SPORTON LAB. RADIO TEST REPORT

Report No. : FR430535AA

RADIO TEST REPORT

FCC ID	: UDX-600201010
Equipment	: Cisco Wireless 9176l Series Wi-Fi 7 Access Point
Brand Name	: CISCO
Model Name	: CW9176I
Applicant	: Cisco Systems, Inc. 170 West Tasman Drive, San Jose, CA 95134 USA
Manufacturer	: Cisco Systems, Inc. 170 West Tasman Drive, San Jose, CA 95134 USA
Standard	: 47 CFR FCC Part 15.247

The product was received on Mar. 07, 2024, and testing was started from Apr. 08, 2024 and completed on Jun. 24, 2024. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Um

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

Table of Contents

Histor	y of this test report	3
Summ	nary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	12
1.3	Testing Location Information	12
1.4	Measurement Uncertainty	13
2	Test Configuration of EUT	14
2.1	Test Channel Mode	14
2.2	The Worst Case Measurement Configuration	15
2.3	EUT Operation during Test	18
2.4	Accessories	18
2.5	Support Equipment	19
2.6	Test Setup Diagram	20
3	Transmitter Test Result	23
3.1	AC Power-line Conducted Emissions	23
3.2	DTS Bandwidth	25
3.3	Maximum Conducted Output Power	26
3.4	Power Spectral Density	29
3.5	Emissions in Non-restricted Frequency Bands	31
3.6	Emissions in Restricted Frequency Bands	32
4	Test Equipment and Calibration Data	36
	ndix A. Test Results of AC Power-line Conducted Emissions ndix B. Test Results of DTS Bandwidth	
Appen	ndix C. Test Results of Maximum Conducted Output Power	
Appen	ndix D. Test Results of Power Spectral Density	
Appen	ndix E. Test Results of Emissions in Non-restricted Frequency Bands	
Appen	ndix F. Test Results of Emissions in Restricted Frequency Bands	
Appen	ndix G. Test Photos	
Photo	graphs of EUT v01	

History of this test report

Report No.	Version	Description	Issued Date
FR430535AA	01	Initial issue of report	Nov. 05, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen Report Producer: Wendy Pan

1 General Description

1.1 Information

1.1.1 **RF General Information**

Frequency Range (MHz) Bluetooth Mode		Ch. Frequency (MHz)	Channel Number		
2400-2483.5	LE	2402-2480	0-39 [40]		

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-LE(1Mbps)	1	1
2.4-2.4835GHz	BT-LE(500Kb/s)	1	1
2.4-2.4835GHz	BT-LE(125Kb/s)	1	1
2.4-2.4835GHz	BT-LE(2Mbps)	2	1

Note:

- Bluetooth LE uses a GFSK modulation.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Ant.	RF Port	Brand Name	Model Name	Ant. Type	Connector	Gain (dBi)	Modes of Operation
1	1	WNC	95XEAK15.GAV	PCB	I-PEX		2.404-
2	3	WNC	95XEAK15.GAW	PCB	I-PEX		2.4GHz, 5GHz UNII 1~2A
3	2	WNC	95XEAK15.GAY	PIFA	I-PEX		(Radio 1)
4	4	WNC	95XEAK15.GAX	PIFA	I-PEX		
5	2	WNC	95XEAK15.GAZ	PCB	I-PEX		5GHz UNII 1~3 or
6	3	WNC	95XEAK15.GB1	PCB	I-PEX		UNII 2C~3 only
7	1	WNC	95XEAK15.GB2	PIFA	I-PEX		(Radio 2)
8	4	WNC	95XEAK15.GB3	PIFA	I-PEX		
9	1	WNC	95XEAK15.GB4	PCB	I-PEX		
10	2	WNC	95XEAK15.GB5	PCB	I-PEX	Note 1	6GHz UNII 5~8
11	3	WNC	95XEAK15.GB7	PIFA	I-PEX		(Radio 3)
12	4	WNC	95XEAK15.GB6	PIFA	I-PEX		
13	2	WNC	95XEAK15.GBB	PIFA	I-PEX		2.4GHz, 5GHz UNII 1~3,
14	1	WNC	95XEAK15.GBA	PIFA	I-PEX		6GHz UNII 5~8 (Radio 4(Pine Scanning radio))
15	1	WNC	95XEAK15.GB8	PIFA	I-PEX		Bluetooth and Zigbee (Radio 5)
16	1	WNC	95XEAK15.GB9	PIFA	IPEX	1.16GHz~1.19GHz: 2.9 1.56GHz~1.59GHz: 3.9	GPS (Radio 6)
17	1	WNC	95XEAK15.GBF	PIFA	IPEX	5.7	· · · ·
18	2	WNC	95XEAK15.GBE	PCB	IPEX	6	UWB
19	3	WNC	95XEAK15.GBE	PCB	IPEX	7.3	(Radio 7)
20	4	WNC	95XEAK15.GBE	PCB	IPEX	5.6	

				Α	ntenna Ga	ain (dB	Bi)				
Ant.											
	(R	adio 1)		5.20	GHz			5.3GHz			
1		4.98		2.4	42				3.3		
2		4.38		2.5	59				2.48		
3		3.95		4.8	86				5.17		
4		3.56		3.0	03				2.66		
A				WLAN 5	5GHz UNII	1~3 (Radio 2)				
Ant.	5	2GHz		5.3GHz			5.6GHz		5.7850	SHz	
5		2.65		3.3			2.92		2.37	7	
6		2.18 2.69				3.01			2.91		
7		3.63		3.77			3.93		3.91		
8		4.44		3.9 3.79			3.79	9 3.47			
Ant.				WLAN 6	GHz UNII	5~8 (Radio 3)				
AIII.	6.1	75GHz		6.475GHz			6.695GHz		6.995GHz		
9		3.45		4.72		3.33			3.43		
10		4.22		5.11		4.08			4.61		
11		4.83		3.79			3.71		4.53	3	
12		5.01		4.66			4.66		5.6		
Ant.		WLA	N 2.4GHz/5GHz	z UNII 1~3/WL	AN 6GHz l	UNII 5	~8 (Radio 4(Pi	ne Scanning	radio))		
AIII.	2.45GHz	5.2GHz	5.3GHz	5.6GHz	5.785G	iHz	6.175GHz	6.475GHz	6.695GHz	6.995GHz	
13	2.46	2.35	2.62	4.9	3.33		5.53	4.82	4.27	3.16	
14	2.39	4.11	4.47	5.67	4.75		6.1	4.65	4.58	6.18	
Ant.				Bluet	ooth/Zigbe	ee (Ra	adio 5)				
15					3.58						

Note 1:

Note 2:

		Directional Gain (dBi)									
Item	,	WLAN 2.4GHz (Radio 1)			WLAN 5GHz UNII 1~2A (Radio 1)						
					2GHz		5.3GHz				
2T1S		5.13			4.86		5.17				
2T2S		4.98			4.86		5.17				
4T1S		6.92			5.15		5.29				
4T2S		4.98			4.86						
4T4S		4.98		4.86			5.17				
Item		WLAN 5GHz UNII 1~3 (Radio 2) / WLAN 6GHz UNII 5~8 (Radio 3)					3)				
item	5.2GHz	5.3GHz	5.6GHz	5.785GHz	6.175GHz	6.475GHz	6.695GHz	6.995GHz			
2T1S	3.63	3.77	3.93	3.91	4.44	3.9	3.93	3.91			
2T2S	3.63	3.63 3.77 3.93			4.44	3.9	3.93	3.91			
4T1S	5.24 5 5.57			4.69	6.4	6.14	5.25	6.29			
4T2S	4.44	3.9	3.93	3.91 5.01 5		5.11	4.66	5.6			
4T4S	4.44	3.9	3.93	3.91	5.01	5.11	4.66	5.6			

Note 3: The above information (excepting Ant. 1~15 antenna gain and directional gain) was declared by manufacturer.

Note 4: Radio 1~3: Maximum Directional Gain following KDB662911 D03.

For Radio 1

For 2.4GHz IEEE 802.11b/g/n/VHT/ax/be mode (1TX, 2TX, 4TX/4RX) and For 5GHz (UNII 1~2A) IEEE 802.11a/n/ac/ax/be mode (1TX, 2TX, 4TX/4RX): 1TX Only Port 1 can be use as transmitting antenna. 2TX

Port 1, Port 2 can be use as transmitting antenna.

Port 1, Port 2 could transmitting simultaneously.

4TX

Port 1, Port 2, Port 3 and Port 4 can be used as transmitting antenna.

Port 1, Port 2, Port 3 and Port 4 could transmit simultaneously.

4RX

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas.

Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

For Radio 2 For 5GHz (UNII 1~3 or UNII 2C~3): For IEEE 802.11a/n/ac/ax/be mode (1TX, 2TX, 4TX/4RX): 1TX Only Port 1 can be use as transmitting antenna. 2TX Port 1, Port 2 can be use as transmitting antenna. Port 1, Port 2 could transmitting simultaneously. 4TX Port 1, Port 2, Port 3 and Port 4 can be used as transmitting antenna. Port 1, Port 2, Port 3 and Port 4 could transmit simultaneously. 4RX Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas. Port 1, Port 2, Port 3, Port 4 could receive simultaneously. For Radio 3 For 6GHz (UNII 5~8): For IEEE 802.11ax/be mode (1TX, 2TX, 4TX/4RX): 1TX Only Port 1 can be use as transmitting antenna. 2TX Port 1, Port 2 can be use as transmitting antenna. Port 1, Port 2 could transmitting simultaneously. 4TX Port 1, Port 2, Port 3 and Port 4 can be used as transmitting antenna. Port 1, Port 2, Port 3 and Port 4 could transmit simultaneously. 4RX Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas. Port 1, Port 2, Port 3, Port 4 could receive simultaneously. For Radio 4(Pine Scanning radio) For 2.4GHz: For IEEE 802.11b/g/n/VHT/ax mode (1TX/2RX): Only Port 1 can be used as transmitting/receiving functions. Port 1~2 could receive simultaneously. For 5GHz (UNII 1~3): For IEEE 802.11a/n/ac/ax mode (1TX/2RX): Only Port 1 can be used as transmitting/receiving functions. Port 1~2 could receive simultaneously. For 6GHz (UNII 5~8): For IEEE 802.11ax mode (1TX/2RX): Only Port 1 can be used as transmitting/receiving functions. Port 1~2 could receive simultaneously. For Radio 5: For Bluetooth/Zigbee mode (1TX/1RX) Only Port 1 can be used as transmitting/receiving functions. For Radio 6: For GPS (1TX/1RX) Only Port 1 can be used as transmitting/receiving functions. For Radio 7: For UWB (1TX/4RX) Mounting on a Wall Only Port 1 can be used as transmitting functions. Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas. Port 1, Port 2, Port 3, Port 4 could receive simultaneously. Mounting on a Ceiling Only Port 2 can be used as transmitting functions.

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas. Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF	Т	VBW
		(dB)	(s)	(Hz)_1/T
BT-LE(1Mbps)	0.631	2	395u	3k
BT-LE(2Mbps)	0.34	4.69	215u	10k

Note:

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	Fro	From PoE					
Function	\boxtimes	Point-to-multipoint		Point-to-point			
Test Software Version	Tera	Tera Term 4.75					
	\boxtimes	LE 1M PHY: 1 Mb/s					
Support Mode	\boxtimes	LE Coded PHY (S=2): 500 Kb/s					
Support Mode	\boxtimes	LE Coded PHY (S=8)	125	Kb/s			
	\boxtimes	LE 2M PHY: 2 Mb/s					

Note: The above information was declared by manufacturer.

Function Radio	WLAN 2.4GHz	WLAN 5GHz	WLAN 6GHz	Bluetooth	Zigbee	GPS	UWB
1	V	V (UNII 1~2A)	-	-	-	-	-
2	-	V (UNII 2C~3/ UNII 1~3)	-	-	-	-	-
3	-	-	V	-	-	-	-
4 (Pine Scanning radio)	V	V (UNII 1~3)	V	-	-	-	-
5	-	-	-	V	V	-	-
6	-	-	-	-	-	V	-
7	-	-	-	-	-	-	V

1.1.5 Table for Radio function

Note1: The above information was declared by manufacturer.

Note2: For WLAN 2.4GHz: The Radio 1 and Radio 4(Pine Scanning radio) can't operate at the same frequency. For WLAN 5GHz: The Radio 1, 2 and Radio 4(Pine Scanning radio) can't operate at the same frequency. For WLAN 6GHz: The Radio 3 and Radio 4(Pine Scanning radio) can't operate at the same frequency simultaneously.

1.1.6 Table for Multiple Listing

Equipment Name	Model Name	SW	Frequencies supported by 320MHz
Cisco Wireless 9176l Series Wi-Fi 7 Access Point	CW9176I	Cisco	6105, 6265, 6425, 6745 MHz
		Meraki	6105, 6265, 6425, 6585, 6745, 6905
WI-FIT ACCESS FOIL			MHz

Note: The above information was declared by manufacturer.

1.1.7 Table for EUT Support Function

Function	Supports Band
AP Router	2.4GHz, 5GHz UNII 1~3, 6GHz UNII 5~8, Bluetooth, Zigbee, UWB and GPS
Mesh	6GHz UNII 5~8

Note: The above information was declared by manufacturer.

1.1.8 Table for EUT Operation Function

Mode	Operation Function
	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
1	Scanning radio) WLAN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB
0	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3)+ Radio 3 WLAN 6GHz + Radio 4(Pine
2	Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radio 7 UWB
•	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
3	Scanning radio) WLAN 6GHz + Radio 5 Bluetooth + Radio 7 UWB
4	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
4	Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB
5	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
Э	Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB
c	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
6	Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 ÚWB
7	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
1	Scanning radio) WLAN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB
8	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
0	Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radio 7 UWB
9	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
3	Scanning radio) WLAN 6GHz + Radio 5 Bluetooth + Radio 7 UWB
10	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
10	Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB
11	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
	Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB
12	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine
	Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 UWB
13	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz +
	Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3)+ Radio 3 WLAN 6GHz +
14	Radio 1 WLAN 5GH2 (UNIT 1~2A) + Radio 2 WLAN 5GH2 (UNIT 2C~5)+ Radio 5 WLAN 6GH2 + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radio 7 UWB
	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz +
15	Radio 4 (Pine Scanning radio) WLAN 6GHz + Radio 5 Bluetooth + Radio 7 UWB
	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz +
16	Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB
4-	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz +
17	Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB
40	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz +
18	Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 UWB
40	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz +
19	Radio 4(Pine Scanning radio) WLÁN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB
20	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz +
20	Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radió 7 UWB
21	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz +
21	Radio 4(Pine Scanning radio) WLÁN 6GHz + Radio 5 Bluetooth + Radió 7 UWB
22	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz +
~~	Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB
23	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz +
20	Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB
24	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz +
	Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 UWB
NI.C. TL	e above information was declared by manufacturer

Note: The above information was declared by manufacturer.

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

	Testing Location Information	
Test Lab. : Sporton International Inc. Hsinchu Laboratory		
Hsinchu	ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)	
(TAF: 3787)	TEL: 886-3-656-9065 FAX: 886-3-656-9085	
Test site Designation No. TW3787 with FCC.		
Conformity Assessment Body Identifier (CABID) TW3787 with ISED.		

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH01-CB	Jay Lo	23.7~24.3 / 62~64	Apr. 09, 2024~ Jun. 06, 2024
Radiated below 1GHz	03CH04-CB	Mark Hsu	22.7-23.8 / 56-59	Jun. 06, 2024~ Jun. 07, 2024
Radiated above 1GHz	03CH06-CB	Mark Hsu	21.9-22.4 / 55-58	Apr. 08, 2024~ Jun. 24, 2024
AC Conduction	CO02-CB	Gray Lee	20~21 / 61~62	Jun. 17, 2024

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) **Before test date: May 28, 2024**

Derore lest date. May 20, 2024		
Test Items	Uncertainty	Remark
Radiated Emission (1GHz ~ 18GHz)	4.1 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.2 dB	Confidence levels of 95%
Conducted Emission	3.1 dB	Confidence levels of 95%
Output Power Measurement	0.8 dB	Confidence levels of 95%
Power Density Measurement	3.1 dB	Confidence levels of 95%
Bandwidth Measurement	2.2%	Confidence levels of 95%

After test date: May 27, 2024

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	4.1 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.0 dB	Confidence levels of 95%
Conducted Emission	3.1 dB	Confidence levels of 95%
Output Power Measurement	0.8 dB	Confidence levels of 95%
Power Density Measurement	3.1 dB	Confidence levels of 95%
Bandwidth Measurement	2.1 %	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode
BT-LE(1Mbps)
2402MHz
2440MHz
2478MHz
2480MHz
BT-LE(2Mbps)
2402MHz
2440MHz
2478MHz
2480MHz

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests		
Tests Item	AC power-line conducted emissions	
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz	
Operating Mode	CTX	
1	EUT + Radio 1 WLAN 2.4GHz + PoE 1	
2	EUT + Radio 1 WLAN 2.4GHz + PoE 2	
3	EUT + Radio 1 WLAN 2.4GHz + PoE 3	
4	EUT + Radio 1 WLAN 2.4GHz + PoE 4	
5	EUT + Radio 1 WLAN 2.4GHz + PoE 5	
6	EUT + Radio 1 WLAN 2.4GHz + PoE 6	
7	EUT + Radio 1 WLAN 2.4GHz + PoE 7	
8	EUT + Radio 1 WLAN 2.4GHz + PoE 8	
Mode 4 has been evaluate follow this same test mode	ed to be the worst case among Mode 1~8, thus measurement for Mode 9~16 will a.	
9	EUT + Radio 1 WLAN 5GHz (Low Band) + PoE 4	
10	EUT + Radio 2 WLAN 5GHz + PoE 4	
11	EUT + Radio 3 WLAN 6GHz + PoE 4	
12	EUT + Radio 4(Pine Scanning radio) WLAN 2.4GHz + PoE 4	
13	EUT + Radio 4(Pine Scanning radio) WLAN 5GHz + PoE 4	
14	EUT + Radio 4(Pine Scanning radio) WLAN 6GHz + PoE 4	
15	EUT + Radio 5 Bluetooth + PoE 4	
16	EUT + Radio 5 Zigbee + PoE 4	
For operating mode 10 is the worst case and it was record in this test report.		

The Worst Case Mode for Following Conformance Tests	
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands
Test Condition	Conducted measurement at transmit chains
Test Mode	EUT + Radio 5

The Worst Case Mode for Following Conformance Tests		
Tests Item	Emissions in Restricted Frequency Bands	
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.	
Operating Mode < 1GHz	СТХ	
	case was found at as below for Emissions in Restricted Frequency Bands above nent will follow this same test configuration.	
1	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 1	
2	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 2	
3	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 3	
4	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 4	
5	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 5	
6	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 6	
7	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 7	
8	EUT in Y axis + Radio 1 WLAN 2.4GHz + PoE 8	
Mode 1 has been evaluate follow this same test mode	d to be the worst case among Mode $1 \sim 8$, thus measurement for Mode $9 \sim 16$ will .	
9	EUT in Y axis + Radio 1 WLAN 5GHz (Low Band) + PoE 1	
10	EUT in Y axis + Radio 2 WLAN 5GHz + PoE 1	
11	EUT in Y axis + Radio 3 WLAN 6GHz + PoE 1	
12	EUT in Y axis + Radio 4(Pine Scanning radio) WLAN 2.4GHz + PoE 1	
13	EUT in Y axis + Radio 4(Pine Scanning radio) WLAN 5GHz + PoE 1	
14	EUT in Y axis + Radio 4(Pine Scanning radio) WLAN 6GHz + PoE 1	
15	EUT in X axis + Radio 5 Bluetooth + PoE 1	
16	EUT in X axis + Radio 5 Zigbee + PoE 1	
For operating mode 1 is the worst case and it was record in this test report.		
Operating Mode > 1GHz CTX		
After evaluating, the worst case was found at X axis. So the measurement will follow this same test configuration.		
1	EUT in X axis + Radio 5	

	The Worst Case Mode for Following Conformance Tests
Tests Item	Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation
Operating Mode	
1	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB
2	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3)+ Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radio 7 UWB
3	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Bluetooth + Radio 7 UWB
4	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB
5	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB
6	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 UWB
7	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB
8	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radio 7 UWB
9	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Bluetooth + Radio 7 UWB
10	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB
11	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB
12	Radio 1 WLAN 2.4GHz + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 UWB
13	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB
14	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3)+ Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radio 7 UWB
15	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Bluetooth + Radio 7 UWB
16	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB
17	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB
18	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 2C~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 UWB
19	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Bluetooth + Radio 7 UWB

20	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Bluetooth + Radio 7 UWB	
21	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Bluetooth + Radio 7 UWB	
22	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 2.4GHz + Radio 5 Zigbee + Radio 7 UWB	
23	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 5GHz + Radio 5 Zigbee + Radio 7 UWB	
24	Radio 1 WLAN 5GHz (UNII 1~2A) + Radio 2 WLAN 5GHz (UNII 1~3) + Radio 3 WLAN 6GHz + Radio 4(Pine Scanning radio) WLAN 6GHz + Radio 5 Zigbee + Radio 7 UWB	
Refer to Sporton Test Report No.: FA430535AA for Co-location RF Exposure Evaluation.		

Note 1: The PoE is for measurement only, would not be marketed.

Power	Brand	Model
PoE 1	Microsemi	PD-9001GR/AT/AC
PoE 2	PHIHONG	POE29U-1AT(PL)
PoE 3	DELTA	ADH-65AR B
PoE 4	PHIHONG	POEA33U-1ATE
PoE 5	PHIHONG	POE60U-1BT-X
PoE 6	PHIHONG	POE60U-BTA(X66M-R)
PoE 7	PHIHONG	POE60U-BTA(X664-R)
PoE 8	DELTA	ADH-65AR P

2.3 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

2.4 Accessories

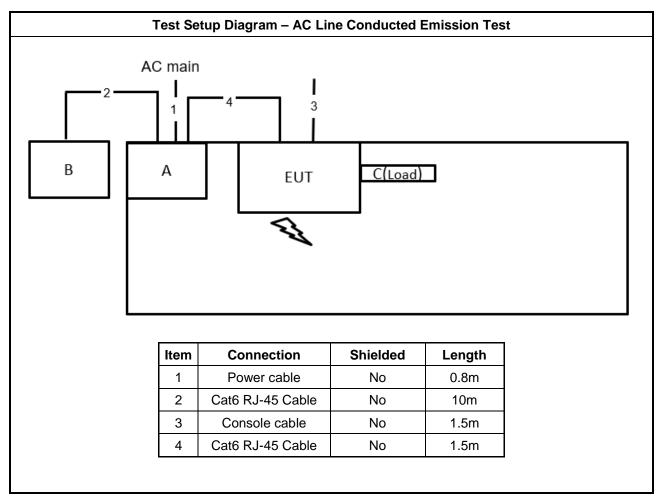
Bracket 1*1 Bracket 2*1

2.5 Support Equipment

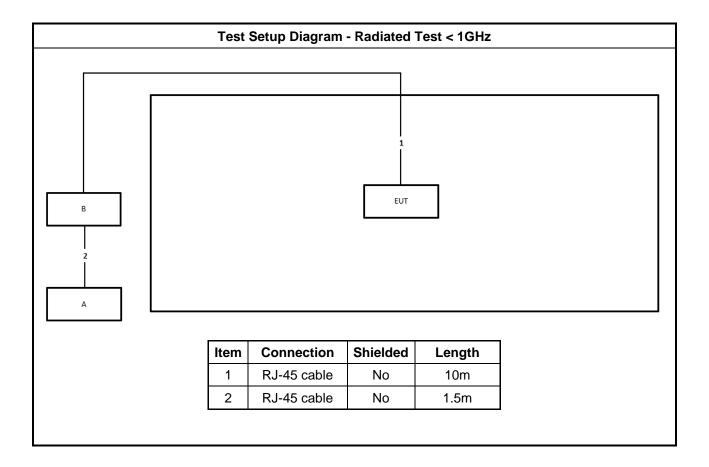
For AC Conduction:

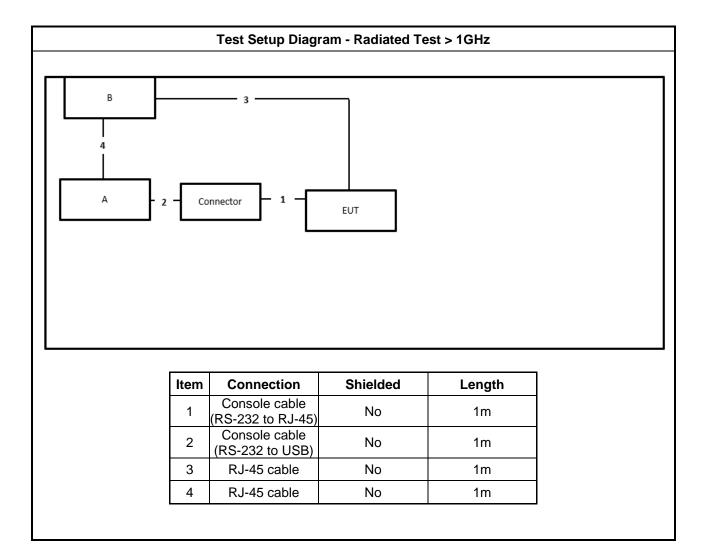
Support Equipment				
No. Equipment Brand Name Model Name FCC ID				FCC ID
А	PoE 4	PHIHONG	POEA33U-1ATE	N/A
В	PC	ASUS	S300TA	N/A
С	Flash disk3.0	Transcend	JetFlash-703	N/A

For Radiated:


Support Equipment				
No. Equipment Brand Name Model Name FCC IE		FCC ID		
А	Notebook	DELL	E4300	N/A
В	PoE 1	Microsemi	PD-9001GR/AT/AC	N/A

For RF Conducted:


Support Equipment				
No. Equipment Brand Name Model Name FCC II		FCC ID		
А	Notebook	DELL	E4300	N/A
В	B PoE 5 PHIHONG POE60U-1BT-X N/A		N/A	


2.6 Test Setup Diagram

3 Transmitter Test Result

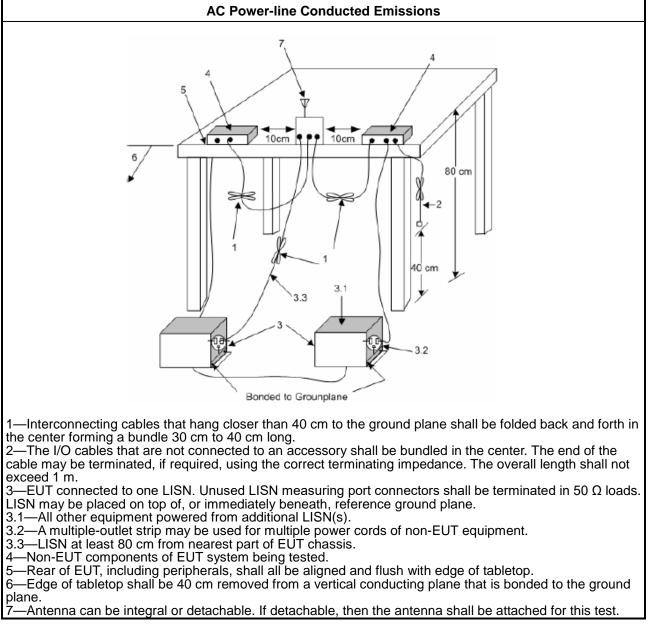
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5 66 - 56 * 56 - 46 *					
0.5-5	56	46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

Test Method

• Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

1.1.1. Measurement Results Calculation

The measured Level is calculated using:

- a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- b. Margin = -Limit + Level

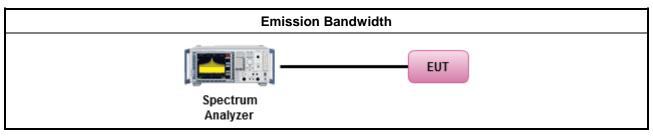
3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit		
Systems using digital modulation techniques:		
 6 dB bandwidth ≥ 500 kHz. 		


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method				
•	For the emission bandwidth shall be measured using one of the options below:				
	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidt measurement.				
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.			
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.			

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

• If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1)
--

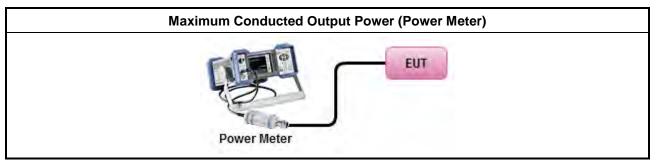
•	Point-to-multipoint systems	(P2M): If G _{TX} > 6 dBi,	i, then $P_{Out} = 30 - (G_{TX} - 6) dBm$
---	-----------------------------	------------------------------------	---

- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 (G_{TX} 6)/3 \text{ dBm}$
 - Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 (G_{TX} 6)/3 + 8 \text{dB} \text{ dBm}$

 P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.3.3 Test Procedures

		Test Method			
•	Maximum Peak Conducted Output Power				
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).			
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).			
•	Maximum Conducted Output Power				
	[dut	/ cycle ≥ 98% or external video / power trigger]			
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.			
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)			
	duty	cycle < 98% and average over on/off periods with duty factor			
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.			
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)			
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3			
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)			
	Mea	surement using a power meter (PM)			
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).			
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).			
	For	conducted measurement.			
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.			
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$			

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

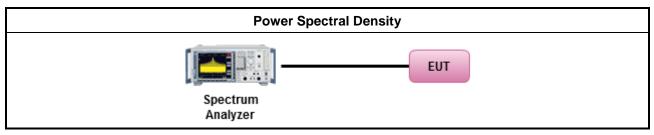
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit				
Power Spectral Density (PSD)≤8 dBm/3kHz				

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 Test Procedures

•

	Test Method							
-	 Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option). 							
	Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.							
	[duty	/ сус	le ≥ 98% or external video / power trigger]					
•	For	cond	ucted measurement.					
	•	lf Tł	ne EUT supports multiple transmit chains using options given below:					
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.					
			Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,					
			Option 3: Measure and add 10 $\log(N)$ dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 $\log(N)$. Or each transmit chains shall be add 10 $\log(N)$ to compared with the limit.					

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

3.5 Emissions in Non-restricted Frequency Bands

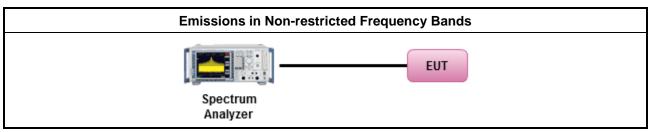
3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit			
Limit (dBc)			
20			
30			

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method

Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960 500		54	3			

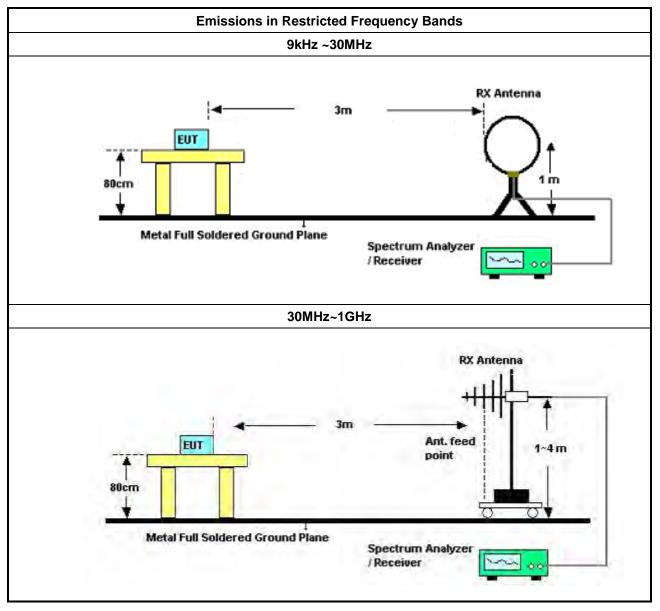
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

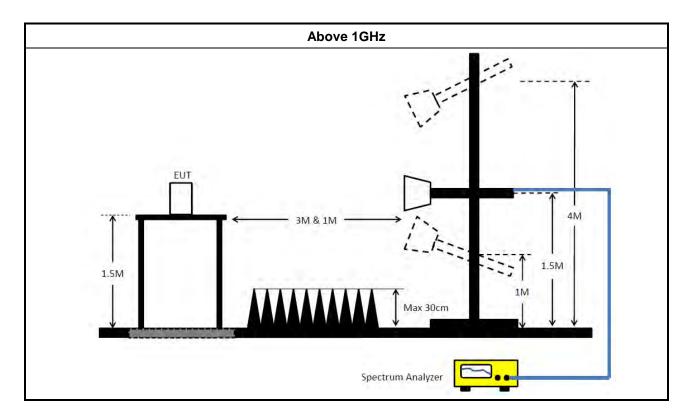
Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures


	Test Method					
•	The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].					
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.					
•	For the transmitter unwanted emissions shall be measured using following options below:					
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands. 					
	☐ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).					
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).					
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).					
	□ Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.					
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.					
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.					
•	For the transmitter band-edge emissions shall be measured using following options below:					
	 Refer as FCC KDB 558074 clause 8.7 & c63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below. 					
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements. 					
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). 					
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB 					
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred. 					

3.6.4 Test Setup

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

Test Equipment and Calibration Data 4

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Apr. 15, 2024	Apr. 14, 2025	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Dec. 29, 2023	Dec. 28, 2024	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	May 15, 2024	May 14, 2025	Conduction (CO02-CB)
COND Cable	Woken	Cable	2	0.15MHz ~ 30MHz	Oct. 17, 2023	Oct. 16, 2024	Conduction (CO02-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO02-CB)
Pulse Limiter	Schwarzbeck	VTSD 9561F-N	00378	9kHz ~ 30MHz	Oct. 17, 2023	Oct. 16, 2024	Conduction (CO02-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	May 29, 2023	May 28, 2024	Conducted (TH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	May 27, 2024	May 26, 2025	Conducted (TH01-CB)
Switch	SPTCB	SP-SWI	SWI-01	1~26.5 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-30	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
Power Sensor	Agilent	E9327A	US40442088	50MHz~18GHz	Mar. 01, 2024	Feb. 28, 2025	Conducted (TH01-CB)
Power Meter	Agilent	E4416A	GB41291199	50MHz~18GHz	Mar. 04, 2024	Mar. 03, 2025	Conducted (TH01-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH01-CB)
Loop Antenna	Teseq	HLA 6121	65417	9kHz - 30 MHz	Oct. 13, 2023	Oct. 12, 2024	Radiation (03CH04-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH04-CB	30 MHz ~ 1 GHz	Aug. 01, 2023	Jul. 31, 2024	Radiation (03CH04-CB)
BILOG ANTENNA with 6 dB attenuator	Schaffner & EMCI	CBL6112B & N-6-06	22021&AT-N06 07	30MHz ~ 1GHz	Oct. 07, 2023	Oct. 06, 2024	Radiation (03CH04-CB)
Pre-Amplifier	EMCI	EMC330N	980391	20MHz ~ 3GHz	May 22, 2024	May 21, 2025	Radiation (03CH04-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A10_6 Ver1.3 Page Number : 36 of 37

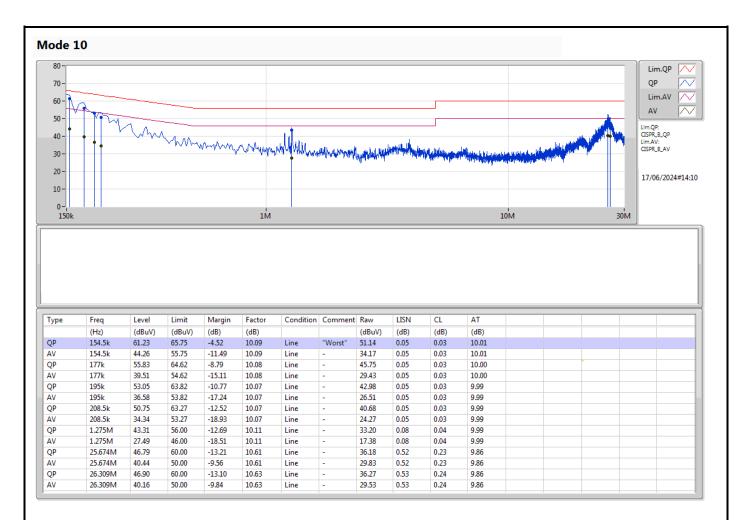
: Nov. 05, 2024

Issued Date Report Version : 01

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100142	9kHz~40GHz	Mar. 19, 2024	Mar. 18, 2025	Radiation (03CH04-CB
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	Jun. 13, 2023	Jun. 12, 2024	Radiation (03CH04-CB)
RF Cable-low	Woken	RG402	Low Cable-03+67	30MHz – 1GHz	Oct. 02, 2023	Oct. 01, 2024	Radiation (03CH04-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH04-CB)
3m Semi Anechoic Chamber VSWR	ТDК	SAC-3M	03CH06-CB	1GHz ~18GHz 3m	Oct. 02, 2023	Oct. 01, 2024	Radiation (03CH06-CB)
Horn Antenna	SCHWARZBE CK	BBHA9120D	BBHA 9120D-1292	1GHz~18GHz	Jul. 31, 2023	Jul. 30, 2024	Radiation (03CH06-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Sep. 04, 2023	Sep. 03, 2024	Radiation (03CH06-CB)
Pre-Amplifier	Agilent	83017A	MY53270064	0.5GHz ~ 26.5GHz	Aug. 01, 2023	Jul. 31, 2024	Radiation (03CH06-CB)
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz	Nov. 24, 2023	Nov. 23, 2024	Radiation (03CH06-CB)
Signal Analyzer	R&S	FSV40	101903	9kHz ~ 40GHz	May 29, 2023	May 28, 2024	Radiation (03CH06-CB)
Signal Analyzer	R&S	FSV40	101904	9kHz ~ 40GHz	Apr. 26, 2024	Apr. 25, 2025	Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-05+68	1GHz~18GHz	Oct. 02, 2023	Oct. 01, 2024	Radiation (03CH06-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Jan. 11, 2024	Jan. 10, 2025	Radiation (03CH06-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH06-CB)

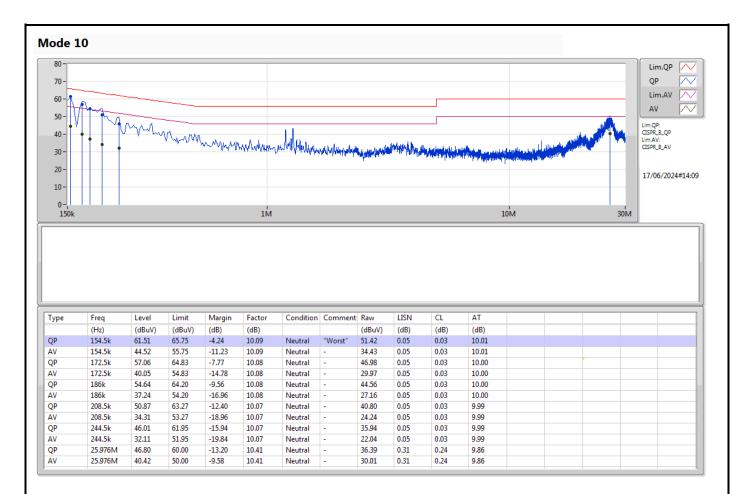
Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.


Conducted Emissions at Powerline

Appendix A

Summary							
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition
			(Hz)	(dBuV)	(dBuV)	(dB)	
Mode 10	Pass	QP	154.5k	61.51	65.75	-4.24	Neutral



Appendix A

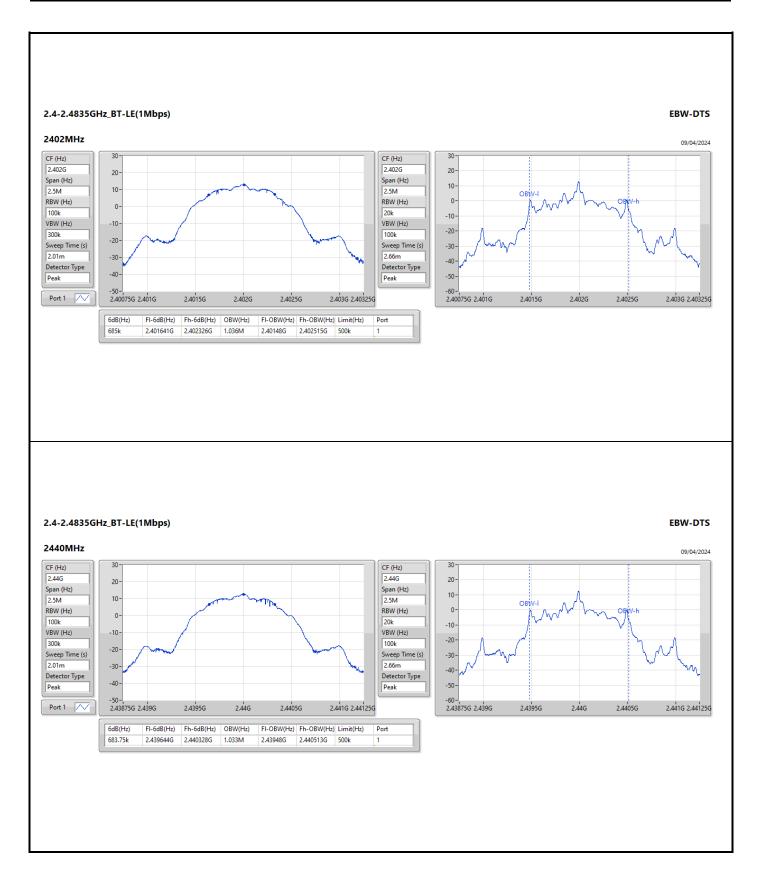
Appendix A

EBW-DTS

Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	685k	1.036M	1M04F1D	678.75k	1.033M
BT-LE(2Mbps)	587.5k	2.08M	2M08F1D	565k	2.065M

 $\label{eq:max-NdB} Max\cdot N\, dB = Maximum 6dB \ down \ bandwidth; \ Max-OBW = Maximum 99\% \ occupied \ bandwidth; \ Min-OBW = Minimum 99\% \ occupied \ bandwidth; \ \ bandwid$


EBW-DTS

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	500k	685k	1.036M
2440MHz	Pass	500k	683.75k	1.033M
2480MHz	Pass	500k	678.75k	1.034M
BT-LE(2Mbps)	-	-	-	-
2402MHz	Pass	500k	587.5k	2.065M
2440MHz	Pass	500k	582.5k	2.074M
2480MHz	Pass	500k	565k	2.08M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth

2.4-2.4835GHz_BT-LE(1Mbps) EBW-DTS 2480MHz 09/04/2024 20 20 CF (Hz) CF (Hz) 2.48G 2.48G 10-10-Span (Hz) Span (Hz) 0 2.5M 0 2.5M овіл RBW (Hz) RBW (Hz) O -10 -10-100k 201 VBW (Hz) -20 VBW (Hz) -20 300k 100k -30 -30 Sweep Time (s) Sweep Time (s) 2.01m -40-2.66m -40 Detector Type Detector Type -50--50 Peak Peak -60-2.47875G 2.479G -60-2.47875G 2.479G Port 1 📈 2.4795G 2.48G 2.4805G 2.481G 2.48125G 2.4795G 2.48G 2.4805G 2.481G 2.481250 FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) 6dB(Hz) FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz) Port 678.75k 2.479648G 2.480326G 1.034M 2.47948G 2.480514G 500k 1 2.4-2.4835GHz_BT-LE(2Mbps) EBW-DTS 2402MHz 09/04/2024 30-30 CF (Hz) CF (Hz) 2.402G 2.402G 20 20-Span (Hz) Span (Hz) 10-10-5M 5M 0. RBW (Hz) RBW (Hz) 0. mm 100k 20k -10 VBW (Hz) VBW (Hz) -10 -20 300k 100k -20 Sweep Time (s) Sweep Time (s) -30 2.01m 2.66m -30--40 Detector Type Detector Type -40--50 Peak Peak -50-2.3995G 2.4G -60-2.3995G 2.4G Port 1 📈 2.401G 2.402G 2.403G 2.404G 2.4045G 2.401G 2.402G 2.403G 2.404G 2.4045G 6dB(Hz) FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz) Port 587.5k 2.401655G 2.402243G 2.065M 2.400976G 2.403041G 500k 1

2.4-2.4835GHz_BT-LE(2Mbps) EBW-DTS 2440MHz 09/04/2024 30-30 CF (Hz) CF (Hz) 2.44G 20-2.44G 20-Span (Hz) Span (Hz) 10 10-5M 5M ОВУ RBW (Hz) RBW (Hz) 0 0. 100k 30 -10 VBW (Hz) -10 VBW (Hz) -20 300k 100k -20 Sweep Time (s) Sweep Time (s) -30 2.01m -30-2.01m -40 Detector Type Detector Type -40 -50 Peak Peak -60-2.4375G 2.438G -50-2.4375G 2.438G \sim Port 1 2.439G 2.44G 2.441G 2.442G 2.4425G 2.439G 2.44G 2.441G 2.442G 2.4425G 6dB(Hz) FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz) FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) Port 2.438971G 2.441045G 500k 582.5k 2.43966G 2.440243G 2.074M 1 2.4-2.4835GHz_BT-LE(2Mbps) EBW-DTS 2480MHz 09/04/2024 20-20 CF (Hz) CF (Hz) 2.48G 10 2.48G 10-Span (Hz) Span (Hz) 0. 0. 5M 5M OBW-I -10 -10-RBW (Hz) RBW (Hz) 100k -20 30k -20 VBW (Hz) VBW (Hz) -30--30-300k 100k Sweep Time (s) Sweep Time (s) -40 -40 2.01m 2.01m -50 -50 Detector Type Detector Type -60 -60 Peak Peak -70-2.4775G 2.478G -70-2.4775G 2.478G Port 1 📈 2.479G 2.48G 2.481G 2.482G 2.4825G 2.479G 2.48G 2.481G 2.482G 2.4825G 6dB(Hz) FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz) Port 565k 2.479665G 2.48023G 2.08M 2.47897G 2.48105G 500k 1

Summary

Mode	Total Power (dBm)	Total Power (W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	13.14	0.02061
BT-LE(2Mbps)	15.48	0.03532

Average Power-DTS

Result

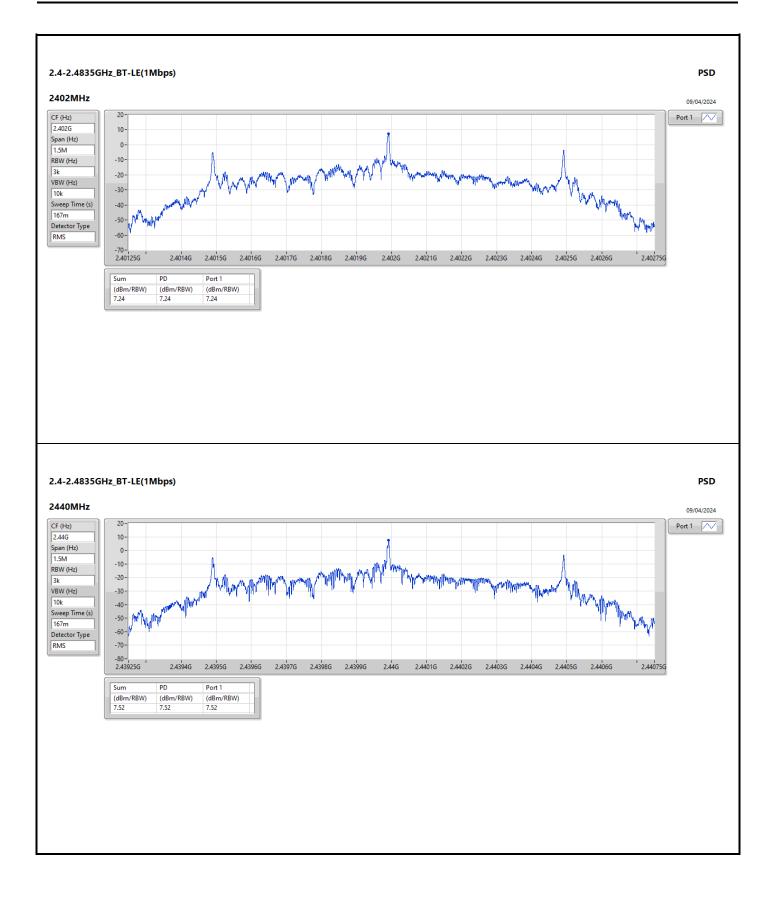
Mode	Result	DG	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	3.58	13.14	30.00
2440MHz	Pass	3.58	12.84	30.00
2478MHz	Pass	3.58	12.42	30.00
2480MHz	Pass	3.58	8.55	30.00
BT-LE(2Mbps)	-	-	-	-
2402MHz	Pass	3.58	15.48	30.00
2440MHz	Pass	3.58	15.45	30.00
2478MHz	Pass	3.58	15.00	30.00
2480MHz	Pass	3.58	2.97	30.00

DG = Directional Gain; Port X = Port X output power

Summary

Mode	PD (dBm/RBW)
2.4-2.4835GHz	-
BT-LE(1Mbps)	7.67
BT-LE(2Mbps)	7.56

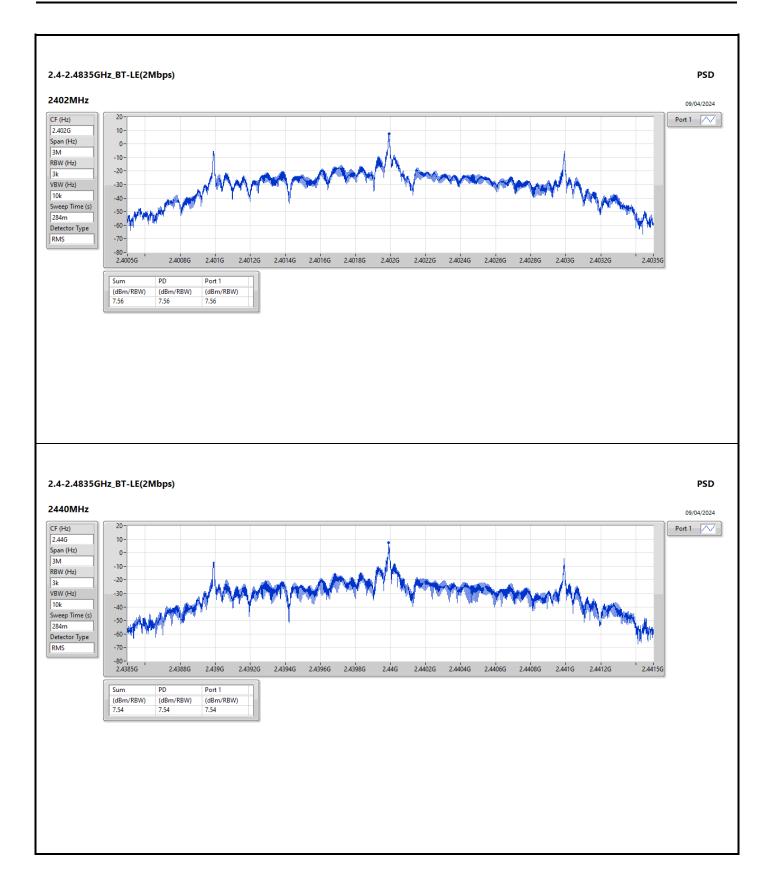
RBW = 3kHz;

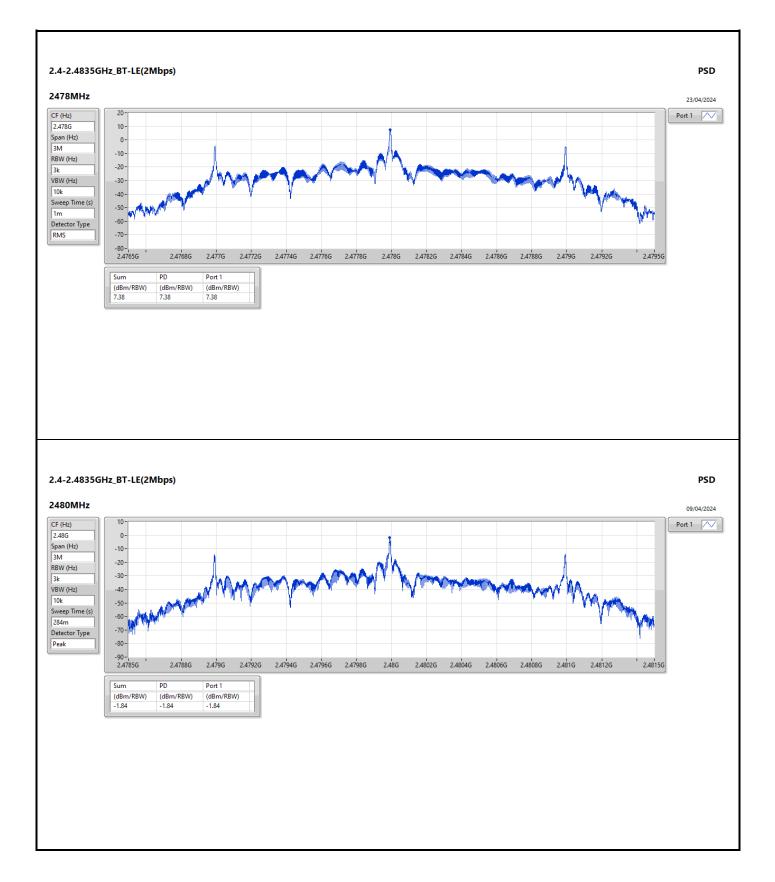

PSD-DTS

Result

Mode	Result	DG (dBi)	PD (dBm/RBW)	PD Limit (dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	3.58	7.24	8.00
2440MHz	Pass	3.58	7.52	8.00
2478MHz	Pass	3.58	7.67	8.00
2480MHz	Pass	3.58	7.29	8.00
BT-LE(2Mbps)	-	-	-	-
2402MHz	Pass	3.58	7.56	8.00
2440MHz	Pass	3.58	7.54	8.00
2478MHz	Pass	3.58	7.38	8.00
2480MHz	Pass	3.58	-1.84	8.00

DG = Directional Gain: RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;





PSD-DTS

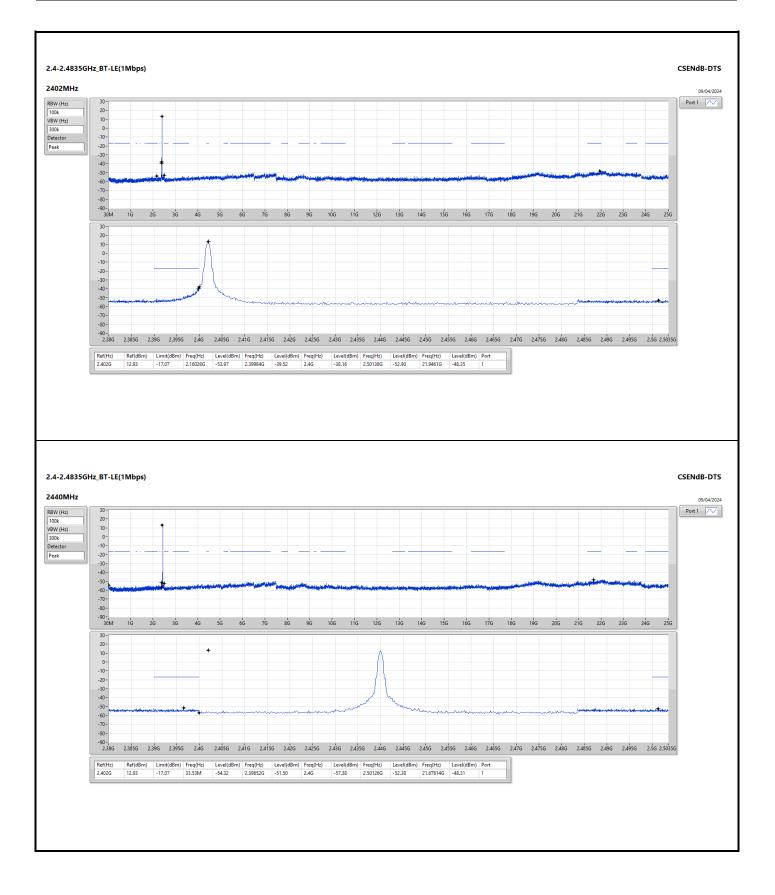
CSE NdB-DTS

Appendix E

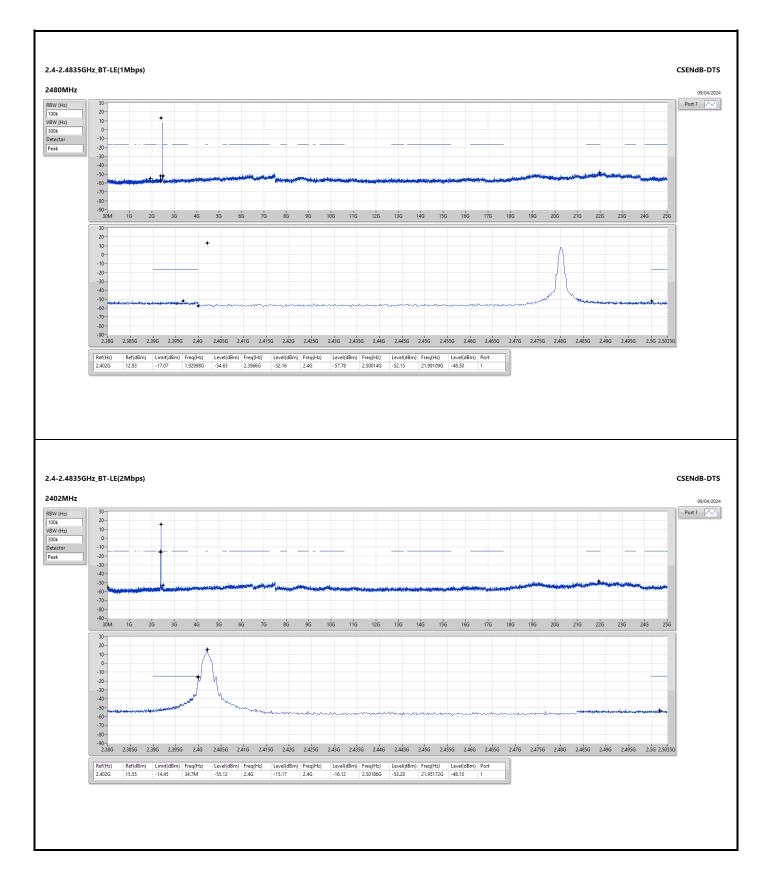
Summary

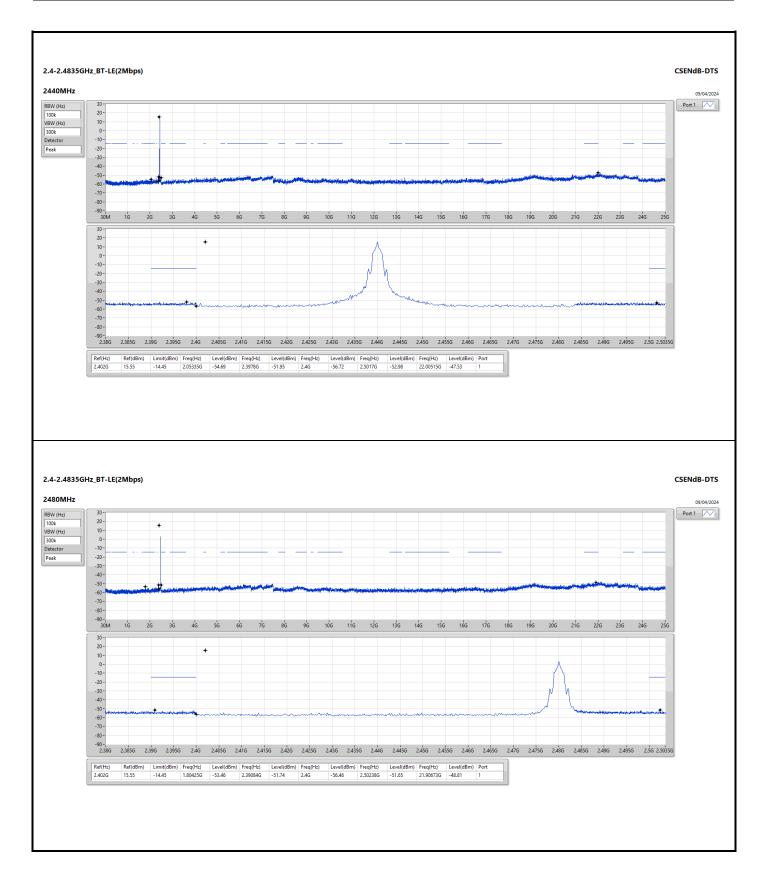
Mode	Result	Ref (Hz)	Ref (dBm)	Limit (dBm)	Freq (Hz)	Level (dBm)	Port								
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	2.402G	12.93	-17.07	2.16028G	-53.97	2.39984G	-39.52	2.4G	-38.16	2.50138G	-52.90	21.9461G	-48.35	1
BT-LE(2Mbps)	Pass	2.402G	15.55	-14.45	34.7M	-55.12	2.4G	-15.17	2.4G	-16.12	2.50186G	-53.20	21.95172G	-48.10	1

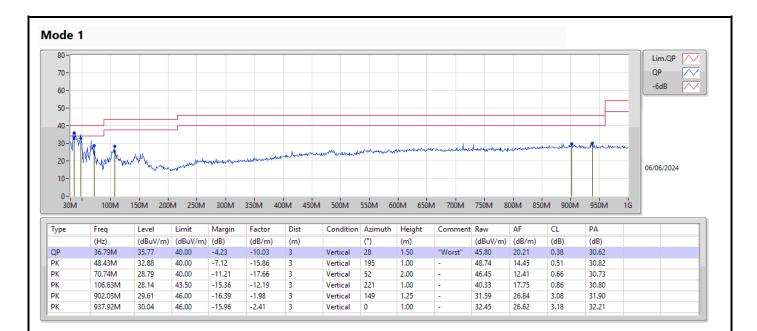
CSE NdB-DTS


Appendix E

Result


Mode	Result	Ref (Hz)	Ref (dBm)	Limit (dBm)	Freq (Hz)	Level (dBm)	Port								
BT-LE(1Mbps)	-	-	-	-	-	-		-	-	-		-	-	-	-
2402MHz	Pass	2.402G	12.93	-17.07	2.16028G	-53.97	2.39984G	-39.52	2.4G	-38.16	2.50138G	-52.90	21.9461G	-48.35	1
2440MHz	Pass	2.402G	12.93	-17.07	33.53M	-54.32	2.39652G	-51.50	2.4G	-57.38	2.50126G	-52.38	21.67614G	-48.31	1
2480MHz	Pass	2.402G	12.93	-17.07	1.92998G	-54.65	2.3966G	-52.16	2.4G	-57.78	2.50014G	-52.15	21.99109G	-48.50	1
BT-LE(2Mbps)	-		-	-		-		-	-	-	-	-	-	-	-
2402MHz	Pass	2.402G	15.55	-14.45	34.7M	-55.12	2.4G	-15.17	2.4G	-16.12	2.50186G	-53.20	21.95172G	-48.10	1
2440MHz	Pass	2.402G	15.55	-14.45	2.05335G	-54.69	2.3978G	-51.95	2.4G	-56.72	2.5017G	-52.98	22.00515G	-47.53	1
2480MHz	Pass	2.402G	15.55	-14.45	1.80425G	-53.46	2.39084G	-51.74	2.4G	-56.46	2.50238G	-51.65	21.90673G	-48.81	1


Appendix E


Radiated Emissions below 1GHz

Summary							
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	
Mode 1	Pass	QP	36.79M	35.77	40.00	-4.23	Vertical

Radiated Emissions below 1GHz

Appendix F.1

РК

PK

РК

937.92M

30.56

46.00

-15.44

-2.41

3

Horizontal 70

Radiated Emissions below 1GHz

Mode 1 80-Lim.QP QP \sim 70- \sim -6dB 60· 50-40 30ık 20-06/06/2024 и 10-0-| 30M 15ởm 20ởm 25ởm 30ởm 35ởm 40ởm 45ởm 50ởm 55ởm 60ởm 65ởm 70ởm 75ởm 80ởm 85ởm 90ởm 95ởm 100M 1Ġ Туре Freq Limit Margin Factor Dist Condition Azimuth Height Comment Raw AF CL PA Level (Hz) (dBuV/m) (dBuV/m) (dB) (dB/m) (dBuV/m) (dB/m) (dB) (dB) (m) (°) (m) QP 35.82M 32.91 40.00 -7.09 -9.49 Horizontal 360 1.00 "Worst" 42.40 20.79 0.37 30.65 3 65.89M 27.32 40.00 -12.68 -17.97 Horizontal 113 3.00 45.29 12.34 0.63 30.94 3 -70.74M 24.05 40.00 -15.95 -17.66 3 Horizontal 116 2.00 41.71 12.41 0.66 30.73 PK 101.78M 29.02 43.50 -14.48 -12.49 3 Horizontal 116 1.25 41.51 17.39 0.83 30.71 РК 106.63M 34.09 43.50 -9.41 -12.19 3 Horizontal 288 3.00 -46.28 17.75 0.86 30.80

3.00

32.97

26.62

3.18

32.21

RSE TX above 1GHz

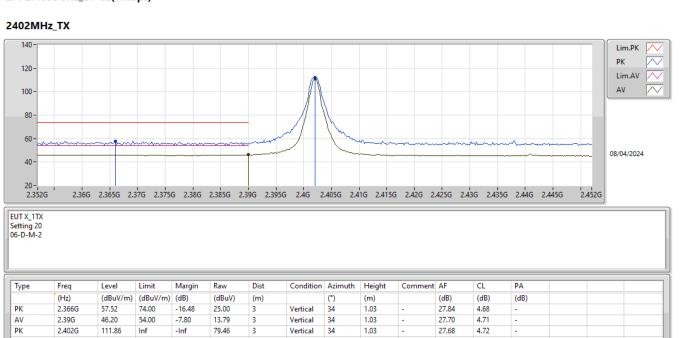
Appendix F.2

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-		-
BT-LE(2Mbps)	Pass	AV	2.4835G	53.81	54.00	-0.19	3	Horizontal	40	1.00	-

2.402G

111.05


Inf

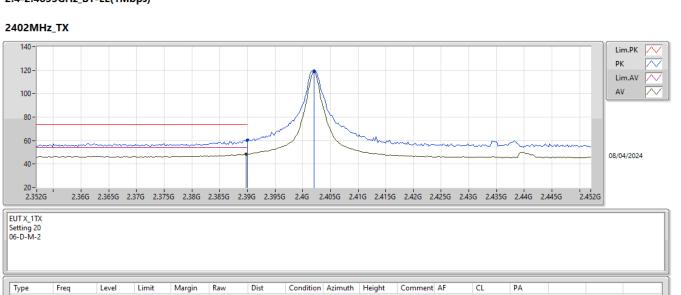
-Inf

78.65

3

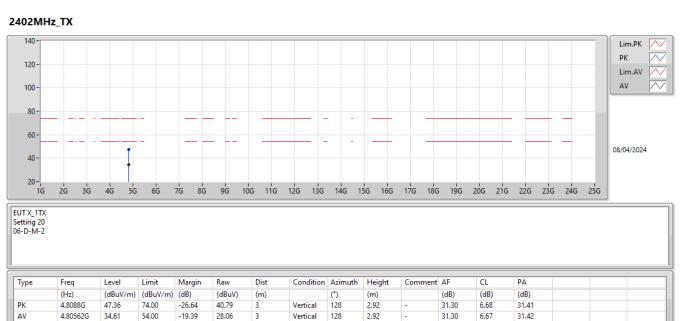
AV

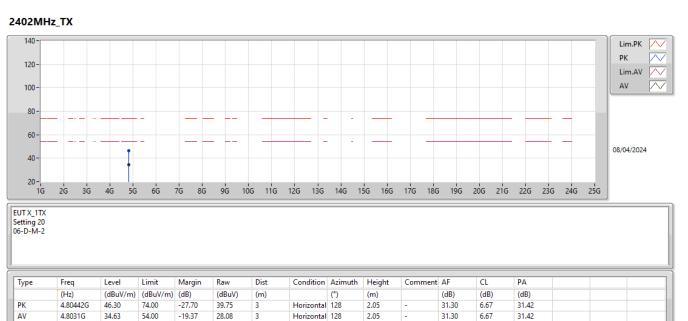
Vertical


34

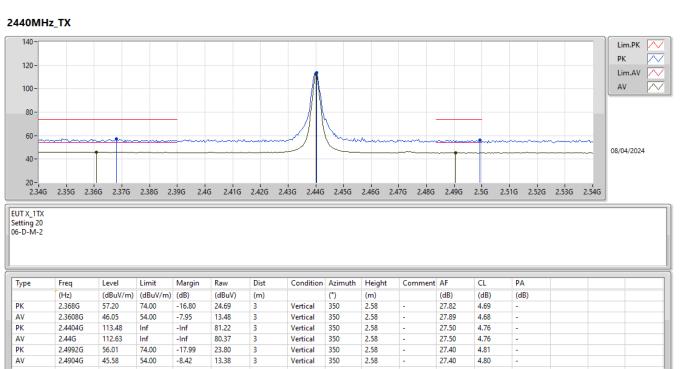
1.03

27.68


4.72



Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.39G	60.18	74.00	-13.82	27.77	3	Horizontal	46	2.89	-	27.70	4.71	-		
AV	2.3898G	48.63	54.00	-5.37	16.22	3	Horizontal	46	2.89	-	27.70	4.71	-		
PK	2.402G	119.39	Inf	-Inf	86.99	3	Horizontal	46	2.89	-	27.68	4.72	-		
AV	2.402G	118.55	Inf	-Inf	86.15	3	Horizontal	46	2.89	-	27.68	4.72	-		



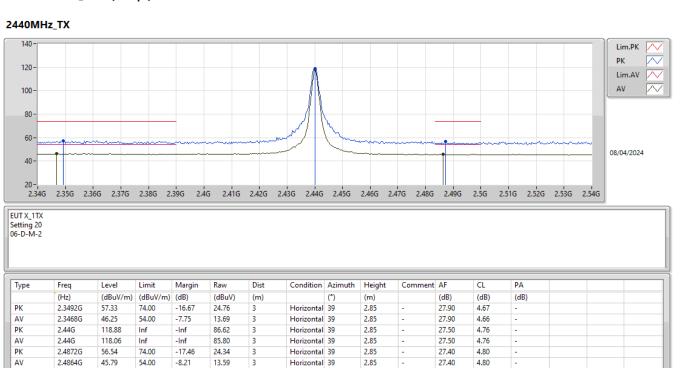
2.4864G

45.79

54.00

-8.21

13.59


3

Horizontal 39

2.85

4.80

AV

AV PK

AV

4.86578G

7.31322G

7.31442G

34.86

54.50

42.08

54.00

74.00

54.00

-19.14

-19.50

-11.92

28.20

42.16

29.75

3

3

3

Vertical

Vertical

Vertical

121

337

337

1.80

1.80

1.80

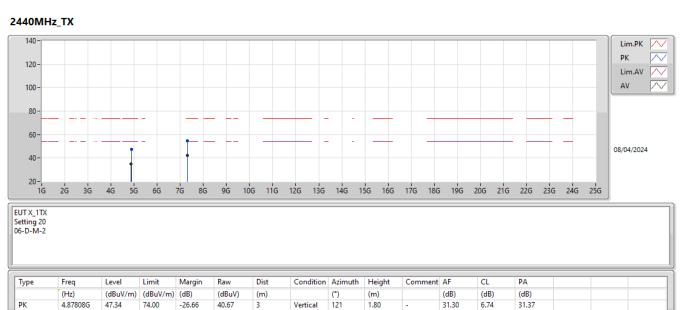
-

31.30

36.60

36.60

6.73


8.34

8.34

31.37

32.60

32.61

AV PK

AV

4.87976G

7.32138G

7.32174G

34.67

54.23

42.02

54.00

74.00

54.00

-19.33

-19.77

-11.98

27.99

41.91

29.70

3

3

3

Horizontal 39

Horizontal 69

Horizontal 69

2.25

1.04

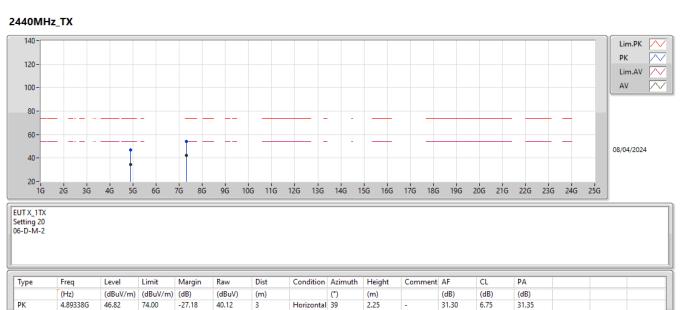
1.04

31.30

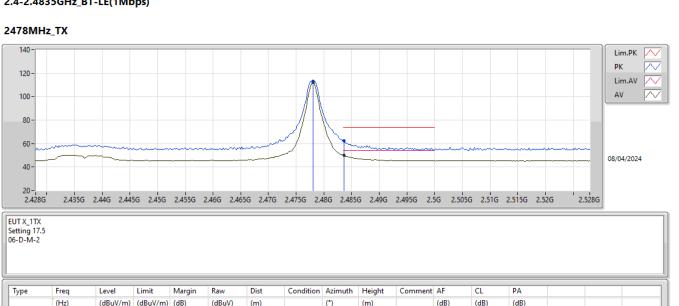
36.60

36.60

6.74


8.34

8.34


31.36

32.62

32.62

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
PK	2.478G	113.17	Inf	-Inf	80.98	3	Vertical	0	2.78	-	27.40	4.79	-		
AV	2.478G	112.29	Inf	-Inf	80.10	3	Vertical	0	2.78	-	27.40	4.79	-		
PK	2.4836G	62.34	74.00	-11.66	30.14	3	Vertical	0	2.78	-	27.40	4.80	-		
AV	2.4836G	50.00	54.00	-4.00	17.80	3	Vertical	0	2.78	-	27.40	4.80	-		

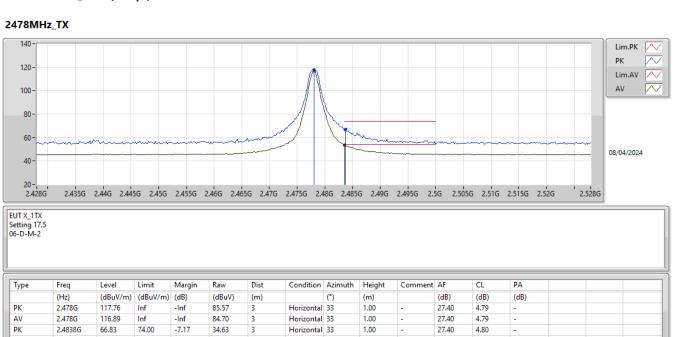
AV

2.4835G

53.71

54.00

-0.29


21.51

3

Horizontal 33

1.00

2.4-2.4835GHz_BT-LE(1Mbps)

27.40

4.80

2.4838G

2.4835G

AV

58.88

49.99

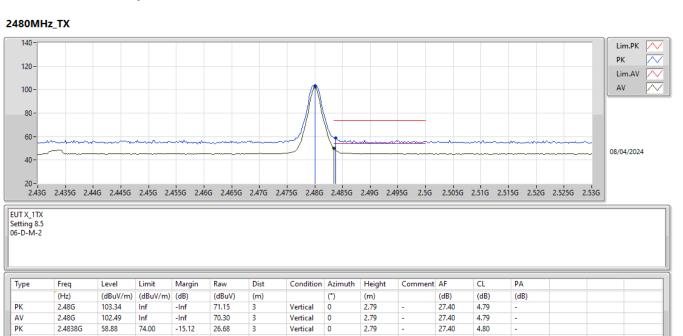
74.00

54.00

-15.12

-4.01

26.68


17.79

3

3

Vertical 0

Vertical 0

2.79

2.79

27.40

27.40

4.80

AV

2.48G

2.4835G

2.4835G

106.88

62.70

53.68

Inf

74.00

54.00

-Inf

-11.30

-0.32

74.69

30.50

21.48

3

3

3

Horizontal 46

Horizontal 46

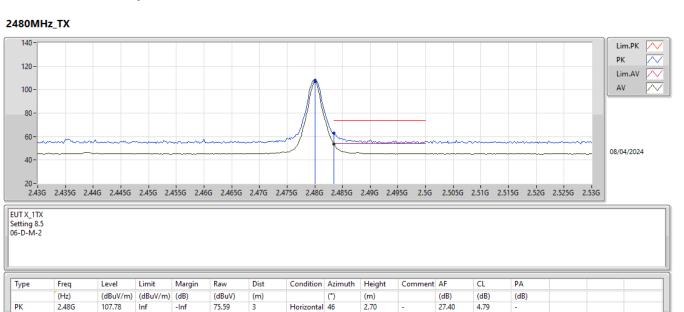
Horizontal 46

2.70

2.70

2.70

27.40


27.40

27.40

4.79

4.80

4.80

AV

4.96846G

7.43298G

7.44792G

34.64

54.32

42.32

54.00

74.00

54.00

-19.36

-19.68

-11.68

27.56

42.05

30.04

3

3

3

Vertical

Vertical

Vertical

107

157

157

2.05

1.03

1.03

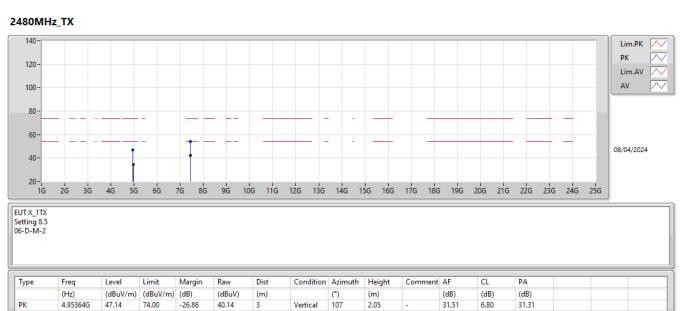
-

31.57

36.67

36.70

6.81


8.37

8.38

31.30

32.77

32.80

1															
Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
PK	4.97272G	46.23	74.00	-27.77	39.12	3	Horizontal	147	2.38	-	31.59	6.82	31.30		
AV	4.94836G	34.70	54.00	-19.30	27.73	3	Horizontal	147	2.38	-	31.49	6.80	31.32		
PK	7.44654G	54.54	74.00	-19.46	42.26	3	Horizontal	38	2.89	-	36.69	8.38	32.79		
AV	7.44294G	42.40	54.00	-11.60	30.12	3	Horizontal	38	2.89	-	36.69	8.38	32.79		

AV

2.358G

2.402G

2.402G

47.22

112.33

111.60

54.00

Inf

Inf

-6.78

-Inf

-Inf

14.64

79.93

79.20

3

3

3

Vertical

Vertical

Vertical

33

33

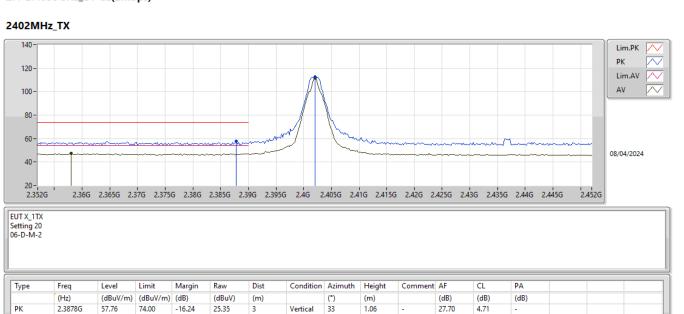
33

1.06

1.06

1.06

27.90


27.68

27.68

4.68

4.72

4.72

2.3898G

2.3892G

2.402G

2.402G

AV PK

AV

59.47

49.70

118.87

118.15

74.00

54.00

Inf

Inf

-14.53

-4.30

-Inf

-Inf

27.06

17.29

86.47

85.75

3

3


3

3

Horizontal 36

Horizontal 36

Horizontal 36

2.62

2.62

2.62

2.62

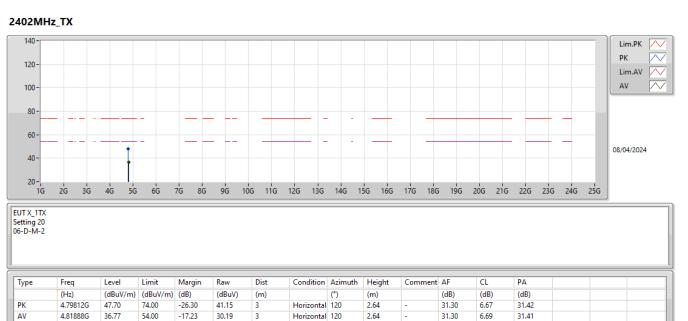
27.70

27.70

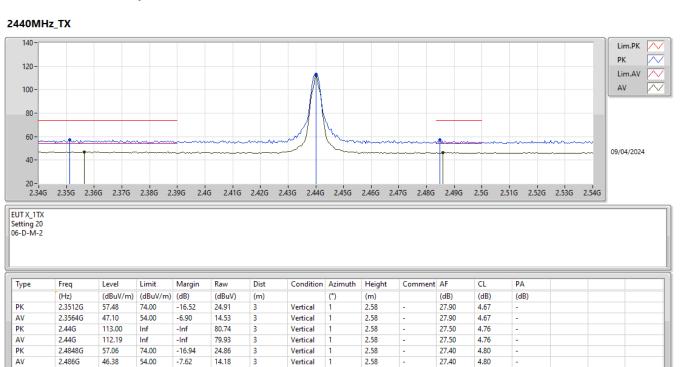
27.68

27.68

4.71


4.71

4.72



2.4884G

2.4876G

AV

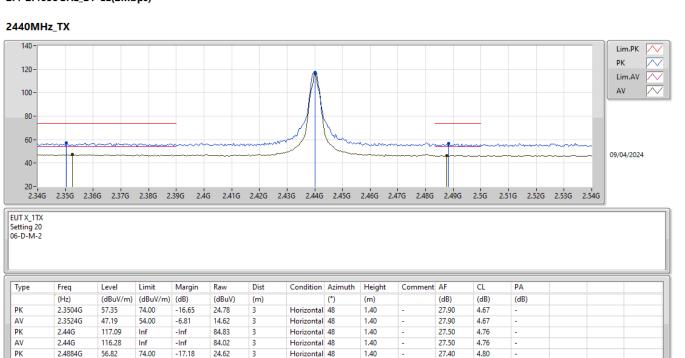
74.00

54.00

56.82

46.59

-17.18


-7.41

24.62

14.39

3

3

Horizontal 48

Horizontal 48

1.40

1.40

27.40 27.40

4.80

AV

4.8773G

7.30596G

7.31898G

36.00

54.81

43.37

54.00

74.00

54.00

-18.00

-19.19

-10.63

29.33

42.46

31.04

3

3

3

Vertical

Vertical

Vertical

304

132

132

2.07

1.66

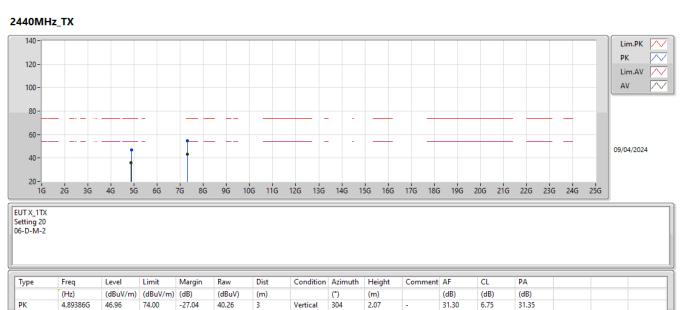
1.66

31.30

36.60

36.60

6.74


8.34

8.34

31.37

32.59

32.61

7.3125G

7.31178G

AV

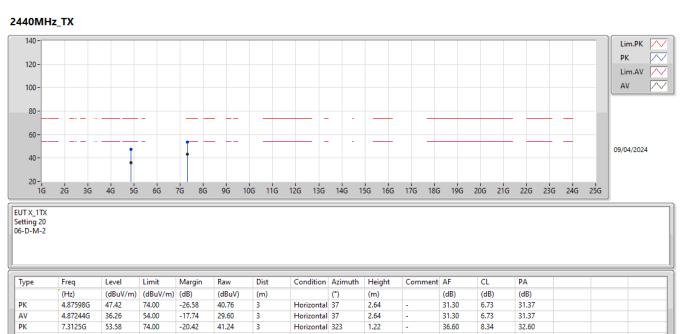
53.58

43.20

74.00

54.00

-20.42


-10.80

41.24

30.86

3

3

Horizontal 323

Horizontal 323

1.22

1.22

36.60

36.60

8.34

8.34

32.60

2.4836G

2.4835G

AV

60.52

49.54

74.00

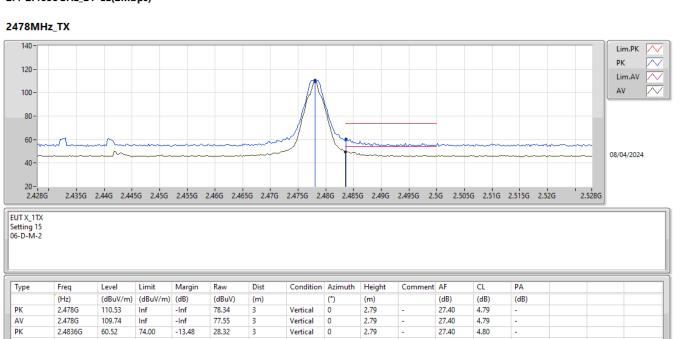
54.00

-13.48

-4.46

28.32

17.34


3

3

Vertical 0

Vertical

0

2.79

2.79

27.40

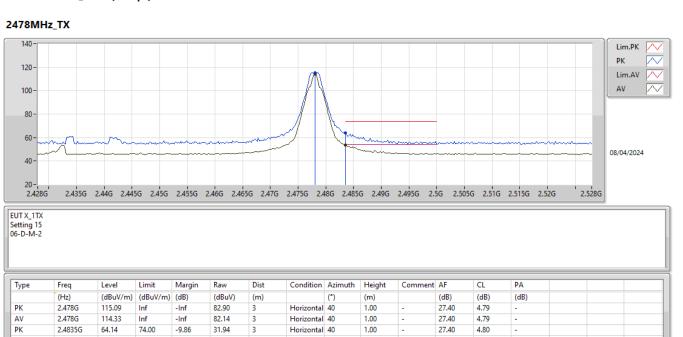
27.40

4.80

AV

2.4835G

53.81


54.00

-0.19

21.61

3

2.4-2.4835GHz_BT-LE(2Mbps)

Horizontal 40

1.00

27.40

2.4836G

2.4835G

AV

57.72

49.74

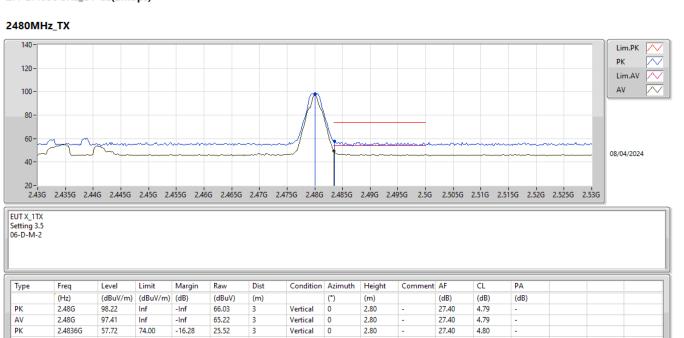
74.00

54.00

-16.28

-4.26

25.52


17.54

3

3

Vertical 0

Vertical 0

2.80

2.80

27.40

27.40

4.80

2.4835G

2.4835G

AV

61.81

53.21

74.00

54.00

-12.19

-0.79

29.61

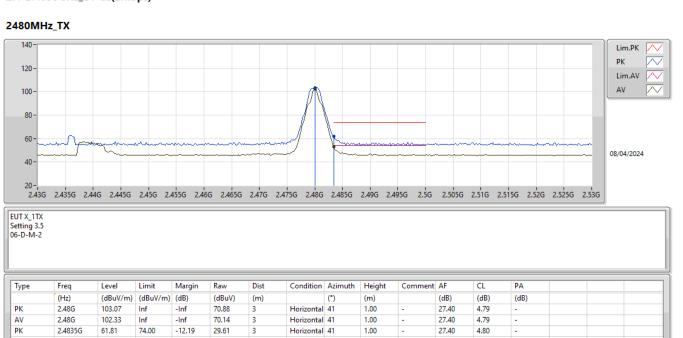
21.01

3

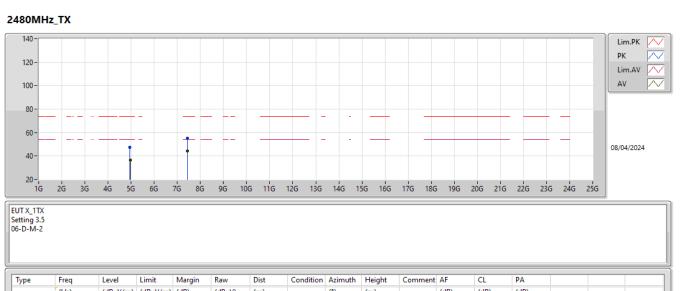
3

Horizontal 41

Horizontal 41


1.00

1.00


27.40

27.40

4.80

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.9498G	47.36	74.00	-26.64	40.38	3	Vertical	20	2.41	-	31.50	6.80	31.32		
AV	4.97344G	36.49	54.00	-17.51	29.38	3	Vertical	20	2.41	-	31.59	6.82	31.30		
РК	7.42986G	55.29	74.00	-18.71	43.03	3	Vertical	292	1.25	-	36.66	8.37	32.77		
AV	7.43796G	44.39	54.00	-9.61	32.12	3	Vertical	292	1.25	-	36.68	8.37	32.78		

7.45278G

7.44348G

AV

55.45

44.58

74.00

54.00

-18.55

-9.42

43.17

32.30

3

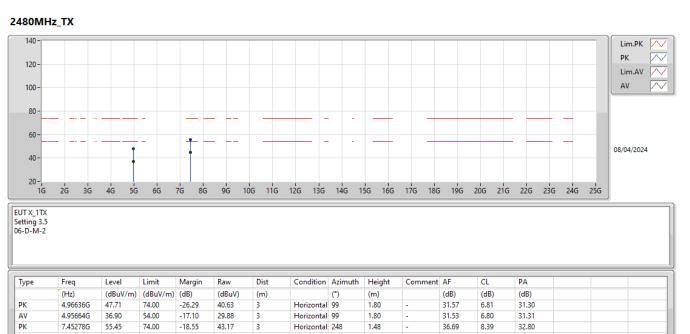
3

Horizontal 248

Horizontal 248

1.48

1.48


36.69

36.69

8.39

8.38

32.80

