

RADIO TEST REPORT FCC ID: 2BADE-SEIETBAT7701

Product: 8inch Tower Speaker Trade Mark: SOUNDEXTREME BY ECOXGEAR Model No.: SEI-ETBAT7701 SEI-ET7701,SEI-ETAMP7701 SEI-ETAMPBAT7701,SEI-ET7708 SEI-ETAMP7708,SEI-ETBAT7708 SEI-ETAMPBAT7708 Report No.: S23022202007001 Issue Date: May 25, 2023

Prepared for

Sound Extreme Inc.

9212 Fry Road, Suite 105-351, Cypress, TX 77433, USA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	NERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	FUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 10
7 TE	ST REQUIREMENTS	13
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	13 25 26 27 29 30 31 32 33 34
8 TE	ST RESULTS	35
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER -20DB BANDWIDTH OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE BAND EDGE BAND EDGE (HOPPING) CONDUCTED RF SPURIOUS EMISSION	45 51 63 69 72 79

1 TEST RESULT CERTIFICATION

NTEK 北测

Sound Extreme Inc.
9212 Fry Road, Suite 105-351, Cypress, TX 77433, USA
Xingtel Xiamen Group Co., Ltd.
Xingtel Building,Chuangxin Road, Torch Hi-Tech Industrial District,Xiamen 361006, PR China
8inch Tower Speaker
SEI-ETBAT7701
SEI-ET7701,SEI-ETAMP7701,SEI-ETAMPBAT7701,SEI-ET7708 SEI-ETAMP7708,SEI-ETBAT7708,SEI-ETAMPBAT7708

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Testing Engineer

Authorized Signatory

(Alex Li)

Feb 22. 2023 ~ May 23, 2023

1) Men tin

(Allen Liu)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

ACCREDITED Certificate #4298.01

ilac-MR

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

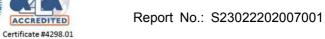
3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park, Sanwei Community,Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community,
	Xixiang Street Bao'an District, Shenzhen 518126 P.R. China


3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±2.80dB	
2	RF power, conducted	±0.16dB	
3	Spurious emissions, conducted	±0.21dB	
4	All emissions, radiated(30MHz~1GHz)	±2.64dB	
5	All emissions, radiated(1GHz~6GHz)	±2.40dB	
6	All emissions, radiated(>6GHz)	±2.52dB	
7	Temperature	±0.5°C	
8	Humidity	±2%	
9	All emissions, radiated(9KHz~30MHz)	±6dB	

4

GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	8inch Tower Speaker	
Trade Mark	SOUNDEXTREME BY ECOXGEAR	
FCC ID	2BADE-SEIETBAT7701	
Model No.	SEI-ETBAT7701	
Family Model	SEI-ET7701,SEI-ETAMP7701,SEI-ETAMPBAT7701,SEI-ET7708 SEI-ETAMP7708,SEI-ETBAT7708,SEI-ETAMPBAT7708	
Model Difference	All the model are the same circuit and RF module, except the colors and accessories	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PCB antenna	
Antenna Gain	0 dBi	
Power supply	DC 10.8V from battery or DC 12V from DC source AC 120V/60Hz	
Adapter	Model: P24C120200 US Input: 100-240V~50/60Hz 0.6A Output: 12.0V2.0A 24W P/N:B8255-2230	
Battery	DC 10.8V ,13400mAh	
HW Version	BT-366-M-V5.6;BT366-KEY-L-V5.1;BT366-KEY-ONOFF-V5.0;BT366-KEY-R-V5.0; BT-366-FP-V3.3A; BT-366-LED-V4.1;	
SW Version	XingLian(SoundEx-ETA8)_BT366_20230220_V11;BT366-M031SD2AE-F10E-20230115 BT366_BK3431Q_ble_app_merge_crc _20230114	

ACCREDITE

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01			
Revision History			
Report No.	Version	Description	Issued Date
S23022202007001	Rev.01	Initial issue of report	May 25, 2023

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

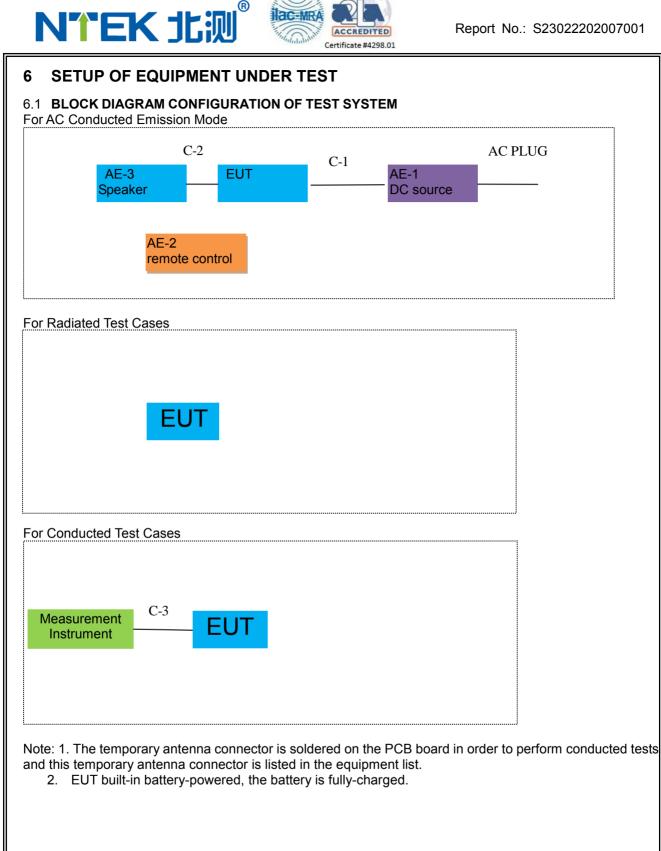
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1 normal link mode		


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

R

ac.

ACCREDITED

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITE

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	P24C120200 US	N/A	Peripherals
AE-2	remote control	N/A	N/A	Peripherals
AE-3	8"Tower Speaker	SEI-ETBAT7701	N/A	Peripherals

R

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Audio Cable	NO	NO	2.0m
C-3	RF Cable	YES	NO	0.1m

Notes:

- The support equipment was authorized by Declaration of Confirmation. (1)
- For detachable type I/O cable should be specified the length in cm in [Length] column. (2)
- "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3)

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ac.

ACCREDITED Certificate #4298.01

Radiation& Conducted Test equipment

uuuu		estequipment	-				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30 2023.03.27	2023.03.29 2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31 2023.03.27	2023.03.30 2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year

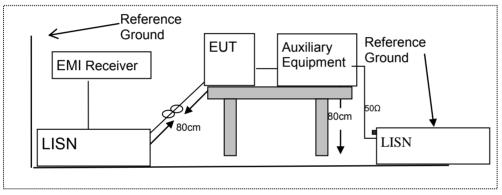
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

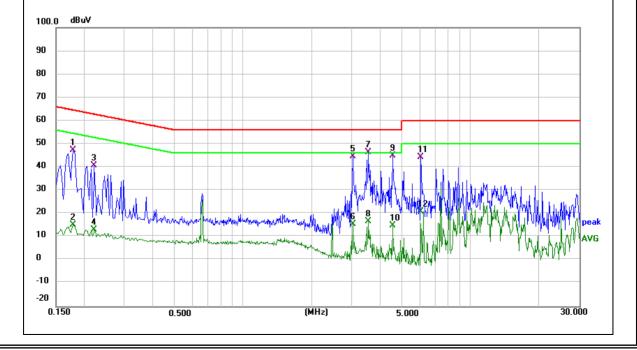
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

EUT:	8inch Tower Speaker	Model Name :	SEI-ETBAT7701
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 12V from DC source AC 120V/60Hz	Test Mode:	Mode 1


Module 2

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeril
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1780	37.38	9.99	47.37	64.58	-17.21	QP
0.1780	5.13	9.99	15.12	54.58	-39.46	AVG
0.2220	30.74	10.08	40.82	62.74	-21.92	QP
0.2220	3.12	10.08	13.20	52.74	-39.54	AVG
3.0260	34.99	9.67	44.66	56.00	-11.34	QP
3.0260	5.98	9.67	15.65	46.00	-30.35	AVG
3.5500	36.77	9.67	46.44	56.00	-9.56	QP
3.5500	7.19	9.67	16.86	46.00	-29.14	AVG
4.5420	35.21	9.67	44.88	56.00	-11.12	QP
4.5420	5.33	9.67	15.00	46.00	-31.00	AVG
6.0500	34.79	9.68	44.47	60.00	-15.53	QP
6.0500	11.20	9.68	20.88	50.00	-29.12	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

	EUT: 8inch Tower Speaker			Model Name :		SEI-ETBAT7701				
	Temperature:	25 ℃				Relative Humid	ity:	62%		
	Pressure:	1010	hPa			Phase :		N		
	Test Voltage :	_	DC 12V from DC source . AC 120V/60Hz		Test Mode:		Mode 1			
Μ	odule 2									
	Frequency	Reading Le	evel	Correct Factor	Measure-ment	Limits	Ν	largin	Remark	
	(MHz)	(dBµV)		(dB)	(dBµV)	(dBµV)		(dB)	Remark	
	0.1780	38.3	9	9.99	48.38	64.58	-	16.20	QP	
	0.1780	5.31	1	9.99	15.30	54.58	-	39.28	AVG	
	0.2180	32.7	2	10.08	42.80	62.89	-	20.09	QP	
	0.2180	3.23	3	10.08	13.31	52.89	-	39.58	AVG	
	3.0300	22.1	5	9.67	31.82	56.00	-	24.18	QP	
	3.0300	-3.6	7	9.67	6.00	46.00	-	40.00	AVG	
	3.5460	29.0	8	9.67	38.75	56.00	-	17.25	QP	

10.05

36.17

6.95

40.51

27.24

9.67

9.67

9.67

9.69

9.69

46.00

56.00

46.00

60.00

50.00

-35.95

-19.83

-39.05

-19.49

-22.76

AVG

QP

AVG

QP

AVG

Remark:

3.5460

4.4060

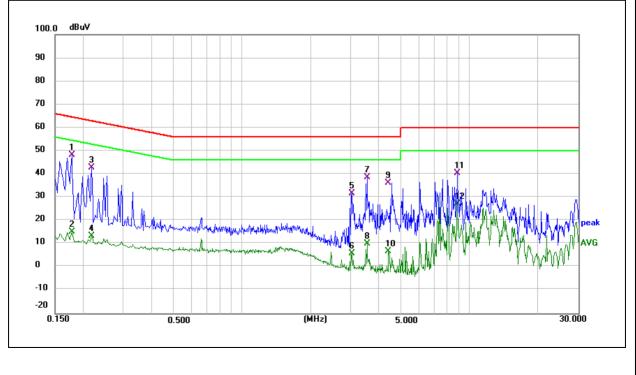
4.4060

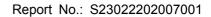
8.8100

8.8100

1. All readings are Quasi-Peak and Average values.

0.38


26.50


-2.72

30.82

17.55

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §1 5.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 OO 1 dit 10.200; According to 1 OO 1 dit 10.200; According				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)			
Frequency(MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

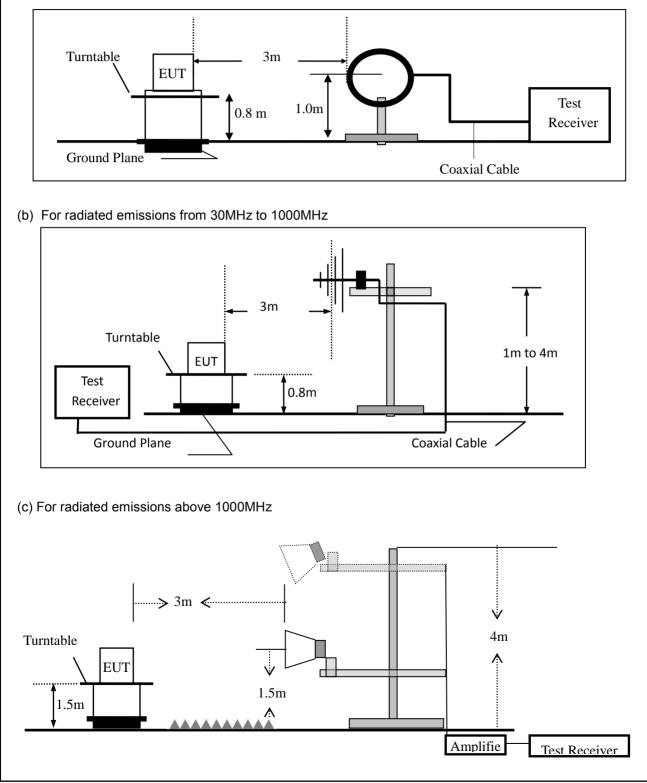
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Cartificate #4298 01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

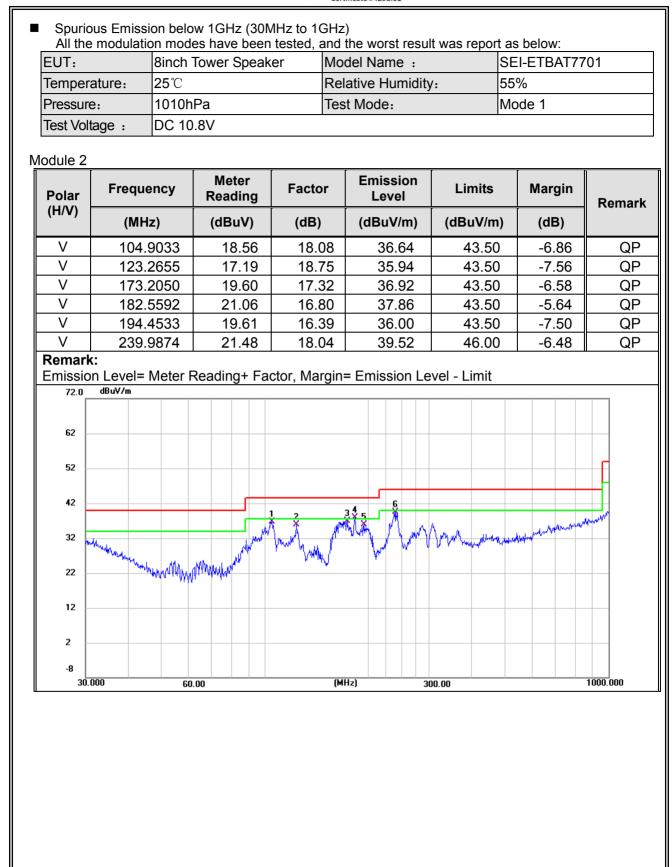
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Al	Peak		1 MHz						
Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

EUT:	8inch Tower Speaker	Model No.:	SEI-ETBAT7701
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

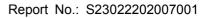
Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

NTEK 北测

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	177.9727	20.98	17.05	38.03	43.50	-5.47	QP
Н	194.4533	22.77	16.39	39.16	43.50	-4.34	QP
Н	239.9874	21.17	18.04	39.21	46.00	-6.79	QP
Н	292.0581	20.85	20.11	40.96	46.00	-5.04	QP
Н	313.1960	20.76	20.37	41.13	46.00	-4.87	QP
H Remark	331.3546	20.27	20.89	41.16	46.00	-4.84	QP
Emission 72.0	n Level= Meter F dBuV/m	Keading+ Fac	ctor, Margin		evel - Limit		
62							
52							
42			, where the second s		MW	a usaankaraga	mm
32	whether whether and the second second	whitehas	Win him hand	Perfect	Manushek	ward a show the stand	
22	- multiple and a second and a	NYAWAAAN WANNA I					
12							
2							
-8			0				

Spurious											
EUT:	8inch Tower Speaker M				del No.:		SEI-E	TBAT77	01		
Temperature:	20	Ċ		Re	lative Hum	idity:	48%	48%			
Test Mode:	Mo	de2/Mode	e3/Mode4	Те	st By:		Allen	Liu			
All the modula	ition mod	es have l	been tester	d, and f	he worst re	sult wa	s repor	t as belov	V:		
Module 2							-				
Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto		-	imits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/i	m) (dE	βμV/m)	(dB)			
			Low Char	nel (24	02 MHz)(GF	SK)Ab	ove 1G				
4804.214	63.24	5.21	35.59	44.30	59.74	. 7	4.00	-14.26	Pk	Vertical	
4804.214	40.85	5.21	35.59	44.30	37.35	5 5	4.00	-16.65	AV	Vertical	
7206.265	61.53	6.48	36.27	44.60	59.68	5 7	4.00	-14.32	Pk	Vertical	
7206.265	43.66	6.48	36.27	44.60) 41.81	5	4.00	-12.19	AV	Vertical	
4804.109	62.44	5.21	35.55	44.30	58.90	7	4.00	-15.10	Pk	Horizontal	
4804.109	43.46	5.21	35.55	44.30) 39.92	: 5	4.00	-14.08	AV	Horizontal	
7206.224	63.70	6.48	36.27	44.52	2 61.93	5 7	4.00	-12.07	Pk	Horizontal	
7206.224	48.25	6.48	36.27	44.52	2 46.48	5 5	4.00	-7.52	AV	Horizontal	
			Mid Chan	nel (244	40 MHz)(GF	SK)Abo	ove 1G				
4882.396	62.96	5.21	35.66	44.20	59.63	5 7	4.00	-14.37	Pk	Vertical	
4882.396	42.28	5.21	35.66	44.20	38.95	5 5	4.00	-15.05	AV	Vertical	
7323.241	59.95	7.10	36.50	44.43	3 59.12	2 7	4.00	-14.88	Pk	Vertical	
7323.241	47.17	7.10	36.50	44.43	3 46.34	. 5	4.00	-7.66	AV	Vertical	
4882.108	61.82	5.21	35.66	44.20	58.49	7	4.00	-15.51	Pk	Horizontal	
4882.108	48.10	5.21	35.66	44.20) 44.77	⁷ 5	4.00	-9.23	AV	Horizontal	
7323.132	60.13	7.10	36.50	44.43	3 59.30) 7	4.00	-14.70	Pk	Horizontal	
7323.132	42.01	7.10	36.50	44.43	3 41.18	5 5	4.00	-12.82	AV	Horizontal	
			High Char	nel (24	80 MHz)(GF	SK) Ab	ove 1G				
4960.397	66.75	5.21	35.52	44.2	1 63.27	7	4.00	-10.73	Pk	Vertical	
4960.397	42.75	5.21	35.52	44.2 ⁻	1 39.27	5	4.00	-14.73	AV	Vertical	
7440.201	60.86	7.10	36.53	44.60	59.89	7	4.00	-14.11	Pk	Vertical	
7440.201	45.17	7.10	36.53	44.60) 44.20	5	4.00	-9.80	AV	Vertical	
4960.225	68.31	5.21	35.52	44.2 ⁻	1 64.83	7	4.00	-9.17	Pk	Horizontal	
4960.225	48.41	5.21	35.52	44.2 ⁻	1 44.93	5	4.00	-9.07	AV	Horizontal	
7440.298	61.76	7.10	36.53	44.60	0 60.79	7	4.00	-13.21	Pk	Horizontal	
7440.298	45.75	7.10	36.53	44.60) 44.78	5	4.00	-9.22	AV	Horizontal	


ilac-MR

ACCREDITED Certificate #4298.01

Note:

NTEK 北测[®]

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

UT:	8inch To	wer Spe	aker		Mode	l No.:		SEI-E	TBAT770)1	
emperature	e: 20 ℃	20 °C Relative Humidity:						48%			
est Mode:	Mode2/	Mode4			Test I	By:		Allen Liu			
All the mod	ulation mo	des have	e been test	ed, a	nd th	e worst res	ult wa	s repo	ort as belo	W:	
lodule 2		<u></u>	A (_ · ·					
Frequency	Meter Reading	Cable Loss	Antenna Factor		eamp ictor	Emission Level	Liı	mits	Margin	Detector	Commer
(MHz)	(dBµV)	(dB)	dB/m	(C	dB)	(dBµV/m)	(dBj	uV/m)	(dB)	Туре	
			3Mt	ops fo	or 8-DF	PSK - Non-ho	opping)			
2310.00	58.13	2.97	27.80	43	8.80	45.10	7	74	-28.90	Pk	Horizont
2310.00	44.07	2.97	27.80	43	8.80	31.04	Ę	54	-22.96	AV	Horizont
2310.00	58.15	2.97	27.80	43	8.80	45.12	7	74	-28.88	Pk	Vertica
2310.00	43.13	2.97	27.80	43	8.80	30.10	Ę	54	-23.90	AV	Vertica
2390.00	58.60	3.14	27.21	43	8.80	45.15	7	74	-28.85	Pk	Vertica
2390.00	43.54	3.14	27.21	43	8.80	30.09	Ę	54	-23.91	AV	Vertica
2390.00	56.23	3.14	27.21	43	8.80	42.78	7	74	-31.22	Pk	Horizont
2390.00	42.05	3.14	27.21	43	8.80	28.60	Ę	54	-25.40	AV	Horizont
2483.50	58.10	3.58	27.70	44	.00	45.38	7	74	-28.62	Pk	Vertica
2483.50	43.38	3.58	27.70	44	.00	30.66	Ę	54	-23.34	AV	Vertica
2483.50	59.85	3.58	27.70	44	.00	47.13	7	74	-26.87	Pk	Horizont
2483.50	42.81	3.58	27.70	44	.00	30.09	Ę	54	-23.91	AV	Horizont
			3	3Mbp	s for 8	-DPSK hopp	ing				
2310.00	50.06	2.97	27.80	43	8.80	37.03	74	1.00	-36.97	Pk	Vertica
2310.00	42.84	2.97	27.80	43	8.80	29.81	54	1.00	-24.19	AV	Vertica
2310.00	54.80	2.97	27.80	43	8.80	41.77	74	1.00	-32.23	Pk	Horizont
2310.00	43.08	2.97	27.80	43	8.80	30.05	54	1.00	-23.95	AV	Horizont
2390.00	51.01	3.14	27.21	43	8.80	37.56	74	1.00	-36.44	Pk	Vertica
2390.00	40.09	3.14	27.21	43	8.80	26.64	54	1.00	-27.36	AV	Vertica
2390.00	51.78	3.14	27.21	43	8.80	38.33	74	1.00	-35.67	Pk	Horizont
2390.00	40.10	3.14	27.21	43	8.80	26.65	54	1.00	-27.35	AV	Horizont
2483.50	50.48	3.58	27.70	44	.00	37.76	74	1.00	-36.24	Pk	Vertica
2483.50	42.27	3.58	27.70	44	.00	29.55	54	1.00	-24.45	AV	Vertica
2483.50	52.82	3.58	27.70	44	.00	40.10	74	1.00	-33.90	Pk	Horizont
2483.50	41.79	3.58	27.70	44	.00	29.07	54	1.00	-24.93	AV	Horizont

ilac-MR

ACCREDITED Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

NTEK 北测[®]

NT	Report No.: S2302220200700										202007001		
Spurious	Spurious Emission in Restricted Band 3260MHz-18000MHz												
EUT:	8in	ch Tower	⁻ Speaker	N	/lode	l No.:		SEI-E	TBAT770)1			
Temperature	e: 20	°C		F	Relati	ve Humidit	y:	48%					
Test Mode:	Мо	de2/ Mod	le4	Т	est I	Зу:		Allen	Liu				
All the modu Module 2	lation mo	des have	been test	ed, an	nd the	e worst resi	ult wa	s repo	ort as belo	W:			
Frequency	Reading Level	Cable Loss	Antenna Factor	Prea Fact		Emission Level	Lii	nits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dE	3)	(dBµV/m)	(dBj	uV/m)	(dB)	Туре			
3260	60.75	4.04	29.57	44.7	70	49.66	1	74	-24.34	Pk	Vertical		
3260	56.66	4.04	29.57	44.7	70	45.57	Ę	54	-8.43	AV	Vertical		
3260	62.12	4.04	29.57	44.7	70	51.03	1	74	-22.97	Pk	Horizontal		
3260	57.57	4.04	29.57	44.7	70	46.48	Ę	54	-7.52	AV	Horizontal		
3332	66.15	4.26	29.87	44.4	40	55.88	7	74	-18.12	Pk	Vertical		
3332	54.16	4.26	29.87	44.4	40	43.89	Ę	54	-10.11	AV	Vertical		
3332	62.71	4.26	29.87	44.4	40	52.44	1	74	-21.56	Pk	Horizontal		
3332	53.93	4.26	29.87	44.4	40	43.66	Ę	54	-10.34	AV	Horizontal		
17797	44.77	10.99	43.95	43.5	50	56.21	1	74	-17.79	Pk	Vertical		
17797	33.33	10.99	43.95	43.5	50	44.77	Ę	54	-9.23	AV	Vertical		
17788	45.19	11.81	43.69	44.6	60	56.09	7	74	-17.91	Pk	Horizontal		
17788	31.65	11.81	43.69	44.6	60	42.55	Ę	54	-11.45	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	8inch Tower Speaker	Model No.:	SEI-ETBAT7701
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

NTEK 北测

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

 $VBW \ge RBW$ Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	8inch Tower Speaker	Model No.:	SEI-ETBAT7701 48% Allen Liu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

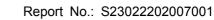
7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	8inch Tower Speaker	Model No.:	SEI-ETBAT7701
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	8inch Tower Speaker	Model No.:	SEI-ETBAT7701
Temperature:	20 ℃	Relative Humidity:	48% Allen Liu
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	8inch Tower Speaker	Model No.:	SEI-ETBAT7701
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	8inch Tower Speaker	Model No.:	SEI-ETBAT7701
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: Ant 1 0dBi; Ant 2 0dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

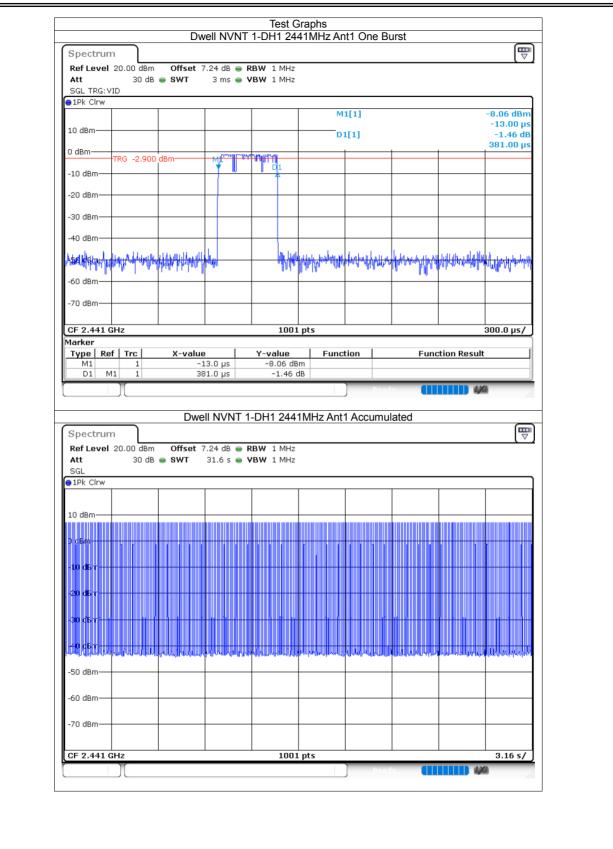
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

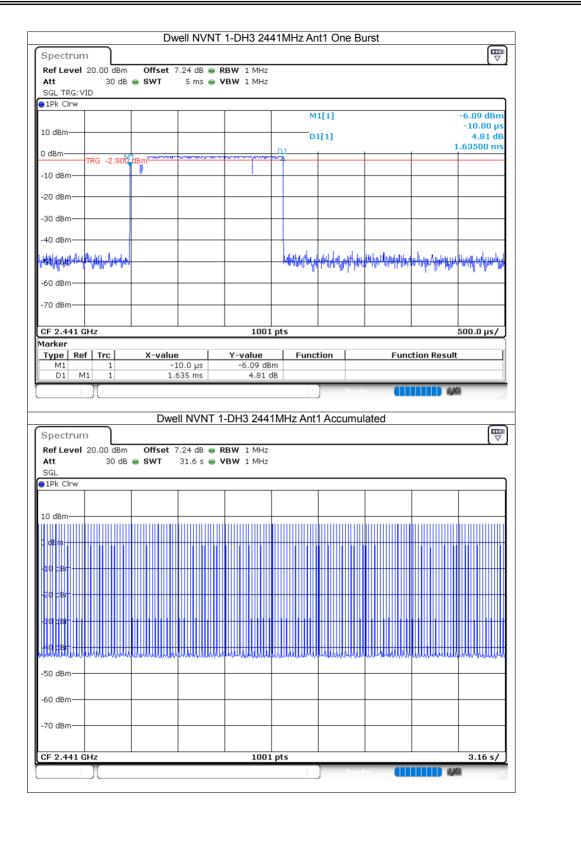
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS

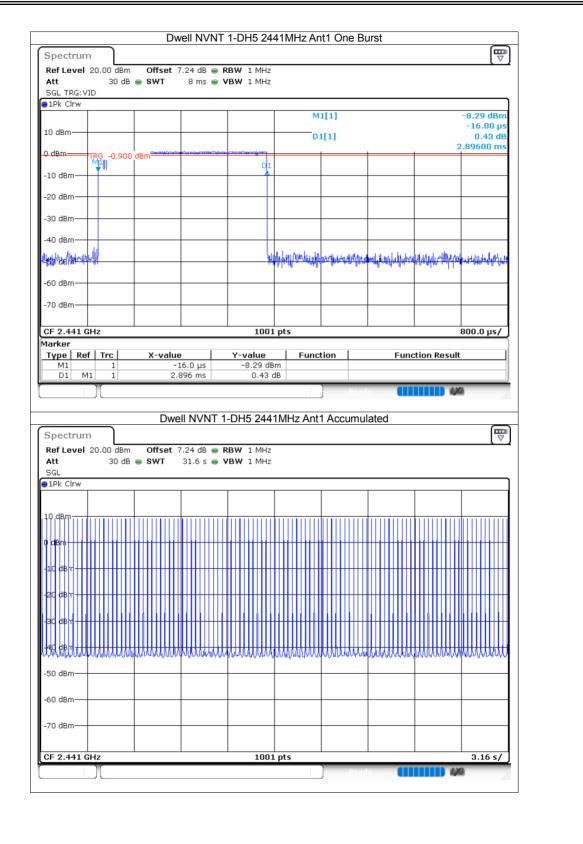
Module 2

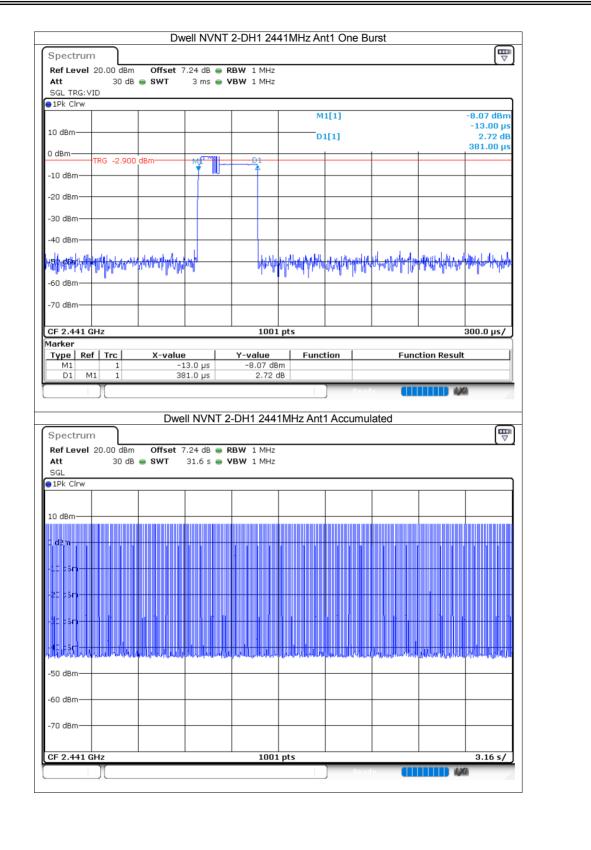

8.1 Dwell Time

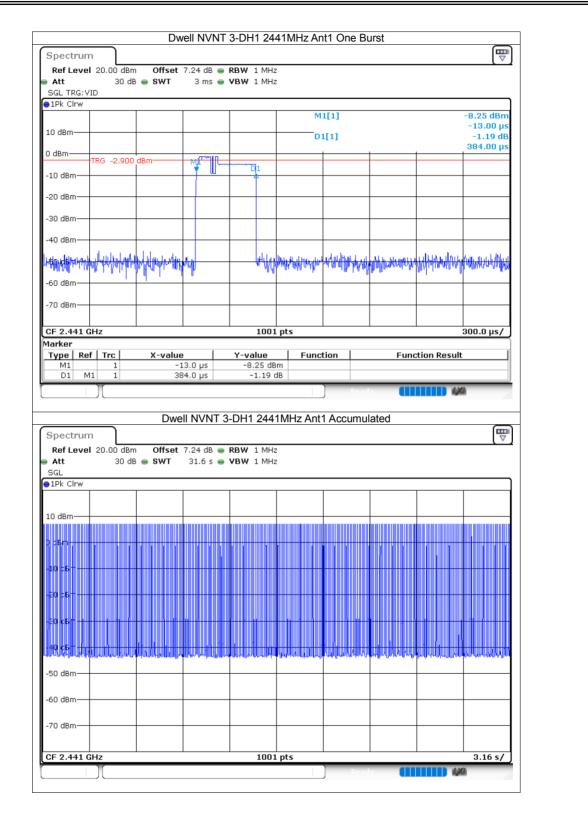
Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.381	121.539	319	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.635	259.965	159	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.896	306.976	106	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.381	121.539	319	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.63	259.17	159	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	306.128	106	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.384	122.496	319	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.635	261.6	160	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.896	306.976	106	31600	400	Pass

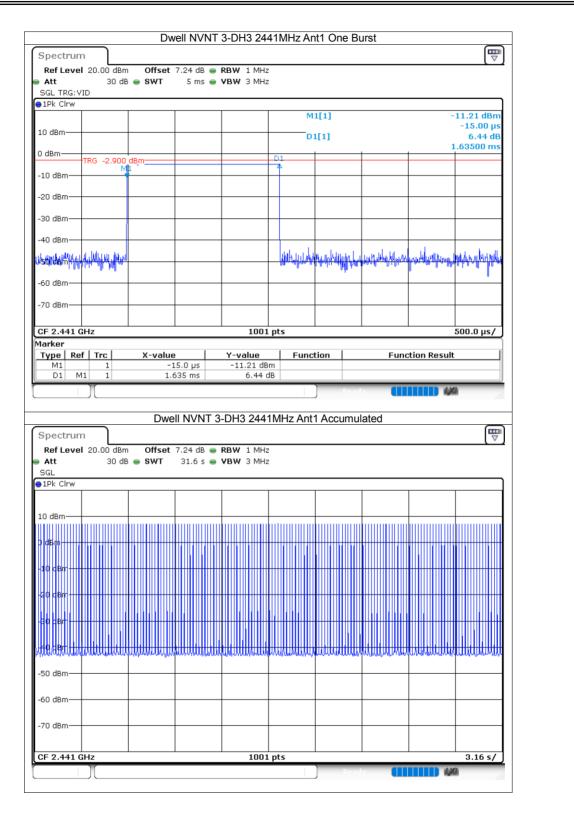


®

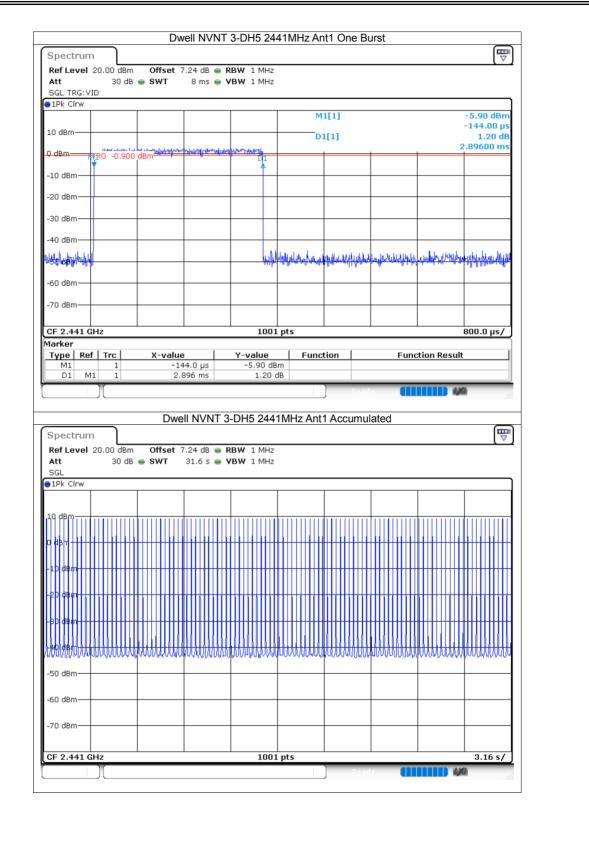


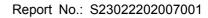



Att SGL TRG:		Offset 1 SWT	7.24 dB 👄 F 5 ms 👄 V	RBW 1 MHz /BW 1 MHz					
●1Pk Clrw				1	M	1[1]			-6.99 dBm
10 dBm						1[1]			-10.00 µs 2.18 dB 1.63000 ms
0 dBm	TRG -2.900	allam			D1				
-10 dBm—					1				
-20 dBm—									
-30 dBm—									
-40 dBm—									
and the second	http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://				hold for the state of the state	althupper and a state		orry Maple fift	way was a way and a second
-60 dBm—	'								
-70 dBm—									
CF 2.441 Marker	GHz			1001	pts				500.0 μs/
Type Re M1	ef Trc	X-value	e 10.0 μs	Y-value -6.99 dB	Func	tion	Fund	tion Result	:
	M1 1		63 ms	2.18 0					
						Read	iy 🚺		
		Dwe	ell NVNT 2	-DH3 244	1MHz Ant	1 Accumu	lated		
Spectru	m								
- <i>(</i>)	l 20.00 dBm		7.24 dB 👄 F	RBW 1 MHz					
Ref Level Att	30 dB	SWT	31.6 S 📟 🎙	/BW 1 MHz					
Att SGL	30 dB	e swt	31.6 S 🖶 🔪	/BW 1 MHz					
Att	30 dB	● SWT	31.6 S 🖝 🔪	BW 1 MHz					
Att SGL	30 dB	• SWT	31.6 5 🖷 🕻	/BW 1 MHz					
Att SGL 9 1Pk Clrw	30 dB	• SWT	31.6 5 • •	/BW 1 MHz					
Att SGL 9 1Pk Clrw	30 dB	• SWT	31.6 5 • •	/BW 1 MHz					
Att SGL 9 1Pk Clrw	30 dB	• SWT	31.6 5 • •	/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm	30 dB	• SWT	31.6 5	/BW 1 MHz					
Att SGL ● 1Pk Clrw 10 dBm - 10 dBm - 20 cB ¬	30 dB	• SWT	31.6 5	/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm	30 dB	• SWT		/BW 1 MHz					
Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 cB¬ -80 cB¬									
Att SGL ● 1Pk Clrw 10 dBm -10 cBn -20 cBn -30 cBn -40 cBn -40 cBn	30 dB								
Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 cB¬ -80 cB¬									
Att SGL ● 1Pk Clrw 10 dBm -10 cBn -20 cBn -30 cBn -40 cBn -40 cBn									
Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm									
Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 gBm -50 dBm -60 dBm									
Att SGL 1Pk Clrw 10 dBm 10 dBm 10 cB n 20 cB n -20 cB n -30 cB n -50 dBm -60 dBm									3.16 s/



●1Pk Clrw								
10 dBm					1[1]			-3.14 dBm -136.00 µs
	no. Addition of the second sec	rangryan	WWWW21	D	1[1]		:	3.18 dB 2.88800 ms
l I			I 1					
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm				uladdynadau, dwinnadu	ปมาใหม่สามาสามป	ada da su a cana da da	r hadadda ia Bda	la Aluto de La Truca
urstanna an				nder and the second	lince I Anal A Adulta.	to All Mitteria	un Olin, IN Ark hou	na han a dada Malla
-60 dBm								
-70 dBm								
CF 2.441 GHz Marker	1	1	100	1 pts	1	1		800.0 µs/
Type Ref Tro	c X-valu		Y-value -3.14 (Func	tion	Fund	tion Result	:
		36.0 µs 888 ms	-3.14 (
					Read			
	Dwe	ell NVNT 2	2-DH5 24	11MHz Ant	1 Accumu	lated		_
Spectrum								
	30 dB 🖷 SWT	7.24 dB 👄 🛛 31.6 s 👄 🎙						
SGL IPk Clrw								
10 dBm++++++++++++++++++++++++++++++++++++								
10 dBm								
10 dBm C 3Bm -10 dBm								
10 dBm C dBm -10 dBr -20 dBr								
10 dBm C 3Bm -10 dB m -20 dB m								
10 dBm C 3Bm -10 dBm -20 dBm -30 dBm								
10 dBm C 3Bm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm								
C dBm								
C dBm -10 dBr -20 dBr -30 dBr -30 dBr -30 dBr -50 dBm								
C dBm -10 dBr -20 dBr -30 dBr -30 dBr -30 dBr -30 dBr -50 dBm -60 dBm								
C 19m -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm								
d dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm				1 pts				3.16 s/
С dBm -10 dB r -20 dB r -30 dB r -30 dB r -50 dBm -60 dBm -70 dBm								3.16 s/





8.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	8.75	21	Pass
NVNT	1-DH5	2441	Ant1	9.1	21	Pass
NVNT	1-DH5	2480	Ant1	8.96	21	Pass
NVNT	2-DH5	2402	Ant1	8.16	21	Pass
NVNT	2-DH5	2441	Ant1	8.54	21	Pass
NVNT	2-DH5	2480	Ant1	8.35	21	Pass
NVNT	3-DH5	2402	Ant1	9.19	21	Pass
NVNT	3-DH5	2441	Ant1	9.69	21	Pass
NVNT	3-DH5	2480	Ant1	9.51	21	Pass

ACCREDITED Certificate #4298.01

ilac-N

		Test	Graphs			
C		Power NVN1 1-L	0H5 2402MHz Ant1			
Spectrum Ref Level 20.00 d	Bm Offcot 7	07 dB 🖷 RBW 2 MHz				
	dB SWT	1 ms 👄 VBW 2 MHz	Mode Auto Sweep			
SGL Count 100/10 1Pk Max	0					
TEK MAX			M1[1]		8.75 (dBm
10 dBm		N		I	2.40196500	
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm			+ +			
CF 2.402 GHz		100	1 pts		Span 5.0 M	IHZ J
L	Bm Offset 7.		0H5 2441MHz Ant1			
Ref Level 20.00 d Att 30	dB SWT	24 dB 🔵 RBW 2 MHz	0H5 2441MHz Ant1 Mode Auto Sweep		ight	
Ref Level 20.00 d Att 30 SGL Count 100/10	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			
Ref Level 20.00 d Att 30 SGL Count 100/10	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep		9.10 (2,44108990	dBm
Ref Level 20.00 č Att 30 SGL Count 100/10 1Pk Max	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 10	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 10	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 10 10 dBm 0	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 30 10 dBm 0 -10 dBm -10	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 10 10 dBm 0	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 30 10 dBm 30 -10 dBm 30 -20 dBm 30	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Att 30 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 c Att 30 SGL Count 100/10 1Pk Max 30 10 dBm -0 -10 dBm	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 c Att 30 SGL Count 100/10 1Pk Max 30 10 dBm	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 10 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm -	dB SWT	24 dB 🔵 RBW 2 MHz	Mode Auto Sweep			dBm
Ref Level 20.00 c Att 30 SGL Count 100/10 IPk Max 30 10 dBm -0 -10 dBm	dB SWT	24 dB • RBw 2 MHz 1 ms • VBw 2 MHz	Mode Auto Sweep M1[1] M1			dBm
Ref Level 20.00 c Att 30 SGL Count 100/10 IPk Max 30 10 dBm -0 -10 dBm	dB SWT	24 dB • RBw 2 MHz 1 ms • VBw 2 MHz	Mode Auto Sweep		2.44108990	dBm GHz
Ref Level 20.00 C Att 30 SGL Count 100/10 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -70 dBm -	dB SWT	24 dB • RBw 2 MHz 1 ms • VBw 2 MHz	Mode Auto Sweep M1[1] M1		2.44108990	dBm GHz
Ref Level 20.00 C Att 30 SGL Count 100/10 1Pk Max 30 10 dBm	dB SWT	24 dB • RBw 2 MHz 1 ms • VBw 2 MHz	Mode Auto Sweep M1[1] M1		2.44108990	dBm GHz

Att SGL Count 1Pk Max	20.00 dBm 30 dB 100/100		7.07 dB 🖷 R 1 ms 🖶 V	BW 2 MHZ BW 2 MHZ	Mode A	uto Sweep			
10 dBm					M1	M1[1]		2.48	8.96 dBm 019480 GHz
0 dBm									
-10 dBm—									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
			1		1			Sn:	an 5.0 MHz
Att	20.00 dBm 30 dB	Offset 7 SWT	7.07 dB 👄 R	1003 NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402		v (11		
Spectrun Ref Level	20.00 dBm 30 dB		7.07 dB 👄 R	NVNT 2-D BW 2 MHz	H5 2402 Mode A		× (11		8.16 dBm
Spectrum Ref Level Att SGL Count	20.00 dBm 30 dB		7.07 dB 👄 R	NVNT 2-D BW 2 MHz	H5 2402 Mode A	uto Sweep	× (11)		
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB 100/100	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402 Mode A	uto Sweep		2.40	8.16 dBm 192210 GHz
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB 100/100	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402 Mode A	uto Sweep		2.40	8.16 dBm 192210 GHz
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm	20.00 dBm 30 dB	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402 Mode A	uto Sweep		2.40	8.16 dBm 192210 GHz
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB 100/100	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402 Mode A	uto Sweep		2.40	8.16 dBm 192210 GHz
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm	20.00 dBm 30 dB 100/100	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402 Mode A	uto Sweep		2.40	8.16 dBm 192210 GHz
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 100/100	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402 Mode A	uto Sweep		2.40	8.16 dBm 192210 GHz
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB 100/100	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402 Mode A	uto Sweep		2.40	8.16 dBm 192210 GHz
Spectrun Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 100/100	SWT	7.07 dB 👄 R	NVNT 2-D BW 2 MHz BW 2 MHz	H5 2402	uto Sweep		2.40	8.16 dBm 192210 GHz

Ref Level 20.00 dB Att 30 d SGL Count 100/100 1Pk Max		.24 dB 👄 RI 1 ms 👄 V	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep			
				M1 M	1[1]		2.44	8.54 dBm 19480 GHz
10 dBm					an	~		
0 dBm	IN COLORIAN						Toma	
-10 dBm							"ll~~	
f-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
			100:	l pts			Spa	n 6.5 MHz
CF 2.441 GHz Spectrum Ref Level 20.00 dB Att 30 d		.07 dB 🥌 RI	NVNT 2-D	H5 2480N		dv 🚺		
Spectrum Ref Level 20.00 dB Att 30 o SGL Count 100/100		.07 dB 🥌 RI	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut		dy 🚺		₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 d		.07 dB 🥌 RI	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep			
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 100/100 Pk Max 10 dBm- 0 dBm-		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep			₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 100/100 ● 1Pk Max 10 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep			₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 100/100 • IPk Max 10 dBm 0 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep		2.480	₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm -10 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep		2.480	₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 100/100 • 1Pk Max 10 dBm 0 dBm -10 dBm #20 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep		2.480	₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -40 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep		2.480	₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -50 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep		2.480	₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep		2.480	₩₩ ₩₩ 8.35 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -50 dBm		.07 dB 👄 RI 1 ms 👄 V	NVNT 2-D BW 2 MHz	H5 2480M Mode Aut	to Sweep		2.480	₩₩ ₩₩ 8.35 dBm

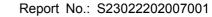
Att SGL Count 1	0.00 dBm 30 dB	Offset 7. SWT	07 dB 👄 RE 1 ms 👄 VI		Mode Aut	to Sweep			
●1Pk Max	.00/100			1					
					м м1	1[1]		2.40	9.19 dBm 208440 GHz
10 dBm					www.				
0 dBm			-				and a second and a second and a second	and the second sec	
10 10-									
-10 dBm									and the second
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-00 0011									
-70 dBm									
				1001				0	an 6.5 MHz
OF 0 400 OL				1001	i pis			spa	an 6.5 MHZ J
			24 dB 👄 RE	3W 2 MHz	H5 2441N Mode Aut				
Att SGL Count 1	20.00 dBm 30 dB		24 dB 👄 RE	3W 2 MHz	H5 2441N Mode Aut				
Spectrum Ref Level 2 Att SGL Count 1	20.00 dBm 30 dB		24 dB 👄 RE	3W 2 MHz	Mode Aut		Iv (1		9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max	20.00 dBm 30 dB		24 dB 👄 RE	3W 2 MHz	Mode Aut	to Sweep		2.44(
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 10 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44(9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.440	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm -10 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.440	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.440	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 10 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44(9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44(9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	20.00 dBm 30 dB		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep		2.44	9.69 dBm
Spectrum Ref Level 2 Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm) 0.00 dBm 30 dB 00/100		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep			9.69 dBm 098050 GHz
Spectrum Ref Level 2 Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm) 0.00 dBm 30 dB 00/100		24 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep			9.69 dBm 098050 GHz

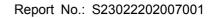
Spectrum						
Ref Level 20.00 de Att 30	db SWT	.07 dB 👄 RBW 2 1 ms 👄 VBW 2		Auto Sweep		
SGL Count 100/100 1Pk Max						
			N1	M1[1]	2.48	9.51 dBm 002600 GHz
10 dBm						
0 dBm						
-10 dBm					~	and the second s
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.48 GHz			1001 pts	-	Sp	an 6.5 MHz

8.3 -20dB Bandwidth

-4	иав валам	hath				
	Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
	NVNT	1-DH5	2402	Ant1	0.954	Pass
	NVNT	1-DH5	2441	Ant1	0.952	Pass
	NVNT	1-DH5	2480	Ant1	0.942	Pass
	NVNT	2-DH5	2402	Ant1	1.332	Pass
	NVNT	2-DH5	2441	Ant1	1.34	Pass
	NVNT	2-DH5	2480	Ant1	1.356	Pass
	NVNT	3-DH5	2402	Ant1	1.294	Pass
	NVNT	3-DH5	2441	Ant1	1.334	Pass
	NVNT	3-DH5	2480	Ant1	1.31	Pass







AC-MR

Spectrum Ref Level 20.00 dBm	Offset 7.07 dB 👄	RBW 30 kHz			
Att 30 dB			Mode Auto FFT		
SGL Count 100/100					
			M1[1]		4.47 dBm
10 dBm			12[1]	2.40)216580 GHz -15.37 dBm
0 dBm				2.40	-15.37 uBm 0135600 GHz
0 dBill			\sim	\sim	
-10 dBm 102					
-20 dBm				+	
-30 dBm					
m/					
hadagam					
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.402 GHz		1001 pt	s	Sp	an 2.0 MHz
Marker Type Ref Trc	X-value	Y-value	Function	Function Resu	ılt l
M1 1	2.4021658 GHz	4.47 dBm			
MO 1					
M2 1 M3 1	2.401356 GHz 2.40265 GHz	-15.37 dBm -15.40 dBm			
			Rea		
	2.40265 GHz	-15.40 dBm	Rea	dy (IIIIII) (
	2.40265 GHz	-15.40 dBm	-DH5 2441MHz	Ant1	
	2.40265 GHz	-15.40 dBm	-DH5 2441MHz	dy Ant1	
M3 1 Spectrum Ref Level 20.00 dBm	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz		dy (111111) (
M3 1	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz		Ant1	
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz	Mode Auto FFT	dv Ant1	
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz			2.93 dBm ⊭101000 GHz
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm +101000 GHz
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 9 1Pk Max 10 dBm 0 dBm 10 dBm 10 dBm	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 10k Max 10 dBm 0 dBm -10 dBm M2 -20 dBm M2	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm M2	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 10k Max 10 dBm 0 dBm -10 dBm M2 -20 dBm M2	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm M2 -20 dBm -30 dBm	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 10 dBm 0 dBm 0 dBm -10 dBm M2 -20 dBm -30 dBm -50 dBm -50 dBm	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Ref Level 20.00 dBm Att 30 dB SGL Count 10 dBm 0 -10 dBm M2 -20 dBm -30 dBm -50 dBm -60 dBm	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 10 dBm 0 dBm 0 dBm -10 dBm M2 -20 dBm -30 dBm -30 dBm -50 dBm	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT	2.44	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm M2 -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm	Mode Auto FFT M1[1] M2[1] M2[1]	2.44 2.44 M3	2.93 dBm H101000 GHz -16.75 dBm H033000 GHz
M3 1 Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 IN Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm CF 2.441 GHz Marker	2.40265 GHz -20dB Banc Offset 7.24 dB	-15.40 dBm dwidth NVNT 3 RBW 30 kHz VBW 100 kHz	Mode Auto FFT M1[1] M2[1] M2[1]	2.44 2.44 M3	2.93 dBm H101000 GHz -16.75 dBm
M3 1 Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 P1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm CF 2.441 GHz Marker Type Ref	2.40265 GHz -20dB Banc Offset 7.24 dB • SWT 63.3 μs • 	-15.40 dBm	Mode Auto FFT M1[1] M2[1] M2[1]	2.44 2.44 M3	2.93 dBm H101000 GHz -16.75 dBm H033000 GHz
M3 1 Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 I0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker	2.40265 GHz -20dB Banc Offset 7.24 dB • SWT 63.3 μs •	-15.40 dBm	Mode Auto FFT M1[1] M2[1] M2[1] S	2.44 2.44 M3	2.93 dBm H101000 GHz -16.75 dBm H033000 GHz

Spectrum									₽
Ref Level 20.		Offset 7	07 de 👄	RBW 30 kH	7				(v
Att	30 dB		_	VBW 100 kH	-	ode Auto FFT			
SGL Count 100		011 0	0.0 p5 🚽	100 Ki	- 140	Due Autorni			
1Pk Max									
					T	M1[1]			3.99 dBm
								2.480	00600 GHz
10 dBm					M1	M2[1]		-	15.88 dBm
D dBm					Λ_{-}	_		2.479	33600 GHz
ubili		~ ~	m	\sim	100	mm~	Mm.		
-10 dBm		~~~~						~~~~	
10 0.011	M2							™¶ ¶	
-20 dBm					—				
	1								
-30 dBm	/				+			+	\sim
sh/	·								5
₩¢d6m					+			-	
-50 dBm					+				
-60 dBm									
-60 aBm									
-70 dBm									
, o abiii									
CF 2.48 GHz				100	1 pts			Spa	n 2.0 MHz
larker				-					
Type Ref		X-value		Y-value		Function	Fu	nction Result	
M1	1	2.4800		3.99 d					
M2 M3	1	2.4793		-15.88 d -15.94 d					
CIM	1	2.4800	HU GHZ	-15.94 U	5111				

8.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.873
NVNT	1-DH5	2441	Ant1	0.889
NVNT	1-DH5	2480	Ant1	0.881
NVNT	2-DH5	2402	Ant1	1.197
NVNT	2-DH5	2441	Ant1	1.203
NVNT	2-DH5	2480	Ant1	1.203
NVNT	3-DH5	2402	Ant1	1.201
NVNT	3-DH5	2441	Ant1	1.213
NVNT	3-DH5	2480	Ant1	1.191

