

FCC RADIO TEST REPORT

FCC ID	: UZ7FX7500
Equipment	: RFID Reader
Brand Name	: ZEBRA
Model Name	: FX7500
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	:FCC Part 15 Subpart C §15.247

The product was received on Oct. 12, 2023 and testing was started from May 16, 2024 to Jun. 22, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Su	nmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Output Power Measurement	10
	3.2	Radiated Band Edges and Spurious Emission Measurement	
	3.3	Antenna Requirements	
4	List o	of Measuring Equipment	17
5	Meas	surement Uncertainty	
Ap	pendix	A. Radiated Spurious Emission	
Ap	pendix	K B. Radiated Spurious Emission Plots	
Ap	pendix	c C. Duty Cycle Plots	
Ap	pendix	c D. Setup Photographs	

History of this test report

Report No.	Version	Description	Issue Date
FR361310-01	01	Initial issue of report	Jun. 27, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	Not Required	-
-	15.247(a)(1)	Hopping Channel Separation	Not Required	-
-	15.247(a)(1)	Dwell Time of Each Channel	Not Required	-
-	15.247(a)(1)	20dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)(1)	Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	Not Required	-
-	15.247(d)	17(d) Conducted Spurious Emission		-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	2.89 dB under the limit at 479.90 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note:

- 1. Not required means after assessing, test items are not necessary to carry out.
- 2. This is a variant report by adding external antenna. All the test cases were performed on original report which can be referred to Sporton Report Number FR361310. Based on the original report, only worst case was verified.

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Michelle Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	RFID Reader		
Brand Name	ZEBRA		
Model Name	FX7500		
FCC ID	UZ7FX7500		
EUT supports Radios application	UHF RFID		
HW Version	DV		
SW Version	3.24.52.0		
MFD	09SEP23		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer.

Supported Unit used in test configuration and system				
Adaptor	Brand Name	Zebra	Part Number	PWR-BGA24V78W0WW
Antenna	Brand Name	Zebra	Part Number	AN480-CL66100WR
Antenna RF Cable	Brand Name	Zebra	Part Number	CBLRD-1B40006801

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard			
Tx/Rx Frequency Range	902.75 MHz ~ 927.25 MHz		
Number of Channels	50		
Maximum Output Power to Antenna	27.38 dBm (0.5470 W)		
Antenna Type	Omni directional Multi Linear Patch Antenna (a.k.a. Wave)		
Antenna Gain	8.60 dBi		
Type of Modulation	DB-ASK, PR-ASK		

Remark: The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Toot Site No	Sporton Site No.		
Test Sile NO.	TH05-HY, 03CH11-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r01
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	902.75	28	916.25
	2	903.25	29	916.75
	3	903.75	30	917.25
	4	904.25	31	917.75
	5	904.75	32	918.25
	6	905.25	33	918.75
	7	905.75	34	919.25
	8	906.25	35	919.75
	9	906.75	36	920.25
	10	907.25	37	920.75
	11	907.75	38	921.25
	12	908.25	39	921.75
	13	908.75	40	922.25
902.75-927.25 MHz	14	909.25	41	922.75
	15	909.75	42	923.25
	16	910.25	43	923.75
	17	910.75	44	924.25
	18	911.25	45	924.75
	19	911.75	46	925.25
	20	912.25	47	925.75
	21	912.75	48	926.25
	22	913.25	49	926.75
	23	913.75	50	927.25
	24	914.25		
	25	914.75		
	26	915.25		
	27	915.75		

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases			
Test Item	UHF RFID			
Conducted Test	Mode 1: UHF RFID Tx 902.75 MHz			
	Mode 2: UHF RFID Tx 914.75 MHz			
Cases	Mode 3: UHF RFID Tx 927.25 MHz			
Dedicted	Mode 1: UHF RFID Tx 902.75 MHz			
	Mode 2: UHF RFID Tx 914.75 MHz			
Test Cases	Mode 3: UHF RFID Tx 927.25 MHz			

2.3 Connection Diagram of Test System

2.4 EUT Operation Test Setup

The RF test items, utility "Putty Version 0.70" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

Section 15.247 (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: (1)(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Output Power

Test Mode :	UHF RFID	Temperature :	20~25°C
Test Engineer :	Shiming Liu	Relative Humidity :	50~56%

_	RF Power (dBm)			
Frequency (MHz)	UHF	Max. Limits (dBm)	Pass/Fail	
902.75	25.78	29.30	Pass	
914.75	27.38	29.30	Pass	
927.25	26.11	29.30	Pass	

3.1.6 Test Result of Average Power (Reporting Only)

Test Mode :	UHF RFID	Temperature :	20~25℃		
Test Engineer :	Shiming Liu	Relative Humidity :	50~56%		

Frequency	RF Power (dBm)
(MHz)	UHF
902.75	23.55
914.75	25.15
927.25	23.90

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance			
(MHz)	(microvolts/meter)	(meters)			
0.009 – 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			
30 – 88	100	3			
88 – 216	150	3			
216 - 960	200	3			
Above 960	500	3			

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

3.2.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.2.7 Duty Cycle

Please refer to Appendix C.

3.2.8 Test Result of Radiated Spurious Emission

Please refer to Appendix A and B.

3.3 Antenna Requirements

3.3.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Test Date Due Date	
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	May 22, 2024~ Jun. 22, 2024	Sep. 11, 2024	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 07, 2023	May 22, 2024~ Jun. 22, 2024	Oct. 06, 2024	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 17, 2023	May 22, 2024~ Jun. 22, 2024	Aug. 16, 2024	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 08, 2023	May 22, 2024~ Jun. 22, 2024	Dec. 07, 2024	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Mar. 25, 2024	May 22, 2024~ Jun. 22, 2024	Mar. 24, 2025	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-303	17100018000 55007	1GHz~18GHz	Jun. 14, 2023	May 22, 2024~ Jun. 12, 2024	Jun. 13, 2024	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-303	17100018000 55007	1GHz~18GHz	Jun. 13, 2024	Jun. 13, 2024~ Jun. 22, 2024	Jun. 12, 2025	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 05, 2023	May 22, 2024~ Jun. 22, 2024	Oct. 04, 2024	Radiation (03CH11-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY55420170	20MHz~8.4GHz	Aug. 03, 2023	May 22, 2024~ Jun. 22, 2024	Aug. 02, 2024	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	May 22, 2024~ Jun. 22, 2024	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	May 22, 2024~ Jun. 22, 2024	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	May 22, 2024~ Jun. 22, 2024	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	May 22, 2024~ Jun. 22, 2024	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 06, 2024	May 22, 2024~ Jun. 22, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801595/2	30MHz~40GHz	Mar. 06, 2024	May 22, 2024~ Jun. 22, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 06, 2024	May 22, 2024~ Jun. 22, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 06, 2024	May 22, 2024~ Jun. 22, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Dec. 08, 2023	May 22, 2024~ Jun. 22, 2024	Dec. 07, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-153 0-8000-40SS	SN11	1.53G Low Pass	Sep. 11, 2023	May 22, 2024~ Jun. 22, 2024	Sep. 10, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-900-10 00-15000-60SS	SN12	1GHz High Pass Filter	h Pass sep. 11, 2023 May 22, 2024~ Jun. 22, 2024 Sep. 1		Sep. 10, 2024	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	N/A Nov. 07, 2023 May 16, 2024~ Nov. 06		Nov. 06, 2024	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Jul. 27, 2023	May 16, 2024~ Jun. 05, 2024 Jul. 26, 2024		Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Jul. 27, 2023	May 16, 2024~ Jun. 05, 2024	Jul. 26, 2024	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV3044	101466	10HZ~44GHZ	Jan. 24, 2024	May 16, 2024~ Jun. 05, 2024	Jan. 23, 2025	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 1 dP
of 95% (U = 2Uc(y))	0.1 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.3 dB				
of 95% (U = 2Uc(y))	4.3 UB				

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4 2 dB
of 95% (U = 2Uc(y))	4.3 uB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.3 dB
--	--------

Appendix A. Radiated Spurious Emission

Test Engineer :	Vuon Loo, Eu Chon and Trovo Hsich	Temperature : 20.0~20.	20.0~20.7°C
		Relative Humidity :	53.0~66.0%

UHF RFID Peak Pol. Note Read Antenna Path Preamp Table Frequency Level Margin Limit Ant Line Level Factor Loss Factor Pos Pos Avg. (dBµV/m) (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (P/A) (H/V) (cm) (deg) 30.54 31.66 Ρ -8.34 40 29.74 23.83 10.54 32.45 Н --14.87 Ρ 203.34 31.1 -12.4 43.5 36.78 11.8 32.35 н --250.05 36.29 -9.71 46 38.16 18.26 12.03 32.16 Р Н --23.48 32.32 479.9 42.48 -3.52 46 38.41 12.91 176 114 Q н 867.7 36.47 -9.53 46 24.8 29.12 14.14 31.59 100 44 Q Н * 902.75 125.95 --114.17 28.95 14.3 31.47 136 340 Ρ Н 944.7 37.85 -8.15 24.24 30.23 14.43 31.05 100 45 46 Q н UHF RFID 902.75MHz 33.78 31 -9 40 30.55 22.39 10.47 32.41 100 244 Q V 59.97 30.05 -9.95 40 39.7 11.79 10.67 32.11 Ρ V --98.31 29.6 -13.9 43.5 35.16 15.69 11.12 32.37 Ρ V --768.3 36.08 -9.92 25.65 28.07 13.89 31.53 V 46 146 3 Q 834.1 37.2 -8.8 26.39 28.36 14.05 31.6 135 0 Q V 46 * 902.75 128.35 _ 116.57 28.95 14.3 31.47 110 4 Ρ V _ 952.4 38.7 -7.3 46 24.5 30.71 14.46 30.97 100 10 Q V 1. No other spurious found. All results are PASS against Peak and Average limit line. 2. Non restricted band limit is radio frequency level down 20db. Remark 3.

UHF RFID UHF RFID (LF @ 3m)

4. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

	Nete	F		N4	Lingth	Deed	A 4	Dette	Deserver	A	Table	Deele	Del
	Note	Frequency	Levei	wargin	Limit	Read	Antenna	Path	Preamp	Ant		Реак	POI.
		(MHz)	(dBuV/m)	(dB)	LINE (dBuV/m)		(dB/m)		(dB)	POS	POS (deg)	Avg.	(H/\/)
		30.27	31.2	-8.8	40	29.2	23.91	10.55	32.46	- (cm)	-	P	н
		00.21	01.2	10.00	40 5	20.2	20.01	10.00	02.40			-	
		204.15	30.41	-13.09	43.5	36.06	14.89	11.8	32.34	-	-	P	н
		250.05	35.98	-10.02	46	37.85	18.26	12.03	32.16	-	-	Р	Н
		479.9	43.11	-2.89	46	39.04	23.48	12.91	32.32	175	105	Q	Н
		777.4	35.04	-10.96	46	24.5	28.11	13.95	31.52	155	0	Q	Н
	*	914.75	128.19	-	-	116.1	29.1	14.34	31.35	131	343	Р	Н
		952.4	38.38	-7.62	46	24.18	30.71	14.46	30.97	103	6	Q	Н
UHF RFID													
914.75MHz		34.05	30.81	-9.19	40	30.48	22.26	10.47	32.4	100	224	Q	V
		62.13	29.25	-10.75	40	38.89	11.76	10.71	32.11	-	-	Р	V
		250.05	32.75	-13.25	46	34.62	18.26	12.03	32.16	-	-	Р	V
		787.2	41.49	-4.51	46	30.89	28.13	13.99	31.52	138	357	Q	V
		843.9	37.74	-8.26	46	26.55	28.77	14.05	31.63	126	357	Q	V
	*	914.75	128.91	-	-	116.82	29.1	14.34	31.35	110	5	Р	V
		952.4	38.97	-7.03	46	24.77	30.71	14.46	30.97	100	5	Q	V
	1. No	o other spurious	s found.										
	2. All	2. All results are PASS against Peak and Average limit line.											
Remark	3. No	on restricted ba	nd limit is ra	dio frequ	ency level do	own 20db.							
	4. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											

UHF RFID (LF @ 3m)

		_				_			_				_
UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			<u> </u>		Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		32.97	32.06	-7.94	40	31.21	22.79	10.48	32.42	-	-	Р	Н
		204.42	30.59	-12.91	43.5	36.23	14.9	11.8	32.34	-	-	Р	Н
		250.05	36.32	-9.68	46	38.19	18.26	12.03	32.16	-	-	Р	Н
		479.9	42.64	-3.36	46	38.57	23.48	12.91	32.32	179	115	Q	Н
		871.2	36.95	-9.05	46	25.27	29.11	14.15	31.58	141	0	Q	Н
	*	927.25	127.29	-	-	114.72	29.42	14.38	31.23	143	9	Р	Н
		955.2	38.81	-7.19	46	24.41	30.88	14.46	30.94	144	0	Q	Н
UHF RFID													
927.25MHz		34.05	31.08	-8.92	40	30.75	22.26	10.47	32.4	100	230	Q	V
		54.03	31.18	-8.82	40	40.06	12.63	10.66	32.17	-	-	Ρ	V
		59.97	30.73	-9.27	40	40.38	11.79	10.67	32.11	-	-	Р	V
		787.2	41.4	-4.6	46	30.8	28.13	13.99	31.52	146	357	Q	V
		890.8	39.13	-6.87	46	27.45	28.95	14.26	31.53	122	0	Q	V
	*	927.25	129.53	-	-	116.96	29.42	14.38	31.23	119	7	Р	V
		958	39.33	-6.67	46	24.84	30.94	14.45	30.9	100	7	Q	V
	1. No	o other spurious	s found.										
	2. All	results are PA	SS against F	Peak and	Average lim	iit line.							
Remark	3. No	on restricted ba	nd limit is ra	dio frequ	ency level de	own 20db.							
	4. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

UHF RFID (LF @ 3m)

				UHF	RFID (Ha	irmonic	@ 3m)						
UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		1805.5	40.55	-	-	70.44	25.1	6.91	61.9	289	346	Р	Н
		2708.25	53.71	-20.29	74	77.08	28.38	8.5	60.25	309	37	Р	Н
		2708.25	49.8	-4.2	54	73.17	28.38	8.5	60.25	309	37	Α	Н
		3611	43.29	-30.71	74	62.22	29.78	9.91	58.62	212	9	Р	Н
		3611	38.65	-15.35	54	57.58	29.78	9.91	58.62	212	9	А	Н
		4513.75	45.66	-28.34	74	59.67	31.7	11.98	57.69	377	45	Р	Н
		4513.75	37.66	-16.34	54	51.67	31.7	11.98	57.69	377	45	А	Н
													Н
													Н
UHF RFID													Н
902.75MHz		1805.5	42.44	-	-	72.33	25.1	6.91	61.9	298	120	Р	V
		2708.25	54.67	-19.33	74	78.04	28.38	8.5	60.25	269	56	Р	V
		2708.25	50.8	-3.2	54	74.17	28.38	8.5	60.25	269	56	А	V
		3611	46.09	-27.91	74	65.02	29.78	9.91	58.62	326	30	Р	V
		3611	43	-11	54	61.93	29.78	9.91	58.62	326	30	А	V
		4513.75	50.68	-23.32	74	64.69	31.7	11.98	57.69	278	0	Р	V
		4513.75	46.15	-7.85	54	60.16	31.7	11.98	57.69	278	0	А	V
													V
													V
													V
	1. N	o other spurious	s found.										
	2. A	ll results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. N	on restricted ba	nd limit is rad	dio frequ	ency level do	own 20db.							
	4. T	he emission pos	ition marked	as "-" m	eans no sus	pected em	ission found	l with suff	icient mar	gin agai	nst limit	line or	noise
	flo	oor only.											

UHF RFID

UHF RFID

UHF RFID (Harmonic @ 3m)

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		1829.5	51.66	-	-	81.32	25.2	7	61.86	216	39	Р	Н
		2744.25	55.95	-18.05	74	79.49	28.1	8.58	60.22	304	39	Р	Н
		2744.25	50.91	-3.09	54	74.45	28.1	8.58	60.22	304	39	А	н
		3659	44.39	-29.61	74	63.17	29.68	10.03	58.49	393	44	Р	Н
		3659	39.22	-14.78	54	58	29.68	10.03	58.49	393	44	А	н
		4573	42.91	-31.09	74	57.02	31.7	11.9	57.71	-	-	Р	Н
													н
													н
													н
UHF RFID													Н
914.75MHz		1829.5	57.19	-	-	86.85	25.2	7	61.86	205	4	Р	V
		2744.25	53.8	-20.2	74	77.34	28.1	8.58	60.22	210	2	Р	V
		2744.25	50.15	-3.85	54	73.69	28.1	8.58	60.22	210	2	А	V
		3659	49.96	-24.04	74	68.74	29.68	10.03	58.49	251	0	Р	V
		3659	47.39	-6.61	54	66.17	29.68	10.03	58.49	251	0	А	V
		4573.75	53.85	-20.15	74	67.97	31.7	11.89	57.71	300	7	Р	V
		4573.75	49.46	-4.54	54	63.58	31.7	11.89	57.71	300	7	А	V
													V
													V
													V
	1. N	o other spurious	s found.										
	2. A	l results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. N	on restricted ba	nd limit is rad	dio frequ	ency level de	own 20db.							
	4. TI	ne emission pos	ition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	oor only.											

UHF RFID

UHF RFID (Harmonic @ 3m)

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		1854.5	54.5	-	-	83.78	25.44	7.09	61.81	203	42	Ρ	Н
		2781.75	48.24	-25.76	74	71.57	28.2	8.66	60.19	115	38	Р	Н
		2781.75	43.4	-10.6	54	66.73	28.2	8.66	60.19	115	38	А	Н
		3709	42.98	-31.02	74	61.52	29.67	10.15	58.36	400	51	Р	Н
		3709	38.11	-15.89	54	56.65	29.67	10.15	58.36	400	51	А	Н
		4636.25	48.63	-25.37	74	62.67	31.84	11.85	57.73	207	38	Р	Н
		4636.25	42.23	-11.77	54	56.27	31.84	11.85	57.73	207	38	А	Н
UHF RFID													Н
927.25MHz		1854.5	61.81	-	-	91.09	25.44	7.09	61.81	270	7	Р	V
		2781.75	53.49	-20.51	74	76.82	28.2	8.66	60.19	218	7	Р	V
		2781.75	49.47	-4.53	54	72.8	28.2	8.66	60.19	218	7	А	V
		3709	52.27	-21.73	74	70.81	29.67	10.15	58.36	288	8	Р	V
		3709	48.95	-5.05	54	67.49	29.67	10.15	58.36	288	8	Α	V
		4636.25	51.72	-22.28	74	65.76	31.84	11.85	57.73	315	3	Р	V
		4636.25	47.21	-6.79	54	61.25	31.84	11.85	57.73	315	3	Α	V
													V
	1. N	lo other spuriou	s found.										
	2. A	Il results are PA	SS against F	Peak and	Average lim	iit line.							
Remark	3. N	lon restricted ba	and limit is ra	dio frequ	ency level do	own 20db.							
	4. T	he emission po	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	fl	oor only.											

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not						
	exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

UHF RFID	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
UHF RFID		2720 75	29.54	35 46	74	55 12	32.46	0.82	59.96	103	308	D	ы
913.25MHz		2739.75	30.34	-35.40	74	55.TZ	32.40	9.02	50.00	103	308	F	п

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2739.75MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)

= 32.46(dB/m) + 9.82(dB) + 55.12(dBµV) - 58.86 (dB)

- = 38.54 (dBµV/m)
- 2. Margin(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 38.54(dB\mu V/m) 74(dB\mu V/m)$
- = -35.46(dB)

Peak measured complies with the limit line, so test result is "PASS".

Appendix B. Radiated Spurious Emission Plots

Tost Engineer :	Vuon Loo, Eu Chon and Trovo Heigh	Temperature :	20.0~20.7°C
rest Engineer .	Tuan Lee, Fu Chen and Hoye Hsien	Relative Humidity :	53.0~66.0%

UHF RFID (LF @ 3m)

UHF RFID	UHF RFID									
	UHF RFID 914.75MHz									
	Horizontal	Vertical								
Peak Avg.	Image: the information of the informati	<pre>bit with the second secon</pre>								

UHF RFID (Harmonic @ 3m)

UHF RFID	UHI	F RFID
	UHF RFI) 914.75MHz
	Horizontal	Vertical
Peak Avg.	<pre>up imp imp imp imp imp imp imp imp imp im</pre>	<pre></pre>

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
UHF RFID	100	-	-	10Hz

UHF RFID	ľ				
Keysight Spectrum Analyzer - Si	wept SA	cruce and		11 07 05 0HHz 02 0001	
Marker 1 13.5000 m	າຍ 1	Trig: Eree Pup	#Avg Type: RMS	11:27:05 PM May 22, 2024 TRACE 12 3 4 5 6 TYPE WWWWWWW	Peak Search
	PNO: Fast IFGain:Low	#Atten: 20 dB		DETPPPPP	NextBook
10 dB/div Ref 116.9	9 dBµV			Mkr1 13.50 ms 100.62 dBµV	NextFeak
107			1		
97.0					Next Pk Right
87.0					
67.0					Next Pk Left
57.0					
47.0					
37.0					Marker Delta
Contor 027 250000 N	14.5			Spap 0 Hz	
Res BW 8 MHz	#VB	W 8.0 MHz	Sweep	20.00 ms (1001 pts)	Mkr→CF
MKR MODE TRC SCL	X 13.50 mg	Y 100.62 dBuV	FUNCTION FUNCTION WID	TH FUNCTION VALUE	
2	13.50 1115	100.02 0000			
4					MKr→RefLvi
6 7					
9					More 1 of 2
11				-	1012