

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202403-0407-3

Page: 1 of 89

RF Test Report

FCC ID: 2AW68-NP3081GA-V2

Report No. TBR-C-202403-0407-3

Applicant Shenzhen SDMC Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name AX3000 Dual Band Wi-Fi GPON Terminal

Model No. NP3081GA-V2

Series Model No.

Brand Name SDMC

HC-C-202403-0407-03-01&HC-C-202403-0407-03-02 Sample ID

Receipt Date 2024-05-28

2024-05-29 to 2024-08-13 **Test Date**

Issue Date 2024-08-13

FCC Part 15 Subpart C 15.247 **Standards**

ANSI C63.10: 2013 **Test Method**

KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions

In the configuration tested, the EUT complied with the standards specified above.

Test By

Reviewed By

Approved By

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT AND TEST SITE	
5.	CONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	12
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Mode	17
	6.6 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	20

Report No.: TBR-C-202403-0407-3 Page: 3 of 89

	7.6 Test Data	20
8.	BANDWIDTH TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	21
	8.4 Deviation From Test Standard	22
	8.5 EUT Operating Mode	22
	8.6 Test Data	22
9.	RF OUTPUT POWER	23
	9.1 Test Standard and Limit	23
	9.2 Test Setup	23
	9.3 Test Procedure	23
	9.4 Deviation From Test Standard	23
	9.5 EUT Operating Mode	23
	9.6 Test Data	23
10.	POWER SPECTRAL DENSITY	24
	10.1 Test Standard and Limit	24
	10.2 Test Setup	24
	10.3 Test Procedure	24
	10.4 Deviation From Test Standard	24
	10.5 Antenna Connected Construction	24
	10.6 Test Data	24
11.	ANTENNA REQUIREMENT	25
	11.1 Test Standard and Limit	25
	11.2 Deviation From Test Standard	25
	11.3 Antenna Connected Construction	25
	11.4 Test Data	25
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	26
	ACHMENT BUNWANTED EMISSIONS DATA	
	ACHMENT C DESTRICTED BANDS DECLIDEMENT TEST DATA	66

Report No.: TBR-C-202403-0407-3 Page: 4 of 89

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202403-0407-3	Rev.01	Initial issue of report	2024-08-13
CODE OF		mn33	W 1100
TO THE REAL PROPERTY.	1	miles miles	TO THE
			0000
TO THE REAL PROPERTY.	COLUMN TO SERVICE STATE OF THE PERSON AND ADDRESS OF THE PERSON AND AD		MODE
TODA O	1000		MODE
1000			
0000	7:33		CODE
1000	3		1000
THE PARTY OF THE P	41000		

Page: 5 of 89

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen SDMC Technology Co., Ltd.		Shenzhen SDMC Technology Co., Ltd.
Address Room 1022, Floor 10, Building A, Customs Building, No. 2 3rd Road, Dalang Community, Xin'an Street, Bao'an District Shenzhen, China		
Manufacturer : Shenzh		Shenzhen SDMC Technology Co., Ltd.
Address		Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	AX3000 Dual Band Wi	-Fi GPON Terminal		
HVIN/Models No.):	NP3081GA-V2	NP3081GA-V2		
Model Different	ė	N/A			
1000		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
	Ü	Number of Channel:	802.11b/g/n(HT20): 11 channels 802.11n(HT40): 7 channels		
Product		Antenna Gain:	4.82dBi PCB Antenna 1 4.12dBi PCB Antenna 2		
Description		Modulation Type:	802.11b: DSSS (DQPSK, DBPSK, CCK) 802.11g: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)		
Power Rating	E	AC Adapter (Model: SA			
		Input: 100-240V~, 50/60Hz, 0.4A Output: 12.0V=1.5A			
Software Version	5	S04.2C.05.001			
Hardware Version	:	V2.0			

Remark:

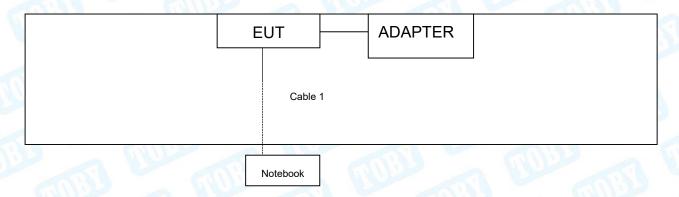
(3) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

⁽¹⁾The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

⁽²⁾The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Page: 6 of 89

(4)Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 20MHz Bandwidth CH 03~CH 09 for 40MHz Bandwidth

(5) Antenna Information:

Band	Antenna (Gain(dBi)
Dallu	Antenna 1	Antenna 2
2.4G	4.82	4.12

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information								
Name Model FCC ID/VOC Manufacturer Used "√"								
Notebook	Inspiron 5493	W. (1)	DELL	1				
	Cable Information							
Number	Number Shielded Type Ferrite Core Length Note							
33	70032	110		377				

Page: 7 of 89

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test				
Final Test Mode	Final Test Mode Description			
Mode 1	TX b Mode Channel 01			
	For Radiated and RF Conducted Test			
Final Test Mode	Description			
Mode 2	TX Mode b Mode Channel 01/06/11			
Mode 3	TX Mode g Mode Channel 01/06/11			
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11	-		
Mode 5	TX Mode n(HT40) Mode Channel 03/06/09			
Mode 6	TX Mode ax(HE20) Mode Channel 01/06/11			
Mode 7	TX Mode ax(HE40) Mode Channel 03/06/09			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Mode	Data Rate
B Mode-SISO	1Mbps
G Mode-SISO	6Mbps
G Mode-CDD	6Mbps
N(HT20) Mode-CDD	MCS0
N(HT40) Mode-CDD	MCS0
AX(HE20) Mode-CDD	MCS0
AX(HE40) Mode-CDD	MCS0

(2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

(3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 89

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Te	st Software:	QATool_E	bg.exe			
Test	Mode: Conti	nuously tr	ansmittir	ng		
(11)		Parame		eters	eters	
Mode	Channel	SIS	SISO		CDD	
		Ant.1	Ant.2	Ant.1	Ant.2	
	01	7	7			
802.11b	06	7	7	EH.		
	11	7	7			
	01	15	15	1	4	
802.11g	06	15	15	14		
	11	15	15	14		
	01			14		
802.11n(HT20)	06			14		
3	11	MINDE		14		
	03	1		13		
802.11n(HT40)	06	1		13		
The same of the sa	09	MINE		13		
	01			14		
802.11ax(HE20)	06		1000	14		
	11	10051		14		
	03	1		13		
802.11ax(HE40)	06	1		13		
	09			1	3	

Page: 9 of 89

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2_{\tau}$ providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted		±0.95 dB
Power Spectral Density- Conducted	1	±3dB
Occupied Bandwidth	1	±3.8%
Unwanted Emission- Conducted	1000	±2.72 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202403-0407-3 Page: 10 of 89

2. Test Summary

Standard Section	Test Item	Test Sample(s)	Judgment
FCC 15.207(a)	Conducted Emission	HC-C-202403-0407-03-02	PASS
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	HC-C-202403-0407-03-02	PASS
FCC 15.203	Antenna Requirement	HC-C-202403-0407-03-01	PASS
FCC 15.247(a)(2)	6dB Bandwidth	HC-C-202403-0407-03-01	PASS
FCC 15.247(b)(3)	RF Output Power	HC-C-202403-0407-03-01	PASS
FCC 15.247(e)	Power Spectral Density	HC-C-202403-0407-03-01	PASS
FCC 15.247(d)	Band Edge Measurements	HC-C-202403-0407-03-01	PASS
FCC 15.207(a)	Conducted Unwanted Emissions	HC-C-202403-0407-03-01	PASS
FCC 15.247(d) FCC 15.205	Emissions in Restricted Bands	HC-C-202403-0407-03-02	PASS
	On Time and Duty Cycle	HC-C-202403-0407-03-01	1

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Test System	JS1120-3	Tonscend	V3.2.22

Report No.: TBR-C-202403-0407-3 Page: 11 of 89

4. Test Equipment and Test Site

	Test Site			
No.	Test Site	Manufactu rer	Specification	Used
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	√
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	√
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	\

Conducted Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 17, 2024	Jun. 16, 2025
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 17, 2024	Jun. 16, 2025
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 17, 2024	Jun. 16, 2025
LISN	Rohde & Schwarz	ENV216	101131	Jun. 17, 2024	Jun. 16, 2025
Radiation Emission	Test(B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2024	Feb.22, 2025
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Jun. 14, 2024	Jun. 13, 2026
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb.26, 2026
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 14, 2024	Jun. 13, 2026
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2024	Feb.22, 2025
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G	-0	N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Condu	icted Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 30, 2023	Aug. 29, 2024
1:19	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 30, 2023	Aug. 29, 2024
DE Davier Course	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 30, 2023	Aug. 29, 2024
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 30, 2023	Aug. 29, 2024
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

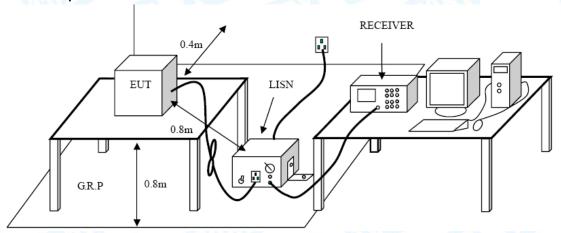
Page: 12 of 89

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Fraguenay	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from

Page: 13 of 89

0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 14 of 89

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

Gener	General field strength limits at frequencies Below 30MHz			
Frequency	Frequency Field Strength Measurement Distance			
(MHz)	(microvolt/meter)**	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

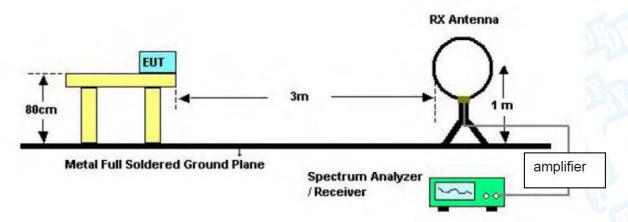
General field strength limits at frequencies above 30 MHz			
Frequency	Field strength Measurement Distance		
(MHz)	(µV/m at 3 m)	(meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

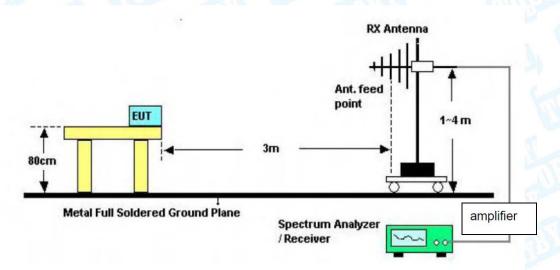
General field strength limits at frequencies Above 1000MHz			
Distance of 3m (dBuV/m)			
Peak Avera			
74	54		
	Distance of 3		

Note:

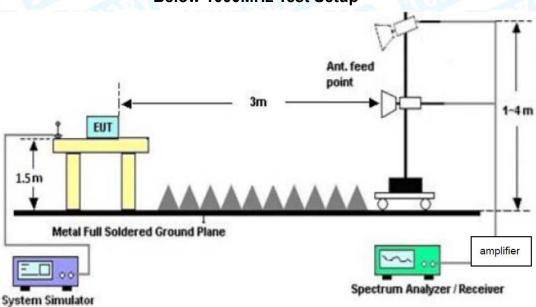
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



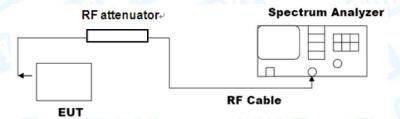

Page: 15 of 89

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup


Above 1GHz Test Setup

Page: 16 of 89

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 17 of 89

--- Conducted measurement

■ Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.

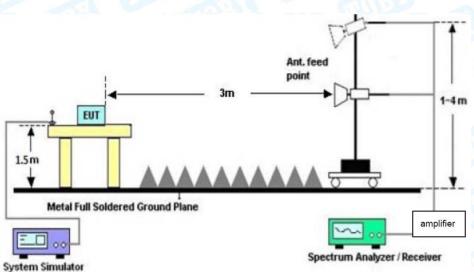
Page: 18 of 89

7. Restricted Bands Requirement

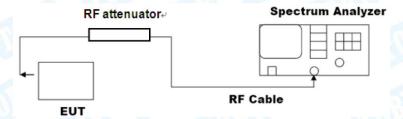
7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency		nce Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)		
2310 ~2390	74	54		
2483.5 ~2500	74	54		
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)		
2310 ~2390	-21.20	-41.20		
2483.5 ~2500	-21.20	-41.20		


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

TOBY
Part of the Categor Group

Page: 19 of 89

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to
- determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

Page: 20 of 89

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

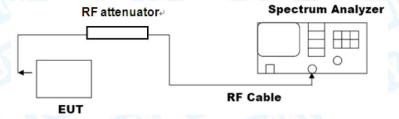
7.6 Test Data

Radiated measurement please refer to the Attachment C inside test report.

Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.

Page: 21 of 89

8. Bandwidth Test


- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard

FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth	>=500 KHz	2400~2483.5
(DTS bandwidth)	>=300 KHZ	2400~2465.5

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- ●The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the

Page: 22 of 89

OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
- 8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

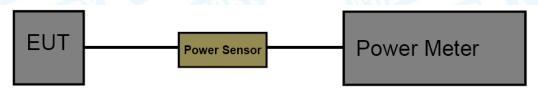
Please refer to the description of test mode.

8.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.

Page: 23 of 89

9. RF Output Power


- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
RF Output Power	not exceed 1 W or 30dBm	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.
- 9.4 Deviation From Test Standard
 No deviation
- 9.5 EUT Operating Mode

 Please refer to the description of test mode.
- 9.6 Test Data

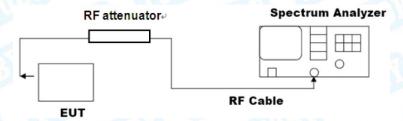
Please refer to the external appendix report of 2.4G Wi-Fi.

Page: 24 of 89

10. Power Spectral Density

10.1 Test Standard and Limit

10.1.1 Test Standard


RSS 247 5.2(b)

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- ●The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.

Page: 25 of 89

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

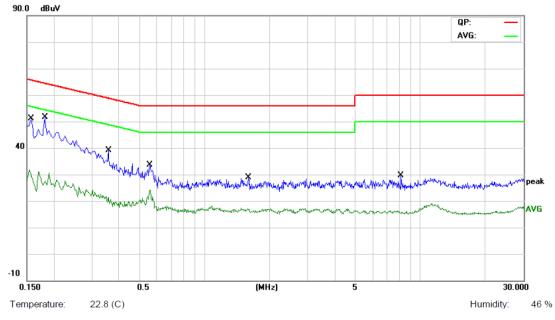
11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is Ant.1: 4.82dBi; Ant.2: 4.12dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

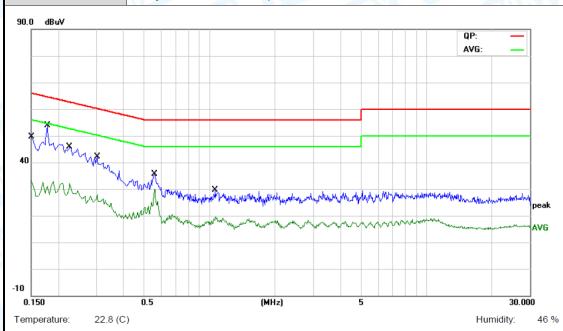

Antenna Type	
☐Permanent attached antenna	
⊠Unique connector antenna	mnBY
☐Professional installation antenna	0



Page: 26 of 89

Attachment A-- Conducted Emission Test Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBu∀	dBu∨	dB	Detector
1		0.1580	31.60	9.86	41.46	65.56	-24.10	QP
2		0.1580	14.51	9.86	24.37	55.56	-31.19	AVG
3		0.1819	31.26	9.78	41.04	64.39	-23.35	QP
4		0.1819	14.23	9.78	24.01	54.39	-30.38	AVG
5		0.3580	19.95	9.91	29.86	58.77	-28.91	QP
6		0.3580	9.43	9.91	19.34	48.77	-29.43	AVG
7		0.5580	19.34	10.07	29.41	56.00	-26.59	QP
8	*	0.5580	14.11	10.07	24.18	46.00	-21.82	AVG
9		1.5980	10.90	9.93	20.83	56.00	-35.17	QP
10		1.5980	5.97	9.93	15.90	46.00	-30.10	AVG
11		8.1260	9.71	9.84	19.55	60.00	-40.45	QP
12		8.1260	4.91	9.84	14.75	50.00	-35.25	AVG


- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 27 of 89

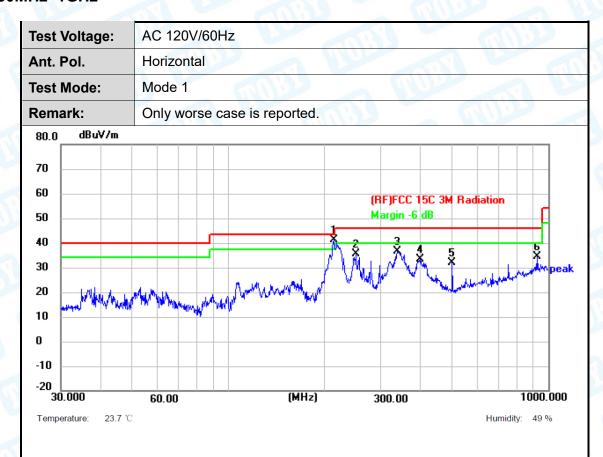
Test Voltage:	AC 120V/60Hz
Terminal:	Neutral
Test Mode:	Mode 1
Remark:	Only worse case is reported.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector
1		0.1500	37.17	9.86	47.03	65.99	-18.96	QP
2		0.1500	20.88	9.86	30.74	55.99	-25.25	AVG
3		0.1780	31.12	9.81	40.93	64.57	-23.64	QP
4	,	0.1780	15.66	9.81	25.47	54.57	-29.10	AVG
5		0.2260	32.69	9.85	42.54	62.59	-20.05	QP
6		0.2260	20.01	9.85	29.86	52.59	-22.73	AVG
7		0.3020	26.64	10.07	36.71	60.19	-23.48	QP
8		0.3020	15.08	10.07	25.15	50.19	-25.04	AVG
9		0.5580	22.97	9.73	32.70	56.00	-23.30	QP
10	*	0.5580	18.99	9.73	28.72	46.00	-17.28	AVG
11		1.0620	12.27	9.88	22.15	56.00	-33.85	QP
12		1.0620	6.84	9.88	16.72	46.00	-29.28	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 28 of 89

Attachment B--Unwanted Emissions Data


--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	214.5143	65.89	-24.60	41.29	43.50	-2.21	peak	Р
2	250.3012	59.67	-24.11	35.56	46.00	-10.44	peak	Р
3	338.4001	57.02	-20.46	36.56	46.00	-9.44	peak	Р
4	399.0302	53.16	-19.91	33.25	46.00	-12.75	peak	Р
5	501.1790	48.91	-16.93	31.98	46.00	-14.02	peak	Р
6	925.7563	41.91	-7.36	34.55	46.00	-11.45	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 29 of 89

	Itage:	70	120V/	OUHZ		Allin				
Ant. Po	ı.	Vert	ical							Mark
Test Mo	ode:	Mod	le 1	MA	U. San				3	
Remark	(:	Only	/ wors	se cas	se is reporte	ed.		The same		21
80.0	dBuV/m									7
70 _										_
60							(RF)FCC 15C	3M Badial	ion	-
50 _							Margin -6 dB	Sir Hadia		₫
40		2		_	3	5 6				4
30	LPANANA.	rw ^X .			*		L. Charles		I salvanana	∞peak
20	Mary Mary Mary	- " '	MANA	paylod	. Million	May Wall	ford Marie Market	TERRITORIAN AND AND AND AND AND AND AND AND AND A	de partir	-
10 —										
										-
0										
0 -10										
	00	60.	00		(M	Hz)	300.00		1000).000
-10 -20		60.	00		(М	Hz)	300.00	ŀ	1000 Humidity: 49	
-10 -20 30.00 Temperat	ture: 23.7 °C	ncy	Rea	ding	Factor	Level	Limit	Margin	Humidity: 49	%
-10 -20 30.0	Freque (MHz	ncy 2)	Rea (dB	uV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Humidity: 49	% P/F
-10 -20 30.00 Temperat	Freque (MHz	ncy 2) 71	Rea (dB	uV) .69	Factor (dB/m) -23.46	Level (dBuV/m) 30.23	Limit (dBuV/m) 40.00	Margin (dB)	Humidity: 49	% P/F P
-10 -20 30.00 Temperat	Freque (MHz	ncy 2) 71 85	Rea (dB	uV) .69 .00	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Humidity: 49	% P/F

Remark:

5

6

162.6106

211.5265

245.0900

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

52.87

57.80

58.24

-21.98

-24.29

-23.97

30.89

33.51

34.27

43.50

43.50

46.00

-12.61

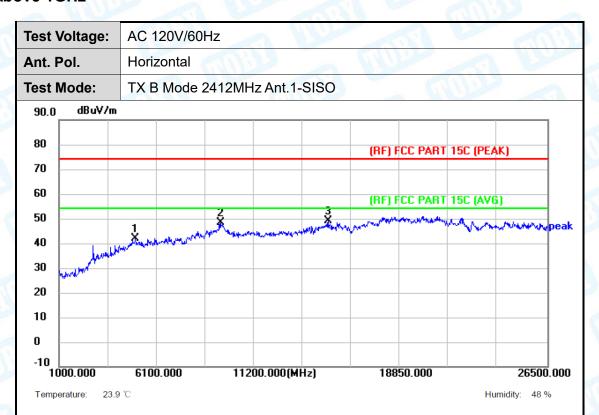
-9.99

-11.73

peak

peak

peak


3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 30 of 89

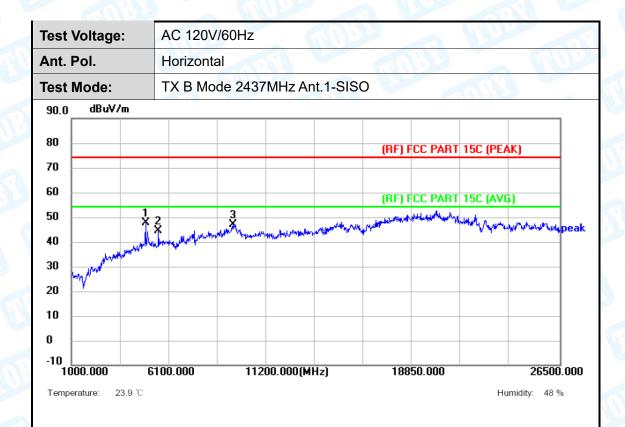
Above 1GHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5003.500	47.04	-5.10	41.94	74.00	-32.06	peak	Р
2	9440.500	42.12	6.16	48.28	74.00	-25.72	peak	Р
3 *	15050.500	39.33	9.65	48.98	74.00	-25.02	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Page: 31 of 89

est Vo	Itage:	AC 120V/	60Hz					
nt. Po	l.	Vertical			Cali	187		CILL
est Mo	ode:	TX B Mod	de 2412	MHz Ant.1-	SISO			
90.0	dBuV/m							
80					(RF)	FCC PART	15C (PE)	SK)
70					()	CCTAIN	130 (127	ik)
60	1				(RF)	FCC PART	15C (AVI	3)
50	1		ж	i i i	de alente de la constitución de la	Markey Land Application	Walle Commence	₩ ^ϻ ₩₩₩₩
40 30	Marca Marca Marca	and representatives of the second	ng Park Shanday Alband	the said of the sa			7 ***	
20	***							
10								
o								
-10 L	.000	6100.000	1120	00.000(MHz)	186	350.000		26500.00
Temperatu	ure: 23.9 ℃						Н	ımidity: 48 %


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4825.000	62.13	-5.60	56.53	74.00	-17.47	peak	Р
2 *	4825.000	57.94	-5.60	52.34	54.00	-1.66	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 32 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1 *	4876.000	52.61	-5.10	47.51	74.00	-26.49	peak	Р
2	5539.000	50.07	-5.51	44.56	74.00	-29.44	peak	Р
3	9440.500	40.68	6.16	46.84	74.00	-27.16	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 33 of 89

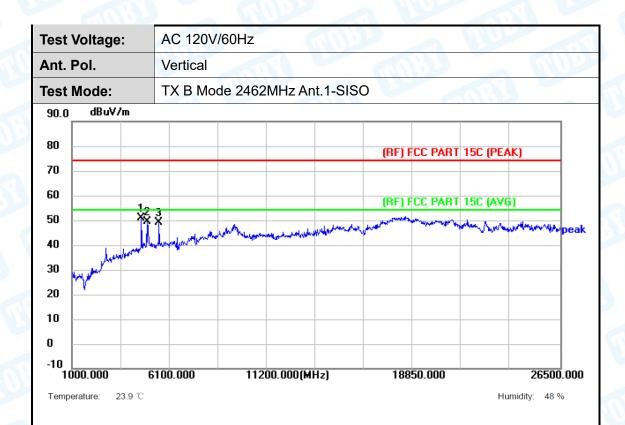
Test	Voltage:		AC 120\	//60Hz							
Ant.	Pol.		Vertical		51	6	SIL	CEST		(a)	777
Test	Mode:		TX B Mo	de 2437	MHz Ar	nt.1-SISC					
90.0	dBuV/n	n									,
80							(RF) I	CC PART	15C (PEA	ıK)	
70											-
60		2 19					(RF) I	CC PART	15C (AV	i)	
50 40	dom		Lusay and Carlo	Japan Mangarata	الاستان والمستان والم	رياميد اداد مياسوسان	and the same		nand franch	and the state of the state of	peak
30 20	WW.										
10											
0											
-10 10	000.000	61	00.000	1120	00.000(M	Hz)	188	50.000		26500).000
Tempe	erature: 23	.9 ℃							Hu	midity: 48 9	%

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4621.000	59.14	-7.18	51.96	74.00	-22.04	peak	Р
2	4876.000	62.34	-5.10	57.24	74.00	-16.76	peak	Р
3 *	4876.000	57.79	-5.10	52.69	54.00	-1.31	AVG	Р
4	5539.000	54.30	-5.51	48.79	74.00	-25.21	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

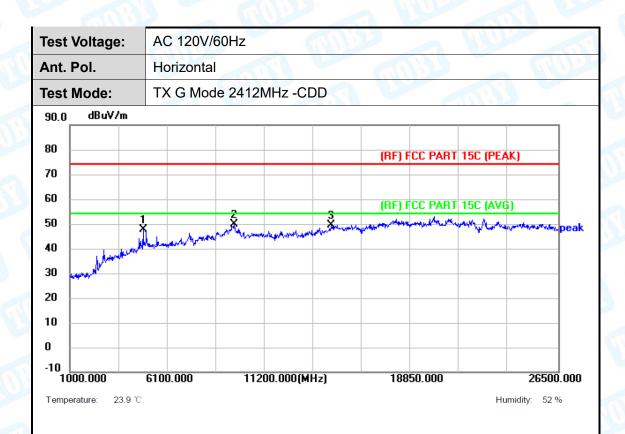
Page: 34 of 89

Ant. Pol.	Horizonto			AC 120V/60Hz							
	HUHZUHIA	Horizontal									
Test Mode:	TX B Mod	de 2462MHz Ant.1-S	SISO								
90.0 dBuV/m											
80			(RF) FCC PART	15C (PEAK)							
70 60			(RF) FCC PART	15C (AVG)							
50	n all and described and	with him which was	rection and the state of the state of	White has been been been been been been been bee							
A CONTRACTOR OF THE PARTY OF TH											
20											
0											
-10 1000.000	6100.000	11200.000(MHz)	18850.000	26500.000							


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5258.500	45.90	-5.19	40.71	74.00	-33.29	peak	Р
2 *	9491.500	41.31	6.44	47.75	74.00	-26.25	peak	Р
3	13265.500	38.45	6.72	45.17	74.00	-28.83	peak	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 35 of 89


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	58.17	-7.18	50.99	74.00	-23.01	peak	Р
2	4927.000	54.50	-5.09	49.41	74.00	-24.59	peak	Р
3	5539.000	54.60	-5.51	49.09	74.00	-24.91	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 36 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4825.000	53.30	-5.60	47.70	74.00	-26.30	peak	Р
2 *	9568.000	43.48	6.21	49.69	74.00	-24.31	peak	Р
3	14668.000	40.46	9.04	49.50	74.00	-24.50	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

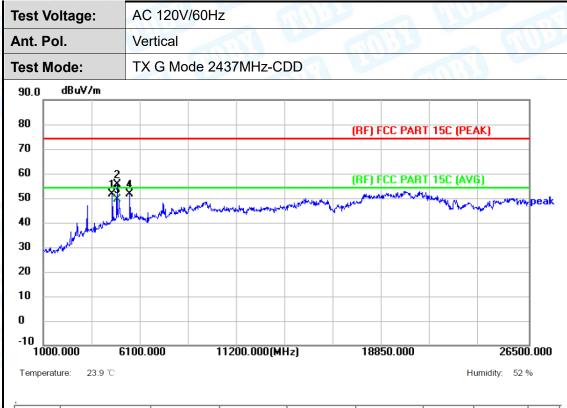
Page: 37 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	58.12	-7.18	50.94	74.00	-23.06	peak	Р
2	4825.000	54.85	-5.60	49.25	74.00	-24.75	peak	Р
3	5003.500	52.64	-5.10	47.54	74.00	-26.46	peak	Р
4	5539.000	54.58	-5.51	49.07	74.00	-24.93	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 38 of 89

Test \	Voltage:	AC 120	V/60Hz								
Ant. F	Pol.	Horizor	Horizontal								
Test I	Mode:	TXGN	lode 2437MHz-Cl	DD	1						
90.0	dBuV/m										
80					(BE)	FCC PART	15C (PEA	K)			
70					()	COTAIN	100 (1 27	,			
60					(BF)	FCC PART	15C (AVG	n			
50		Į.	Law John Hally and James Law John Co.	3 Juny Maryan	A CONTRACTOR OF THE PARTY OF TH	March and all	Andrew Company	w///www.www.pea			
40	المهلعقية و	1 X X L L L L L L L L L L L L L L L L L	PANTA address my hardware.								
30	- Janes Market Market										
20											
10											
0											
-10 10	00.000	6100.000	11200.000(M	Hz)	188	50.000		26500.00			
Tempe	erature: 23.9	°C					Hu	midity: 52 %			


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4876.000	50.79	-5.10	45.69	74.00	-28.31	peak	Р
2	9593.500	43.21	6.29	49.50	74.00	-24.50	peak	Р
3 *	14923.000	39.54	10.02	49.56	74.00	-24.44	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 39 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4621.000	58.89	-7.18	51.71	74.00	-22.29	peak	Р
2	4876.000	60.76	-5.10	55.66	74.00	-18.34	peak	Р
3 *	4876.000	54.67	-5.10	49.57	54.00	-4.43	AVG	Р
4	5539.000	57.10	-5.51	51.59	74.00	-22.41	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 40 of 89

Test	Voltage	:	AC 120V	/60Hz	- 5		3		ARA		
Ant.	Pol.		Horizonta	al						(III)	Mile.
Test	Mode:		TX G Mo	de 2462	MHz −C	DD	62		MIN		
90.0	dBuV/i	m									7
80							(RF) F	CC PART	15C (PE/	4K)	_
70											-
60								CC PART	15C (AVI	5)	-
50		¥		- A	thoughth property the	A CONTRACTOR OF THE PARTY OF TH				ay Billy Just of Ly	-peak
40	Mark	A. Markette	- Harting on the Control	The second	MAN LAND LAND						-
30	THE STATE OF THE S										-
20											-
10											-
0											-
-10 10	000.000	 6	100.000	112	00.000(MF	Hzì	188	50.000		26500	_ N.000
		3.9 ℃	100.222	•	, o. o. o. c.	,	•	00.555	Нι	umidity: 52 9	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4927.000	53.66	-5.09	48.57	74.00	-25.43	peak	Р
2 *	9517.000	43.82	6.35	50.17	74.00	-23.83	peak	Р
3	14795.500	39.92	9.94	49.86	74.00	-24.14	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 41 of 89

Test Voltage: AC 120V/60Hz Ant. Pol. Vertical **Test Mode:** TX G Mode 2462MHz -CDD dBuV/m 90.0 (RF) FCC PART 15C (PEAK) 70 60 (RF) FCC PART 15C (AVG) 50 40 30 20 10 0 1000.000 6100.000 11200.000(MHz) 18850.000 26500.000 Temperature: 23.9 ℃ Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4927.000	60.10	-5.09	55.01	74.00	-18.99	peak	Р
2 *	4927.000	54.96	-5.09	49.87	54.00	-4.13	AVG	Р
3	5539.000	56.49	-5.51	50.98	74.00	-23.02	peak	Р

50.10

74.00

-23.90

peak

Remark:

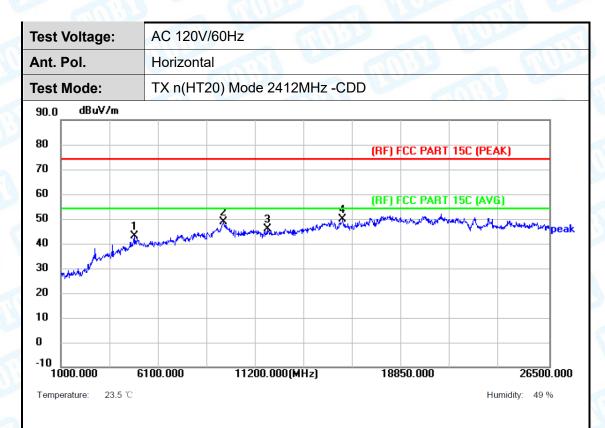
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

7375.000

- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

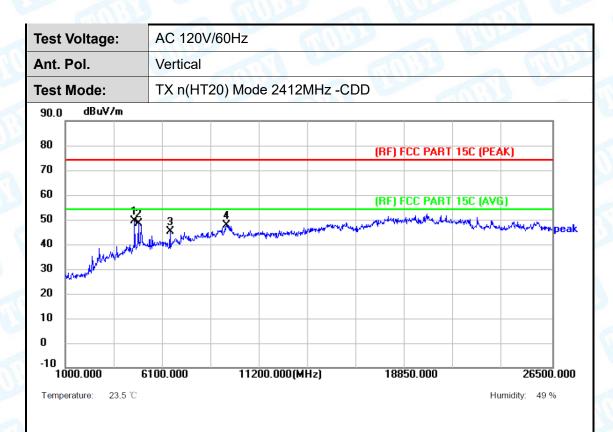
52.46

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


-2.36

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 42 of 89


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4825.000	48.70	-5.60	43.10	74.00	-30.90	peak	Р
2	9491.500	42.43	6.44	48.87	74.00	-25.13	peak	Р
3	11786.500	39.66	6.14	45.80	74.00	-28.20	peak	Р
4 *	15713.500	39.09	10.61	49.70	74.00	-24.30	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 43 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	56.56	-7.18	49.38	74.00	-24.62	peak	Р
2	4825.000	54.11	-5.60	48.51	74.00	-25.49	peak	Р
3	6482.500	48.95	-3.79	45.16	74.00	-28.84	peak	Р
4	9440.500	41.38	6.16	47.54	74.00	-26.46	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 44 of 89

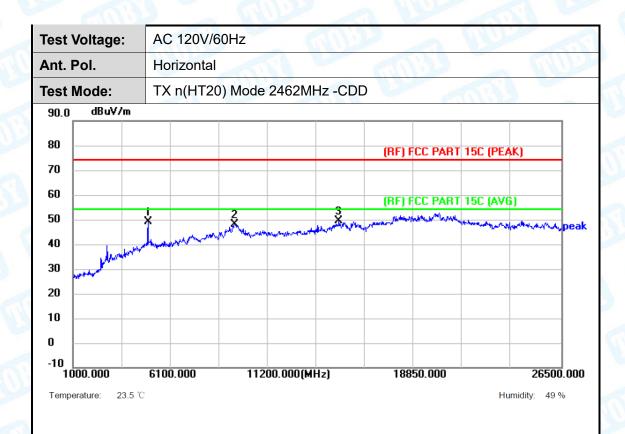
Test	Voltage:		AC 120V	//60Hz							
Ant.	Pol.		Horizont	al			CITY OF	130			
Test	Mode:		TX n(HT	20) Mod	e 2437N	/Hz -CD	D				
90.0	dBuV/n	n									-
80							(RF) F	CC PART	15C (PEA	AK)	
70 60											
		1 X	2	3		and white and		CC PART		3) hov ^{od} resphantshiph	peal
40 30	new day and	paper blan	Z X Maryangan	Application of the second	A MINISTER TO						-
20 10											-
0											
-10 10	000.000	61	00.000	112	00.000(MH	lz)	188	50.000		26500	j.000
Tempe	erature: 23	3.5 ℃							Hu	umidity: 49 9	%

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4876.000	52.60	-5.10	47.50	74.00	-26.50	peak	Р
2	6482.500	49.25	-3.79	45.46	74.00	-28.54	peak	Р
3 *	9593.500	42.27	6.29	48.56	74.00	-25.44	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 45 of 89

Test Voltage: AC 120V/60Hz Ant. Pol. Vertical **Test Mode:** TX n(HT20) Mode 2437MHz -CDD dBuV/m 90.0 80 (RF) FCC PART 15C (PEAK) 70 60 (RF) FCC PART 15C (AVG) 50 40 30 20 10 0 1000.000 6100.000 11200.000(MHz) 18850.000 26500.000 Temperature: 23.5 ℃ Humidity: 49 %


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4876.000	58.49	-5.10	53.39	74.00	-20.61	peak	Р
2	6482.500	49.42	-3.79	45.63	74.00	-28.37	peak	Р
3	9491.500	41.34	6.44	47.78	74.00	-26.22	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

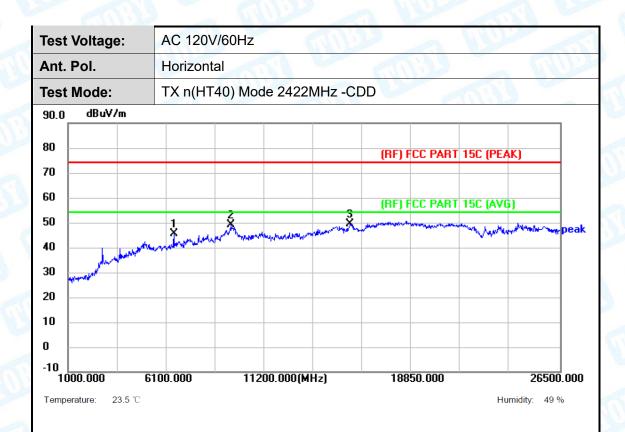
Page: 46 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4927.000	54.25	-5.09	49.16	74.00	-24.84	peak	Р
2	9466.000	41.83	6.35	48.18	74.00	-25.82	peak	Р
3 *	14897.500	39.14	10.16	49.30	74.00	-24.70	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

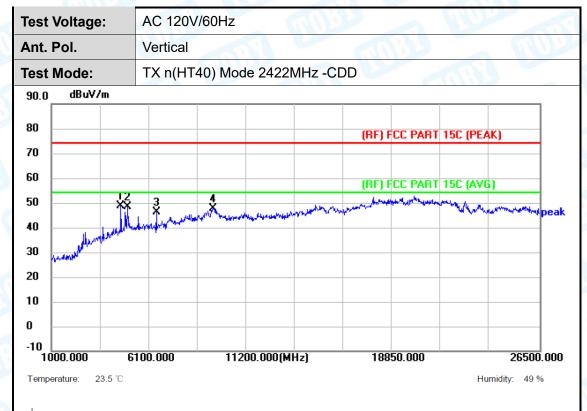
Page: 47 of 89

Test '	Voltage:		AC 120V	/60Hz							
Ant.	Pol.		Vertical	1	FA 1		an	187			775
Test	Mode:		TX n(HT	20) Mod	e 2462M	IHz -CD	D				
90.0	dBuV/π	1									7
80							(RF) F	CC PART	15C (PEA	ıK)	
70 60							(DE) E	CC PART	15C (AVC	<u> </u>	
50 40		Ž	بالمعمولة المعاليات	3	المهائدة المواجعة والمعرودة	n de marille préviet					peal
20	ALLER STREET	p He Land	and the state of the same								-
20											-
10											-
0											-
-10 10	000.000	61	00.000	1120	DO.000(MH	z)	188	50.000		26500	J 0.000
Tempe	erature: 23.	5 ℃							Hu	midity: 49	%


No	0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector	P/F
1		4621.000	55.76	-7.18	48.58	74.00	-25.42	peak	Р
2	*	4927.000	56.56	-5.09	51.47	74.00	-22.53	peak	Р
3		9491.500	40.51	6.44	46.95	74.00	-27.05	peak	Р

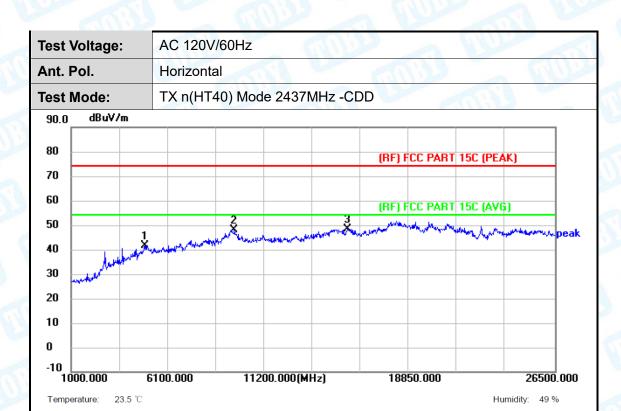
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Peak/AVG (dBμV/m)- Coff. (dBμV/m)- Limit PK/AVG(dBμV/m)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 48 of 89


N	0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1		6482.500	49.15	-3.79	45.36	74.00	-28.64	peak	Р
2	2	9466.000	42.85	6.35	49.20	74.00	-24.80	peak	Р
3	*	15637.000	39.15	10.45	49.60	74.00	-24.40	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Page: 49 of 89


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	55.97	-7.18	48.79	74.00	-25.21	peak	Р
2	5003.500	53.38	-5.10	48.28	74.00	-25.72	peak	Р
3	6482.500	49.89	-3.79	46.10	74.00	-27.90	peak	Р
4	9440.500	41.57	6.16	47.73	74.00	-26.27	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 50 of 89

- 4									
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
	1	4876.000	46.68	-5.10	41.58	74.00	-32.42	peak	Р
	2	9593.500	41.79	6.29	48.08	74.00	-25.92	peak	Р
	3 *	15586.000	38.35	10.18	48.53	74.00	-25.47	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 51 of 89

Test Voltage:	AC 120V/6	60Hz		
Ant. Pol.	Vertical			CAIN.
Test Mode:	TX n(HT40	0) Mode 2437MHz -CD	D	
90.0 dBuV/m				
80			(RF) FCC PART	I 15C (PEAK)
70			(III) I CC I AIII	TSC (LEAK)
60			(RF) FCC PART	[15C (AVG)
50	Ž 3	Mary Mary Mary Mary Mary Mary Mary Mary		
40	hadren by have been been	A Aller Andrewson Commencer of the Comme		
30				
20				
10				
-10				
1000.000	6100.000	11200.000(MHz)	18850.000	26500.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	56.47	-7.18	49.29	74.00	-24.71	peak	Р
2	5003.500	53.99	-5.10	48.89	74.00	-25.11	peak	Р
3	6482.500	49.25	-3.79	45.46	74.00	-28.54	peak	Р
4	9619.000	41.40	5.85	47.25	74.00	-26.75	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 52 of 89

est Voltage:	AC 120V/	60Hz						
Ant. Pol.	Horizonta		1	an'				1);
est Mode:	TX n(HT4	0) Mode 2452N	IHz -CDD	183				
90.0 dBuV/m								1
80				(BE) EC	C DART	15C (PEA	(K)	
70				(III) I C	CTAIII	130 (112)	ik)	
60				(RF) FC	C PART	15C (AVC	i)	
50	Į.	2 hu managana	3.V4.	ليه حلامه الاسطال بيد		market		peak
30	AND THE PROPERTY AND ADDRESS OF THE PARTY AND	Mary additional management						
30								
20								
10								
0								
-10 1000.000	6100.000	11200.000(M	lHz)	18850	.000		26500	 .000
Temperature: 23.5	5 ℃					Hu	ımidity: 49 %	6

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4927.000	50.67	-5.09	45.58	74.00	-28.42	peak	Р
2	9619.000	42.31	5.85	48.16	74.00	-25.84	peak	Р
3 *	15050.500	39.76	9.65	49.41	74.00	-24.59	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 53 of 89

Test \	/oltage:	AC 120V	//60Hz							
Ant. P	Pol.	Vertical				an	130		CHI)	
Test N	Mode:	TX n(HT	40) Mod	e 2452N	/Hz -CD	D				
90.0	dBuV/m									
80						(RF) F	CC PART	15C (PEA	K)	
70						-				
60						(RF) F	CC PART	15C (AVG	i)	
50	×	Laborator de partir	3	and the same	المعالمة	يدينيللمريه فهوندب	والمادوية الملاحية الماد		بالمصوب مابعال مسوأت أناب	peak
40	and the land of th	A THE REPORT OF THE PARTY OF TH	ALL MARKET	Ar dam.						
30	h.hmarket and the last of th									
20										
10										
0										
-10 100	00.000	6100.000	112	00.000(MI	łz)	188	50.000		26500	.000
Temper	erature: 23.5 °C							Hui	midity: 49 %	6

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	4621.000	56.08	-7.18	48.90	74.00	-25.10	peak	Р
2	4927.000	53.92	-5.09	48.83	74.00	-25.17	peak	Р
3	9440.500	41.98	6.16	48.14	74.00	-25.86	peak	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 54 of 89

Test Voltage: AC 120V/60Hz Ant. Pol. Horizontal **Test Mode:** TX ax(HE20) Mode 2412MHz -CDD dBuV/m 90.0 80 (RF) FCC PART 15C (PEAK) 70 60 (RF) FCC PART 15C (AVG) 50 40 30 20 10 0 1000.000 6100.000 11200.000(MHz) 18850.000 26500.000 Temperature: 23.5 ℃ Humidity: 49 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4825.000	52.38	-5.60	46.78	74.00	-27.22	peak	Р
2	9721.000	42.47	5.17	47.64	74.00	-26.36	peak	Р
3 *	14770.000	39.40	9.73	49.13	74.00	-24.87	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 55 of 89

Test '	Voltage:		AC 120\	//60Hz							
Ant. I	Pol.		Vertical		51	L B	ET.	CELL			
est	Mode:		TX ax(H	E20) M	ode 2412	MHz -0	CDD				
90.0	dBuV/r	n									
80							(RF)	CC PART	15C (PE /	SK)	
70							()	00111111	100 (12)	,	1
60							(RF)	CC PART	15C (AV	3)	-
50 40			had fast has price	wit	open grant de la principal de	_{Joh} ann an philip	july mary stage and	المداوات المساولة والمساولة والمساولة والمساولة والمساولة والمساولة والمساولة والمساولة والمساولة والمساولة وا		a	peal
30 20	March March										_
10											
ייי											
-10 10	000.000	61	00.000	112	200.000(MH	z)	188	50.000		26500	 3.000
		.5 ℃							Hu	ımidity: 49	

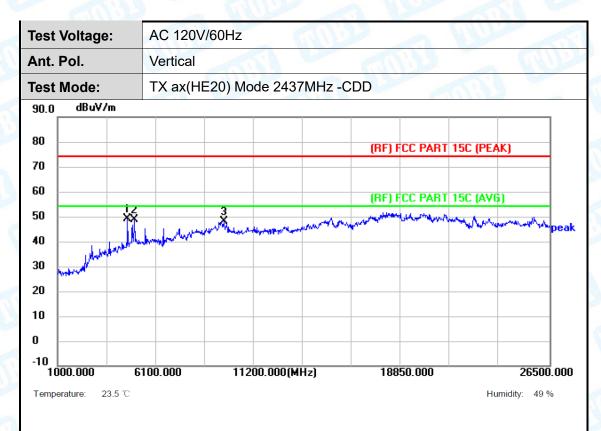
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4621.000	55.51	-7.18	48.33	74.00	-25.67	peak	Р
2 *	4825.000	55.13	-5.60	49.53	74.00	-24.47	peak	Р
3	5003.500	52.99	-5.10	47.89	74.00	-26.11	peak	Р
4	9440.500	42.81	6.16	48.97	74.00	-25.03	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

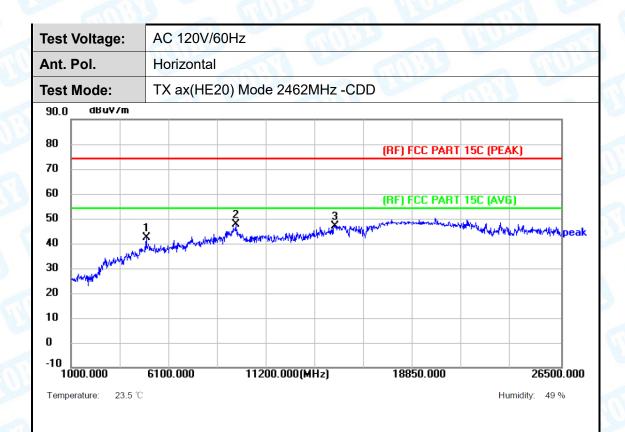
Page: 56 of 89

Test Voltage:	AC 120V/	60Hz		
Ant. Pol.	Horizonta			
Test Mode:	TX ax(HE	(20) Mode 2437MHz -0	CDD	
90.0 dBuV/m				
70			(RF) FCC PART 15	C (PEAK)
50	1	2 3	(RF) FCC PART 15	C (AVG)
30 Annual of the same of the s	A characteristic land and the same of the con-	of the beautiful the second		*()`Lundhayaddayaddayapea
10				
-10 1000.000 Temperature: 23.5	6100.000	11200.000(MHz)	18850.000	26500.000 Humidity: 49 %


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4876.000	51.45	-5.10	46.35	74.00	-27.65	peak	Р
2	9415.000	42.36	5.76	48.12	74.00	-25.88	peak	Р
3 *	14795.500	39.56	9.94	49.50	74.00	-24.50	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 57 of 89


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	56.14	-7.18	48.96	74.00	-25.04	peak	Р
2	5003.500	53.97	-5.10	48.87	74.00	-25.13	peak	Р
3	9619.000	42.24	5.85	48.09	74.00	-25.91	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 58 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4927.000	47.25	-5.09	42.16	74.00	-31.84	peak	Р
2 *	9568.000	41.61	6.21	47.82	74.00	-26.18	peak	Р
3	14719.000	37.75	9.32	47.07	74.00	-26.93	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 59 of 89

AC 120V/60Hz **Test Voltage:** Ant. Pol. Vertical **Test Mode:** TX ax(HE20) Mode 2462MHz -CDD dBuV/m 90.0 (RF) FCC PART 15C (PEAK) 70 60 (RF) FCC PART 15C (AVG) 50 40 30 20 10 0 6100.000 18850.000 26500.000 1000.000 11200.000(MHz) 23.5 ℃ Humidity: 49 % Temperature:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4621.000	56.34	-7.18	49.16	74.00	-24.84	peak	Р
2 *	5003.500	55.23	-5.10	50.13	74.00	-23.87	peak	Р
3	6482.500	48.92	-3.79	45.13	74.00	-28.87	peak	Р
4	9466.000	41.68	6.35	48.03	74.00	-25.97	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 60 of 89

Test	Voltage	:	AC 120\	//60Hz					Ann		6
Ant.	Pol.		Horizont	al							
Test	Mode:		TX ax(H	E40) M	ode 2422	2MHz -C	DD			3	
90.0	dBuV/	m									
80							(BF) I	CC PART	15C (PEA	K)	
70							()			,	
60						_	(RF) I	CC PART	15C (AVE	<u>;</u>)	
50		1 X		2	معروره والمساوحة	Julian St.	, Alle between page 1. see	dephoson of the second	يه المعالمي المربطة م	ورسانا الإداعي فالإداع والمدار	peak
40	بالدر ا	harake bang	mayor of the table of the second of the second	, T	4						
30	why the way										
20											
10											
0											
-10 10	000.000	61	100.000	112	200.000(MI	Hz)	188	50.000		26500.	.000
Temp	erature: 23	3.5 ℃							Hu	ımidity: 49 %	,

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	4850.500	50.21	-5.10	45.11	74.00	-28.89	peak	Р
2	9593.500	42.09	6.29	48.38	74.00	-25.62	peak	Р
3 *	15662.500	39.04	10.55	49.59	74.00	-24.41	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

26500.000

Page: 61 of 89

Test '	Voltage:	AC 120V	/60Hz		400	3		BAIL		
Ant. I	Pol.	Vertical							CH)	11.
Test	Mode:	TX ax(HI	E40) Mo	de 2422	MHz -C	DD		MAY!		
90.0	dBuV/m									ı
80						(RF) F	CC PART	15C (PEA	ıK)	
70										
60		3				(RF) F	CC PART	15C (AV6	i)	
50	×	2 1 X	4 ************************************	المراجع	, LANGE MARIE MARIE	Market Street Street	de al de la grand de la grande d	وادوس البيدويين	-water	peak
40	المهليليلية	halibert a market	y sager	****						
30	representative "									
20										
10										

Temperature: 23.5 ℃ Humidity: 49 %

18850.000

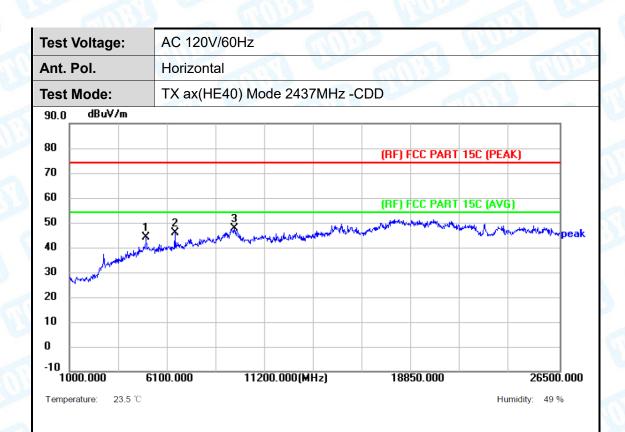
11200.000(MHz)

ĺ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
	1 *	4621.000	55.66	-7.18	48.48	74.00	-25.52	peak	Р
	2	5003.500	52.50	-5.10	47.40	74.00	-26.60	peak	Р
	3	6482.500	49.23	-3.79	45.44	74.00	-28.56	peak	Р
	4	9644.500	42.39	5.21	47.60	74.00	-26.40	peak	Р

1000.000

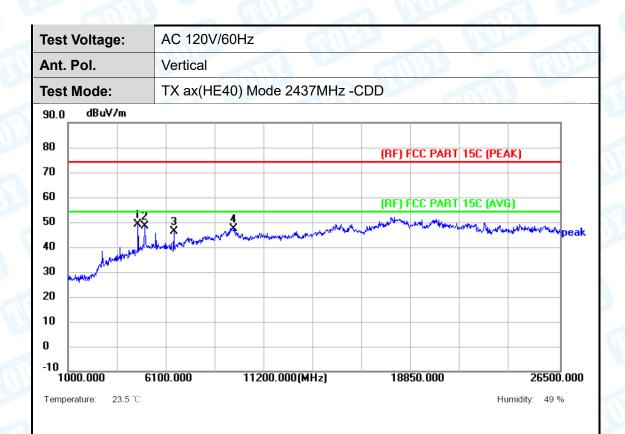
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

6100.000


- Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 62 of 89


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5003.500	49.37	-5.10	44.27	74.00	-29.73	peak	Р
2	6482.500	49.60	-3.79	45.81	74.00	-28.19	peak	Р
3 *	9593.500	41.37	6.29	47.66	74.00	-26.34	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

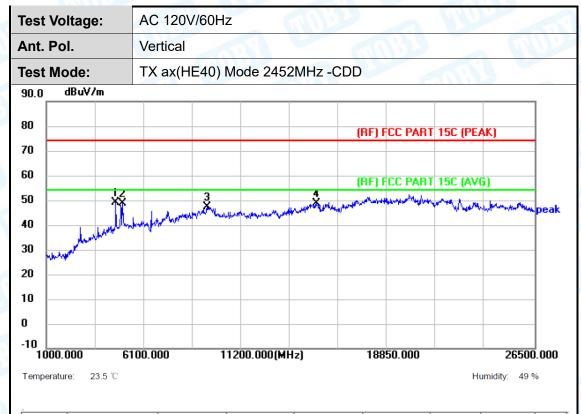
Page: 63 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	56.32	-7.18	49.14	74.00	-24.86	peak	Р
2	4978.000	53.57	-5.10	48.47	74.00	-25.53	peak	Р
3	6482.500	49.97	-3.79	46.18	74.00	-27.82	peak	Р
4	9593.500	41.11	6.29	47.40	74.00	-26.60	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 64 of 89

est Voltage:	AC 120V/6	OHz				
nt. Pol.	Horizontal			TO THE		
est Mode:	TX ax(HE4	0) Mode 2452N	/Hz -CDD			
0.0 dBuV/m						
:0			(D)	F) FCC PART	1EC (DEA	n l
70			(III	T CC PART	TOC (FEA	NJ
so			(B)	F) FCC PART	15C (AVG	1
50	1	Z.	3 Andrews	page and page and page	many layer	Messikohan
10 X	Mandrian about the modern	Mary Mary Control of the Control of	Auto Control		, p. 4	
10 Mary						
20						
0						
ı						
10 1000.000	6100.000	11200.000(MH	lz) 1	8850.000		26500.000

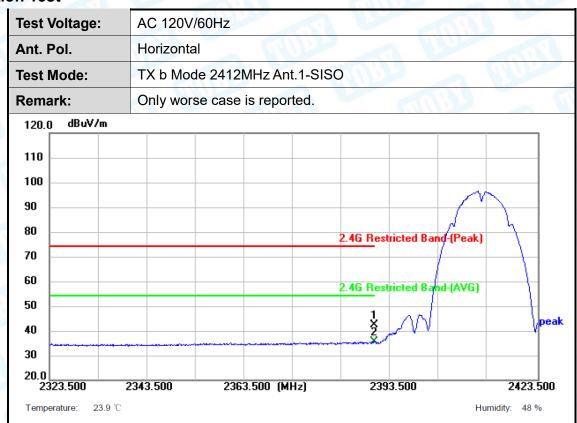

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4901.500	47.92	-5.10	42.82	74.00	-31.18	peak	Р
2	9415.000	41.63	5.76	47.39	74.00	-26.61	peak	Р
3 *	14821.000	38.50	10.01	48.51	74.00	-25.49	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 65 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4621.000	56.35	-7.18	49.17	74.00	-24.83	peak	Р
2	5003.500	53.72	-5.10	48.62	74.00	-25.38	peak	Р
3	9415.000	41.47	5.76	47.23	74.00	-26.77	peak	Р
4	15101.500	38.97	9.74	48.71	74.00	-25.29	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.



Page: 66 of 89

Attachment C-- Restricted Bands Requirement Test Data

Radiation Test

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2390.000	36.41	5.98	42.39	74.00	-31.61	peak	Р
2 *	2390.000	29.54	5.98	35.52	54.00	-18.48	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Humidity: 48 %

Page: 67 of 89

Test Voltage:	AC 120V/	60Hz									
Ant. Pol.	Vertical	OUT.	an is		UM.						
Test Mode:	TX b Mod	le 2412MHz Ant.1-SIS	0								
Remark:	Only wors	lly worse case is reported.									
120.0 dBuV/m											
110											
100											
90					\leftarrow						
80			2.4G Restricted Bar	nd-(Peak)	-						
70					\dashv						
60			2.4G Restricted Bar	id-(AVG)	$\overline{}$						
50			ž //V		peak						
40			Ž , , , V V		Pear						
30											
20.0 2323.500	2343.500	2363.500 (MHz)	2393.500		2423.500						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2390.000	37.27	5.98	43.25	74.00	-30.75	peak	Р
2 *	2390.000	29.77	5.98	35.75	54.00	-18.25	AVG	Р

Remark:

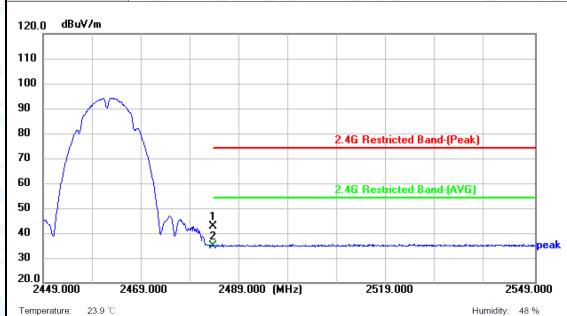
Temperature: 23.9 ℃

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Test Voltage: Ant. Pol.	AC 120V/60H Horizontal			The same
		1:33		BINDS
Test Mode:	TX b Mode 24	62MHz Ant.1-SI	SO	
Remark:	Only worse ca	ase is reported.		
120.0 dBuV/m				
110	_		2.4G Restricted Band-(Peak)	
50	- 1 × 2		2.4G Restricted Band-(AVG)	pea
20.0 2449.000	~	2489.000 (MHz)	2519.000	2549.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2483.500	36.65	6.20	42.85	74.00	-31.15	peak	Р
2 *	2483.500	28.80	6.20	35.00	54.00	-19.00	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



Page: 69 of 89

Test Voltage:	AC 120V/60Hz
Ant. Pol.	Vertical
Test Mode:	TX b Mode 2462MHz Ant.1-SISO
Remark:	Only worse case is reported.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2483.500	36.49	6.20	42.69	74.00	-31.31	peak	Р
2 *	2483.500	28.56	6.20	34.76	54.00	-19.24	AVG	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

	3.000	2343.000	2363.000 (MHz)	2393.000	2423.000				
20.0									
30									
40									
50				2					
60				2.4G Restricted Band-(AV	/G)				
70				1 X	pea				
- L				2.4G Restricted Band-(Pe	- I				
80									
90				~~	m				
100									
110									
120.0	dbu*/iii								
120.0	n. dBu∀/m	Offig wors	se case is reported.						
emar									
Test Mode: TX g Mode 2412MHz-CDD				133					
nt. Po	ol.	Horizonta							
est vo	oltage:	AC 120V/	C 120V/60Hz						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2390.000	56.68	5.98	62.66	74.00	-11.34	peak	Р
2 *	2390.000	41.93	5.98	47.91	54.00	-6.09	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 71 of 89

Test Voltage:	AC 120V	C 120V/60Hz						
Ant. Pol.	Vertical							
Test Mode:	TX g Mod	de 2412MHz-CDD		13				
Remark:	Only wor	se case is reported.	- 13 MB					
120.0 dBuV/m								
110								
100			<u> </u>	~~~				
90								
80			2.4G Restricted Band-(Pe	- h				
70				pea				
60			1 ×	10)				
50			2.4G Restricted Band-(AV	/taj				
40			- Day Carlotte					
30								
20.0								
2323.000	2343.000	2363.000 (MHz)	2393.000	2423.000				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2390.000	58.69	5.98	64.67	74.00	-9.33	peak	Р
2 *	2390.000	45.02	5.98	51.00	54.00	-3.00	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 72 of 89

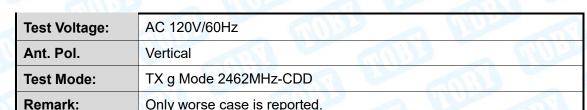
Humidity: 48 %

Test Voltage:	AC 120V/60Hz						
Ant. Pol. Horizontal							
Test Mode:	TX g Mode 2462MHz-CDD	TX g Mode 2462MHz-CDD					
Remark:	Only worse case is reported.						
120.0 dBuV/m							
110 100 90 80 70		2.4G Restricted Band-(Peak)					
50	1 <u>x</u> 2	2.4G Restricted Band-(AVG)	peak				
30 20.0							
	2460.500 2480.500 (MHz)	2510.500	2540.500				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2483.500	50.03	6.20	56.23	74.00	-17.77	peak	Р
2 *	2483.500	37.88	6.20	44.08	54.00	-9.92	AVG	Р

Remark:

23.4 ℃


Temperature:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 73 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2483.500	51.12	6.20	57.32	74.00	-16.68	peak	Р
2 *	2483.500	39.36	6.20	45.56	54.00	-8.44	AVG	Р

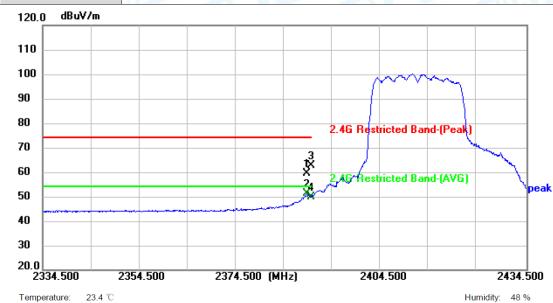
- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 74 of 89

est Voltage:	AC 120V/6	60Hz		
nt. Pol.	Horizontal			CHI);
est Mode:	TX n(HT2	0) Mode 2412MHz -C	DD	
emark:	Only wors	e case is reported.		
20.0 dBuV/m				
10		1	2.4G Restricted Band-(Pea	hara
0		3	The state of the s	pea
10				
20.0	2354.500	2374.500 (MHz)	2404.500	2434.500

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2390.000	54.86	5.98	60.84	74.00	-13.16	peak	Р
2 *	2390.000	41.97	5.98	47.95	54.00	-6.05	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



Page: 75 of 89

Test Voltage:	AC 120V/60Hz
Ant. Pol.	Vertical
Test Mode:	TX n(HT20) Mode 2412MHz -CDD
Remark:	Only worse case is reported.
120.0 dBuV/m	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2389.100	53.35	5.97	59.32	74.00	-14.68	peak	Р
2 *	2389.100	45.14	5.97	51.11	54.00	-2.89	AVG	Р
3	2390.000	56.55	5.98	62.53	74.00	-11.47	peak	Р
4	2390.000	43.94	5.98	49.92	54.00	-4.08	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 76 of 89

est Voltage:	AC 120V/	60Hz							
nt. Pol.	Horizonta	lorizontal							
est Mode:	TX n(HT2	n(HT20) Mode 2462MHz -CDD							
lemark:	Only wors	se case is reported.							
120.0 dBuV/m									
110 100 90 80			2.4G Restricted Band-(Peak)						
60 50 40		1 2	2.4G Restricted Band-(AVG)	pea					
20.0 2441.500	2461.500	2481.500 (MHz)	2511.500	2541.500					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	48.67	6.20	54.87	74.00	-19.13	peak	Р
2 *	2483.500	37.79	6.20	43.99	54.00	-10.01	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 77 of 89

Гest Voltage:	AC 120V	/60Hz							
Ant. Pol.	Vertical	rtical							
Test Mode:	TX n(HT2	n(HT20) Mode 2462MHz -CDD							
Remark:	Only wor	se case is reported.							
120.0 dBuV/m									
110									
100									
90	m								
80									
70			2.4G Restricted Band-(Po	eakj					
60		1		10)					
50		\ <u>×</u>	2.4G Restricted Band-(A	/6)					
40		X		pea					
30									
20.0									
2441.500	2461.500	2481.500 (MHz)	2511.500	2541.500					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2483.500	49.55	6.20	55.75	74.00	-18.25	peak	Р
2 *	2483.500	38.87	6.20	45.07	54.00	-8.93	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Test Voltage:	AC 120V/	60Hz		
Ant. Pol.	Horizonta		an's	ann;
Test Mode:	TX n(HT4	0) Mode 2422MHz -C	DD	
Remark:	Only wors	se case is reported.		
120.0 dBuV/m				
110				
100				
30				
30			The same	
70			2.4G Restricted Band-(Peal	0
60		1		V.,
		1 X	7.4G Restricted Band-(AVG	peal
50		and the second		
10				
30				
20.0	2339.500	2369.500 (MHz)	2414.500	2459.500

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2390.000	51.01	5.98	56.99	74.00	-17.01	peak	Р
2 *	2390.000	41.52	5.98	47.50	54.00	-6.50	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 79 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2390.000	55.04	5.98	61.02	74.00	-12.98	peak	Р
2 *	2390.000	43.91	5.98	49.89	54.00	-4.11	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 80 of 89

Гest Voltage:	AC 120V/6	60Hz								
Ant. Pol.	Horizontal	prizontal								
Test Mode:	TX n(HT40	0) Mode 2452MHz -0	CDD							
Remark:	Only wors	e case is reported.								
120.0 dBuV/m										
110 100 90 80 70			2.4G Restricted Band-(P	eak)						
50		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.4G Restricted Band-(A	vG)pea						
20.0 2416.500	2446.500	2476.500 (MHz)	2521.500	2566.500						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2483.500	47.94	6.20	54.14	74.00	-19.86	peak	Р
2 *	2483.500	37.81	6.20	44.01	54.00	-9.99	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Vertical	60035	UM:
TX n(HT40) Mode 2452	MHz -CDD	
Only worse case is repo	orted.	
-	2.4G Restricted Band-(Peak)	
1 2 2	2.4G Restricted Band-(AVG)	pea
	4Hz) 2521.500	2566.500
	TX n(HT40) Mode 2452 Only worse case is repo	TX n(HT40) Mode 2452MHz -CDD Only worse case is reported. 2.4G Restricted Band-(Peak)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	49.12	6.20	55.32	74.00	-18.68	peak	Р
2 *	2483.500	39.74	6.20	45.94	54.00	-8.06	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Humidity: 48 %

Page: 82 of 89

Test Voltage:	AC 120V/60Hz
Ant. Pol.	Horizontal
Test Mode:	TX ax(HE20) Mode 2412MHz -CDD
Remark:	Only worse case is reported.
120.0 dBuV/m	
110	
100	
90	
80	
70	2.4G Restricted Band-(Peak)
60	
50	2.4G Bestricted Band-(AVG)
40	
30	
20.0	
	2354.000 2374.000 (MHz) 2404.000 2434.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2390.000	48.94	5.98	54.92	74.00	-19.08	peak	Р
2 *	2390.000	43.86	5.98	49.84	54.00	-4.16	AVG	Р

Remark:

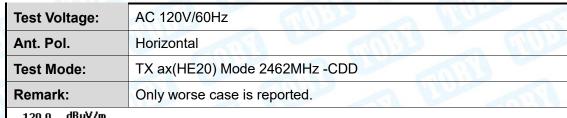
Temperature:

23.4 ℃

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 83 of 89

A	Test Voltage:	AC 120V/60Hz
1	Ant. Pol.	Vertical
	Test Mode:	TX ax(HE20) Mode 2412MHz -CDD


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2390.000	53.66	5.98	59.64	74.00	-14.36	peak	Р
2 *	2390.000	46.67	5.98	52.65	54.00	-1.35	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 84 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2483.500	48.06	6.20	54.26	74.00	-19.74	peak	Р
2 *	2483.500	38.13	6.20	44.33	54.00	-9.67	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 85 of 89

•	Test Voltage:	AC 120V/60Hz
V	Ant. Pol.	Vertical
	Test Mode:	TX ax(HE20) Mode 2462MHz -CDD
	Remark:	Only worse case is reported.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector	P/F
1	2483.500	50.12	6.20	56.32	74.00	-17.68	peak	Р
2 *	2483.500	39.34	6.20	45.54	54.00	-8.46	AVG	Р

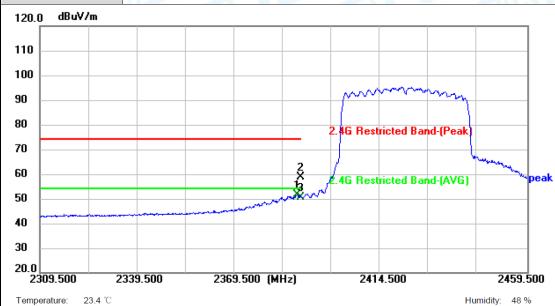
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 86 of 89

Test Voltage:	AC 120V/6	60Hz							
Ant. Pol.	Horizontal	rizontal							
Test Mode:	TX ax(HE4	40) Mode 2422MHz -	CDD						
Remark:	Only worse	e case is reported.							
120.0 dBuV/m									
110 100 90 80 70		1	2.4G Restricted Band-(Peak)	peal					
50 40 30	·	× 2	#.40 hesuicteu banu-(Ava)	peal					
20.0	2339.500	2369.500 (MHz)	2414.500	2459.500					

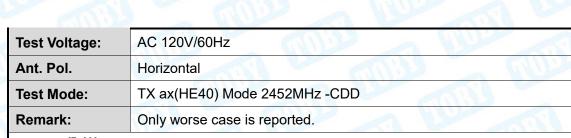
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2390.000	49.68	5.98	55.66	74.00	-18.34	peak	Р
2 *	2390.000	42.03	5.98	48.01	54.00	-5.99	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



Page: 87 of 89

Remark: Only worse case is reported.


_ !									
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
	1 *	2388.700	45.46	5.97	51.43	54.00	-2.57	AVG	Р
	2	2390.000	52.71	5.98	58.69	74.00	-15.31	peak	Р
	3	2390.000	44.49	5.98	50.47	54.00	-3.53	AVG	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 88 of 89

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	48.16	6.20	54.36	74.00	-19.64	peak	Р
2 *	2483.500	38.00	6.20	44.20	54.00	-9.80	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 89 of 89

Test Voltage:	AC 120V/	AC 120V/60Hz Vertical TX ax(HE40) Mode 2452MHz -CDD						
Ant. Pol.	Vertical							
Test Mode:	TX ax(HE							
Remark:	Only wors	se case is reported.		101				
120.0 dBuV/m								
110 100 90 80 70	- Andrew - A	1 ×	2.4G Restricted Band-(P					
40		2		pea				
30								
20.0 2416.500 Temperature: 23.4	2446.500	2476.500 (MHz)	2521.500	2566.500 Humidity: 48 %				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	2483.500	50.17	6.20	56.37	74.00	-17.63	peak	Р
2 *	2483.500	40.20	6.20	46.40	54.00	-7.60	AVG	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

END OF REPORT---

