

Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AD02)

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AD02)

02:15:13 PM 09/06/2024

Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AD02)

05:48:09 PM 09/13/2024

Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S02_AB01)

Final_Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(11172)	(upha/iii)	e (dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	(ub/ m)

Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AD02)

Radio Technology = Bluetooth EDR 2, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AD02)

02:56:56 PM 09/06/2024

Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S02_AB01)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e	Limit (dBµ	Margi n	Meas. Time	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n	Corr. (dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)

Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AD02)

Radio Technology = Bluetooth EDR 3, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AD02)

03:37:53 PM 09/06/2024

Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_AD02)

Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_AA01)

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AD02)

of Lovel 2 10 dBm Offset 4 10 dB	DRW 100 kHz			
tt 0 dB SWT 101 ms •	VBW 300 kHz Mode Sweep			Count 200/2
requency Sweep				● 1Pk M
↑ 2.100 dBm			M1[1]	-68.14 c
10-				547.999 10
1 UBM				
) dBm				
) dBm				
dBm				
dBm				
_QP_BELOW_1G				
dBm				
		M1		
1 dBm				
Earth strange giption hash diting pair blacksing half hat it disk at a disk of blacksing and an dis	an daa dadaga da gada gada gada gada da	The second s	en gesellen en de sen de la sen de stander an de stander de sen de s Norder en de sen de s	a ta kun daga panang palap
-to				
ubm				
) dBm				

Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_AD02)

Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_AA01)

Final Result

-	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Measurement range = 30MHz - 1 GHz (S01_AD02)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AD02)

01:00:07 PM 09/06/2024

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AD02)

01:12:03 PM 09/06/2024

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AD02)

01:26:05 PM 09/06/2024

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AD02)

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AD02)

12:37:37 PM 09/06/2024

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AD02)

12:48:29 PM 09/06/2024

5.6.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC
- Radiated Emissions SAC H-Field
- Radiated Emissions SAC up to 1 GHz
- R&S TS8997

5.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.11

5.7.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Lower Band Edge: Measured range: 2310.0 MHz to 2483.5 MHz Upper Band Edge Measured range: 2400.0 MHz to 2500 MHz
- Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: Auto
- Sweeps: Till stable (min. 300, max. 15000)
- Trace: Maxhold

TS8997; Band Edge Conducted

Attenuation of the measurement path

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

5.7.3 TEST PROTOCOL

Ambient temperature: Air Pressure:	25 - 27 °C 1001 - 1010 hPa
Humidity:	40 - 56 %
BT GFSK (1-DH5)	

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-42.4	PEAK	100	17.0	-3.0	39.4
78	2480	2483.5	-45.4	PEAK	100	17.0	-3.0	42.4

BT π/4 DQPSK (2-DH5)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-41.7	PEAK	100	8.6	-11.4	30.3
78	2480	2483.5	-46.4	PEAK	100	8.3	-11.7	34.7

BT 8-DPSK (3-DH5)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-38.3	PEAK	100	8.6	-11.4	26.9
78	2480	2483.5	-45.9	PEAK	100	8.5	-11.5	34.4

BT LE 1 Mbit/s

Channel	Channel	Band	Spurious	Detector	RBW	Ref.	Limit	Margin
No.	Center Frequency	Edge Freg.	Level [dBm]		[kHz]	Level [dBm]	[dBm]	to Limit
	[MHz]	[MHz]	[*==]			[]		[dB]
0	2402	2400.0	-44.5	PEAK	100	9.7	-10.3	34.2
39	2480	2483.5	-47.6	PEAK	100	9.6	-10.4	37.2

BT LE 2 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-32.2	PEAK	100	9.7	-10.3	21.9
39	2480	2483.5	-48.2	PEAK	100	9.8	-10.2	38.0

WLAN b-Mode; 20 MHz; 1 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-40.9	PEAK	100	9.1	-20.9	20.0
11	2462	2483.5	-47.4	PEAK	100	9.8	-20.2	27.2

WLAN g-Mode; 20 MHz; 6 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-34.9	PEAK	100	4.0	-26.0	8.9
11	2462	2483.5	-42.5	PEAK	100	3.4	-26.6	15.9

WLAN n-Mode; 20 MHz; MCS0

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-31.6	PEAK	100	4.2	-25.8	5.8
11	2462	2483.5	-39.4	PEAK	100	3.7	-26.3	13.1

WLAN n-Mode; 40 MHz; MCS0

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400.0	-46.6	PEAK	100	-0.4	-30.4	16.2
9	2452	2483.5	-45.6	PEAK	100	-1.6	-31.6	14.0

WLAN ax-Mode; 20 MHz; MCS0

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-34.1	PEAK	100	3.3	-26.7	7.4
11	2462	2483.5	-46.3	PEAK	100	1.9	-28.1	18.2

WLAN ax-Mode; 40 MHz; MCS0

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400.0	-37.3	PEAK	100	0.9	-29.1	8.2
9	2452	2483.5	-42.4	PEAK	100	-0.5	-30.5	11.9

Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = low, Band Edge = low (S01_AA01)

Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S01_AA01)

Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Band Edge = low (S01_AA01)

Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high (S01_AA01)

Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Band Edge = low (S01_AA01)

Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Band Edge = high (S01_AA01)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Band Edge = low

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Band Edge = high (S01_AA01)

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low, Band Edge = low (S01 AA01)

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = high, Band Edge = high (S01_AA01)

Radio Technology = WLAN b, Operating Frequency = low, Band Edge = low (S01_AD02)

Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S01_AD02)

Radio Technology = WLAN g, Operating Frequency = low, Band Edge = low (S01_AD02)

Radio Technology = WLAN g, Operating Frequency = high, Band Edge = high (S01_AD02)

Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Band Edge = high (S01_AD02)

Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high (S01 AD02)

45.9

46.1

46.2 46.3

46.6

46.6

46.7

46.8

46.9

46.9

47.1

47.4

47.6

<u>-47.</u>6

Radio Technology = WLAN ax 20 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

Radio Technology = WLAN ax 20 MHz, Operating Frequency = high, Band Edge = high (S01_AD02)

Radio Technology = WLAN ax 40 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

-37.3

-37.4

-37.5

-37.6

38.0

-38.0

-38.1

38.1

-38.2

<u>-38.5</u> 38.5

38.6

-38.6

38.6

-38.6

Radio Technology = WLAN ax 40 MHz, Operating Frequency = high, Band Edge = high (S01_AD02)

5.7.5 TEST EQUIPMENT USED

- R&S TS8997

5.8 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.6.5

5.8.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ Spectrum analyser settings: - Detector: Peak

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

Conducted Measurements at antenna ports

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Frequency range: 2350 2500 MHz
- Resolution Bandwidth (RBW): 1000 kHz
- Video Bandwidth (VBW): 3000 kHz
- Trace: Maxhold, Average Power

- Sweeps: 10000
- Sweep Time: coupled
- Detector: Peak, RMS

For the conducted emissions in restricted bands the Value is measured in dBm and then converted to $dB\mu V/m$ as given in KDB 558074:

1. Measure the conducted output power in dBm.

- 2. Add the maximum antenna gain in dBi. (Included in measurement result by offset)
- 3. Add the appropriate ground reflection factor (0 for measured range)
 - 6 dB for frequencies \leq 30 MHz;
 - 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and
 - 0 dB for frequencies > 1000 MHz).

4. Convert the resultant EIRP level to an equivalent electric field strength level using the following relationship:

 $E = EIRP - 20 \log D + 104.8$

Where E is the electric field strength in $dB\mu V/m$,

EIRP is the equivalent isotropically radiated power in dBm

D is the specified measurement distance in m

Value [dB μ V/m] = Measured value [dBm] (including gain and ground reflection factor) – 20 log D + 104.8

5.8.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Sub	part C, §15.20	9, Radiated Emission	Limits
Frequency in MHz	Limit (µV/m)	Measurement	Limits (dBµV/m

Frequency in MHz	Limit (µV/m)	distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.8.3 TEST PROTOCOL

Ambient temperature: 22-26 °C Air Pressure: 1005–1007 hPa Humidity: 40-45 % BT GFSK (1-DH5)

Applied duty cycle correction (AV): 2.3 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2480	2483.5	51.2	PEAK	1000	74.0	22.8
radiated	2480	2483.5	40.1	AV	1000	54.0	13.9
conducted	2402	2390	64.1	PEAK	1000	74	9.9
conducted	2402	2390	42.7	AV	1000	54	11.3
conducted	2480	2483.5	66.3	PEAK	1000	74.0	7.7
conducted	2480	2483.5	51.4	AV	1000	54.0	2.6

BT π/4 DQPSK (2-DH5)

Applied duty cycle correction (AV): 2.3 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2480	2483.5	53.1	PEAK	1000	74.0	20.9
radiated	2480	2483.5	40.2	AV	1000	54.0	13.8
conducted	2402	2390	51.2	PEAK	1000	74.0	22.8
conducted	2402	2390	41.9	AV	1000	54.0	12.1
conducted	2480	2483.5	65.8	PEAK	1000	74.0	8.2
conducted	2480	2483.5	48.4	AV	1000	54.0	5.6

BT 8-DPSK (3-DH5)

Applied duty cycle correction (AV): 2.3 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2480	2483.5	56.4	PEAK	1000	74.0	17.6
radiated	2480	2483.5	40.2	AV	1000	54.0	13.8
conducted	2402	2390	52.9	PEAK	1000	74.0	21.1
conducted	2402	2390	42.4	AV	1000	54.0	11.6
conducted	2480	2483.5	66.2	PEAK	1000	74.0	7.8
conducted	2480	2483.5	50.2	AV	1000	54.0	3.8

BT LE 1 Mbit/s Applied duty cycle correction (AV): 4.2 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2480	2483.5	51.0	PEAK	1000	74.0	23.0
radiated	2480	2483.5	42.2	AV	1000	54.0	11.8
conducted	2402	2390	57.7	PEAK	1000	74.0	16.3
conducted	2402	2390	42.3	AV	1000	54.0	11.7
conducted	2480	2483.5	61.1	PEAK	1000	74.0	12.9
conducted	2480	2483.5	46.7	AV	1000	54.0	7.3

BT LE 2 Mbit/s

Applied duty cycle correction (AV): 7.3 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2480	2483.5	51.0	PEAK	1000	74.0	23.0
radiated	2480	2483.5	45.3	AV	1000	54.0	8.7
conducted	2402	2390	54.2	PEAK	1000	74.0	19.8
conducted	2402	2390	38.4	AV	1000	54.0	15.6
conducted	2480	2483.5	60.6	PEAK	1000	74.0	13.4
conducted	2480	2483.5	51.9	AV	1000	54.0	2.1

WLAN b-Mode; 20 MHz; 1 Mbit/s Applied duty cycle correction (AV): 0 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2462	2483.5	50.5	PEAK	1000	74.0	23.5
radiated	2462	2483.5	37.4	AV	1000	54.0	16.6
conducted	2412	2390	56.8	PEAK	1000	74.0	17.2
conducted	2412	2390	48.9	AV	1000	54.0	5.1
conducted	2462	2483.5	57.3	PEAK	1000	74.0	16.7
conducted	2462	2483.5	50.3	AV	1000	54.0	3.7

Meas.	Ćh.	Band	Spurious	Detec-	RBW	Limit	Margin
Method	Center	Edge	Level	tor	[kHz]	[dBµV/m]	to Limit
	Freq.	Freq.	[dBµV/m]			_	[dB]
	[MHz]	[MHz]	-				
radiated	2462	2483.5	51.0	PEAK	1000	74.0	23.0
radiated	2462	2483.5	37.4	AV	1000	54.0	16.6
conducted	2412	2390.0	69.5	PEAK	1000	74.0	4.5
conducted	2412	2390.0	49.3	AV	1000	54.0	4.7
conducted	2417	2390.0	71.5	PEAK	1000	74.0	2.5
conducted	2417	2390.0	50.4	AV	1000	54.0	3.6
conducted	2422	2390.0	72.6	PEAK	1000	74.0	1.4
conducted	2422	2390.0	51.2	AV	1000	54.0	2.8
conducted	2432	2390.0	69.6	PEAK	1000	74.0	4.4
conducted	2432	2390.0	52.3	AV	1000	54.0	1.7
conducted	2442	2483.5	69.7	PEAK	1000	74.0	4.3
conducted	2442	2483.5	52.5	AV	1000	54.0	1.5
conducted	2447	2483.5	71.3	PEAK	1000	74.0	2.7
conducted	2447	2483.5	51.3	AV	1000	54.0	2.7
conducted	2452	2483.5	68.8	PEAK	1000	74.0	5.2
conducted	2452	2483.5	50.5	AV	1000	54.0	3.5
conducted	2457	2483.5	70.7	PEAK	1000	74.0	3.3
conducted	2457	2483.5	50.4	AV	1000	54.0	3.6
conducted	2462	2483.5	70.6	PEAK	1000	74.0	3.4
conducted	2462	2483.5	49.3	AV	1000	54.0	4.7

WLAN g-Mode; 20 MHz; 6 Mbit/s Applied duty cycle correction (AV): 0 dB

WLAN n-Mode; 20 MHz; MCS0 Applied duty cycle correction (AV): 0 dB

, ipplied ddey			0 48				
Meas.	Ch.	Band	Spurious	Detec-	RBW	Limit	Margin
Method	Center	Edge	Level	tor	[kHz]	[dBuV/m]	to Limit
	Frea.	Freg.	[dBuV/m]				[dB]
	[MHz]	[MHz]	[C
radiated	2462	2483.5	51.2	PEAK	1000	74.0	22.8
radiated	2462	2483.5	37.4	AV	1000	54.0	16.6
conducted	2412	2390.0	73.0	PEAK	1000	74.0	1.0
conducted	2412	2390.0	51.0	AV	1000	54.0	3.0
conducted	2417	2390.0	72.6	PEAK	1000	74.0	1.4
conducted	2417	2390.0	52.1	AV	1000	54.0	1.9
conducted	2432	2390.0	70.7	PEAK	1000	74.0	3.3
conducted	2432	2390.0	49.7	AV	1000	54.0	4.3
conducted	2447	2483.5	70.2	PEAK	1000	74.0	3.8
conducted	2447	2483.5	52.7	AV	1000	54.0	1.3
conducted	2452	2483.5	70.8	PEAK	1000	74.0	3.2
conducted	2452	2483.5	51.9	AV	1000	54.0	2.1
conducted	2457	2483.5	71.2	PEAK	1000	74.0	2.8
conducted	2457	2483.5	51.8	AV	1000	54.0	2.2
conducted	2462	2483.5	70.9	PEAK	1000	74.0	3.1
conducted	2462	2483.5	49.4	AV	1000	54.0	4.6

WLAN n-Mode; 40 MHz; MCS0 Applied duty cycle correction (AV): 0 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2452	2483.5	51.2	PEAK	1000	74.0	22.8
radiated	2452	2483.5	37.5	AV	1000	54.0	16.5
conducted	2422	2390.0	67.0	PEAK	1000	74.0	7.0
conducted	2422	2390.0	49.9	AV	1000	54.0	4.1
conducted	2442	2483.5	72.1	PEAK	1000	74.0	1.9
conducted	2442	2483.5	50.1	AV	1000	54.0	3.9
conducted	2447	2483.5	71.2	PEAK	1000	74.0	2.8
conducted	2447	2483.5	51.1	AV	1000	54.0	2.9
conducted	2452	2483.5	69.4	PEAK	1000	74.0	4.6
conducted	2452	2483.5	50.7	AV	1000	54.0	3.3

WLAN ax-Mode; 20 MHz; MCS0 Applied duty cycle correction (AV): 0 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
conducted	2412	2390.0	73.0	PEAK	1000	74.0	1.0
conducted	2412	2390.0	51.4	AV	1000	54.0	2.6
conducted	2422	2390.0	72.8	PEAK	1000	74.0	1.2
conducted	2422	2390.0	50.0	AV	1000	54.0	4.0
conducted	2432	2390.0	72.5	PEAK	1000	74.0	1.5
conducted	2432	2390.0	50.4	AV	1000	54.0	3.6
conducted	2437	2390.0	71.7	PEAK	1000	74.0	2.3
conducted	2437	2390.0	51.5	AV	1000	54.0	2.5
conducted	2442	2483.5	70.3	PEAK	1000	74.0	3.7
conducted	2442	2483.5	52.5	AV	1000	54.0	1.5
conducted	2452	2483.5	70.9	PEAK	1000	74.0	3.1
conducted	2452	2483.5	50.5	AV	1000	54.0	3.5
conducted	2457	2483.5	72.8	PEAK	1000	74.0	1.2
conducted	2457	2483.5	49.5	AV	1000	54.0	4.5
conducted	2462	2483.5	64.6	PEAK	1000	74.0	9.4
conducted	2462	2483.5	49.9	AV	1000	54.0	4.1

WLAN ax-Mode; 40 MHz; MCS0 Applied duty cycle correction (AV): 0 dB

Meas. Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
conducted	2422	2390.0	72.9	PEAK	1000	74.0	1.1
conducted	2422	2390.0	51.9	AV	1000	54.0	2.1
conducted	2427	2390.0	72.1	PEAK	1000	74.0	1.9
conducted	2427	2390.0	52.5	AV	1000	54.0	1.5
conducted	2447	2483.5	72.0	PEAK	1000	74.0	2.0
conducted	2447	2483.5	51.3	AV	1000	54.0	2.7
conducted	2452	2483.5	71.1	PEAK	1000	74.0	2.9
conducted	2452	2483.5	52.2	AV	1000	54.0	1.8

Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Final_Result

mai_ncoun											
Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e	Limit (dBµ	Margi n	Meas. Time	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n	Corr. (dB/
. ,		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2484.408	3	37.8	54.00	16.19	1000.0	1000.000	150.0	V	35.0	105.0	7.8
2484.408	3 51.2		74.00	22.79	1000.0	1000.000	150.0	V	35.0	105.0	7.8

Radio Technology = Bluetooth BDR, Operating Frequency = low/high, Band Edge = low/high (S01_AA01)

07:55:53 PM 03/12/2024

Note: The offset of 2 dB, representing the antenna gain, is 2.1 dB too low. As compensation, an additional 2.1 dB were added to the result in the result table of the previous chapter. Path compensation is considered in the transducer factor.

Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high (S02_AB01)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.830		37.9	54.00	16.08	1000.0	1000.000	150.0	V	-93.0	-7.0	7.8
2483.830	53.1		74.00	20.86	1000.0	1000.000	150.0	V	-93.0	-7.0	7.8

Radio Technology = Bluetooth EDR 2, Operating Frequency = low/high, Band Edge = low/high (S01_AA01)

07:52:43 PM 03/12/2024

Note: The offset of 2 dB, representing the antenna gain, is 2.1 dB too low. As compensation, an additional 2.1 dB were added to the result in the result table of the previous chapter. Path compensation is considered in the transducer factor.

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.583		37.9	54.00	16.09	1000.0	1000.000	150.0	Н	-75.0	88.0	7.8
2483.583	56.4		74.00	17.56	1000.0	1000.000	150.0	Н	-75.0	88.0	7.8

Radio Technology = Bluetooth EDR 3, Operating Frequency = low/high, Band Edge = low/high (S01_AA01)

07:49:45 PM 03/12/2024

Note: The offset of 2 dB, representing the antenna gain, is 2.1 dB too low. As compensation, an additional 2.1 dB were added to the result in the result table of the previous chapter. Path compensation is considered in the transducer factor.

Final_Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2483.510		38.0	54.00	16.03	1000.0	1000.000	150.0	V	-156.0	6.0	7.8
2483.510	51.0		74.00	23.02	1000.0	1000.000	150.0	V	-156.0	6.0	7.8
2483.680		38.0	54.00	16.04	1000.0	1000.000	150.0	Н	-173.0	78.0	7.8
2483.680	50.6		74.00	23.36	1000.0	1000.000	150.0	Н	-173.0	78.0	7.8

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low/high, Band Edge = low/high (S01_AA01)

07:58:40 PM 03/12/2024

Note: The offset of 2 dB, representing the antenna gain, is 2.1 dB too low. As compensation, an additional 2.1 dB were added to the result in the result table of the previous chapter. Path compensation is considered in the transducer factor.

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = high, Band Edge = high (S02_AC02)

Final_Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2483.510		38.0	54.00	16.05	1000.0	1000.000	150.0	V	33.0	105.0	7.8
2483.510	50.9		74.00	23.08	1000.0	1000.000	150.0	V	33.0	105.0	7.8
2483.680		37.9	54.00	16.07	1000.0	1000.000	150.0	V	141.0	90.0	7.8
2483.680	51.0		74.00	22.99	1000.0	1000.000	150.0	V	141.0	90.0	7.8

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low, Band Edge = low (S01_AD02)

11:40:46 24.10.2024

Note: Antenna gain is considered in the offset, Path compensation is considered in the transducer factor.

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = high, Band Edge = high (S01_AD02)

06:31:29 PM 09/13/2024

Note: Antenna gain is considered in the offset, Path compensation is considered in the transducer factor.

Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S02_AC02)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.510		37.4	54.00	16.58	1000.0	1000.000	150.0	Н	-10.0	6.0	7.8
2483.510	50.5		74.00	23.47	1000.0	1000.000	150.0	Н	-10.0	6.0	7.8

Radio Technology = WLAN b, Operating Frequency = low, Band Edge = low (S01_AD02)

Date: 3.JUL.2024 17:48:13

Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S01_AD02)

Date: 3.JUL.2024 17:58:36

Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN g, Operating Frequency = high, Band Edge = high (S02_AC02)

Final_Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2483.510		37.4	54.00	16.58	1000.0	1000.000	150.0	Н	23.0	94.0	7.8
2483.510	51.0		74.00	23.02	1000.0	1000.000	150.0	Н	23.0	94.0	7.8

Radio Technology = WLAN g, Operating Frequency = low, Band Edge = low (S01_AD02)

Date: 11.JUL.2024 14:20:50

TX on 2412 MHz. Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 14:28:56

TX on 2417 MHz Note: Offset includes antenna gain and path attenuation.

Spectru	ım											T T
Ref Lev Att SGL Cou	rel : nt 51	22.00 21 000/50	dBm Offset : D dB SWT DOO	L4.50 dB ∈ 20.9 μs ∈	RBW 1 MHz VBW 3 MHz	: : Mo	ode A	uto FFT				
Controlled	by	EMC32	2 🔵 1 Pk Max 🌒 2 P	lm AvgPwr								
10 dBm—					[~~~~	7	—м 	1[1] 2[2]			2.	-22.63 dBi 390000 GH -44.12 dBi
						- N		-1-1			2.	390000 GH
0 dBm—	+											
-10 dBm-			MR	m	N			~				
-20 dBm-	COTO			~~~	1/	- 1						
20 d8m-	1	GCTED			1/			- ·	1			
FCC_AV_R	ESTR	RICTED			1						ha	
-50 dBm-	×		-						\rightarrow		· · <u>– –</u>	
-60 dBm-					_							
-70 dBm-												
05.0.40					1001						0	150.0101
CF 2.428	GH	IZ			1001	pts					span	150.0 MHz
Marker			×			-	-			-		•
Type F	ket	Irc	X-value	20.042	Y-value		Func	tion		Func	tion Resu	IT
M2		1	2.	39 GHZ	-22.03 GB	m						
M3		2	2.38	99 GHz	-22 63 dB	m						
M4		2	2.38	99 GHz	-44.12 dB	m						
)[eady				11.07.2024

Date: 11.JUL.2024 14:33:33

TX on 2422 MHz

Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 14:37:01

TX on 2432 MHz Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN g, Operating Frequency = high, Band Edge = high (S01_AD02)

Date: 11.JUL.2024 14:38:10

TX on 2442 MHz Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 14:40:29

TX on 2447 MHz Note: Offset includes antenna gain and path attenuation.

Spectrum									
Ref Level 🗄	22.00 d	Bm Offset 14	.50 dB 😑	RBW 1 MHz	2				
Att	20	dB SWT 2	:0.9 µs 👄	VBW 3 MH	2 Mode A	uto FFT			
SGL Count 5	000/50	00							
Controlled by	EMC32	●1Pk Max●2Rm	i AvgPwr						
					M	1[1]	~	-	26.45 dBm
						prov	~	2.4	83500 GHz
10 dBm					M	2[7]~~~	\sim		44.87 dBm
0 40						. //	. //	2.4	83500 GHz
U dBm									
10 dBm						VI	1 lh		
-10 0011							100		
-20 dBm						μ		MA .	
FCC_PK_RESTR	RICTED_	BANDS		~				• ~ ~ • •	
-30 dBm				- A -		W	+	~	h~
				\sim		ł			1 mg
FCC_AV_RESTR	<u>RICTED</u>	BANDS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
		Manager I.							h
-50 dBm									
-60 dBm									
70 40									
-70 dBm									
CE 2 425 CH	17			1001	nte				
GF 2.423 GH	2			1001	. pcs			аран .	130.0 MH2
Marker					1 -				
Type Ref	Irc	x-value		Y-value	Func	tion	Fund	tion Result	
MIL	1	2,4835	GHZ	-20,45 dB	m				
M2	2	2.4835		-96 42 dB	m				
M4	2	2.40333	CH2	-20.42 UB	m				
		2.40000	/ anic	11170 00					
	Л				E F			REP C	1143.55

Date: 11.JUL.2024 14:43:57

TX on 2452 MHz

Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 14:48:33

TX on 2457 MHz Note: Offset includes antenna gain and path attenuation.

Spectrum									
Ref Level Att	22.00 c 20	dBm Offset I dB SWT	14.50 dB ● 20.9 µs ●	RBW 1 M VBW 3 M	Hz Hz Mode	Auto FF	т		<u> </u>
SGL Count	5000/50	00							
Controlled by	/ EMC32	: 🔵 1 Pk Max 🔿 2	2Rm AvgPwr						
						M1[1]		-24.83 0	1Br
10 d8m							h	2.483500	GF
10 dBm-						M2[2]		-46.08 c	IB
0 dBm								2.483500	GF
o abiii							[]]	N	
-10 dBm			_			_			
							[[]		
-20 dBm-						_		IL Ma	
FCC_PK_RES	TRICTED	_BANDS			~	h~ .		1 miles	
-30 dBm						- W	×		_
	TRICTER				~~ V			[\] \	~
FUC_AV_RES	TRICTED	BANUS		ww					-
www	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	same a	~p~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-50 dBm									_
CO dDay		-							
-00 UBIII									_
-70 dBm									
-/o ubiii									
CF 2.425 G	Hz			10	01 pts			Span 150.0 M	H
Marker									
Type Ref	Trc	X-valı	ie	Y-value	Fun	ction	Func	tion Result	
M1	1	2.4	835 GHz	-24.83	dBm				-
M2	2	2.4	835 GHz	-46.08	dBm				
MЗ	1	2.48	335 GHz	-24.63	dBm				
M4	2	2.48	335 GHz	-46.01	dBm				
	1					Boadu		11.07.2024	
								REF C 145051	

Date: 11.JUL.2024 14:50:52

TX on 2462 MHz Note: Offset includes antenna gain and path attenuation.

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.510		37.4	54.00	16.57	1000.0	1000.000	150.0	Н	-113.0	84.0	7.8
2483.510	51.2		74.00	22.81	1000.0	1000.000	150.0	Н	-113.0	84.0	7.8

Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

Date: 11.JUL.2024 15:04:21

TX on 2412 MHz Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 15:10:07

TX on 2417 MHz Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 16:04:40

TX on 2432 MHz Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 15:41:16

TX on 2447 MHz Note: Offset includes antenna gain and path attenuation.

Spectrun	n								
Ref Leve	22.00	dBm Offse	et 14.50 dB	🔵 RBW 1 MHz					
Att	2	odb SWT	20.9 µs	VBW 3 MHz	Mode Auto	FFT			
SGL Count	5000/5	000							
Controlled b	у ЕМСЗ	2 🔵 1 Pk Maxe	●2Rm AvgPw	r					
					M1[1]				-24.61 dBm
					(m		2.	483500 GH2
10 dBm					M2[2]	$\sim\sim\sim$			-43.38 dBn
0 dBm							Ì.	2.4	483500 GH2
0 ubiii							1		
-10 dBm-							Man .		
10 0011					and		1 -0-1	20	
-20 dBm							$\left \right $	- V ~ M	1 2
FCC_PK_RES	TRICTED	_BANDS		~	/			12	
-30 dBm				Val and	/				
				$\sim \sim$				<u> </u>	`
FUC_AV_RES	MA JAA	AND AND	v m						
		~ · · · ·							
-50 dBm-				-					
60 dBm									
-00 00111									
-70 dBm									
CF 2.425 (Hz			1001	pts	I		Span	150.0 MHz
Marker									
Type Re	f Trc	X-va	alue	Y-value	Function	1	Func	tion Resul	t
M1	1	2	.4835 GHz	-24.61 dB	n				-
M2	2	2	.4835 GHz	-43.38 dB	n				
MЗ	1	2	.4841 GHz	-24.45 dB	m				
M4	2	2.4	48335 GHz	-43.31 dB	m				
-					Pead			4.444 (4.145)	11.07.2024
								REF O	

Date: 11.JUL.2024 15:15:53

TX on 2452 MHz Note: Offset includes antenna gain and path attenuation.

Date: 11.JUL.2024 15:20:31

TX on 2457 MHz Note: Offset includes antenna gain and path attenuation.

Spectrum									E.
Ref Level Att SGL Count	22.00 d 20 5000/50	IBm Offset 1 dB SWT 00	4.50 dB 👄 20.9 µs 👄	RBW 1 MH VBW 3 MH	iz Iz Mode	Auto FF	Т		
Controlled by	EMC32	●1Pk Max●2Rr	n AvgPwr						
					P	41[1]		-	24.73 dB
							$\sim\sim\sim$	2.4	83500 GF
10 dBm					P	42[2]) -	45.80 dB
							\sim	2.4	83500 GH
U dBm								1	
10 d0m								1	
-10 UBIII								1	
-20 dBm								h-Mi	
CC_PK_REST	RICTED_	BANDS				イレ			
-30 dBm —								1	m.
					and a				- m
CC_AV_REST	RICTED	BANDS		1 mm	-		~		
my		Mon Mary	my					~	
-50 dBm						+			
-60 dBm						+			
70 - 10									
-/U dBm									
CF 2.425 G	Hz			100	1 pts			Span 1	1 150.0 MHz
Marker									
Type Ref	Trc	X-value		Y-value	Fun	ction	Func	tion Result	
M1	1	2.483	15 GHz	-24.73 d	Bm				
M2	2	2.483	I5 GHz	-45.80 d	Bm				
MЗ	1	2.4833	I5 GHz	-24.34 d	Bm				
M4	2	2.4833	5 GHz	-45.76 d	Bm				
	1					Peady		100 556)	1.07.2024
								REF	

Date: 11.JUL.2024 15:27:26

TX on 2462 MHz Note: Offset includes antenna gain and path attenuation.

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.510		37.5	54.00	16.55	1000.0	1000.000	150.0	Н	-81.0	102.0	7.8
2483.510	51.2		74.00	22.78	1000.0	1000.000	150.0	Н	-81.0	102.0	7.8

Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

TX on 2422 MHz Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high (S01_AD02)

11:24:06 AM 07/12/2024

TX on 2442 MHz

Note: Offset includes antenna gain and path attenuation.

MultiView	Spe	ctrum										
Pof Loval 21	00.dBm	Offeot	14.50 dB								SCI.	
	30 dB	SWT	1 01 ms	· VE	W 3 MHz	Mor	le Auto Sween				Cour	at 5,000/5,000
1 Frequency	Sweep	0111	1101 1110		517 OTHE						• 1Pk Max	e 2Rm AvaPwr
20 dBm						_					M1[1]	-25.95 dBm
												2.483 500 GHz
10 dBm								- marken	my more	many	M2[2]	-44.07 dBm
									r i			2.483 500 GHz
0 dBm								\square				
								//				
-10 dBm												
								11				
-20 dBm								1			M1	MB
CC_PR_RESTRICT	DANDS										ነዉበልሌሎግሳበሳልአ	d
-30 dBm					1 & 1.00	La	I. C. MUM	1			Wheel M	Mitchary .
moundan	men	Autom	Mumstr	mbell	Mr. Maran	пімини	W. W. Ward	/				L
FCQ_AVmRESTRIC	TED_BANDS							1		· · · · · ·	Ma	
								1				
-50 dBm												
-60 dBm												
-70 dBm												
CF 2.425 GHz					100	J1 pt	S	1.	5.0 MHz/		Sp	ban 150.0 MHz
2 Marker Tab	f Tro		V_V-d	110			V-Value		Euroction		Eupetion D	acult
M1	1		2.483	5 GH	z	-2	25.95 dBm		ancuon		Function R	Louit
M2	2	_	2.483	5 GH	z	-4	14.07 dBm					
M3 M4	1	2	2.486 3	5 GH	Z 7	-2	24.02 dBm 14 07 dBm					
L 1914	4		2.403	, on	2							- 2024-07-12
										Ready		11:09:51

11:09:52 AM 07/12/2024

10:55:20 AM 07/12/2024

TX on 2452 MHz Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN ax 20 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

01:00:08 PM 07/12/2024

TX on 2412 MHz Note: Offset includes antenna gain and path attenuation.

12:14:38 PM 07/12/2024

TX on 2422 MHz Note: Offset includes antenna gain and path attenuation.

01:09:11 PM 07/12/2024

01:29:00 PM 07/12/2024

TX on 2437 MHz Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN ax 20 MHz, Operating Frequency = high, Band Edge = high (S01_AD02)

Date: 13.SEP.2024 17:38:31

Note: The offset of 9.8 dB, representing the antenna gain and path compensation, is 4.7 dB too low. As compensation, an additional 4.7 dB were added to the result in the result table of the previous chapter.

01:15:02 PM 07/12/2024

TX on 2447 MHz Note: Offset includes antenna gain and path attenuation.

MultiView	Spe	ctrum											-
Ref Level 23	2.00.dBm	Offset 1	4.50 dB 🕯		N 1 MHz							SGI	
 Δtt 	30 dB	SWT 1	1.00 ub -		N 3 MHz	Mode	Auto Sween					Cour	at 5,000/5,000
1 Frequency S	Sweep	0111 1		101	011112	HIGHO	nato ontoop					01Pk Max	2Rm AvaPwr
20 dBm								-		-		M1[1]	-29.71 dBm
									Mr. Marchan	mum.			2.483 500 GHz
10 dBm				-						+		M2[2]	-45.93 dBm
									\sim	$\left \right\rangle$			2.483 500 GHz
0 dBm				-									
-10 dBm				-				-		+ +			
-20 dBm-				-					₩	-	1		
FUU_PK_RESTRICT	ED_BANDS							Sec. A. Land	(]		" WIAN	MULL N	
-30 dBm				-			100 M	n talbh Avd Mana		-	100.0	- THANANA	n.
A.A	hannel	Maria Maria		ne	And mar	N. M.M.	AWAYYA	1	1		l.		nonhornon
FCQ_AV_RESTRICT	FED_BANDS								J			MZ	
											~	T	
-50 dBm													
-60 dBm				_									
-70 dBm				-									
CF 2.425 GHz					100	1 pts		1	5.0 MHz/			S	ban 150.0 MHz
2 Marker Tab	le												
Type Re	f Trc		X-Valu	e			/-Value		Function			Function R	esult
M1 M2	1	2.	4835	GHZ		-29	./1 dBm						
M3	2	2.4	8335	GHZ		-27	.76 dBm						
M4	2	2.4	83 35	GHZ		-45	.82 dBm						
	v.								~	Rea	dy		2024-07-12

12:03:57 PM 07/12/2024

11:44:27 AM 07/12/2024

TX on 2462 MHz Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN ax 40 MHz, Operating Frequency = low, Band Edge = low (S01_AD02)

01:39:27 PM 07/12/2024

TX on 2422 MHz Note: Offset includes antenna gain and path attenuation.

02:02:51 PM 07/12/2024

TX on 2427 MHz Note: Offset includes antenna gain and path attenuation.

Radio Technology = WLAN ax 40 MHz, Operating Frequency = high, Band Edge = high (S01_AD02)

02:19:13 PM 07/12/2024

TX on 2447 MHz Note: Offset includes antenna gain and path attenuation.

01:51:30 PM 07/12/2024

TX on 2452 MHz Note: Offset includes antenna gain and path attenuation.

5.8.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC
- R&S TS8997

5.9 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.10.2

5.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):

Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz
- Video Bandwidth (VBW): ≥ 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 200, max. 15000)
- Sweeptime: Auto
- Detector: Peak

Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz
- Video Bandwidth (VBW): ≥ 3 times RBW
- Sweep Points: ≥ 2 times span / RBW
- Trace: Maxhold
- Sweeps: Till stable (max. 150)
- Sweeptime: \leq Number of Sweep Points x minimum transmission duration
- Detector: RMS

Attenuation of the measurement path

5.9.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

....

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.9.3 TEST PROTOCOL

Ambient temperature:	25 - 27 °C
Air Pressure:	1001 - 1010 hPa
Humidity:	40 - 56 %

BT GFSK (1-DH5)

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	4.9	3.0	8.0	3.1
	39	2440	5.1	3.0	8.0	2.9
	78	2480	5.1	3.0	8.0	2.9

BT π/4 DQPSK (2-DH5)

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	2.4	10.0	8.0	5.6
	39	2440	0.8	10.0	8.0	7.2
	78	2480	0.7	10.0	8.0	7.3

BT 8-DPSK (3-DH5)

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	1.8	10.0	8.0	6.2
	39	2440	0.8	10.0	8.0	7.2
	78	2480	0.7	10.0	8.0	7.3

BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	0.5	10.0	8.0	7.5
	19	2440	0.4	10.0	8.0	7.6
	39	2480	0.3	10.0	8.0	7.7

BT LE 2 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-0.6	10.0	8.0	8.6
	19	2440	-3.2	10.0	8.0	11.2
	39	2480	-3.3	10.0	8.0	11.3

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	1.6	100.0	8.0	6.4
	6	2437	2.0	100.0	8.0	6.0
	11	2462	2.0	100.0	8.0	6.0

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-4.7	100.0	8.0	12.7
	6	2437	-1.5	100.0	8.0	9.5
	11	2462	-5.4	100.0	8.0	13.4

WLAN n-Mode; 20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-4.9	100.0	8.0	12.9
	6	2437	-2.3	100.0	8.0	10.3
	11	2462	-5.4	100.0	8.0	13.4

WLAN n-Mode; 40 MHz; MCS0

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-9.8	100.0	8.0	17.8
	6	2437	-9.2	100.0	8.0	17.2
	9	2452	-10.5	100.0	8.0	18.5

WLAN ax-Mode; 20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-6.9	100.0	8.0	14.9
	6	2437	-3.6	100.0	8.0	11.6
	11	2462	-8.2	100.0	8.0	16.2

WLAN ax-Mode; 40 MHz; MCS0

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-9.5	100.0	8.0	17.5
	6	2437	-10.2	100.0	8.0	18.2
	9	2452	-10.5	100.0	8.0	18.5

Remark: Please see next sub-clause for the measurement plot.

5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = mid (S01_AA01)

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result	
2441.000000	2440.975370	5.145	8.0	PASS	
Ports Port State 1 used					
		Peak Pov	ver Spectr	al Density 2nd	2nd Measurement
35 -		.,		*	Setting Instrume
20		1			Start Frequency 2 44080 GI
30T	1				Stop Frequency 2.44130 G
					Span 500.000 kl
20			January and the second		RBW 3.000 kHz
E 20					VBW 10.000 kHz
8 +	·	·	· ;	÷	SweepPoints 333
.⊑ 10-					Sweeptime 5.560 ms
e	1		-		Reference Level 10.000 dBr
ē T	10.0	1 A.K	ma 1	AA .	Attenuation 20.000 dB
- 0+ ··· A	In MWA	of V MI	A Yok	the m	Detector MaxPeak
A V	YVV I Y	v.v. v	1 1	hon 1	SweepCount 10
	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O			1 Mar 1	Filter 3 dB
-10+					Trace Mode Max Hold
	<u>i i i i i i i i i i i i i i i i i i i </u>	-	-	i i	Sweeptype Sweep
2440 708	2440.0	2	141	2441.1	2441 208 Stablemode Trace
2440.130	2440.0	2.		2441.1	Stablevalue 0.50 dB
			Frequen	cy in MHz	Run 7/max 15
			- L		Stable 1/1
Limit	Sum Lev	el	P	SD	Max Stable Difference 0.04 dB
64.000 M	10-10-10-00			05.00	Max Stable Difference 0.04 dB
	Radio Teo	chnolo	ogy =	Blueto (Dperating Frequency = low
DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result	
			Tabili		

2402.000000 2402.158027 2.361
Ports

Radio Technology = Bluetooth EDR3, Operating Frequency = low (S01_AA01)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low (S01_AA01)

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
2402.000000	2401.962343	0.451	8.0	PASS

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low (S01_AA01)

Radio Technology = WLAN b, Operating Frequency = mid (S01_AD02)

					<u>ر</u> –
DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result	
2437.000000	2437.676127	1.985	8.0	PASS	1

S
State
used

Radio Technology = WLAN g, Operating Frequency = mid (S01_AD02)

DUT Fred (MH	z) 37.000000	(MHz) 2438.878130	(dBm)	Limit Max (<u>dBm)</u> 8.0	PASS				
Ports Port Star 1 used	te							Setting	Instrument Value
			_		_			Start Frequency	2.42200 GHz
			Power	Spectra	Density			Stop Frequency	2.45200 GHz
								Span	30.000 MHz
	10							RBW	100.000 kHz
	+							VBW	300.000 kHz
	0							SweepPoints	600
	° I	NVVN	MARAAAAA	nim	mmmm	andowin		Sweeptime	600.000 ms
ε								Reference Level	0.000 dBm
- 8	10+				U-1			Attenuation	10.000 dB
.⊆	+				-			Detector	RMS
eve eve	20					4		SweepCount	1
2	20	/						Filter	3 dB
	T	1						Trace Mode	Max Hold
	30+	м ²				·!····		Sweeptype	Sweep
	T.M.MMM	MW .				Y	MAAMAANN	Preamp	off
	adalar. A.			_				Stablemode	Trace
	2422 242	25 2430) .	2435	2440	2445	2450 2452	Stablevalue	0.50 dB
				Eroquor	un vin M⊟≂			Run	9 / max. 150
				rrequer				Stable	3/3
	Limit —	Sum Lev	el 💧	P	SD			Max Stable Difference	0.48 dB

Radio Technology = WLAN n 20 MHz, Operating Frequency = mid (S01_AD02)

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
2437.000000	2439.479132	-2.320	8.0	PASS

Sta Use	nte d							Setting	Instrum Value
								Start Frequency	2.42200 G
				Power Spectral	Density			Stop Frequency	2.45200 G
				· one. opecad	2 on only			Span	30.000 MH
	40-							RBW	100.000 k
	10 1							VBW	300.000 k
	_T							SweepPoints	600
	0+					43.000		Sweeptime	600.000 m
	- +		- Participanta	WWWAREFERROW	WANTA MARKAN	NWWWWWWWW		Reference Level	0.000 dBn
В	-10							Attenuation	10.000 dE
р Ц	- + 1			+				Detector	RMS
e	-20		f			······		SweepCount	1
Pe	- + -		f			·L		Filter	3 dB
	-30	/						Trace Mode	Max Hold
	- 44	····· /		ļ			<u>\</u>	Sweeptype	Sweep
	-40 -	urrunhl					MAMMAMMA	Preamp	off
		() . () . () . () . () . () . () . () .				_		Stablemode	Trace
	2422	2425	2430	2435	2440	2445	2450 2452	Stablevalue	0.50 dB
				Frequen	cv in MHz			Run	12 / max.
				riequen				Stable	3/3
	Lim	it	Sum Level	PS	D			Max Stable Difference	0.42 dB

DUT Frequency (MHz) Frequency (MHz) (dBm) Max (dBm) 2437.000000 2441.979149 -9.214 8.0 PASS Ports Port State Setting Instrument Value 2.40700 GHz 1 used Start Frequency Power Spectral Density Stop Frequency 2.46700 GHz Span RBW 60.000 MHz 10 100.000 kHz VBW 300.000 kHz 0-SweepPoints 1200 1.200 s Sweeptime -10-Reference Level 0.000 dBm Level in dBm -20 Attenuation 10.000 dB Detector RMS -30 SweepCount 3 dB -40 Filter Trace Mode Max Hold -50 Sweeptype Sweep Preamp Stablemode off -60 Trace Stablevalue 0.50 dB 2420 2430 2440 2450 2460 2467 2407 Run 15 / max. 150 Frequency in MHz Stable 3/3 Max Stable Difference 0.44 dB Limit Sum Level ٠ PSD

Radio Technology = WLAN n 40 MHz, Operating Frequency = mid (S01_AD02)

Radio Technology = WLAN ax 20 MHz, Operating Frequency = mid (S01_AD02)

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
2437.000000	2439.529215	-3.566	8.0	PASS

Limit

PSD

Limit

Result

Ports	te							Setting
I used				Power Spectral D	ensity			Start Frequency Stop Frequency
								Span
	10							RBW
	+							VBW
	0+			+	<u> </u>			SweepPoints
			man	1 minutes		munda		Sweeptime
E -	10+	<i>[</i>				·····		Reference Level
뜅	_			V				Attenuation
<u> </u>	20							Detector
- e	20							SweepCount
2	T	1						Filter
-	30+	/1						Trace Mode
		/ /						Sweeptype
-	40-	and the house of the second se					and and the state	Preamp
	- H	_				i i .	+ + +	Stablemode
	2422	2425	2430	2435	2440	2445	2450 2452	Stablevalue
				Frequency	/ in MHz			Run
								- Ctable

PSD

3/3 Max Stable Difference 0.36 dB

Sum Level

Instrument Value 2.42200 GHz 2.45200 GHz 30.000 MHz 100.000 kHz 300.000 kHz 600 600.000 ms 0.000 dBm 10.000 dB RMS 1 3 dB Max Hold Sweep off Trace 0.50 dB 8 / max. 150

Radio Technology = WLAN ax 40 MHz, Operating Frequency = low (S01_AD02)

5.9.5 TEST EQUIPMENT USED - R&S TS8997

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 Conducted Emissions FCC Conducted Emissions AC Mains for FCC standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
1.1	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
1.2	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
1.3	Chroma 6404	AC Source	Chroma ATE INC.	64040001304	N/A	N/A
1.4	Shielded Room 02	Shielded Room 4m x 3m	Frankonia Germany EMC Solution GmbH	-	N/A	N/A
1.5	ESH3-Z5	Two-Line V- Network (EUT)	Rohde & Schwarz GmbH & Co. KG	829996/002	2023-09	2025-09
1.6	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2023-01	2025-01
1.7	Opus10 THI (8152.00)	T/H Logger 02	Lufft Mess- und Regeltechnik GmbH	7489	2023-12	2025-12
1.8	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

2 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		_			Calibration	Due
2.1	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
2.2	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2024-07	2027-07
2.3	EX520	Digital Multimeter 12	Extech Instruments Corp	05157876	2022-06	2024-06
2.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2023-08	2025-08
2.5	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2024-07	2026-07
2.6	FSW43	Signal Analyser	Rohde & Schwarz GmbH & Co. KG	102013	2023-07	2025-07
2.7	Opus10 THI (8152.00)	T/H Logger 14	Lufft Mess- und Regeltechnik GmbH	13993	2023-12	2025-12
2.8	HMP2020	Programmable Power Supply	Rohde & Schwarz GmbH & Co. KG	101992	N/A	N/A
2.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2023-01	2026-01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.10	OSP120	Contains Power Meter and Switching Unit OSP- B157W8 PLUS	Rohde & Schwarz	101158	2021-08 2024-08	2024-08 2027-08
2.11	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

³ Radiated Emissions FAR 2.4 GHz FCC Radiated emission tests for 2.4 GHz ISM devices in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		-			Calibration	Due
3.1	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
3.2	Innco Systems CO3000	Controller for bore sight mast FAC	innco systems GmbH	CO3000/1460/54 740522/P	N/A	N/A
3.3	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq		N/A	N/A
3.4	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	N/A	N/A
3.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
3.6	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	N/A	N/A
3.7	FSW43	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04
3.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
3.9	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069	N/A	N/A
3.10	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09	N/A	N/A
3.11	MA3000/0800- XP-ET-compact	Bore Sight Antenna Mast	innco systems GmbH	9210522	N/A	N/A
3.12	TT 1.5 WI	Turn Table	Maturo GmbH	-	N/A	N/A
3.13	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008	N/A	N/A
3.14	Opus 20 THI (8120.00)	ThermoHygro Datalogger	Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2023-08	2025-08
3.15	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09	N/A	N/A

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		_			Calibration	Due
3.16	AFS42- 00101800-25-S- 42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324	N/A	N/A
3.17	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2021-09	2024-09

4 Radiated Emissions SAC H-Field Radiated emission tests in the H-Field in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
4.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
4.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
4.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2024-03	2026-03
4.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia Germany EMC Solution GmbH	none	N/A	N/A
4.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
4.6	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12
4.7	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
4.8	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
4.9	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006		
4.10	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

5 Radiated Emissions SAC up to 1 GHz Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
5.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
5.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
5.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2024-03	2026-03

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
5.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia Germany EMC Solution GmbH	none	N/A	N/A
5.5	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
5.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
5.7	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12
5.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
5.9	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
5.10	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10
5.11	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513	N/A	N/A

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
INNCO Mast Controller	1.02.62
INNCO Mast Height	34.10
INNCO Mast Elevation	36.11
MATURO Controller	1.24
MATURO Mast	12.19
MATURO Turn-Table	30.10
Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Controller	1.30
MATURO Turn-Unit	11.10
MATURO Mast	12.10
MATURO Turntable	12.11
INNCO Controller	1.03.02
INNCO Mast Height	34.10
INNCO Mast Elevation	36.11
TS 8997	
WMS32 Measurement Software	11.60.00 (till 2024-03-19), 11.70.00 + Hotfix 01
Conducted AC Emissions:	
Software	Version
EMC32 Measurement Software	10.60.20

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

		LISN insertion loss	cable loss (incl. 10 dB atten-
Frequency	Corr.	ESH3-Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

	٨Ē		cable loss	cable loss	cable	cable	distance	d _{Limit}	d _{used}
				2 (outside	1055 3	1055 4	COFF.	distance	distance
Frequency	721	Corr	chamber)	chamber)	(Switch	(LU receiver)	(decade)	(limit)	(used)
MH7	$\frac{22}{dB}$ (1/m)	dR	dR	dB	dR	dB	dR	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 $(\underline{d_{\text{Limit}}} = 3 \text{ m})$

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
chamber)	chamber)	`unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(<u>d_{Limit} = 10 m)</u>

30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

used

15.247

cable loss 6

(to

receiver) dB

1.46

1.53

1.60

1.67

1.70

1.73 1.83

1.77

1.83

1.85

2.00

1.91

1.44

1.51

1.53

1.55

for FCC

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF			cable loss 1 (relay + cable	cable loss 2	cable loss 3 (switch unit, atten-	cable loss	
	R&S			inside	(outside	uator &	4 (to	
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)	
MHz	dB (1/m)	dB		dB	dB	dB	dB	
1000	24.4	-19.4		0.99	0.31	-21.51	0.79	
2000	28.5	-17.4		1.44	0.44	-20.63	1.38	
3000	31.0	-16.1		1.87	0.53	-19.85	1.33	
4000	33.1	-14.7		2.41	0.67	-19.13	1.31	
5000	34.4	-13.7		2.78	0.86	-18.71	1.40	
6000	34.7	-12.7		2.74	0.90	-17.83	1.47	
7000	35.6	-11.0		2.82	0.86	-16.19	1.46	
			-					
				cable loss		cable loss	cable loss 4 (switch unit,	
	AF			1 (relay	cable loss	3	atten-	cable loss
	R&S			inside	2 (inside	(outside	uator &	5 (to
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)
MHz	dB (1/m)	dB	_	dB	dB	dB	dB	dB
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33
4000	33.1	-23.3	_	0.56	2.41	0.67	-28.23	1.31
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46
			_					
				cable loss				cable loss
	AF			1 (relay	cable loss	cable loss	cable loss	5
	R&S			inside	2 (High	3 (pre-	4 (inside	(outside
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)
	dB							
MHz	(1/m)	dB	-	dB	dB	dB	dB	dB
7000	35.6	-57.3	-	0.56	1.28	-62.72	2.66	0.94
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09
10000	37.5	-56.2		0.70	0.54	-61.91	3.28	1.20
11000	37.5	-55.3		0.80	0.61	-61.40	3.43	1.27
12000					0.40		2 5 5 2	1 0 0
	37.6	-53./		0.84	0.42	-59.70	3.53	1.26
13000	37.6 38.2	-53.7 -53.5		0.84	0.42	-59.70	3.53	1.26

0.98

1.23

1.36

1.70

Sample calculation

15000

16000

17000

18000

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

-54.1

-54.1

-54.4

-54.7

40.9

41.3

42.8

44.2

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

0.54

0.49

0.76

0.53

-61.05

-61.51

-62.36

-62.88

4.02

4.17

4.34

4.41

				cable		cable	cable
	AF		cable loss	loss 2	cable loss	loss 4	loss 5
	EMCO		1 (inside	(pre-	3 (inside	(switch	(to
Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

Frequency	AF EMCO 3160-10	Corr.	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4	-		-	-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	З	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	on pass mark	within pass mark	Passed
4	above pass mark	within pass mark	Failed
5	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.