

RF TEST REPORT

Applicant Zonar Systems

FCC ID SEJ-V4B2

Product Zonar Telematics Control Unit

Brand Zonar

Model V4B2

Report No. R2411A1779-R2V1

Issue Date January 16, 2025

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2024)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No.: R2411A1779-R2V1

1. Te	est Laboratory	5
1.1.	Notes of the Test Report	
1.2.	Test Facility	5
1.3.	Testing Location	
2. Ge	eneral Description of Equipment Under Test	6
2.1.	Applicant and Manufacturer Information	
2.2.	General Information	6
3. Ap	oplied Standards	7
4. Te	est Configuration	8
5. Te	est Case Results	
5.1.	Maximum output power	9
5.2.	99% Bandwidth and 6dB Bandwidth	
5.3.	Band Edge	15
5.4.	Power Spectral Density	21
5.5.	Spurious RF Conducted Emissions	27
5.6.	Unwanted Emission	33
5.7.	Conducted Emission	66
6. Ma	ain Test Instruments	68
ANNEX	X A: The EUT Appearance	69
	X B. Test Setup Photos	70

RF Test Report No.: R2411A1779-R2V1

Version	Revision Description	Issue Date
Rev.0	Initial issue of report.	January 14, 2025
Rev.1 Updated information.		January 16, 2025

Note: This revised report (Report No.: R2411A1779-R2V1) supersedes and replaces the previously issued report (Report No.: R2411A1779-R2). Please discard or destroy the previously issued report and dispose of it accordingly.

RF Test Report No.: R2411A1779-R2V1

Summary of Measurement Results

Number	Test Case	Clause in FCC rules	Verdict	Note
	Maximum output		Only tested 802.11b CH11;	
1	power	15.247(b)(3)	802.11g CH10/11; 802.11n	
	power		HT20 CH10/11 and PASS	
	99% Bandwidth and	15.247(a)(2)	Only tested 802.11g CH10;	
2	6dB Bandwidth	C63.10 6.9	802.11n HT20 CH10 and	Other Band please Refer to the
	oub bandwidin	C63. 10 6.9	PASS	Module report
	Dower cheetral		Only tested 802.11b CH11;	(Report No.:
3	Power spectral	15.247(e)	802.11g CH10/11; 802.11n	BTL-FCCP-1-2111H032;
	density		HT20 CH10/11 and PASS	BTL-FCCP-2-2111H032,
			Only tested 802.11b CH11;	FCC ID: XMR20211108FC41D,
4	Band Edge	15.247(d)	802.11g CH10/11; 802.11n	Grant date:01/18/2022)
			HT20 CH10/11 and PASS	
	Courious DE		Only tested 802.11b CH11;	
5	Spurious RF Conducted Emissions	15.247(d)	802.11g CH10/11; 802.11n	
	Conducted Emissions		HT20 CH10/11 and PASS	
6	Unwanted Emissions	15.247(d),	PASS	
0	Unwanted Emissions	15.205, 15.209	rass	/
7	Conducted Emissions	15.207	PASS	

Date of Testing: December 2, 2024 ~ December 24 2024

Date of Sample Received: November 19, 2024

Note: All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 4 of 70
This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

RF Test Report Report No.: R2411A1779-R2V1

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of Eurofins TA

Technology (Shanghai) Co., Ltd. The results documented in this report apply only to the tested

sample, under the conditions and modes of operation as described herein. Measurement

Uncertainties were not taken into account and are published for informational purposes only. This

report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications

Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform measurement.

1.3. Testing Location

Company:

Eurofins TA Technology (Shanghai) Co., Ltd.

Address:

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Xu Kai

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

https://www.eurofins.com/electrical-and-electronics

E-mail:

Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment Under Test

2.1. Applicant and Manufacturer Information

Applicant	Zonar Systems
Applicant address	821 2nd Ave., Suite 1100, Seattle Washington 98104, United
Applicant address	States
Manufacturer	Zonar Systems
Manufacturar address	821 2nd Ave., Suite 1100, Seattle Washington 98104, United
Manufacturer address	States

Report No.: R2411A1779-R2V1

2.2. General Information

EUT Description		
Model	V4B2	
Lab internal SN	R2411A1779/S01	
Hardware Version	V1.0.0	
Software Version	V1.0.0	
Power Supply	External power supply	
Antenna Type	Internal Antenna	
Antenna Connector	A permanently attached antenna (meet with the standard FCC Part 15.203 requirement)	
Antenna Gain	0.7 dBi	
Additional Beamforming Gain	NA	
Operating Frequency Range(s)	802.11b/g/n(HT20: 2412 ~ 2462 MHz Bluetooth LE V5.2: 2402 ~2480 MHz	
Modulation Type	802.11b: DSSS 802.11g/n: OFDM Bluetooth LE: GFSK	
Max. Output Power	Wi-Fi 2.4G: 22.58 dBm (from module report) Bluetooth LE: 7.22 dBm (from module report)	
Note: 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is		

declared by the applicant.

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 6 of 70

RF Test Report No.: R2411A1779-R2V1

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2024) Radio Frequency Devices

ANSI C63.10-2013

Reference standard:

KDB 558074 D01 15.247 Meas Guidance v05r02

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Report No.: R2411A1779-R2V1

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

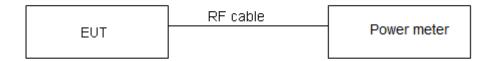
Worst-case data rates are shown as following table.

Test Mode	Data Rate
Bluetooth (Low Energy)	1Mbps; 2Mbps
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0

5. Test Case Results

5.1. Maximum output power

Ambient Condition


Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%

Report No.: R2411A1779-R2V1

Methods of Measurement

During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation.

Test Setup

Limits

Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt."

Output Power	≤ 1W (30dBm)
--------------	--------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

RF Test Report

Test Results

Power Index			
Channel 802.11b 802.11g 802.11n HT20			
CH10		NA	NA
CH11	11	34	34

Report No.: R2411A1779-R2V1

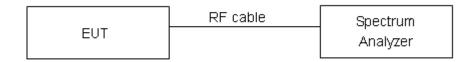
Test Mode	Carrier frequency (MHz)/ Channel	Output Power (dBm)	Limit (dBm)	Conclusion
802.11b	2462/CH11	14.32	30	PASS
802.11g	2457/CH 10	21.08	30	PASS
	2462/CH11	15.58	30	PASS
802.11n	2457/CH 10	19.97	30	PASS
HT20	2462/CH11	15.40	30	PASS

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 10 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

5.2. 99% Bandwidth and 6dB Bandwidth

Ambient Condition

Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%


Report No.: R2411A1779-R2V1

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold.

The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value.

Test Setup

Limits

Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."

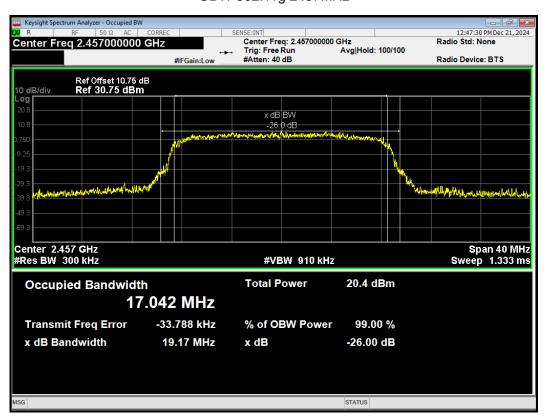
minimum 6 dB bandwidth	≥ 500 kHz
------------------------	-----------

Measurement Uncertainty

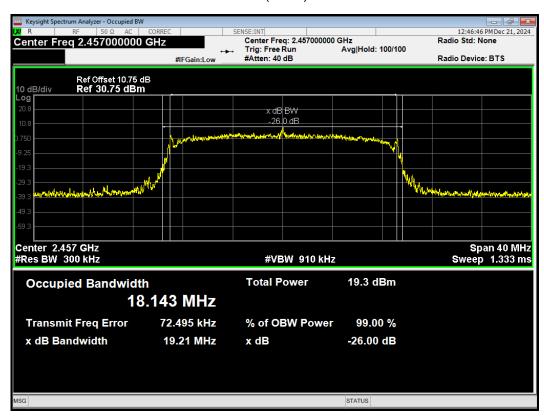
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

RF Test Report Report No.: R2411A1779-R2V1

Test Results:


Test Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
802.11g	2457	17.042	15.687	500	PASS
802.11n HT20	2457	18.143	15.391	500	PASS

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R


This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd. Page 12 of 70 99%bandwidth

OBW 802.11g 2457MHz

Report No.: R2411A1779-R2V1

OBW 802.11n(HT20) 2457MHz


6 dB bandwidth

-6dB Bandwidth 802.11g 2457MHz

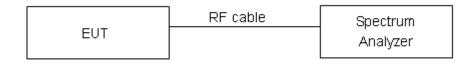
Report No.: R2411A1779-R2V1

-6dB Bandwidth 802.11n(HT20) 2457MHz

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 14 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

5.3. Band Edge

Ambient Condition


Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%

Report No.: R2411A1779-R2V1

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

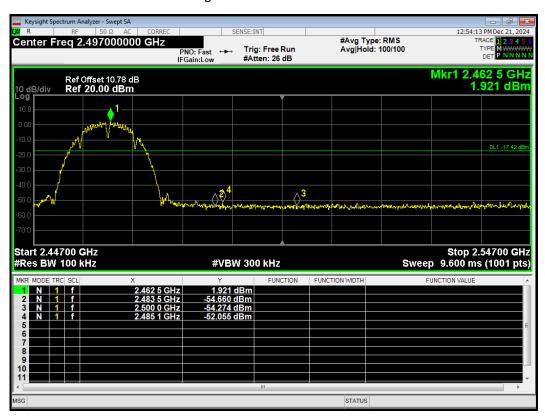
Test Setup

Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

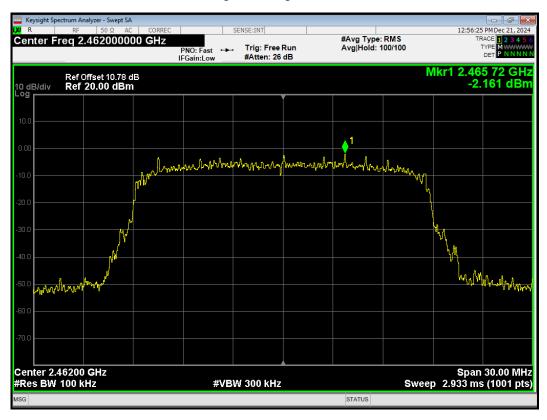
Measurement Uncertainty

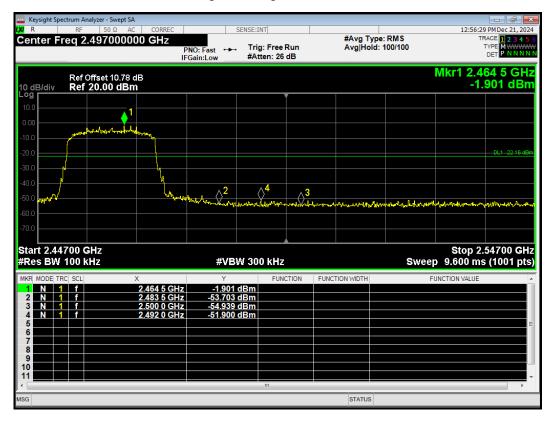
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
2GHz-3GHz	1.407 dB

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 15 of 70 Report No.: R2411A1779-R2V1

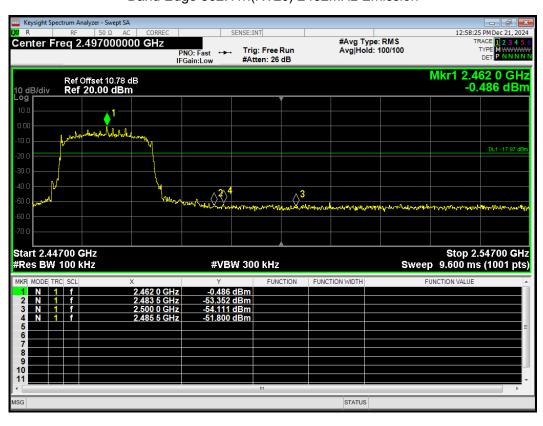
Test Results:


Band Edge 802.11b 2462MHz Emission

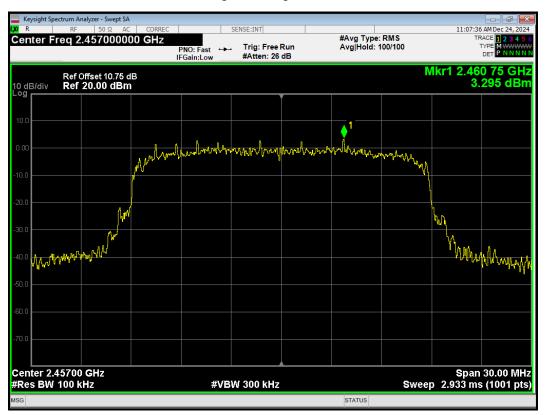

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 16 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

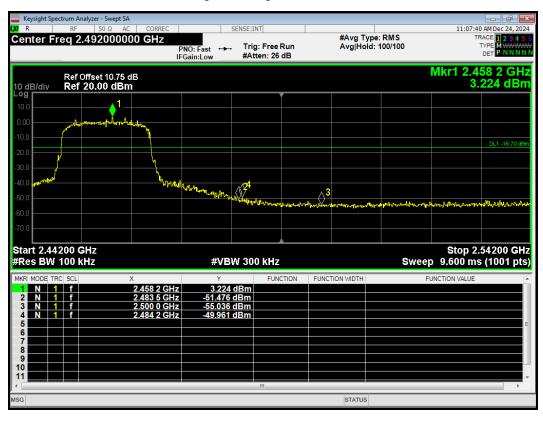
Report No.: R2411A1779-R2V1

Band Edge 802.11g 2462MHz Ref


Band Edge 802.11g 2462MHz Emission

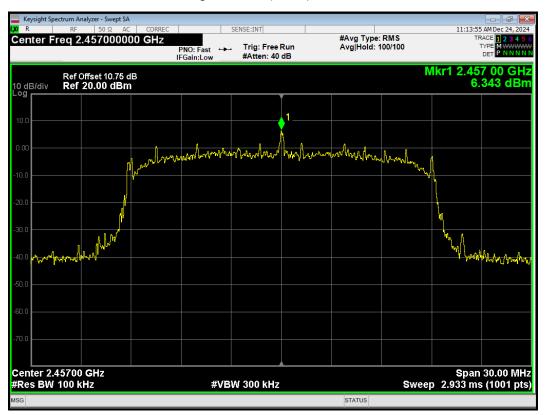
Band Edge 802.11n(HT20) 2462MHz Ref


Band Edge 802.11n(HT20) 2462MHz Emission

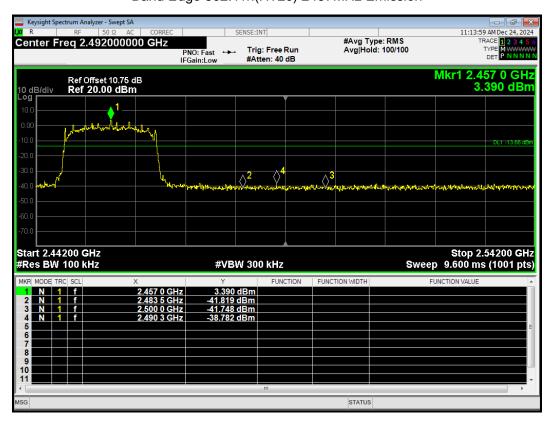

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 18 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

Report No.: R2411A1779-R2V1

Band Edge 802.11g 2457MHz Ref



Band Edge 802.11g 2457MHz Emission



Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 19 of 70

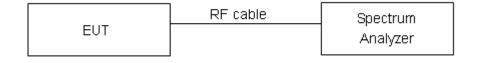
Band Edge 802.11n(HT20) 2457MHz Ref

Band Edge 802.11n(HT20) 2457MHz Emission

5.4. Power Spectral Density

Ambient Condition

Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%


Report No.: R2411A1779-R2V1

Method of Measurement

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 x RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

Test setup

Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

Limits	≤ 8 dBm / 3kHz
--------	----------------

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

RF Test Report No.: R2411A1779-R2V1

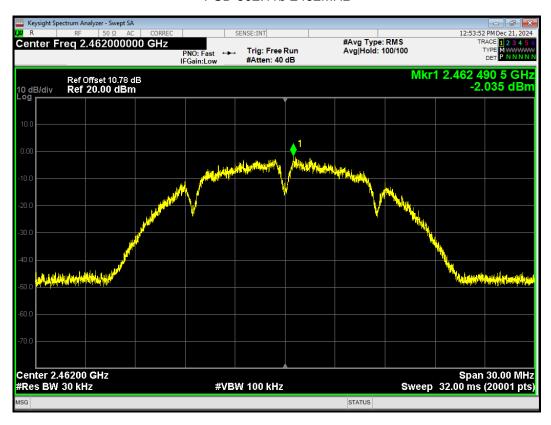
Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

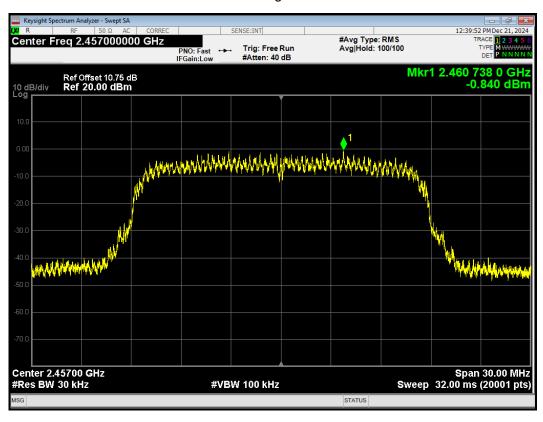
Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 22 of 70
This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

RF Test Report

Test Results:

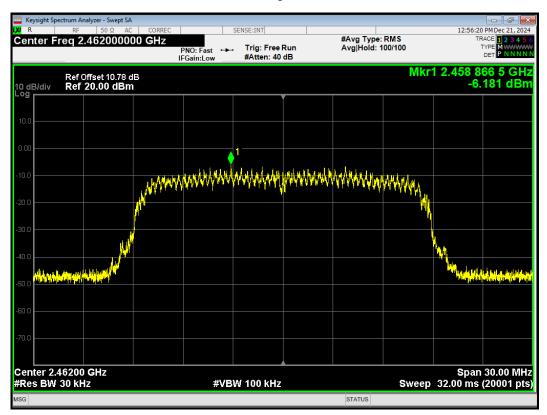

rest itesuits.					
Test Mode	Carrier frequency (MHz) / Channel	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
802.11b	2462/CH11	-2.04	-12.04	8	PASS
902.114	2457/CH 10	-0.84	-10.84	8	PASS
802.11g	2462/CH11	-6.18	-16.18	8	PASS
802.11n	2457/CH 10	-2.64	-12.64	8	PASS
HT20	2462/CH11	-6.67	-16.67	8	PASS
	<u> </u>	·	<u> </u>		

Report No.: R2411A1779-R2V1


Note: Power Spectral Density (dBm/3kHz) =Read Value+Duty cycle correction factor + 10*log10(3/30)

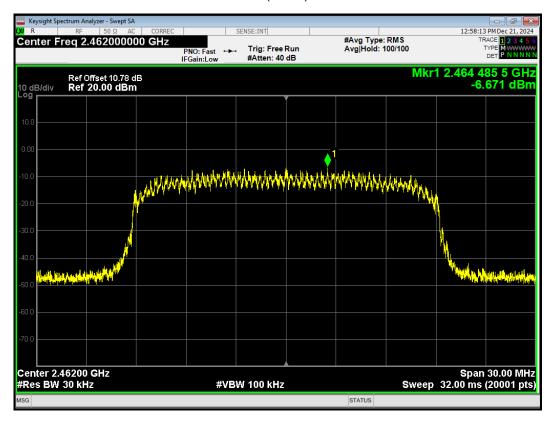
Report No.: R2411A1779-R2V1

PSD 802.11b 2462MHz


PSD 802.11g 2457MHz

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 24 of 70

PSD 802.11g 2462MHz


PSD 802.11n(HT20) 2457MHz

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R

Report No.: R2411A1779-R2V1

PSD 802.11n(HT20) 2462MHz

5.5. Spurious RF Conducted Emissions

Ambient Condition

Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%

Report No.: R2411A1779-R2V1

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to AUTO.

The test is in transmitting mode.

Test Setup

Limits

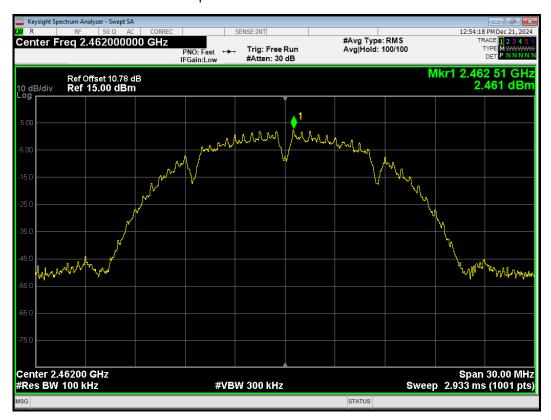
Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
802.11b	2462	2.460	-17.54
802.11g	2457	3.660	-16.34
802.11g	2462	-1.860	-21.86
802.11n	2457	6.500	-13.5
802.11n HT20	2462	1.710	-18.29

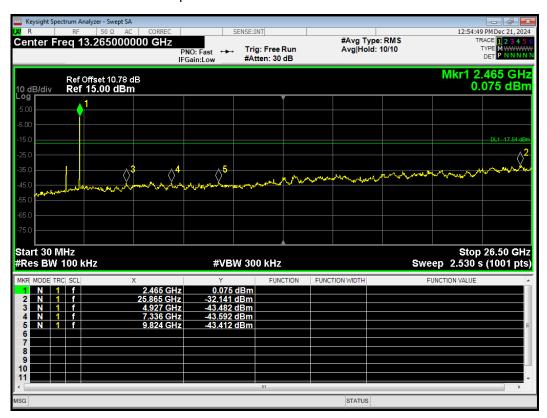
Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB


Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page **27 of 70** This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

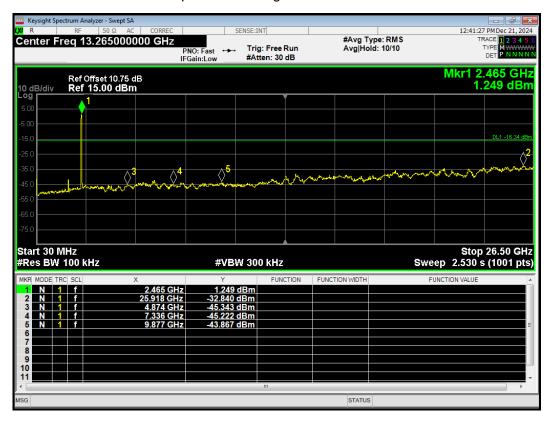
Report No.: R2411A1779-R2V1


Test Results:

eurofins

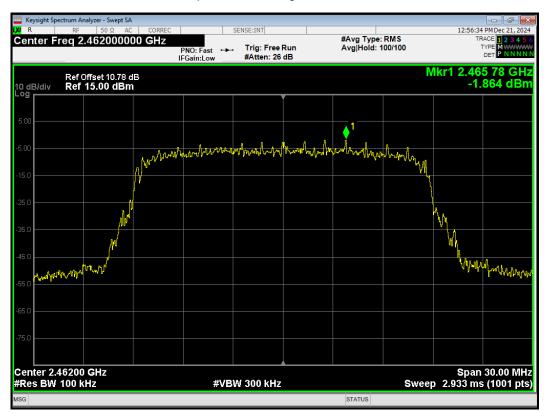
Tx. Spurious 802.11b 2462MHz Ref

Tx. Spurious 802.11b 2462MHz Emission

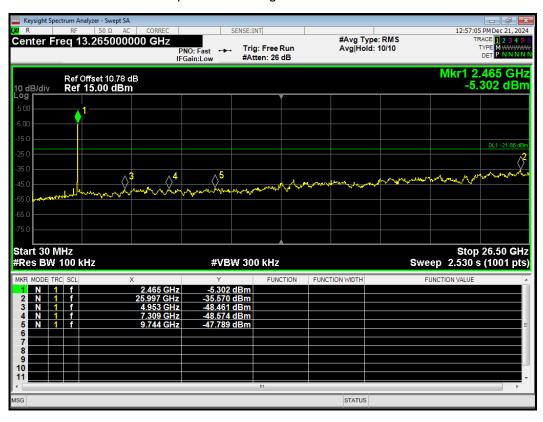


Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 28 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

Tx. Spurious 802.11g 2457MHz Ref



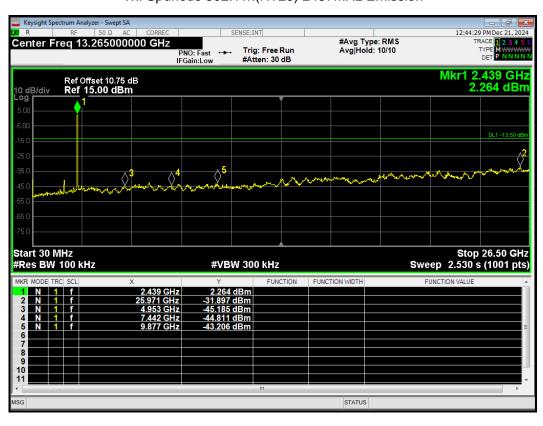
Tx. Spurious 802.11g 2457MHz Emission



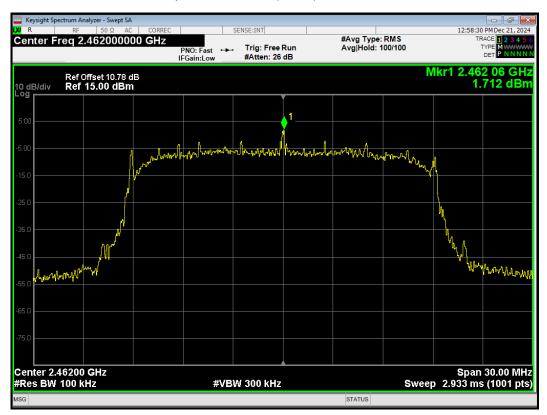
Report No.: R2411A1779-R2V1

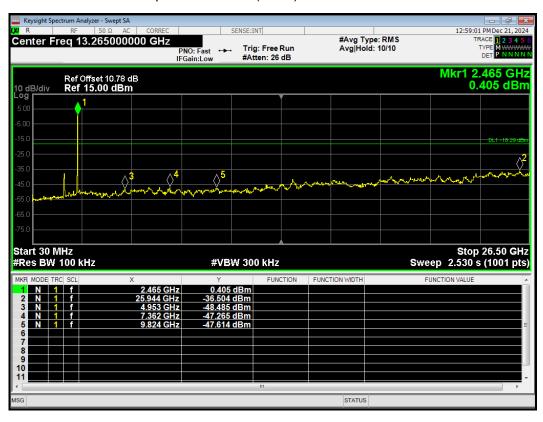
Tx. Spurious 802.11g 2462MHz Ref

Tx. Spurious 802.11g 2462MHz Emission



Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 30 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.


Tx. Spurious 802.11n(HT20) 2457MHz Ref


Tx. Spurious 802.11n(HT20) 2457MHz Emission

Tx. Spurious 802.11n(HT20) 2462MHz Ref

Tx. Spurious 802.11n(HT20) 2462MHz Emission

5.6. Unwanted Emission

Ambient Condition

Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%

Report No.: R2411A1779-R2V1

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10.

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

This method refer to ANSI C63.10.

The procedure for peak unwanted emissions measurements above 1000 MHz is as follows:

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9kHz, VBW=30kHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

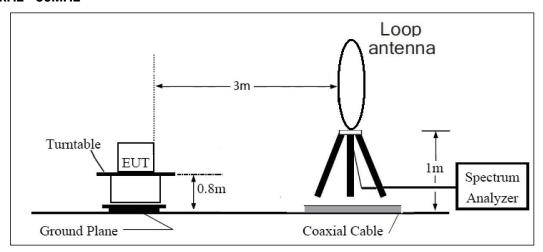
Above 1GHz

AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

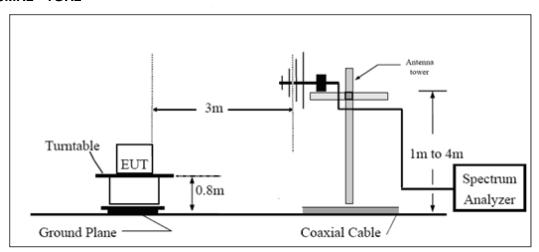
- c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage

Report No.: R2411A1779-R2V1

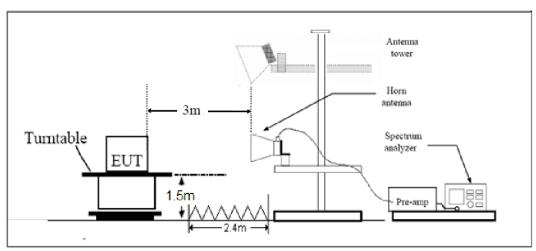
averaging. Log or dB averaging shall not be used.)


- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10] log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

The test is in transmitting mode.


Report No.: R2411A1779-R2V1

Test Setup


9kHz~ 30MHz

30MHz~1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

RF Test Report No.: R2411A1779-R2V1

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(µV/m)	Field strength(dBµV/m)
0.009-0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dB μ V/m

Average Limit=54 dBµV/m

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
1 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

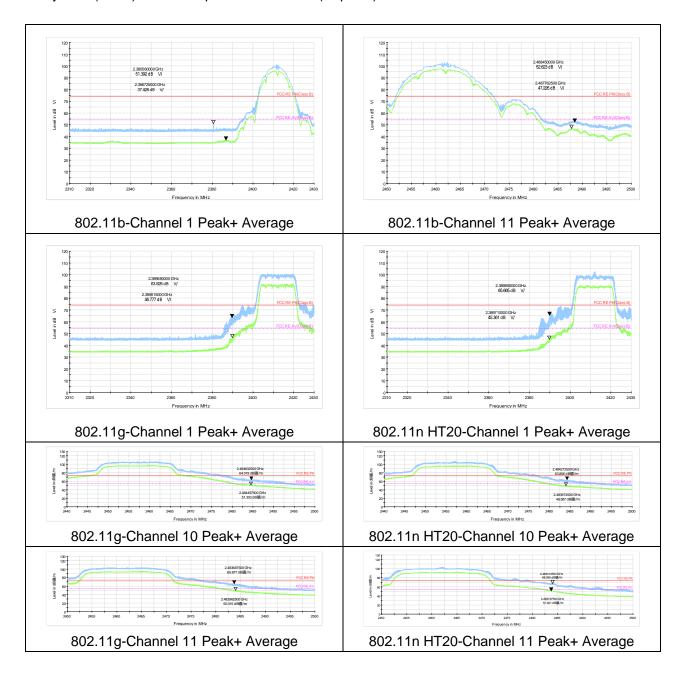
Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
9kHz-30MHz	3.55 dB
30MHz-200MHz	4.17 dB
200MHz-1GHz	4.84 dB
1-18GHz	4.35 dB
18-26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R

This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd. Page 37 of 70 **RF Test Report** Report No.: R2411A1779-R2V1

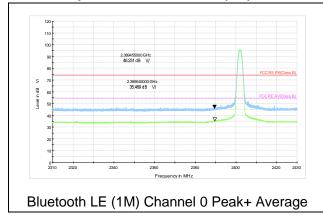

Test Results:

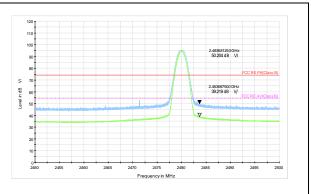
The following graphs display the maximum values of horizontal and vertical by software.

Blue trace uses the peak detection, Green trace uses the average detection.

A symbol (dB礦/m) in the test plot below means (dBµV/m)

A symbol (dB $^{V/}$) in the test plot below means ($^{dB}\mu V/m$)




Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 38 of 70

RF Test Report Report No.: R2411A1779-R2V1

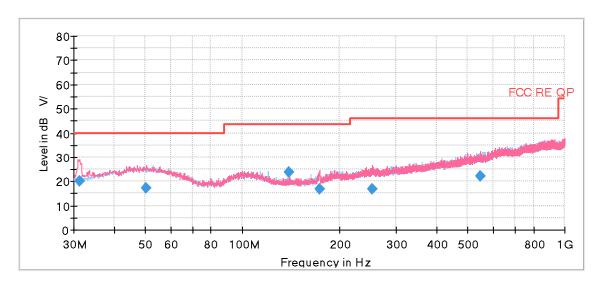
After the pretest, Bluetooth LE (1M) was selected as the worst Mode for Bluetooth LE.

Bluetooth LE (1M) Channel 39 Peak+Average

RF Test Report No.: R2411A1779-R2V1

Result of RE

Test result

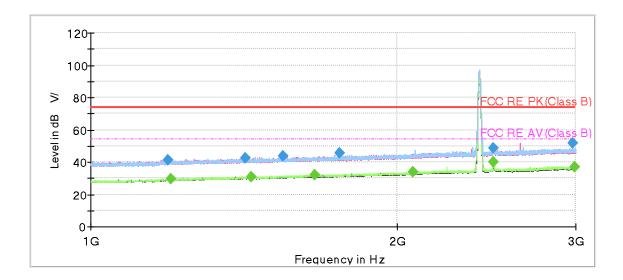

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported.

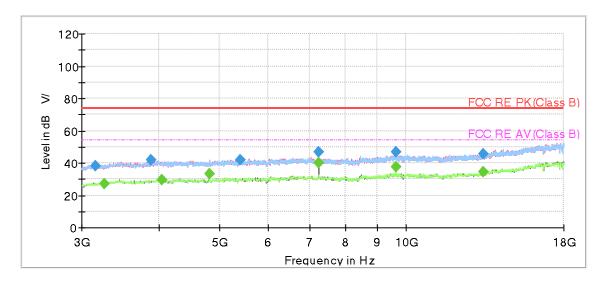
The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

Wi-Fi 2.4G

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b, Channel 11 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

A symbol (dB $^{V/}$) in the test plot below means ($^{dB}\mu V/m$)


Radiates Emission from 30MHz to 1GHz

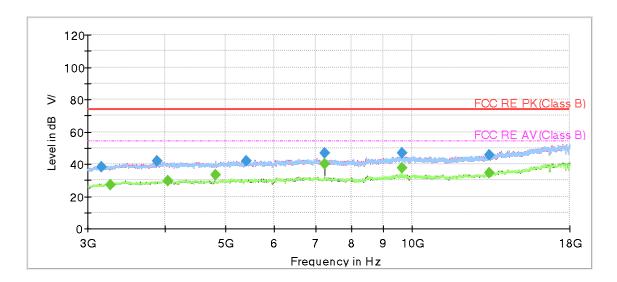

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
31.252500	19.99	40.00	20.01	122.0	V	342.0	17.2
50.411250	17.08	40.00	22.92	221.0	V	130.0	21.1
140.013750	23.70	43.50	19.80	221.0	Н	287.0	15.5
174.002500	16.83	43.50	26.67	196.0	V	331.0	20.1
252.651250	16.64	46.00	29.36	220.0	V	0.0	20.5
548.418750	22.14	46.00	23.86	100.0	V	0.0	26.1

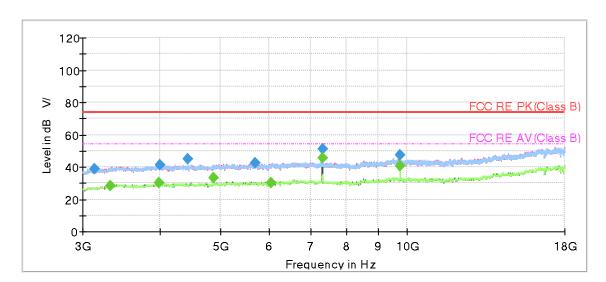
Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit - Quasi-Peak

802.11b CH1

Radiates Emission from 3GHz to 18GHz

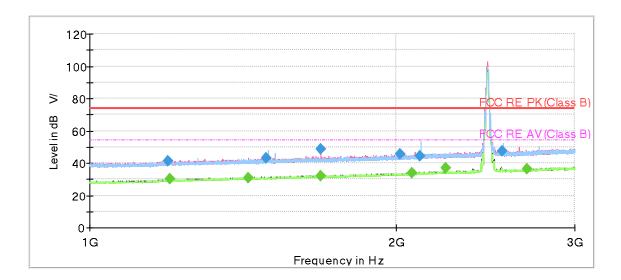


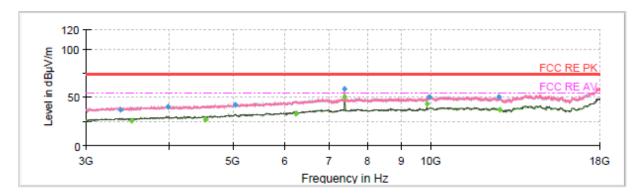

Frequency Meas. Time MaxPeak **Average** Limit Margin Height **Azimuth** Corr. Pol (MHz) $(dB\mu V/m)$ (dBµV/m) (dB) (ms) (cm) (dB/m) (dBµV/m) (deg) 1190.500000 41.39 74.00 32.61 500.0 200.0 V 0.0 -9.0 1200.250000 29.73 54.00 24.27 500.0 100.0 V 116.0 -8.8 1419.500000 74.00 -7.4 42.19 31.81 500.0 200.0 V 109.0 1440.000000 54.00 22.99 500.0 100.0 -7.3 ---31.01 Η 134.0 1546.000000 43.60 ---74.00 30.40 500.0 200.0 Η 343.0 -6.7 1662.000000 54.00 21.91 500.0 200.0 32.09 Н 311.0 -6.1 500.0 1759.500000 74.00 28.54 200.0 V 144.0 -5.7 45.46 ---2077.000000 33.72 54.00 20.28 500.0 100.0 3.0 -3.9 Η 2490.000000 ---40.20 54.00 13.80 500.0 100.0 Н 328.0 -2.1 74.00 25.46 500.0 2492.250000 48.54 ---200.0 Η 192.0 -2.1 2980.000000 51.63 74.00 22.37 500.0 100.0 ٧ 140.0 -0.7 ---2992.250000 ---37.20 54.00 16.80 500.0 200.0 Η 264.0 -0.6

Report No.: R2411A1779-R2V1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

802.11b CH6

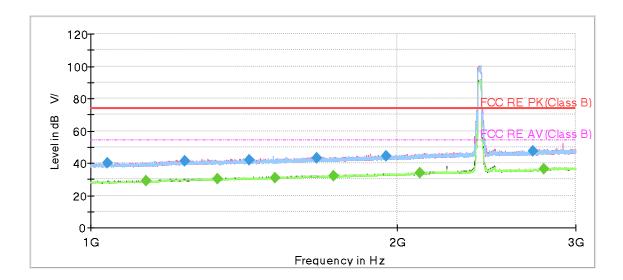

Radiates Emission from 3GHz to 18GHz

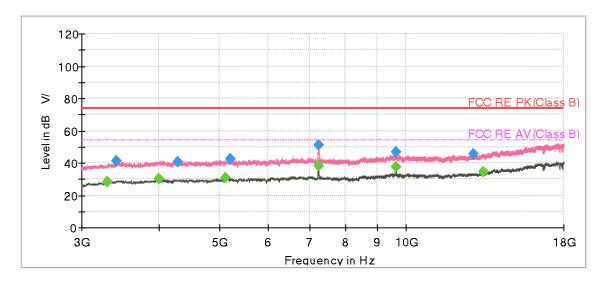


Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1045.000000	39.41		74.00	34.59	500.0	200.0	Н	320.0	-10.5
1141.250000		28.60	54.00	25.40	500.0	200.0	V	33.0	-9.8
1250.000000	40.75		74.00	33.25	500.0	200.0	V	25.0	-8.6
1334.000000		30.29	54.00	23.71	500.0	200.0	V	10.0	-8.0
1430.250000	40.89		74.00	33.11	500.0	200.0	V	219.0	-7.4
1478.250000		30.89	54.00	23.11	500.0	100.0	Н	130.0	-7.1
1646.250000	41.61		74.00	32.39	500.0	200.0	V	64.0	-6.2
1772.250000		31.76	54.00	22.24	500.0	200.0	V	176.0	-5.6
2008.500000	44.45		74.00	29.55	500.0	100.0	Н	1.0	-4.5
2240.000000		36.31	54.00	17.69	500.0	100.0	Н	91.0	-3.2
2517.750000		38.18	54.00	15.82	500.0	200.0	Н	198.0	-2.1
2521.000000	46.92		74.00	27.08	500.0	100.0	Н	12.0	-2.2
7308.750000		45.25	54.00	8.75	500.0	200.0	V	1.0	-3.0

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

802.11b CH11


Radiates Emission from 3GHz to 18GHz

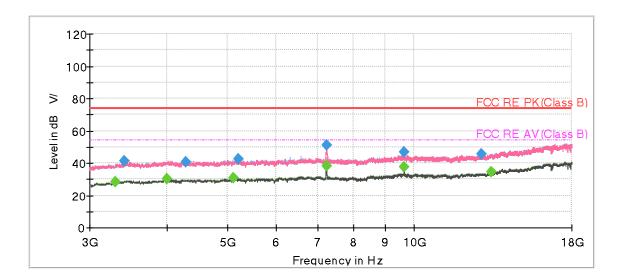

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1195.500000	41.32		74.00	32.68	500.0	100.0	Н	41.0	-8.9
1199.750000		30.00	54.00	24.00	500.0	200.0	V	21.0	-8.8
1434.000000		30.95	54.00	23.05	500.0	100.0	Н	49.0	-7.4
1493.250000	43.30		74.00	30.70	500.0	100.0	V	342.0	-7.0
1686.750000	48.72		74.00	25.28	500.0	100.0	V	220.0	-6.0
1689.500000		32.16	54.00	21.84	500.0	100.0	V	250.0	-6.0
2020.000000	45.72		74.00	28.28	500.0	100.0	V	342.0	-4.4
2074.750000		33.81	54.00	20.19	500.0	100.0	V	330.0	-4.0
2115.250000	44.28		74.00	29.72	500.0	100.0	V	334.0	-3.7
2240.250000		37.11	54.00	16.89	500.0	100.0	V	282.0	-3.2
2544.500000	47.27		74.00	26.73	500.0	100.0	V	262.0	-2.1
2691.000000		36.04	54.00	17.96	500.0	200.0	V	104.0	-1.7
7385.63		50.30	54.00	3.70	1000.00	200.0	V	0.00	6

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

802.11g CH1

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

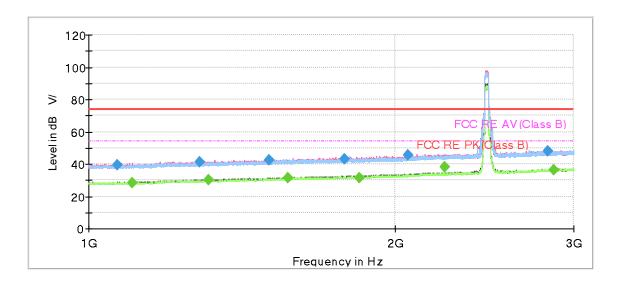


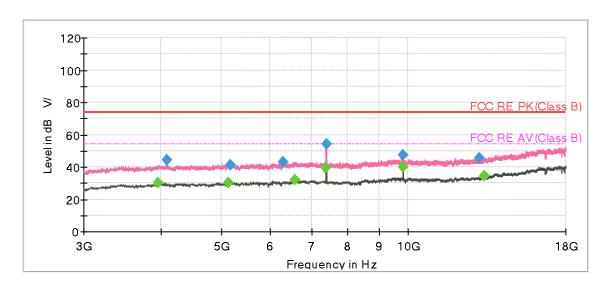
Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1039.500000	39.75		74.00	34.25	500.0	100.0	V	74.0	-10.5
1134.500000		29.03	54.00	24.97	500.0	100.0	V	250.0	-9.8
1238.500000	41.53		74.00	32.47	500.0	100.0	V	304.0	-8.6
1334.000000		30.34	54.00	23.66	500.0	100.0	V	351.0	-8.0
1432.250000	41.99		74.00	32.01	500.0	100.0	Н	8.0	-7.4
1519.000000		30.88	54.00	23.12	500.0	200.0	V	231.0	-6.9
1670.500000	43.22		74.00	30.78	500.0	100.0	Н	114.0	-6.1
1733.750000		31.89	54.00	22.11	500.0	200.0	V	21.0	-5.8
1951.500000	44.31		74.00	29.69	500.0	100.0	V	351.0	-4.7
2109.250000		33.54	54.00	20.46	500.0	200.0	V	43.0	-3.7
2722.000000	47.10		74.00	26.90	500.0	200.0	V	310.0	-1.5
2789.250000		36.39	54.00	17.61	500.0	200.0	V	215.0	-1.3

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit -MAX Peak/ Average

802.11g CH6

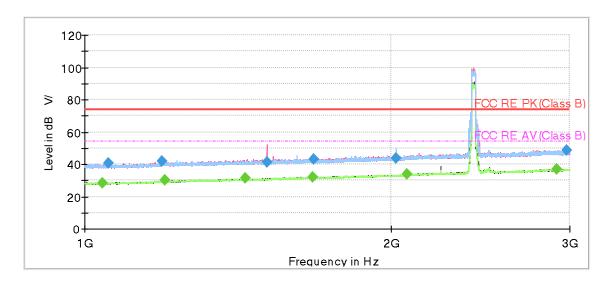

Radiates Emission from 3GHz to 18GHz

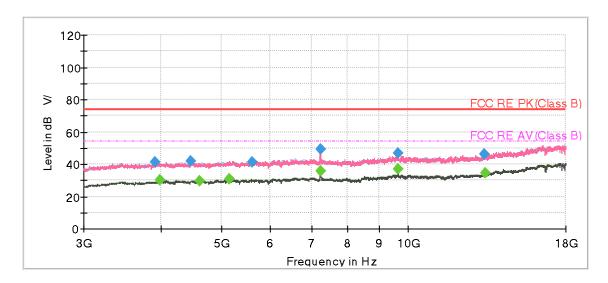


Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1055.250000	40.04		74.00	33.96	500.0	100.0	V	342.0	-10.4
1176.250000		29.08	54.00	24.92	500.0	200.0	V	18.0	-9.3
1393.750000	41.97		74.00	32.03	500.0	200.0	Н	270.0	-7.6
1419.500000		30.80	54.00	23.20	500.0	200.0	V	80.0	-7.4
1655.500000	42.65		74.00	31.35	500.0	200.0	V	146.0	-6.1
1737.750000		32.23	54.00	21.77	500.0	200.0	V	73.0	-5.8
1865.500000	43.89		74.00	30.11	500.0	100.0	Н	132.0	-5.1
2048.750000		33.65	54.00	20.35	500.0	200.0	V	308.0	-4.2
2125.000000	45.55		74.00	28.45	500.0	200.0	V	0.0	-3.6
2239.750000		38.63	54.00	15.37	500.0	100.0	V	272.0	-3.2
2769.250000	48.20		74.00	25.80	500.0	200.0	Н	239.0	-1.4
2774.750000		36.51	54.00	17.49	500.0	100.0	V	0.0	-1.4

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

802.11g CH11


Radiates Emission from 3GHz to 18GHz

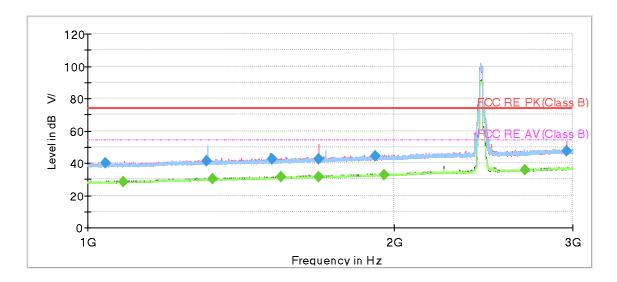


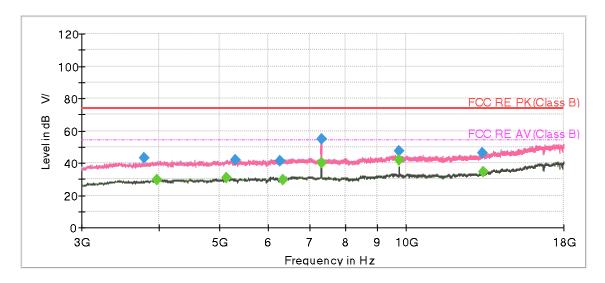
Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1067.750000	39.48		74.00	34.52	500.0	200.0	Н	103.0	-10.3
1103.000000		28.43	54.00	25.57	500.0	100.0	V	33.0	-10.0
1287.250000	41.44		74.00	32.56	500.0	100.0	V	25.0	-8.3
1312.250000		29.98	54.00	24.02	500.0	200.0	V	196.0	-8.1
1506.000000	42.18		74.00	31.82	500.0	100.0	Н	85.0	-7.0
1570.750000		31.18	54.00	22.82	500.0	200.0	V	254.0	-6.6
1786.000000	43.13		74.00	30.87	500.0	200.0	V	329.0	-5.5
1846.250000		31.69	54.00	22.31	500.0	100.0	V	59.0	-5.2
2062.750000	45.37		74.00	28.63	500.0	200.0	V	0.0	-4.1
2239.750000		38.45	54.00	15.55	500.0	100.0	V	275.0	-3.2
2826.750000	48.17		74.00	25.83	500.0	200.0	V	248.0	-1.1
2870.250000		36.19	54.00	17.81	500.0	100.0	V	33.0	-1.1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH1

Radiates Emission from 3GHz to 18GHz

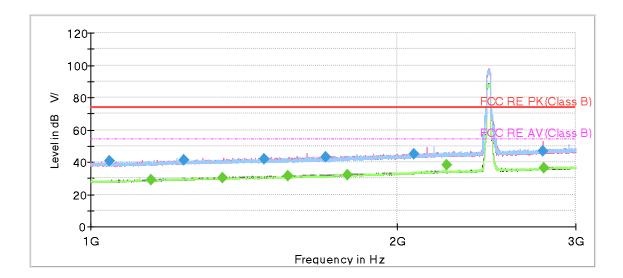


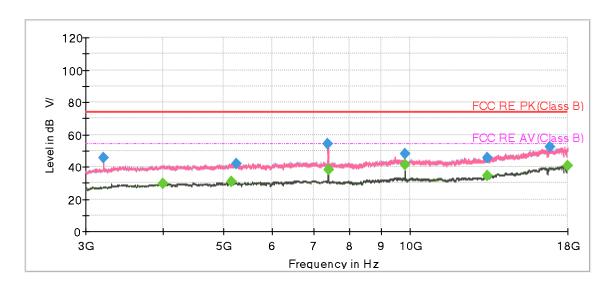

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1041.500000		28.30	54.00	25.70	500.0	200.0	V	25.0	-10.5
1054.750000	40.70		74.00	33.30	500.0	200.0	Н	244.0	-10.5
1191.250000	41.93		74.00	32.07	500.0	100.0	Н	84.0	-9.0
1199.250000		29.85	54.00	24.15	500.0	100.0	Н	192.0	-8.8
1438.500000		31.16	54.00	22.84	500.0	100.0	V	19.0	-7.3
1510.250000	41.27		74.00	32.73	500.0	100.0	Н	219.0	-7.0
1678.250000		32.17	54.00	21.83	500.0	200.0	V	72.0	-6.1
1680.750000	43.21		74.00	30.79	500.0	200.0	Н	185.0	-6.0
2025.750000	43.91		74.00	30.09	500.0	100.0	Н	295.0	-4.4
2077.000000		33.95	54.00	20.05	500.0	100.0	V	125.0	-3.9
2914.250000		36.97	54.00	17.03	500.0	200.0	Н	327.0	-1.0
2977.750000	48.90		74.00	25.10	500.0	200.0	V	214.0	-0.7

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH6

Radiates Emission from 3GHz to 18GHz


Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1042.250000	39.76		74.00	34.24	500.0	200.0	V	283.0	-10.5
1084.000000		28.38	54.00	25.62	500.0	200.0	V	307.0	-10.2
1309.250000	41.21		74.00	32.79	500.0	100.0	Н	243.0	-8.1
1327.000000		30.38	54.00	23.62	500.0	200.0	V	219.0	-8.0
1518.500000	42.45		74.00	31.55	500.0	100.0	Н	340.0	-6.9
1550.250000		31.43	54.00	22.57	500.0	100.0	V	46.0	-6.7
1687.750000	42.18		74.00	31.82	500.0	200.0	V	346.0	-6.0
1688.750000		31.45	54.00	22.55	500.0	200.0	V	299.0	-6.0
1918.000000	44.17		74.00	29.83	500.0	100.0	V	109.0	-4.9
1958.500000		32.36	54.00	21.64	500.0	100.0	V	227.0	-4.7
2691.000000		35.50	54.00	18.50	500.0	200.0	V	0.0	-1.7
2958.750000	47.15		74.00	26.85	500.0	200.0	Н	281.0	-0.8


Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit -MAX Peak/ Average

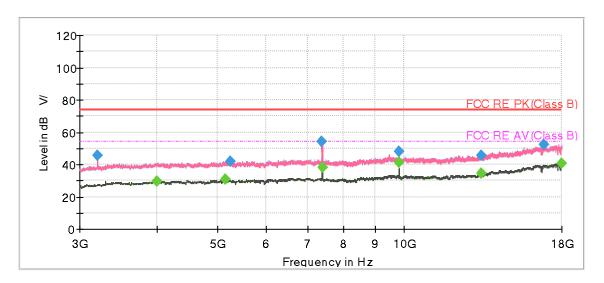
802.11n (HT20) CH11

RF Test Report

Radiates Emission from 3GHz to 18GHz

Frequency Meas. Time MaxPeak **Average** Limit Margin Height **Azimuth** Corr. Pol (MHz) $(dB\mu V/m)$ (dBµV/m) (dB) (ms) (cm) (dB/m) (dBµV/m) (deg) 1043.000000 40.33 74.00 33.67 500.0 100.0 357.0 -10.5 Н 1146.250000 28.92 54.00 25.08 500.0 200.0 Н 0.0 -9.8 1235.250000 74.00 41.05 32.95 500.0 200.0 Η 31.0 -8.7 1346.750000 54.00 23.95 500.0 100.0 V 3.0 -8.0 30.05 -7.1 1482.750000 41.82 74.00 32.18 500.0 200.0 Η 100.0 500.0 1564.000000 54.00 22.59 100.0 V 31.41 85.0 -6.6 500.0 1702.000000 74.00 30.70 100.0 252.0 43.30 Η -6.0 1790.000000 32.07 54.00 21.93 500.0 100.0 V 118.0 -5.5 2078.000000 45.05 74.00 28.95 500.0 100.0 Н 172.0 -3.9 54.00 500.0 V 2240.250000 ---38.40 15.60 100.0 278.0 -3.2 2784.750000 74.00 27.19 500.0 200.0 Η 19.0 -1.4 46.81 2791.500000 ---36.29 54.00 17.71 500.0 200.0 Η 147.0 -1.3

Report No.: R2411A1779-R2V1


Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

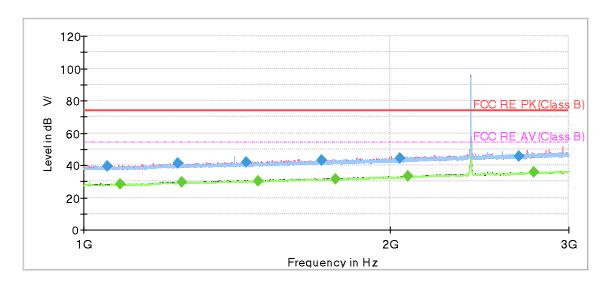
RF Test Report No.: R2411A1779-R2V1

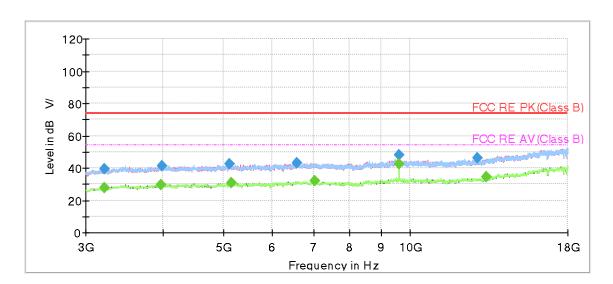
Bluetooth LE

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, Bluetooth LE-Channel 0 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

A symbol (dB V/) in the test plot below means (dBµV/m)

Radiates Emission from 30MHz to 1GHz

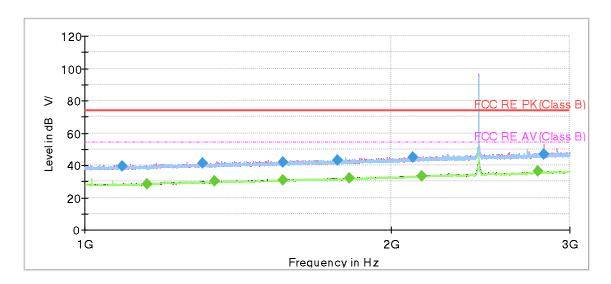

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
31.252500	21.09	40.00	18.91	100.0	٧	37.0	17.2
33.313750	18.69	40.00	21.31	100.0	V	0.0	17.8
55.225000	16.48	40.00	23.52	125.0	Н	6.0	20.6
102.743750	14.76	43.50	28.74	100.0	Н	293.0	19.2
140.013750	24.77	43.50	18.73	225.0	Н	262.0	15.5
174.001250	16.79	43.50	26.71	225.0	V	316.0	20.1

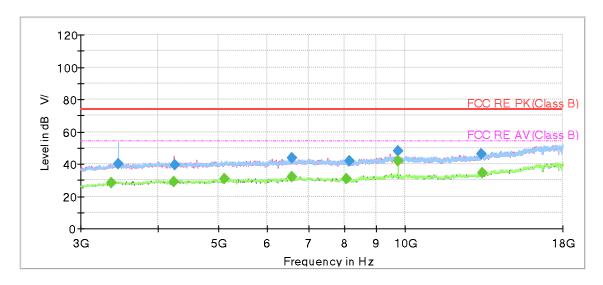

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit – Quasi-Peak

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 59 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

Bluetooth LE-Channel 0

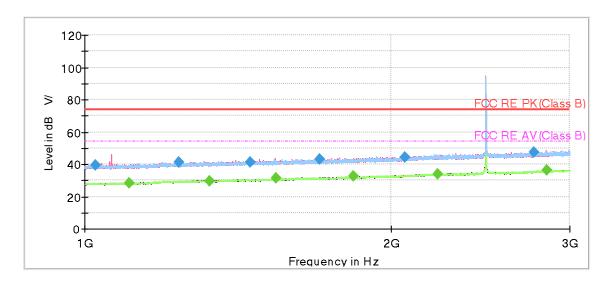

Radiates Emission from 3GHz to 18GHz

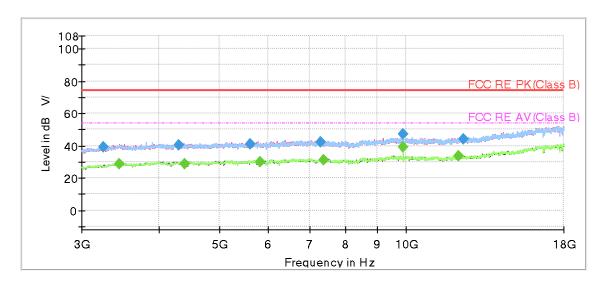

RF Test Report No.: R2411A1779-R2V1

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1056.250000	39.25		74.00	34.75	500.0	100.0	Н	0.0	-10.4
1085.500000		28.38	54.00	25.62	500.0	200.0	Н	146.0	-10.2
1236.750000	41.03		74.00	32.97	500.0	100.0	Н	246.0	-8.7
1249.750000		29.37	54.00	24.63	500.0	200.0	V	114.0	-8.6
1444.000000	41.64		74.00	32.36	500.0	200.0	V	106.0	-7.3
1486.250000		30.42	54.00	23.58	500.0	100.0	V	114.0	-7.1
1713.250000	43.23		74.00	30.77	500.0	100.0	V	2.0	-5.9
1769.500000		31.48	54.00	22.52	500.0	100.0	V	17.0	-5.6
2046.000000	44.28		74.00	29.72	500.0	100.0	V	51.0	-4.3
2083.500000		32.97	54.00	21.03	500.0	200.0	V	176.0	-3.9
2680.000000	45.74		74.00	28.26	500.0	200.0	V	176.0	-1.8
2773.500000		35.72	54.00	18.28	500.0	100.0	V	168.0	-1.4
9607.500000		42.52	54.00	11.48	500.0	200.0	Н	324.0	-0.7

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

Bluetooth LE-Channel 19


Radiates Emission from 3GHz to 18GHz


RF Test Report No.: R2411A1779-R2V1

Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1090.250000	39.09		74.00	34.91	500.0	200.0	V	182.0	-10.2
1152.750000		28.57	54.00	25.43	500.0	200.0	Н	1.0	-9.8
1305.500000	40.96		74.00	33.04	500.0	200.0	V	72.0	-8.1
1341.000000		29.98	54.00	24.02	500.0	100.0	Н	314.0	-8.0
1567.500000		30.56	54.00	23.44	500.0	200.0	V	182.0	-6.6
1568.250000	41.96		74.00	32.04	500.0	100.0	V	139.0	-6.6
1774.750000	43.31		74.00	30.69	500.0	200.0	V	297.0	-5.6
1822.000000		32.20	54.00	21.80	500.0	100.0	Н	353.0	-5.3
2101.750000	44.85		74.00	29.15	500.0	100.0	Н	334.0	-3.7
2147.250000		33.22	54.00	20.78	500.0	200.0	V	358.0	-3.5
2790.250000		36.05	54.00	17.95	500.0	100.0	V	43.0	-1.3
2831.750000	46.75		74.00	27.25	500.0	100.0	V	82.0	-1.1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

Bluetooth LE-Channel 39

Radiates Emission from 3GHz to 18GHz

RF Test Report No.: R2411A1779-R2V1

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1024.750000	39.39		74.00	34.61	500.0	100.0	Н	265.0	-10.6
1106.000000		28.21	54.00	25.79	500.0	100.0	Н	127.0	-10.0
1237.250000	41.16		74.00	32.84	500.0	200.0	V	0.0	-8.6
1326.750000		29.75	54.00	24.25	500.0	100.0	Н	354.0	-8.0
1456.000000	41.12		74.00	32.88	500.0	100.0	Н	354.0	-7.2
1541.750000		31.31	54.00	22.69	500.0	100.0	Н	249.0	-6.8
1701.250000	42.86		74.00	31.14	500.0	100.0	Н	16.0	-6.0
1837.500000		32.41	54.00	21.59	500.0	100.0	Н	233.0	-5.2
2066.250000	44.24		74.00	29.76	500.0	200.0	Н	211.0	-4.1
2225.000000		33.77	54.00	20.23	500.0	200.0	V	355.0	-3.2
2766.000000	47.61		74.00	26.39	500.0	200.0	Н	40.0	-1.5
2849.750000		36.02	54.00	17.98	500.0	100.0	V	16.0	-1.1

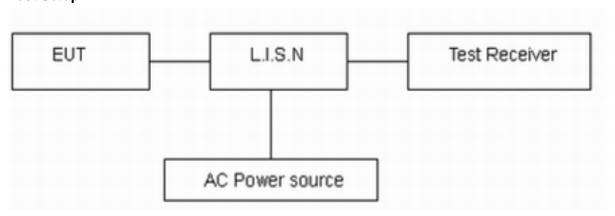
Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

5.7. Conducted Emission

Ambient Condition

Temperature	Relative humidity		
15°C ~ 35°C	20% ~ 80%		

Report No.: R2411A1779-R2V1


Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz.

The measurement result should include both L line and N line.

The test is in transmitting mode.

Test Setup

Note: AC Power source is used to change the voltage 110V/60Hz.

Limits

Frequency	Conducted Limits(dBµV)				
(MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46*			
0.5 - 5	56	46			
5 - 30	60	50			
* Decreases with the logarithm of the frequency.					

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 66 of 70 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

RF Test Report Report No.: R2411A1779-R2V1

Test Results:

The equipment is installed in the car and cannot be directly or indirectly connected to the public network, so test items do not apply.

6. Main Test Instruments

Name Manufacturer		Туре	Serial Number	Calibration Date	Expiration Date
RF cable	Wuhan Champion Electronics	LA810-NM SM-7.5M	24067755	2024-12-14	2025-12-13
RF cable	Wuhan Champion Electronics	LA810-NM NM-2M	24065754	2024-12-14	2025-12-13
Power sensor	R&S	NRP18S	101954	2024-05-07	2025-05-06
Spectrum Analyzer	KEYSIGHT	N9020A	MY51330870	2024-05-07	2025-05-06
DC Power Supply	UNI-T	UTP1306S +	2205D051742 6	2024-12-02	2025-12-01
Attenuator	HASCO	HA18A-10	0003	/	/
EMI Test Receiver	R&S	ESCI3	100948	2024-05-07	2025-05-06
Signal Analyzer	R&S	FSV40	101186	2024-05-07	2025-05-06
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2023-04-16	2026-04-15
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	1023	2023-07-14	2026-07-13
Horn Antenna	SCHWARZBECK	BBHA 9120D	430	2024-07-18	2027-07-17
Amplifier MWPA.CN		MWLA-010 200G40	YQ2103039B0 1	2024-05-07	2025-05-06
Software	R&S	EMC32	9.26.01	/	/

Report No.: R2411A1779-R2V1

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R

This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd. Page 68 of 70

RF Test Report Report No.: R2411A1779-R2V1

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R

This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd. Page 69 of 70 **RF Test Report** Report No.: R2411A1779-R2V1

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

***** END OF REPORT *****

Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R

This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd. Page 70 of 70