

FCC TEST REPORT

Report No.: HK2111174433-E

Test report
On Behalf of
REXING INC.
For
Dash Camera
Model No.: V2 Pro

FCC ID: 2AW5W-V2PRO

Prepared for: REXING INC.

264 Quarry Rd., Unit D Milford, Connecticut 06460, United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Nov. 17, 2021 ~ Nov. 24, 2021

Date of Report: Nov. 24, 2021

Report Number: HK2111174433-E

TEST RESULT CERTIFICATION

Applicant's name:	REXING INC.
-------------------	-------------

264 Quarry Rd., Unit D Milford, Connecticut 06460, United Address.....

States

Manufacture's Name..... KA FUNG TECHNOLOGY CO LIMITED

Rm.202, C5 Building, Hengfeng Industry Park, No.739

Report No.: HK2111174433-E

Zhoushi Rd, Hangcheng Subdistrict, Bao'an Dist., Shenzhen

China

Product description

Trade Mark: REXING

Product name Dash Camera

Model and/or type reference : V2 Pro

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests: Nov. 17, 2021 ~ Nov. 24, 2021

Date of Issue....: Nov. 24, 2021

Test Result....: **Pass**

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

Report No.: HK2111174433-E

1.	Test Result Summary	
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	2 1.3. MEASUREMENT UNCERTAINTY	6
2.	EUT Description	7
	2.1. GENERAL DESCRIPTION OF EUT	7
	2.2. OPERATION OF EUT DURING TESTING	8
	2.3. DESCRIPTION OF TEST SETUP	9
3.	Genera Information	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	12
4.	Test Results and Measurement Data	13
	4.1. CONDUCTED EMISSION	13
	4.2. Test Result	§15
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4 FMISSION BANDWIDTH	18
	4.5. Power Spectral Density	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	30
	4.7. RADIATED Spurious Emission Measurement	40
	4.8. ANTENNA REQUIREMENT	66
	4.9. PHOTOGRAPH OF TEST	67
	THE PLATE OF THE PLAT	CTING CTING

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Nov. 24, 2021	Jason Zhou
TOG	THE THE	-m/G	G ING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: HK2111174433-E

1. Test Result Summary

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	1§5.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. Measurement Uncertainty

Humidity

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5 TESTIN	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

AFIGATION.

Report No.: HK2111174433-E

±1.0%

2. EUT Description

2.1. GENERAL DESCRIPTION OF EUT

11/20	. 11 /42	- 11/2
Equipment	Dash Camera	
Model Name	V2 Pro	JAKTEST
Series Model:	N/A SHIPP	HUAN
Model Difference	N/A	TIME
FCC ID	2AW5W-V2PRO	HUAK TESTING HUAK
Antenna Type	Internal Antenna	
Antenna Gain	1dBi	WESTING
Operation frequency	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz	D HINE
Number of Channels	802.11b/g/n20: 11CH 802.11n 40: 7CH	JAK TESTING
Modulation Type	CCK/OFDM/DBPSK/DAPSK	TING HU.
Power Source	DC 5V from car charger	STING
Power Rating	DC 5V from car charger	MINNE O HUAN

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Carrier Frequency of Channels

Channel List for 802.11b/802.11g/802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	.Ca	

Report No.: HK2111174433-E

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
mG	CING OF	04	2427	07	2442	w	
III	AKTE	05	2432	08	2447	LIAN TESTIN	-HUAKTE
03	2422	06	2437	09	2452	(1) W	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.2. Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

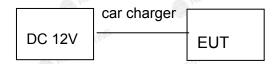
Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



TESTING TESTING

Report No.: HK2111174433-E

2.3. DESCRIPTION OF TEST SETUP

Operation of EUT during Radiation testing:

Car charger information Model: DC/DC ADAPTER Input: DC12V-24V

Output: DC 5V, 2.5A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3. Genera Information

3.1. Test environment and mode

Operating Environment:		
Temperature:	25.0 °C	HUANTES
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	TESTING
Test Mode:		
Engineering mode:	Keep the EUT in continuous by select channel and modu value of duty cycle is 98.469	ulations (The

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/ / / / / / / / / / / / / / / / / / /	I HUANTESTI	I STING	I HUM TESTIN	2 / STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAI

Report No.: HK2111174433-E

4. Test Results and Measurement Data

4.1. Conducted Emission

Test Specification

-7111		A11.			
FCC Part15 C Section 15.207					
ANSI C63.10:2013					
150 kHz to 30 MHz					
RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50			
Poferon	ace Plane	alG FSTR			
Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Charging + transmitting with modulation					
line impedance state provides a 50ohm/state measuring equipme 2. The peripheral device power through a Lagrangian coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interfered emission, the relative the interface cables.	abilization network 50uH coupling intent. ISN that provides with 50ohm terr diagram of the Ince. In order to fire positions of equals of the change must be change.	k (L.I.S.N.). This appedance for the ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum aipment and all of ged according to			
N/A	HUANTE	HUAKTES			
	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5 5-30 Referent 40cm E.U.T Ac pow Test table/Insulation plant Remark EU.T Equipment Under Test LISN Line Impedence Stabilization Test table height=0.8m Charging + transmittin 1. The E.U.T is connelline impedance state provides a 500hm/s measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C conducted interfere emission, the relative the interface cables ANSI C63.10: 2013	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep time Frequency range			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Instruments

THE PERSON NAMED IN	Conducted	Emission Shi	ielding Room Te	st Site (843)	N. T. C.
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 09, 2021
LISN	R&S	ENV216	HKE-002	Dec. 10, 2020	Dec. 09, 2021
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 10, 2020	Dec. 09, 2021
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. Test Result

Not applicable.

Note: EUT power supply by DC Power, so this test item not applicable.

4.3. Maximum Conducted Output Power

Test Specification

Test Requirement:	FCC Part15 C Section 15	247 (b)(3)			
Test Method:	KDB 558074	O HOSE			
Limit:	30dBm	JAK TESTING			
Test Setup:	Power meter	EUT			
Test Mode:	Transmitting mode with m	Transmitting mode with modulation			
Test Procedure:	FCC KDB 558074 D01 v05r02. 2. The RF output of EUT v meter by RF cable and compensated to the re 3. Set to the maximum po EUT transmit continuo	Measurement Procedure of 15.247 Meas Guidance was connected to the power attenuator. The path loss was sults for each measurement. wer setting and enable the usly.			
Test Result:	PASS	- JUAN TESTING HUAN TESTING			

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
Power meter	Agilent	E4419B	HKE-085	Dec. 10, 2020	Dec. 09, 2021	
Power Sensor	Agilent	E9300A	HKE-086	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

ESTING	TSTNG	TX 802.11b Mode	TSTMG TSTMG
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	12.71 Name	30
CH06	2437	12.33	30
CH11	2462	11.67 MARKET MAR	30
MAKTESTA	HUAKTE	TX 802.11g Mode	HARTESTA
CH01	2412	11.41	30
CH06	2437	11.10 m/s	30
CH11	2462	10.28	30 MAKELE
WG		TX 802.11n20 Mode	TING
CH01	2412	11.40	30
CH06	2437	11.32	30
CH11	2462	10.27	30
NAKTESTING	HIAKTES	TX 802.11n40 Mode	HURNTESTIN
CH03	2422	10.78	30
CH06	2437	11.02	30
CH09	2452	10.60	JUAN TES

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Report No.: HK2111174433-E

4.4. Emission Bandwidth

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)						
Test Method:	KDB 558074	KDB 558074					
Limit:	>500kHz	AK TESTING	Ola				
Test Setup:	Spectrum Applymen	EUT	WANTES IN				
Test Mode:	Spectrum Analyzer Transmitting mode with modulation						
Test Procedure:	1. The testing follows FC 15.247 Meas Guidan 2. Set to the maximum p EUT transmit continu 3. Make the measureme resolution bandwidth Video bandwidth (VB an accurate measure be greater than 500 kd. Measure and record the suitable of the s	ice v05r02. bower setting and element with the spectru (RBW) = 100 kHz BW) = 300 kHz. In dement. The 6dB backHz.	enable the im analyzer's . Set the order to make indwidth must				
Test Result:	PASS	O HUM	ING TESTING				

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

Report No.: HK2111174433-E

Test data

(1027)	1,027		10237	
Test channel		6dB Emission	n Bandwidth (MHz)	
root onarmor	802.11b	802.11g	802.11n(H20)	802.11n(H40)
Lowest	8.040	16.400	17.320	35.680
Middle	8.120	15.960	17.680	35.920
Highest	8.560	16.320	17.560	33.680
Limit:	TING	(a)	>500k	9
Test Result:	ING HUAKTE	in an	PASS	THE HUA

Test plots as follows:

802.11b Modulation

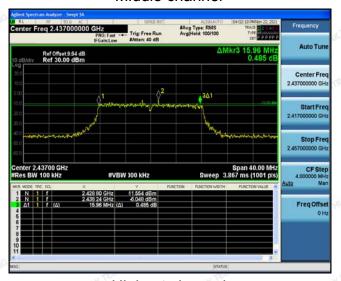
Lowest channel

Report No.: HK2111174433-E

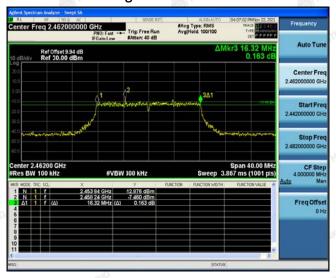
Middle channel

Highest channel

802.11g Modulation

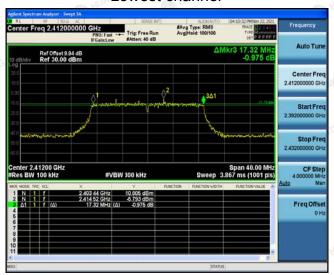

Lowest channel

Report No.: HK2111174433-E


IK.

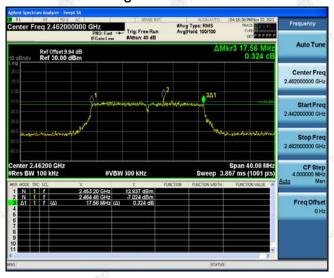
Middle channel

Highest channel



802.11n (HT20) Modulation

Lowest channel


Report No.: HK2111174433-E

Middle channel

Highest channel

802.11n (HT40) Modulation

Lowest channel

Report No.: HK2111174433-E

Middle channel

Highest channel

4.5. Power Spectral Density

Test Specification

Test Requirement:	FCC Part15 C Section 15	.247 (e)	The state of the s
Test Method:	KDB 558074	HUAKTES	HUAKTESIA
Limit:	The average power spect than 8dBm in any 3kHz continuous transmission.	- Ca	_
Test Setup:	Spectrum Analyzer	EUT	E - MAKTESTING
Test Mode:	Transmitting mode with m	odulation	.
Test Procedure:	 The testing follows Meanethod PKPSD of FC0 15.247 Meas Guidance The RF output of EUT vanalyzer by RF cable a was compensated to the measurement. Set to the maximum po EUT transmit continuous Make the measuremen resolution bandwidth (kHz. Video bandwidth to at least 1.5 times the possible of 100 traces. Use the determine the maximus Measure and record the 	C KDB Publication e v05r02 was connected to and attenuator. The results for each wer setting and e usly. t with the spectrum RBW): 3 kHz ≤ RIVBW ≥ 3 x RBW. e OBW. p time = auto coup (Peak) mode own peak marker fund m power level.	the spectrum the spectrum the path loss that is
Test Result:	PASS	-n/G	

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-0.99	-10.99
802.11b	Middle	-2.87	-12.87
	Highest	-3.05	-13.05 ₁₂₅ m ⁶
	Lowest	-10.99	-20.99
802.11g	Middle	-11.66	-21.66
	Highest	-12.56	-22.56
	Lowest	-10.99	-20.99
802.11n(H20)	Middle	-11.74	-21.74
	Highest	-11.74	-21.74
	Lowest	-13.86	-23.86
802.11n(H40)	Middle	-14.41	-24.41
	Highest	-14.85	-24.85
PSD test result (dBm/3	3kHz)= PSD test	t result (dBm/30kHz)-10	
Limit: 8dBm/3kHz			
Test Result:	TES	PASS	V TESTING

Test plots as follows:

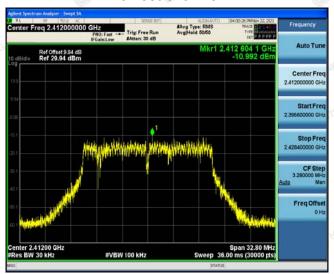
802.11b Modulation

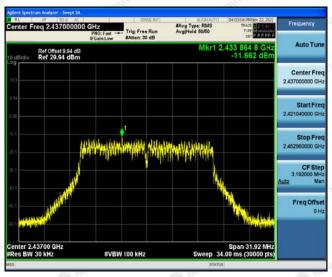
Lowest channel

Report No.: HK2111174433-E

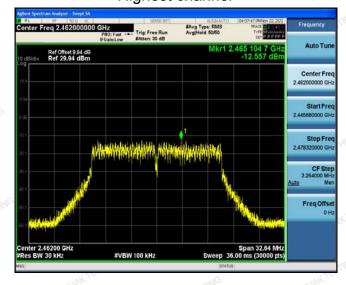
Middle channel

Highest channel



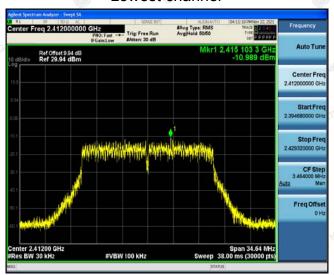

802.11g Modulation

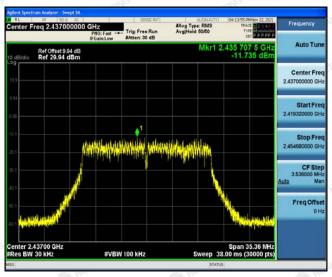
Lowest channel


Report No.: HK2111174433-E

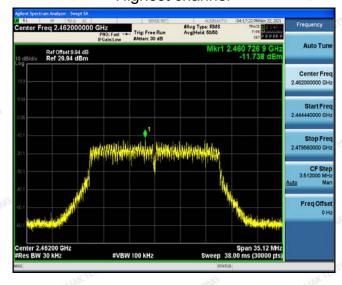
Middle channel

Highest channel



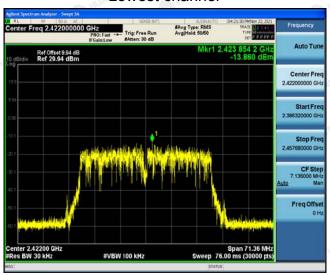

802.11n (HT20) Modulation

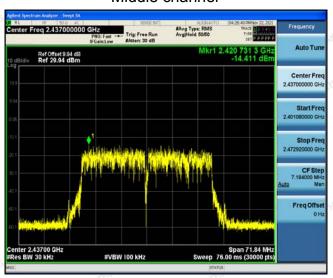
Lowest channel


Report No.: HK2111174433-E

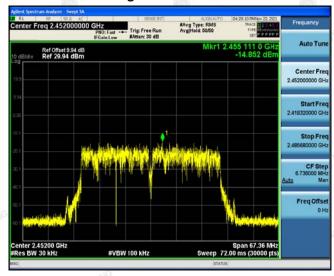
Middle channel

Highest channel




802.11n (HT40) Modulation

Lowest channel


Report No.: HK2111174433-E

Middle channel

Highest channel

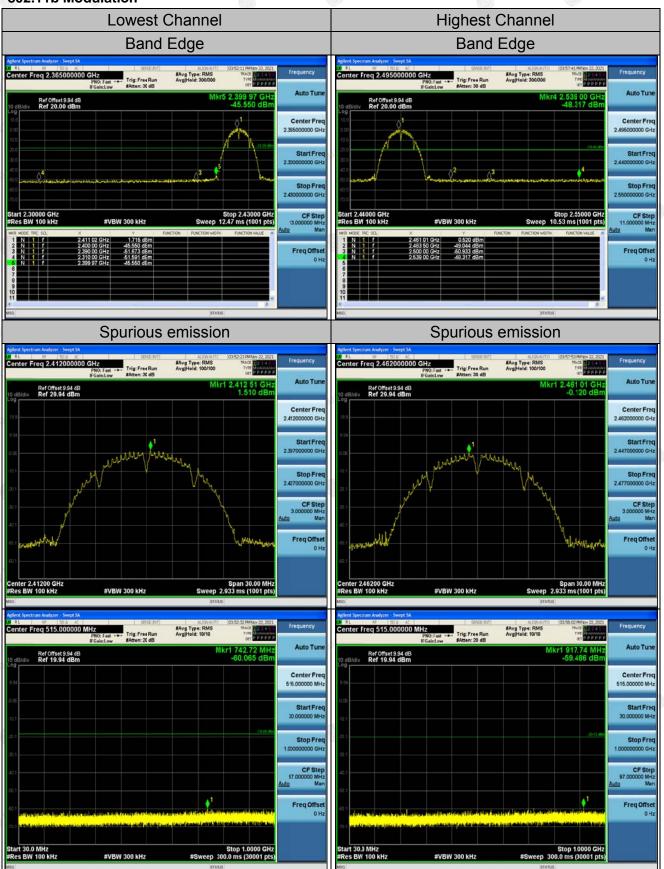
4.6. Conducted Band Edge and Spurious Emission Measurement

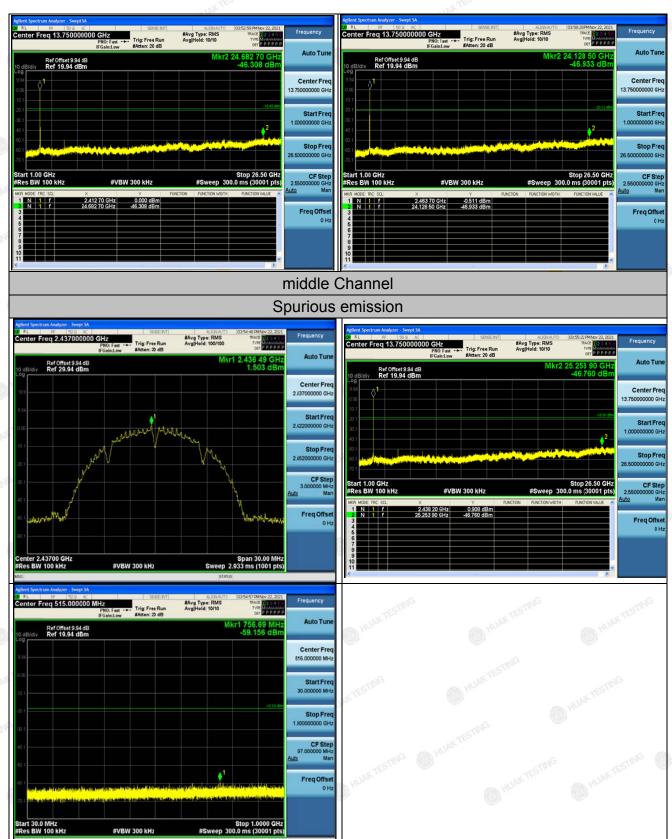
Test Specification

Test Requirement:	FCC Part15 C Section	15.247 (d)	48		
Test Method:	KDB558074	HIAKTESTIN	HUAKTESTIN		
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer	EUT	HANTESTI		
Test Mode:	Transmitting mode with	modulation			
Test Procedure:	was compensated to measurement. 3. Set to the maximum EUT transmit conting. 4. Set RBW = 100 kHz. Unwanted Emission bandwidth outside of shall be attenuated maximum in-band proper limits based of a time interval, the aparagraph shall be 15.247(d). 5. Measure and record. 6. The RF fundamental	nce v05r02. T was connected to the le and attenuator. The potential the results for each power setting and enable uously. VBW=300 kHz, Peak less measured in any 100 of the authorized freque by at least 20 dB relative eak PSD level in 100 k ducted output power protected from the use of RMS averattenuation required une 30 dB instead of 20 dB the results in the test results in the test results in the test results.	e spectrum bath loss ole the Detector. OkHz ency band we to the Hz when rocedure is onducted raging over der this per eport. xcluded		
Test Result:	PASS		STA		

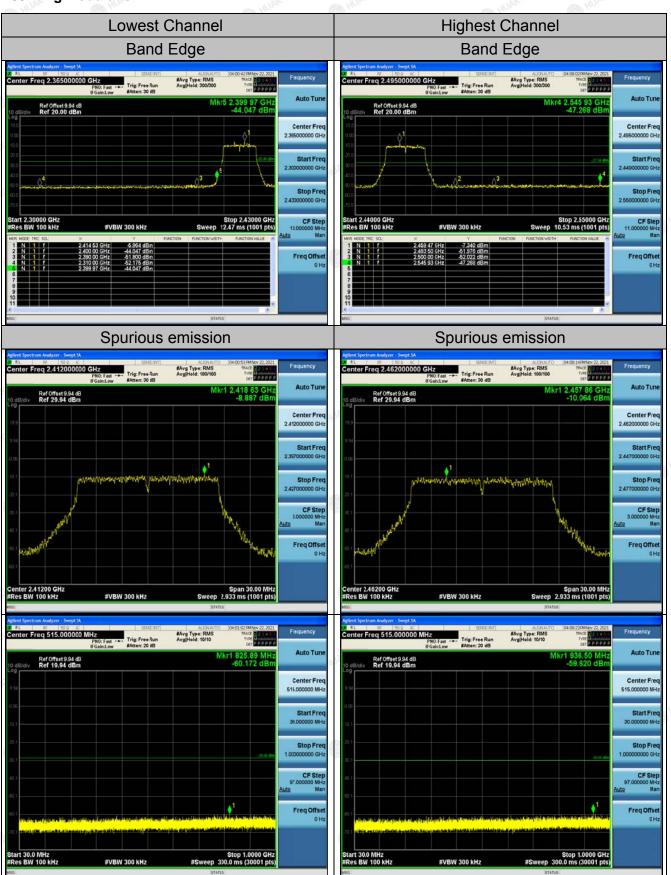
Report No.: HK2111174433-E

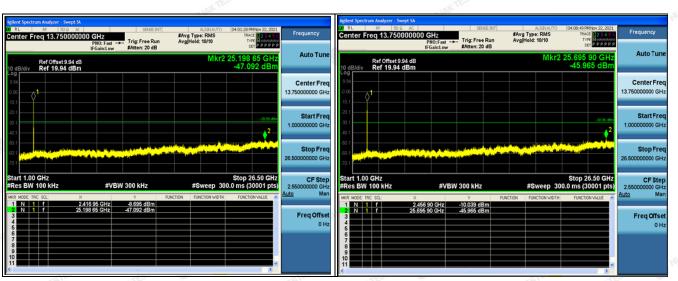
Test Instruments

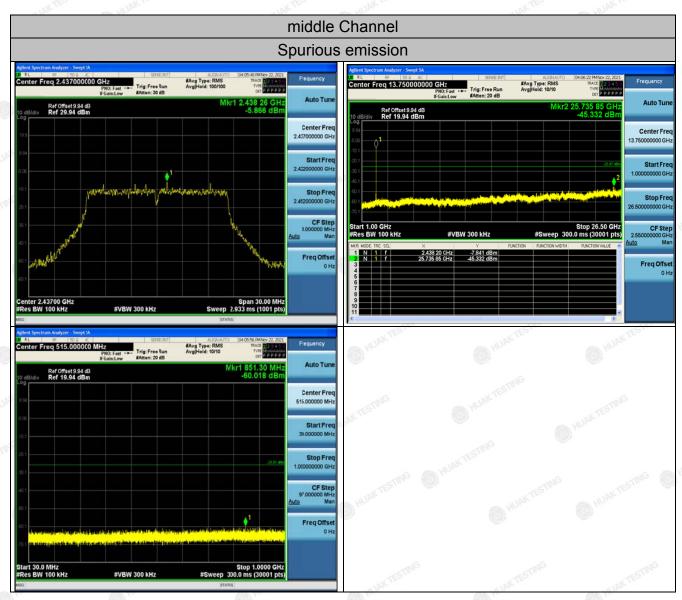

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	Dec. 09, 2021
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

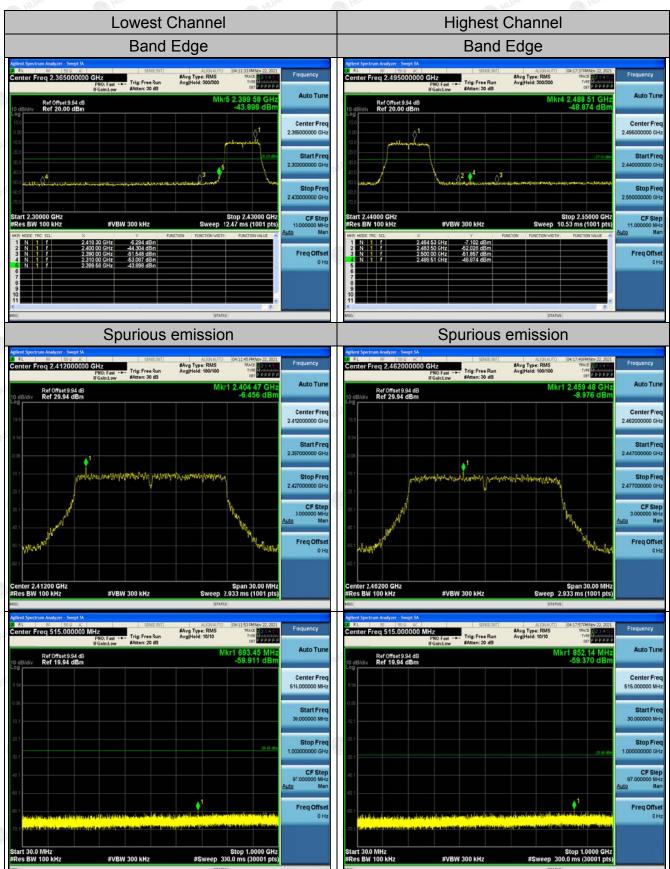

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

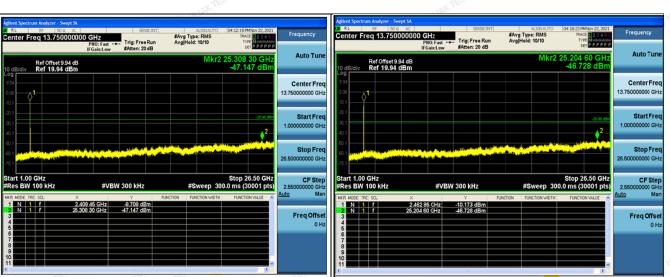
Test Data


802.11b Modulation



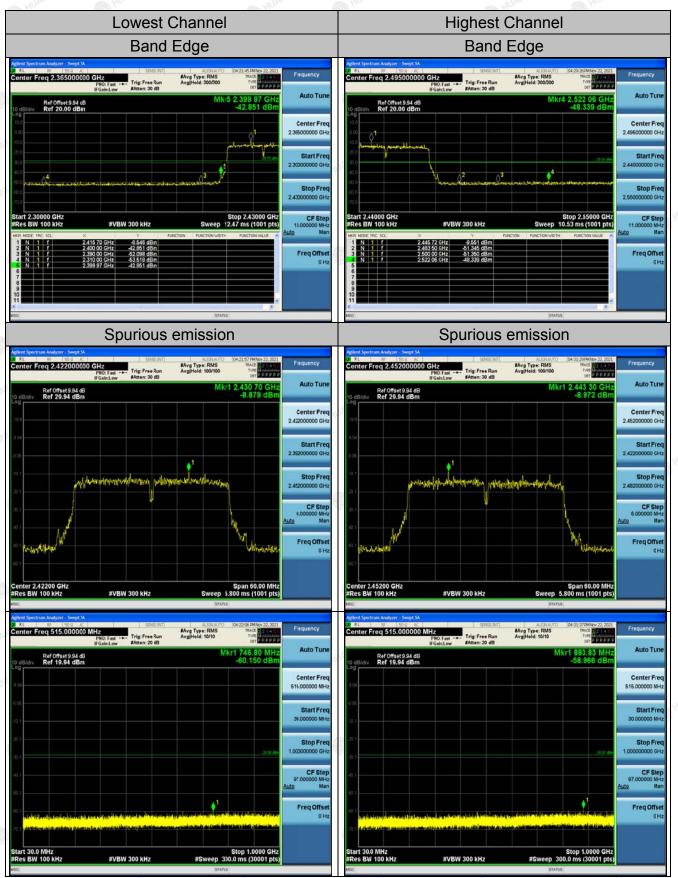


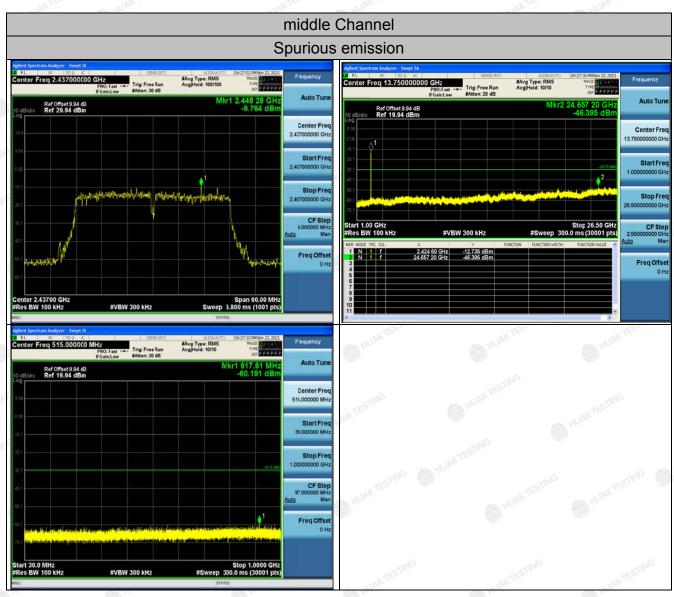

802.11g Modulation


802.11n (HT20) Modulation

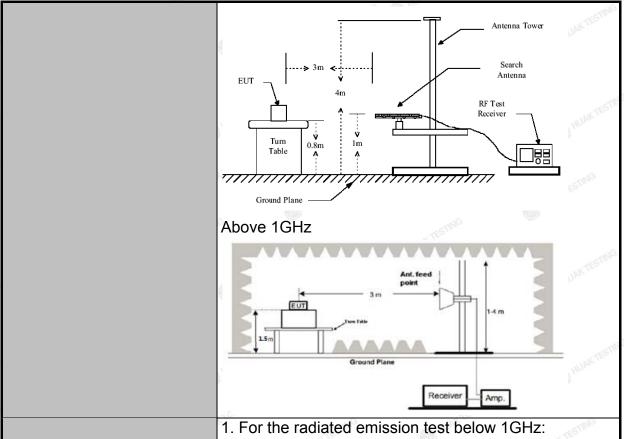
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com





802.11n (HT40) Modulation



4.7. Radiated Spurious Emission Measurement

Test Specification

Frequency Range: 9 kl Measurement Distance: 3 m Antenna Polarization: Hor Operation mode: Tra Receiver Setup: 301 Ab	requency Hz- 150kHz 150kHz- 150kHz- 30MHz MHz-1GHz ove 1GHz Frequer 0.009-0. 0.490-1. 1.705-3	Vertice mode Quasi Quasi Peency 490 705 30 3	cal	RBW 200Hz 9kHz 120KHz 1MHz 1MHz Field Stre (microvolts 2400/F(F)	VBW 1kHz 30kHz 300KHz 3MHz 10Hz ength /meter)	Quas Quas Quas Pe Ave	Remark si-peak Value si-peak Value eak Value erage Value asurement nce (meters)
Measurement Distance: 3 m Antenna Polarization: Hor Operation mode: Tra Receiver Setup: 300 Ab Limit:	requency Hz- 150kHz 150kHz- 150kHz- 30MHz MHz-1GHz ove 1GHz Frequer 0.009-0. 0.490-1. 1.705-3	Vertice mode Dete Quasi Quasi Pe Pe Pe Pe Pe Pe Pe P	ector -peak -peak -peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz Field Stre (microvolts 2400/F(F)	VBW 1kHz 30kHz 300KHz 3MHz 10Hz ength /meter)	Quas Quas Quas Pe Ave	si-peak Value si-peak Value si-peak Value eak Value erage Value asurement
Antenna Polarization: Operation mode: Tra F 9kH 30I Ab Limit:	requency Hz- 150kHz 150kHz- 150kHz- 30MHz MHz-1GHz ove 1GHz Frequer 0.009-0. 0.490-1. 1.705-3	Dete Quasi Quasi Pee Pee Pee Pee Pee Pee Pee Pee Pee Pe	ector -peak -peak -peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz Field Stre (microvolts 2400/F(F)	VBW 1kHz 30kHz 300KHz 3MHz 10Hz ength /meter)	Quas Quas Quas Pe Ave	si-peak Value si-peak Value si-peak Value eak Value erage Value asurement
Operation mode: Receiver Setup: Setup: Tra F 9kH 9kH 1 30I Ab 1 Limit:	nsmitting requency Hz- 150kHz 150kHz- 30MHz MHz-1GHz ove 1GHz Frequer 0.009-0. 0.490-1. 1.705-3	Dete Quasi Quasi Pee Pee Pee Pee Pee Pee Pee Pee Pee Pe	ector -peak -peak -peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz Field Stre (microvolts 2400/F(F)	VBW 1kHz 30kHz 300KHz 3MHz 10Hz ength /meter)	Quas Quas Quas Pe Ave	si-peak Value si-peak Value si-peak Value eak Value erage Value asurement
Receiver Setup: 301 Ab Limit:	requency Hz- 150kHz 150kHz- 30MHz MHz-1GHz ove 1GHz Frequer 0.009-0. 0.490-1. 1.705-3	Dete Quasi Quasi Pee Pee Pee Pee Pee Pee Pee Pee Pee Pe	ector -peak -peak -peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz Field Stre (microvolts 2400/F(F)	VBW 1kHz 30kHz 300KHz 3MHz 10Hz ength /meter)	Quas Quas Quas Pe Ave	si-peak Value si-peak Value si-peak Value eak Value erage Value asurement
Receiver Setup: 301 Ab Limit:	Hz- 150kHz 150kHz- 30MHz MHz-1GHz ove 1GHz Frequer 0.009-0. 0.490-1. 1.705-3	Quasi Quasi Pe Pe ncy 490 705	-peak i-peak i-peak eak	200Hz 9kHz 120KHz 1MHz 1MHz Field Stre (microvolts 2400/F(H	1kHz 30kHz 300KHz 3MHz 10Hz ength /meter)	Quas Quas Quas Pe Ave	si-peak Value si-peak Value si-peak Value eak Value erage Value asurement
Receiver Setup: 301 Ab Limit:	150kHz- 30MHz MHz-1GHz ove 1GHz Frequer 0.009-0. 0.490-1. 1.705-3	Quasi Pee Pee ncy 490 705 30	-peak -peak ak	9kHz 120KHz 1MHz 1MHz Field Stre (microvolts 2400/F(H	30kHz 300KHz 3MHz 10Hz ength /meter)	Quas Quas Pe Ave	si-peak Value si-peak Value eak Value erage Value asurement
Limit:	Frequer 0.009-0 0.490-1. 1.705-3	Pe P	ak	1MHz 1MHz Field Stre (microvolts 2400/F(l	3MHz 10Hz ength /meter)	Ave Mea	eak Value erage Value asurement
Limit:	Frequer 0.009-0. 0.490-1. 1.705-3	Pe ncy 490 705 30	170	1MHz Field Stre (microvolts 2400/F(F)	ength /meter) (Hz)	Ave	erage Value asurement
Limit:	Frequer 0.009-0. 0.490-1. 1.705-3	190 705 30	eak	Field Stre (microvolts 2400/F(F	ength /meter) (Hz)	Mea	asurement
	0.009-0. 0.490-1. 1.705-3 30-88	490 705 30	[6	(microvolts 2400/F(F	/meter) (Hz)		
	0.490-1. 1.705-3 30-88	705 30 3	ig.	0.0000000000000000000000000000000000000			100 (11101010)
	1.705-3 30-88	30 3		24000/F(VU-V	300	
	30-88	}		24000/F(KHz)			30
				30	W.C		30
	88-216			100 150			3
	216-96		ESTING.	200		TING	3
ALLAN.	Above 960			500			3
AUAK					(ii)		
HADAY.	Frequency		Field Strength (microvolts/meter)		Measure Distan (mete	ice	Detector
	A b 4 O L L	TO WUP	500		HUAK TO		Average
	Above 1GH	2	5	000	3		Peak
For	radiated	emiss	sions	below 30	MHz		CING
Test setup:	0.8 m		Turn Table Ground	m l Plane	RX Anto		MIC STR

Test Procedure:

The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on thetop of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a highPASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m

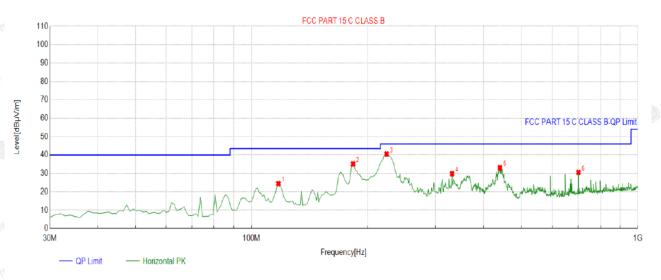
above the ground or reference ground plane.

	 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak;Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement:VBW = 10 Hz, when duty cycle is no less than 98 percent VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimumtransmission duration over which the transmitter is on and is transmitting at its maximumpower control level for the tested mode of operation.
Test results:	PASS

Test Instruments

	Rac	liated Emission	Test Site (96	66)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 09, 2021
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 10, 2020	Dec. 09, 2021
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Dec. 10, 2020	Dec. 09, 2021
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 10, 2020	Dec. 09, 2021
Preamplifier	EMCI	EMC051845S E	HKE-015	Dec. 10, 2020	Dec. 09, 2021
Preamplifier	Agilent	83051A	HKE-016	Dec. 10, 2020	Dec. 09, 2021
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 10, 2020	Dec. 09, 2021
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 10, 2020	Dec. 09, 2021
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 10, 2020	Dec. 09, 2021
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	Dec. 09, 2021
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 10, 2020	Dec. 09, 2021
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Dec. 10, 2020	Dec. 09, 2021
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 10, 2020	Dec. 09, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

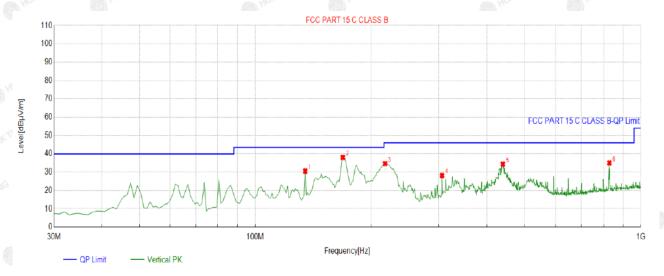


Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal


QP Detector

_	Connected List											
Suspe	cted List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	_			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	117.3874	-16.66	41.11	24.45	43.50	19.05	100	346	Horizontal			
2	183.4134	-16.57	51.73	35.16	43.50	8.34	100	4	Horizontal			
3	224.1942	-14.46	54.96	40.50	46.00	5.50	100	35	Horizontal			
4	331.0010	-11.60	41.50	29.90	46.00	16.10	100	88	Horizontal			
5	440.7207	-9.39	42.47	33.08	46.00	12.92	100	183	Horizontal			
6	701.9119	-5.03	35.64	30.61	46.00	15.39	100	246	Horizontal			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

QP Detector

Ī	Suspe	cted List								
Y	NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
ĺ	1	134.8649	-18.87	49.45	30.58	43.50	12.92	100	290	Vertical
۲	2	168.8488	-17.41	55.44	38.03	43.50	5.47	100	92	Vertical
	3	217.3974	-14.62	49.27	34.65	46.00	11.35	100	137	Vertical
	4	305.7558	-12.66	40.77	28.11	46.00	17.89	100	319	Vertical
	5	439.7498	-9.43	43.80	34.37	46.00	11.63	100	74	Vertical
	6	828.1381	-2.49	37.51	35.02	46.00	10.98	100	306	Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
TESTING KTESTING	WESTING	WTESTIN-
10 10 10 10 10 10 10 10 10 10 10 10 10 1	- HOW	HOW HOW
	W TESTING	VIESTING

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Above 1GHz

Report No.: HK2111174433-E

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.16	-3.64	53.52	74	-20.48	peak
4824	43.25	-3.64	39.61	54	-14.39	AVG
7236	55.53	-0.95	54.58	74	-19.42	peak
7236	42.85	-0.95	41.9	54	-12.1	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.44	-3.64	55.8	74	-18.2	peak
4824	46.45	-3.64	42.81	54	-11.19	AVG
7236	56.71	-0.95	55.76	74	-18.24	peak
7236	42.61	-0.95	41.66	54	-12.34	AVG

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.81	-3.51	56.3	74	-17.7	peak
4874	44.06	-3.51	40.55	54	-13.45	AVG
7311	56.58	-0.82	55.76	74	-18.24	peak
7311	40.04	-0.82	39.22	54	-14.78	AVG
emark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier.	20 0 K	ESTING	V TEST

Vertical:

ŒS	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
NG	4874	58.14	-3.51	54.63	74	-19.37	peak
	4874	43.87	-3.51	40.36	54	-13.64	AVG
	7311	57.7	-0.82	56.88	74	-17.12	peak
	7311	40.52	-0.82	39.7	54	-14.3	AVG
Re	mark: Factor	= Antenna Factor	+ Cable Loss -	Pre-amplifier		LAK TESTA	THAN TE

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	58.44	-3.43	55.01	74	-18.99	peak
· 4924	45.44	-3.43	42.01	54	-11.99	AVG
7386	56.57	-0.75	55.82	74	-18.18	peak
7386	42.51	-0.75	41.76	54	-12.24	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.77	-3.43	54.34	74	-19.66	peak
4924	44.09	-3.43	40.66	54	-13.34	AVG
7386	55.16	-0.75	54.41	74	-19.59	peak
7386	40.08	-0.75	39.33	54	-14.67	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4824	56.26	-3.64	52.62	74	-21.38	peak
4824	44.3	-3.64	40.66	54 HUAN	-13.34	AVG
7236	54.28	-0.95	53.33	74	-20.67	peak
7236	42.71	-0.95	41.76	54	-12.24	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss -	Pre-amplifier	9	N TESTING	LAKTESTA

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4824	58.40	-3.64	54.76	74	-19.24	peak
4824	45.04	-3.64	41.4	54	-12.6	AVG
7236	55.13	-0.95	54.18	74	-19.82	peak
7236	40.98	-0.95	40.03	54	-13.97 [°]	AVG

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	58.69	-3.51	55.18	74	-18.82	peak
4874	46.05	-3.51	42.54	54	-11.46	AVG
7311	56.24	-0.82	55.42	74	-18.58	peak
7311	42.64	-0.82	41.82	54	-12.18	AVG
Remark: Factor	= Antenna Factor	Cable Loss –	Pre-amplifier.		X TESTING	LAKTESTINE

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
58.09	-3.51	54.58	74	-19.42	peak
45.41	-3.51	41.9	54	-12.1	AVG
55.96	-0.82	55.14	74 TIME	-18.86	peak
40.4	-0.82	39.58	54	-14.42	AVG
	(dBµV) 58.09 45.41 55.96	(dBµV) (dB) 58.09 -3.51 45.41 -3.51 55.96 -0.82	(dBμV) (dB) (dBμV/m) 58.09 -3.51 54.58 45.41 -3.51 41.9 55.96 -0.82 55.14	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.09 -3.51 54.58 74 45.41 -3.51 41.9 54 55.96 -0.82 55.14 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.09 -3.51 54.58 74 -19.42 45.41 -3.51 41.9 54 -12.1 55.96 -0.82 55.14 74 -18.86

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.