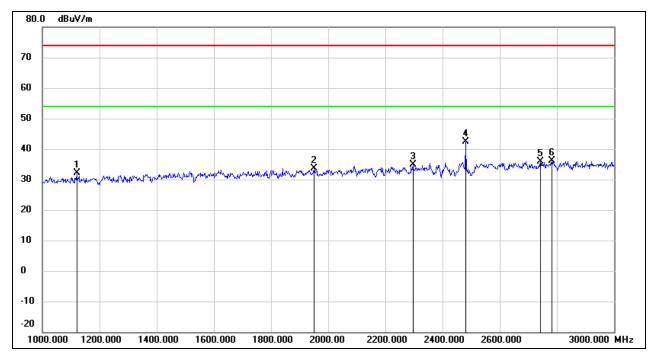
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1612.000	45.62	-12.34	33.28	74.00	-40.72	peak
2	2006.000	47.75	-11.03	36.72	74.00	-37.28	peak
3	2338.000	45.52	-9.32	36.20	74.00	-37.80	peak
4	2402.000	52.27	-8.99	43.28	74.00	-30.72	peak
5	2638.000	44.05	-8.07	35.98	74.00	-38.02	peak
6	2786.000	45.19	-7.63	37.56	74.00	-36.44	peak


Test Mode:	GFSK	Channel:	2441
Polarity:	Horizontal	Test Voltage:	DC 3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1326.000	47.23	-13.52	33.71	74.00	-40.29	peak
2	1616.000	45.49	-12.33	33.16	74.00	-40.84	peak
3	2044.000	51.53	-10.84	40.69	74.00	-33.31	peak
4	2442.000	53.47	-8.79	44.68	74.00	-29.32	peak
5	2568.000	44.98	-8.28	36.70	74.00	-37.30	peak
6	2840.000	45.32	-7.46	37.86	74.00	-36.14	peak

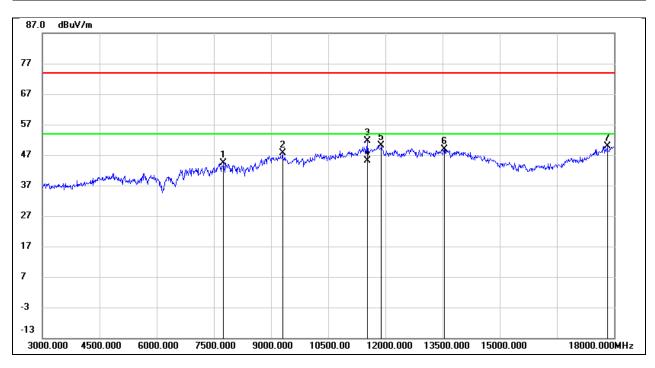

Test Mode:	GFSK	Channel:	2441
Polarity:	Vertical	Test Voltage:	DC 3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1322.000	45.89	-13.54	32.35	74.00	-41.65	peak
2	1598.000	46.46	-12.38	34.08	74.00	-39.92	peak
3	2078.000	45.92	-10.67	35.25	74.00	-38.75	peak
4	2442.000	52.13	-8.79	43.34	74.00	-30.66	peak
5	2608.000	44.29	-8.16	36.13	74.00	-37.87	peak
6	2898.000	43.51	-7.28	36.23	74.00	-37.77	peak


Test Mode:	GFSK	Channel:	2480
Polarity:	Horizontal	Test Voltage:	DC 3.7V

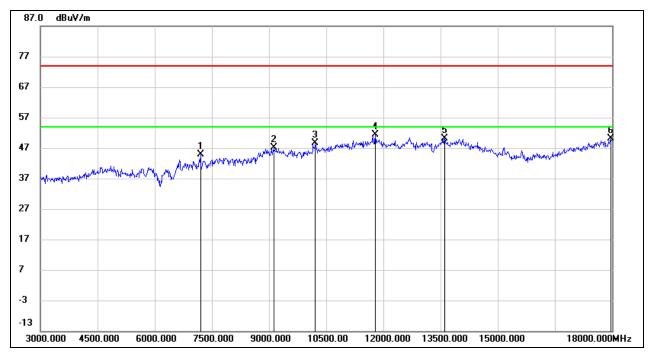
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1356.000	46.11	-13.38	32.73	74.00	-41.27	peak
2	1662.000	45.88	-12.17	33.71	74.00	-40.29	peak
3	2084.000	49.74	-10.63	39.11	74.00	-34.89	peak
4	2306.000	44.73	-9.49	35.24	74.00	-38.76	peak
5	2480.000	53.87	-8.59	45.28	74.00	-28.72	peak
6	2778.000	44.67	-7.66	37.01	74.00	-36.99	peak

Test Mode:	GFSK	Channel:	2480
Polarity:	Vertical	Test Voltage:	DC 3.7V

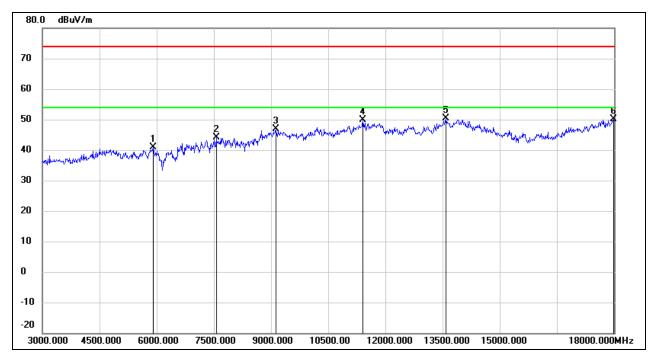


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1120.000	46.64	-14.47	32.17	74.00	-41.83	peak
2	1950.000	44.94	-11.22	33.72	74.00	-40.28	peak
3	2296.000	44.49	-9.54	34.95	74.00	-39.05	peak
4	2480.000	50.92	-8.59	42.33	74.00	-31.67	peak
5	2742.000	43.68	-7.75	35.93	74.00	-38.07	peak
6	2782.000	43.84	-7.63	36.21	74.00	-37.79	peak

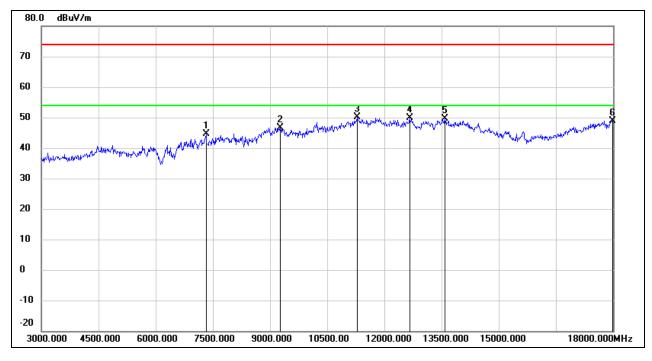
8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	GFSK	Channel:	2402
Polarity:	Horizontal	Test Voltage:	DC 3.7V

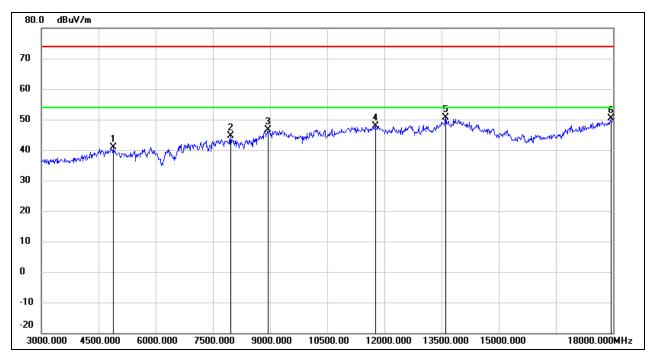
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7755.000	37.96	6.31	44.27	74.00	-29.73	peak
2	9300.000	36.91	10.61	47.52	74.00	-26.48	peak
3	11520.000	34.96	16.65	51.61	74.00	-22.39	peak
4	11520.000	28.45	16.65	45.10	54.00	-8.90	AVG
5	11895.000	32.36	17.68	50.04	74.00	-23.96	peak
6	13545.000	27.82	20.99	48.81	74.00	-25.19	peak
7	17820.000	25.23	24.63	49.86	74.00	-24.14	peak


Test Mode:	GFSK	Channel:	2402
Polarity:	Vertical	Test Voltage:	DC 3.7V

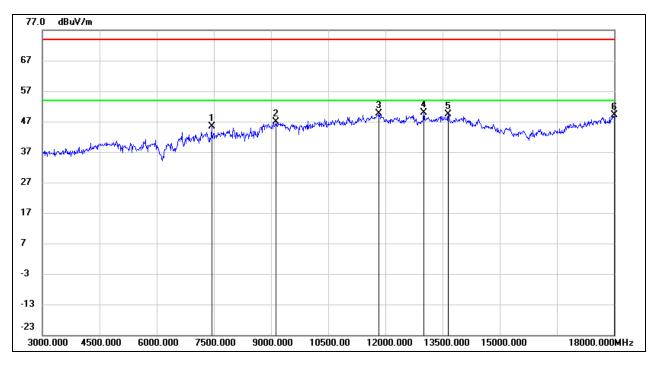
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7200.000	38.34	6.55	44.89	74.00	-29.11	peak
2	9135.000	36.65	10.55	47.20	74.00	-26.80	peak
3	10215.000	36.19	12.43	48.62	74.00	-25.38	peak
4	11790.000	34.06	17.38	51.44	74.00	-22.56	peak
5	13605.000	28.98	21.12	50.10	74.00	-23.90	peak
6	17970.000	24.67	25.51	50.18	74.00	-23.82	peak


Test Mode:	GFSK	Channel:	2441
Polarity:	Horizontal	Test Voltage:	DC 3.7V

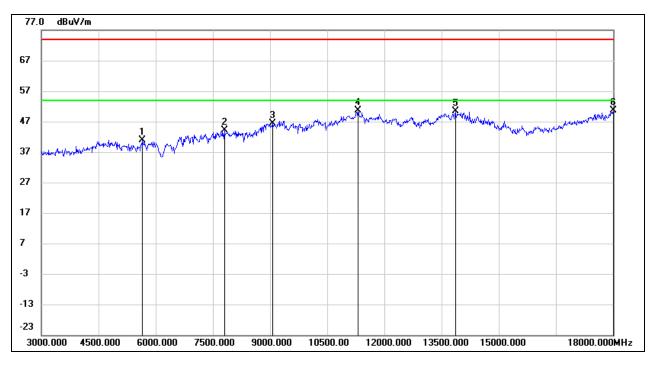
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5910.000	38.88	2.00	40.88	74.00	-33.12	peak
2	7560.000	37.92	6.33	44.25	74.00	-29.75	peak
3	9120.000	36.28	10.53	46.81	74.00	-27.19	peak
4	11415.000	33.62	16.29	49.91	74.00	-24.09	peak
5	13590.000	29.35	21.09	50.44	74.00	-23.56	peak
6	17985.000	24.44	25.60	50.04	74.00	-23.96	peak


Test Mode:	GFSK	Channel:	2441
Polarity:	Vertical	Test Voltage:	DC 3.7V

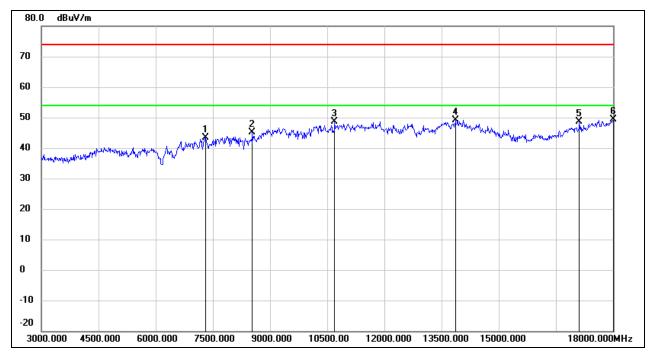
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7320.000	38.21	6.46	44.67	74.00	-29.33	peak
2	9270.000	36.04	10.59	46.63	74.00	-27.37	peak
3	11280.000	34.34	15.80	50.14	74.00	-23.86	peak
4	12660.000	31.82	17.95	49.77	74.00	-24.23	peak
5	13590.000	28.63	21.09	49.72	74.00	-24.28	peak
6	17985.000	23.38	25.60	48.98	74.00	-25.02	peak


Test Mode:	GFSK	Channel:	2480
Polarity:	Horizontal	Test Voltage:	DC 3.7V

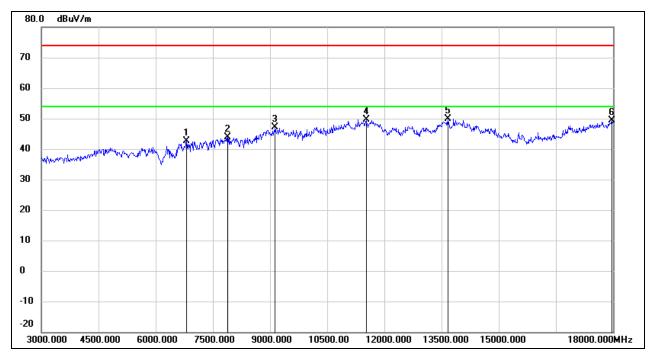
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4890.000	40.81	0.03	40.84	74.00	-33.16	peak
2	7965.000	38.35	6.31	44.66	74.00	-29.34	peak
3	8940.000	36.67	10.04	46.71	74.00	-27.29	peak
4	11760.000	30.51	17.31	47.82	74.00	-26.18	peak
5	13605.000	29.45	21.12	50.57	74.00	-23.43	peak
6	17940.000	25.05	25.34	50.39	74.00	-23.61	peak


Test Mode:	GFSK	Channel:	2480
Polarity:	Vertical	Test Voltage:	DC 3.7V

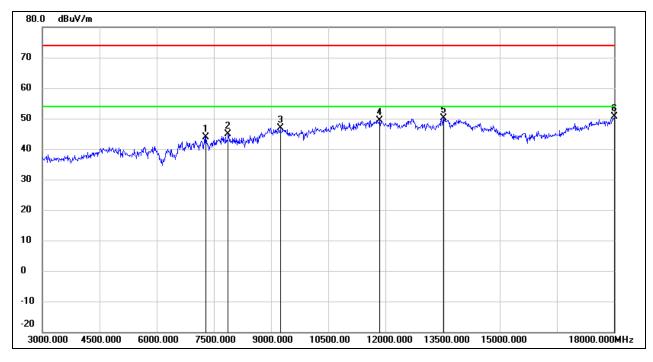
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7440.000	38.92	6.38	45.30	74.00	-28.70	peak
2	9135.000	36.30	10.55	46.85	74.00	-27.15	peak
3	11835.000	32.09	17.51	49.60	74.00	-24.40	peak
4	13005.000	31.13	18.74	49.87	74.00	-24.13	peak
5	13650.000	28.05	21.21	49.26	74.00	-24.74	peak
6	18000.000	23.41	25.69	49.10	74.00	-24.90	peak


Test Mode:	8DPSK	Channel:	2402
Polarity:	Horizontal	Test Voltage:	DC 3.7V

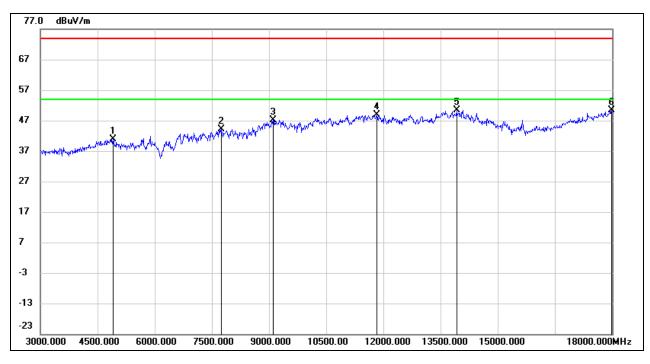
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.68	1.29	40.97	74.00	-33.03	peak
2	7800.000	37.74	6.32	44.06	74.00	-29.94	peak
3	9060.000	35.99	10.51	46.50	74.00	-27.50	peak
4	11310.000	34.73	15.91	50.64	74.00	-23.36	peak
5	13860.000	28.64	21.67	50.31	74.00	-23.69	peak
6	18000.000	24.94	25.69	50.63	74.00	-23.37	peak


Test Mode:	8DPSK	Channel:	2402
Polarity:	Vertical	Test Voltage:	DC 3.7V

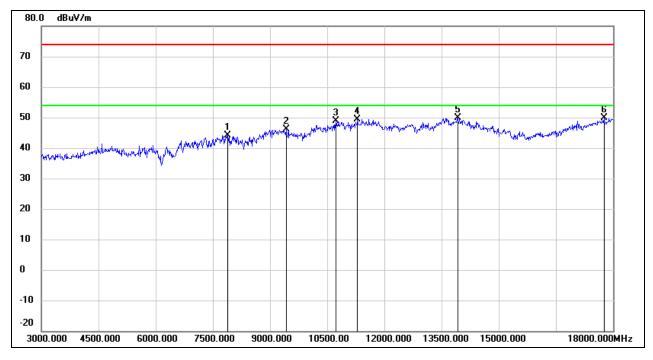
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7305.000	37.03	6.47	43.50	74.00	-30.50	peak
2	8535.000	38.03	7.09	45.12	74.00	-28.88	peak
3	10695.000	35.02	13.68	48.70	74.00	-25.30	peak
4	13860.000	27.34	21.67	49.01	74.00	-24.99	peak
5	17115.000	27.21	21.31	48.52	74.00	-25.48	peak
6	18000.000	23.74	25.69	49.43	74.00	-24.57	peak


Test Mode:	8DPSK	Channel:	2441
Polarity:	Horizontal	Test Voltage:	DC 3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6810.000	36.98	5.76	42.74	74.00	-31.26	peak
2	7890.000	37.53	6.31	43.84	74.00	-30.16	peak
3	9135.000	36.56	10.55	47.11	74.00	-26.89	peak
4	11520.000	32.98	16.65	49.63	74.00	-24.37	peak
5	13665.000	28.67	21.25	49.92	74.00	-24.08	peak
6	17970.000	23.99	25.51	49.50	74.00	-24.50	peak

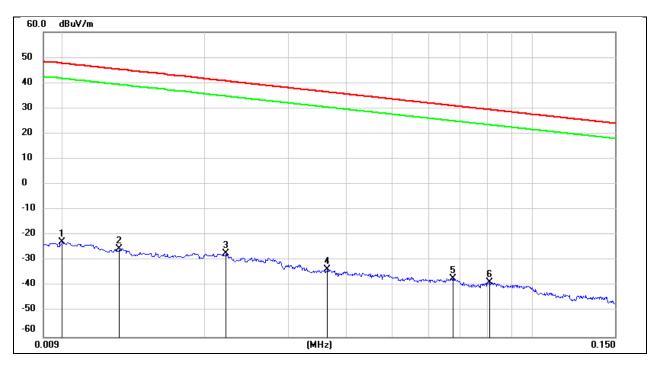

Test Mode:	8DPSK	Channel:	2441
Polarity:	Vertical	Test Voltage:	DC 3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7290.000	37.43	6.48	43.91	74.00	-30.09	peak
2	7875.000	38.49	6.31	44.80	74.00	-29.20	peak
3	9240.000	36.36	10.58	46.94	74.00	-27.06	peak
4	11850.000	31.90	17.56	49.46	74.00	-24.54	peak
5	13530.000	29.18	20.96	50.14	74.00	-23.86	peak
6	18000.000	25.00	25.69	50.69	74.00	-23.31	peak

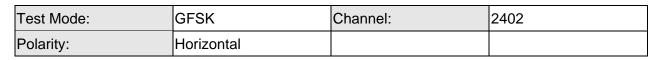

Test Mode:	8DPSK	Channel:	2480
Polarity:	Horizontal	Test Voltage:	DC 3.7V

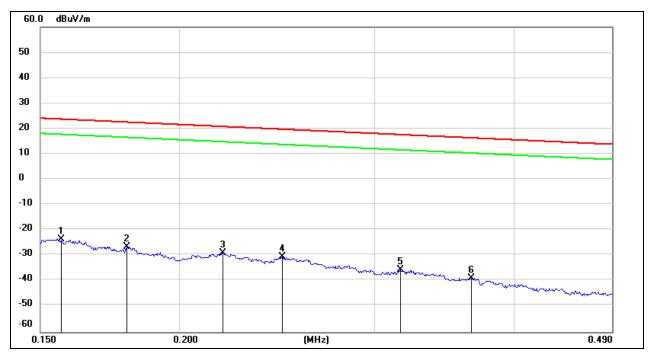
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4905.000	40.67	0.09	40.76	74.00	-33.24	peak
2	7755.000	37.86	6.31	44.17	74.00	-29.83	peak
3	9105.000	36.56	10.53	47.09	74.00	-26.91	peak
4	11835.000	31.27	17.51	48.78	74.00	-25.22	peak
5	13920.000	28.56	21.79	50.35	74.00	-23.65	peak
6	17985.000	24.67	25.60	50.27	74.00	-23.73	peak

Test Mode:	8DPSK	Channel:	2480
Polarity:	Vertical	Test Voltage:	DC 3.7V

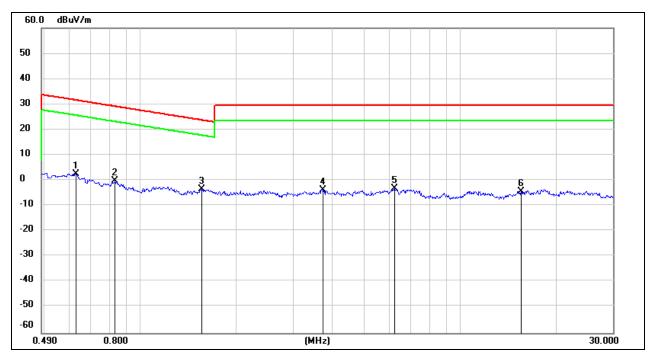


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7890.000	37.87	6.31	44.18	74.00	-29.82	peak
2	9420.000	35.57	10.65	46.22	74.00	-27.78	peak
3	10725.000	35.09	13.79	48.88	74.00	-25.12	peak
4	11295.000	33.52	15.85	49.37	74.00	-24.63	peak
5	13920.000	27.97	21.79	49.76	74.00	-24.24	peak
6	17760.000	25.70	24.27	49.97	74.00	-24.03	peak


8.4. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)

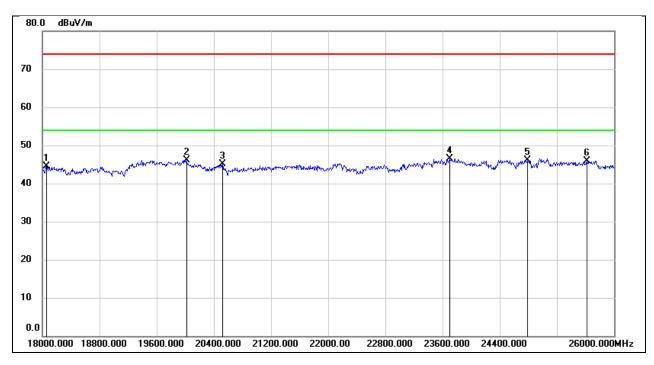

Test Mode:	GFSK	Channel:	2402
Polarity:	Horizontal		

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.01	78.72	-101.4	-22.68	47.6	-74.18	-3.9	-70.28	peak
2	0.0131	75.97	-101.38	-25.41	45.25	-76.91	-6.25	-70.66	peak
3	0.0221	74.13	-101.35	-27.22	40.71	-78.72	-10.79	-67.93	peak
4	0.0364	67.88	-101.42	-33.54	36.38	-85.04	-15.12	-69.92	peak
5	0.0675	64.64	-101.56	-36.92	31.02	-88.42	-20.48	-67.94	peak
6	0.0806	63.18	-101.63	-38.45	29.47	-89.95	-22.03	-67.92	peak

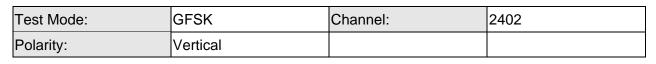


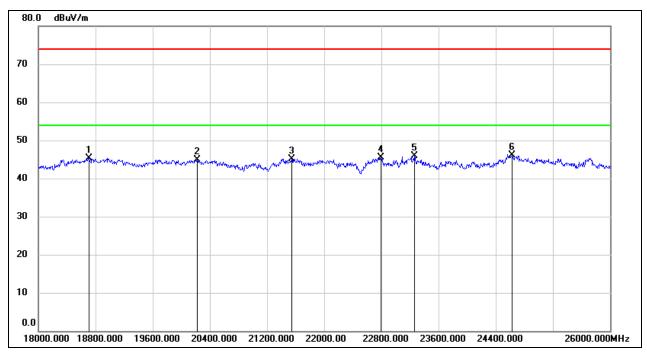
No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1567	77.95	-101.65	-23.7	23.7	-75.2	-27.8	-47.4	peak
2	0.1794	75.27	-101.68	-26.41	22.53	-77.91	-28.97	-48.94	peak
3	0.219	72.77	-101.75	-28.98	20.79	-80.48	-30.71	-49.77	peak
4	0.2474	71.44	-101.8	-30.36	19.73	-81.86	-31.77	-50.09	peak
5	0.3163	66.2	-101.87	-35.67	17.6	-87.17	-33.9	-53.27	peak
6	0.3662	63.08	-101.93	-38.85	16.33	-90.35	-35.17	-55.18	peak

Test Mode:	GFSK	Channel:	2402
Polarity:	Horizontal		

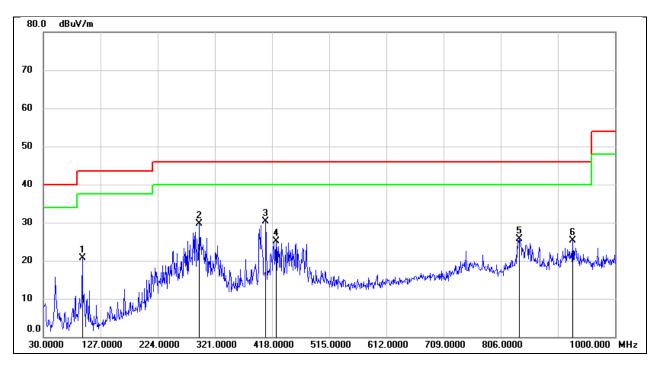


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.6298	64.67	-62.09	2.58	31.62	-48.92	-19.88	-29.04	peak
2	0.8326	62.03	-62.17	-0.14	29.19	-51.64	-22.31	-29.33	peak
3	1.5564	58.68	-62.02	-3.34	23.76	-54.84	-27.74	-27.1	peak
4	3.71	57.7	-61.41	-3.71	29.54	-55.21	-21.96	-33.25	peak
5	6.2445	58.13	-61.32	-3.19	29.54	-54.69	-21.96	-32.73	peak
6	15.4809	56.7	-61	-4.3	29.54	-55.8	-21.96	-33.84	peak

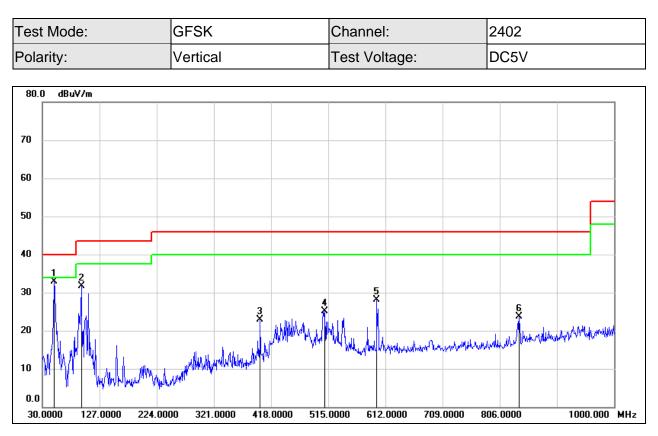

8.5. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)


Test Mode:	GFSK	Channel:	2402
Polarity:	Horizontal		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18056.000	49.99	-5.42	44.57	74.00	-29.43	peak
2	20016.000	51.56	-5.47	46.09	74.00	-27.91	peak
3	20520.000	50.36	-5.33	45.03	74.00	-28.97	peak
4	23704.000	49.61	-3.19	46.42	74.00	-27.58	peak
5	24792.000	48.48	-2.28	46.20	74.00	-27.80	peak
6	25616.000	47.18	-1.24	45.94	74.00	-28.06	peak



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18704.000	50.62	-5.39	45.23	74.00	-28.77	peak
2	20224.000	50.52	-5.60	44.92	74.00	-29.08	peak
3	21544.000	49.76	-4.63	45.13	74.00	-28.87	peak
4	22792.000	49.11	-3.65	45.46	74.00	-28.54	peak
5	23264.000	49.26	-3.36	45.90	74.00	-28.10	peak
6	24624.000	48.49	-2.33	46.16	74.00	-27.84	peak


8.6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)

Test Mode:	GFSK	Channel:	2402
Polarity:	Horizontal	Test Voltage:	DC5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	95.9600	42.23	-21.44	20.79	43.50	-22.71	QP
2	294.8100	45.36	-15.61	29.75	46.00	-16.25	QP
3	407.3299	43.51	-13.20	30.31	46.00	-15.69	QP
4	424.7900	37.93	-12.86	25.07	46.00	-20.93	QP
5	837.0400	32.25	-6.53	25.72	46.00	-20.28	QP
6	928.2200	30.00	-4.79	25.21	46.00	-20.79	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	50.3700	53.61	-20.76	32.85	40.00	-7.15	QP
2	95.9600	53.05	-21.44	31.61	43.50	-11.89	QP
3	399.5700	36.35	-13.37	22.98	46.00	-23.02	QP
4	509.1800	36.32	-11.26	25.06	46.00	-20.94	QP
5	597.4500	37.68	-9.61	28.07	46.00	-17.93	QP
6	838.9800	30.25	-6.49	23.76	46.00	-22.24	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

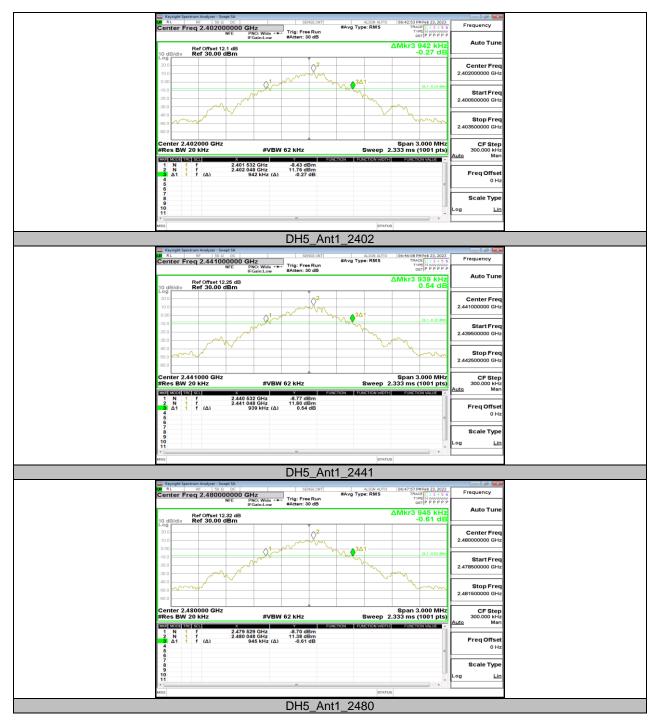
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

Pass


10. TEST DATA FOR OTE180L (Left Earbud)

10.1. APPENDIX A1: 20DB EMISSION BANDWIDTH 10.1.1. Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.942	2401.532	2402.474	PASS
DH5	Ant1	2441	0.939	2440.532	2441.471	PASS
		2480	0.945	2479.529	2480.474	PASS
		2402	1.263	2401.349	2402.612	PASS
3DH5	H5 Ant1	2441	1.296	2440.340	2441.636	PASS
		2480	1.281	2479.340	2480.621	PASS

10.1.2. Test Graphs

10.2. APPENDIX B1: OCCUPIED CHANNEL BANDWIDTH 10.2.1. Test Result

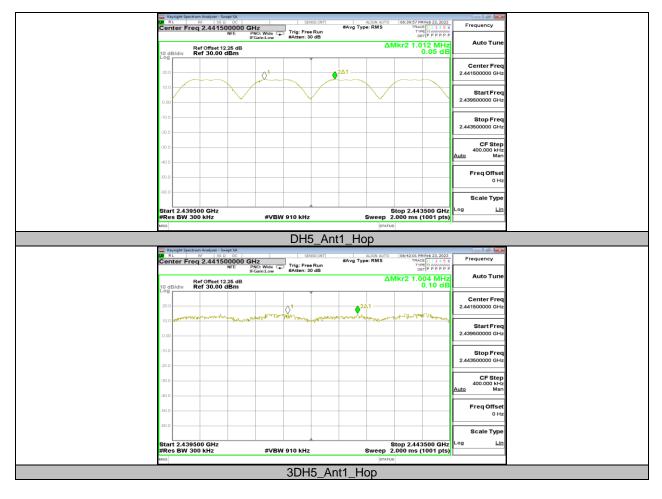
Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
DH5	Ant1	2402	0.88699	2401.5457	2402.4327	PASS
		2441	0.89594	2440.5435	2441.4395	PASS
		2480	0.89757	2479.5416	2480.4392	PASS
3DH5	Ant1	2402	1.1884	2401.3911	2402.5795	PASS
		2441	1.2058	2440.3803	2441.5861	PASS
		2480	1.2171	2479.3755	2480.5926	PASS

10.2.2. Test Graphs

10.3. APPENDIX C1: MAXIMUM CONDUCTED OUTPUT POWER 10.3.1. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	15.45	≤30	PASS
DH5	Ant1	2441	15.48	≤30	PASS
		2480	15.12	≤30	PASS
		2402	13.68	≤20.97	PASS
3DH5	Ant1	2441	13.90	≤20.97	PASS
		2480	13.94	≤20.97	PASS

Test Mode	Antenna	Channel	AVG Result[dBm]	Limit[dBm]
		2402	15.04	
DH5	Ant1	2441	15.12	
		2480	15.09	For reporting
		2402	12.23	purposes only.
3DH5	Ant1	2441	12.36	
		2480	12.39	



10.4. APPENDIX D1: CARRIER FREQUENCY SEPARATION 10.4.1. Test Result

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.012	≥0.025	PASS
3DH5	Ant1	Нор	1.004	≥0.025	PASS

10.4.2. Test Graphs

10.5. APPENDIX E1: TIME OF OCCUPANCY 1

0.5.1. Test	Result
-------------	--------

FHSS Mode								
TestMode	Antenna Channel		Channel [ms]		Limit[s]	Verdict		
DH1	Ant1	Нор	0.374	0.120	<=0.4	PASS		
DH3	Ant1	Нор	1.63	0.261	<=0.4	PASS		
DH5	Ant1	Нор	2.879	0.307	<=0.4	PASS		
3DH1	Ant1	Нор	0.38	0.122	<=0.4	PASS		
3DH3	Ant1	Нор	1.631	0.261	<=0.4	PASS		
3DH5	Ant1	Нор	2.882	0.307	<=0.4	PASS		

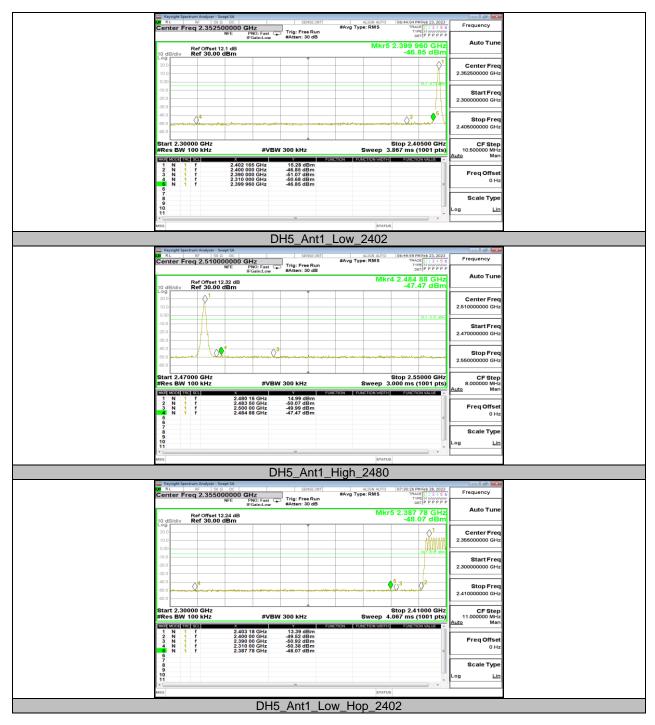
AFHSS Mode								
TestMode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict		
DH1	Ant1	Нор	0.374	0.060	<=0.4	PASS		
DH3	Ant1	Нор	1.63	0.130	<=0.4	PASS		
DH5	Ant1	Нор	2.879	0.154	<=0.4	PASS		
3DH1	Ant1	Нор	0.38	0.061	<=0.4	PASS		
3DH3	Ant1	Нор	1.631	0.130	<=0.4	PASS		
3DH5	Ant1	Нор	2.882	0.154	<=0.4	PASS		

10.5.2. Test Graphs

10.6. APPENDIX F1: NUMBER OF HOPPING CHANNELS 10.6.1. Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

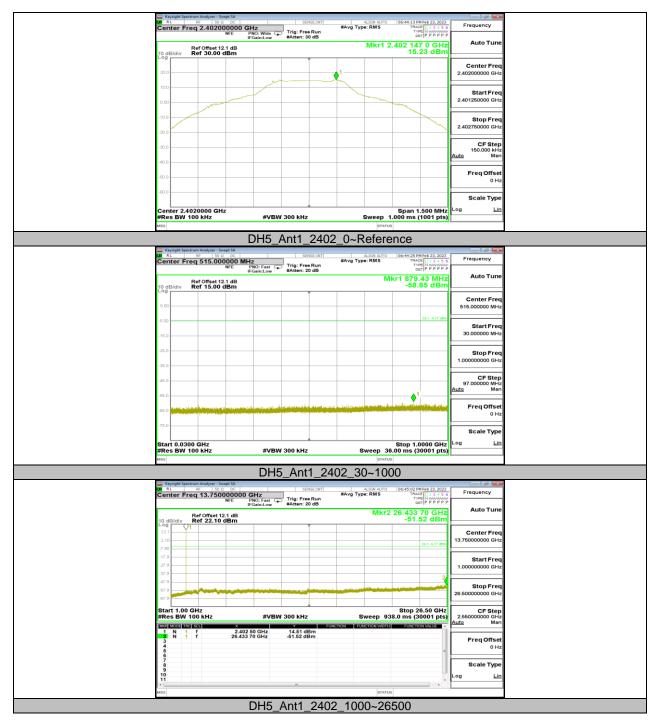
10.6.2. Test Graphs


10.7. APPENDIX G1: BAND EDGE MEASUREMENTS

10.7.1. Test Result

Test Mode	Antenna	ChName	Channel	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	15.28	-46.85	≤-4.72	PASS
DH5	Ant1	High	2480	14.99	-47.47	≤-5.01	PASS
DHD	Anti	Low	Hop_2402	13.39	-48.07	≤-6.61	PASS
		High	Hop_2480	14.03	-47.78	≤-5.97	PASS
	3DH5 Ant1	Low	2402	13.40	-46.53	≤-6.6	PASS
3DH5		High	2480	13.67	-47.91	≤-6.33	PASS
	AILI	Low	Hop_2402	11.00	11.00 -47.51 ≤-9.01	PASS	
		High	Hop_2480	9.71	-48.02	≤-10.29	PASS

10.7.2. Test Graphs



10.8. APPENDIX H1: CONDUCTED SPURIOUS EMISSION 10.8.1. Test Result

Test Mode	Antenna	Channel	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	15.23		PASS
		2402	30~1000	-58.85	≤-4.77	PASS
			1000~26500	-51.52	≤-4.77	PASS
			Reference	15.29		PASS PASS
DH5	Ant1	2441	30~1000	-59.71	≤-4.71	PASS
			1000~26500	-51.17	≤-4.71	PASS
			Reference	14.89		PASS .77 PASS .77 PASS .77 PASS .71 PASS .76 PASS .76 PASS .34 PASS
		2480	30~1000	-59.32	≤-5.11	
			1000~26500	-50.8	≤-5.11	
			Reference	13.24		PASS
		2402	30~1000	-59.58	≤-6.76	PASS
			1000~26500	-51.06	≤-6.76	PASS
			Reference	13.66		PASS
3DH5	Ant1	2441	30~1000	-59.46	≤-6.34	PASS PASS PASS PASS PASS PASS PASS PASS
			1000~26500	-50.73	≤-6.34	
			Reference	13.58		PASS
		2480	30~1000	-59.76	≤-6.42	PASS
			1000~26500	-50.67	≤-6.42	PASS

10.8.2. Test Graphs

