

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202502-0171-33

Page: 1 of 65

RF Test Report

FCC ID: 2A2GJ-HT-H7608

Report No. : TBR-C-202502-0171-33

Applicant : Heltec Automation Technology Co., Ltd

Equipment Under Test (EUT)

EUT Name : Wi-Fi HaLow Router

Model No. : HT-H7608

HT-HD01, HT-HD01S, HT-HD02, HT-HD02S, HT-HC01,

Series Model No. : HT-HC01S, HT-HC02, HT-HC02S, HT-HC32, HT-HC33,

HT-H3208

Brand Name : Heltec Automation

Sample ID : RW-C-202502-0171-2-1#&RW-C-202502-0171-2-2#

Receipt Date : 2025-02-25

Test Date : 2025-02-25 to 2025-04-23

Issue Date : 2025-04-23

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Tested By : Kide . Chan

Reviewed By : Jale W

Approved By : WAN SV

Wade Lyl Ivan Su

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202502-0171-33
Page: 2 of 65

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT AND TEST SITE	13
5.	CONDUCTED EMISSION	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	
	5.3 Test Procedure	15
	5.4 Deviation From Test Standard	16
	5.5 EUT Operating Mode	16
	5.6 Test Data	16
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	18
	6.3 Test Procedure	19
	6.4 Deviation From Test Standard	20
	6.5 EUT Operating Mode	20
	6.6 Test Data	
7.	EMISSIONS IN NONRESTRICTED FREQUENCY BANDS	21
	7.1 Test Standard and Limit	21
	7.2 Test Setup	21
	7.3 Test Procedure	21
	7.4 Deviation From Test Standard	22
	7.5 EUT Operating Mode	22
	7.6 Test Data	22
8.	BANDWIDTH TEST	23
	8.1 Test Standard and Limit	23
	8.2 Test Setup	23
	8.3 Test Procedure	23
	8.4 Deviation From Test Standard	24

Report No.: TBR-C-202502-0171-33 Page: 3 of 65

Report No.: TBR-C-202502-0171-33 Page: 4 of 65

Revision History

	Description	Issued Date
Rev.01	Initial issue of report	2025-04-23
3 100		W 3 WOOD
11077	TEST TOTAL	TODAY.
WBA)		The Little of the
	TO THE REAL PROPERTY.	WO3
		10 33
	033	TO THE REAL PROPERTY.
40777		an By
	Rev.01	Rev.01 Initial issue of report

Page: 5 of 65

1. General Information about EUT

1.1 Client Information

Applicant : Heltec Automation Technology Co., Ltd			
Address : 1f, No.54,56,58, Zirui North Street, Gaoxin District, Che China		1f, No.54,56,58, Zirui North Street, Gaoxin District, Chengdu, China	
Manufacturer : Heltec Automation Technology Co., Ltd		Heltec Automation Technology Co., Ltd	
Address : 1f, No.54,56,58, Zirui North Street China		1f, No.54,56,58, Zirui North Street, Gaoxin District, Chengdu, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name):	Wi-Fi HaLow Router			
Models No.	100	HT-H7608, HT-HD01, HT-HD01S, HT-HD02S, HT-HC01, HT-HC01S, HT-HC02S, HT-HC32, HT-HC33, HT-H3208			
Model Different		All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name.			
	ES	Operation Frequency:	902MHz~928MHz		
Product		Number of Channel:	Please see Note(4)		
Description		Antenna Gain:	3.5dBi Dipole Antenna		
	N.	Modulation Type:	OFDM		
Power Rating	3	USB Input: DC 5V			
Software Version					
Hardware Version	:	:			
Downsules	-				

Remark:

- (1) The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Report No.: TBR-C-202502-0171-33 Page: 6 of 65

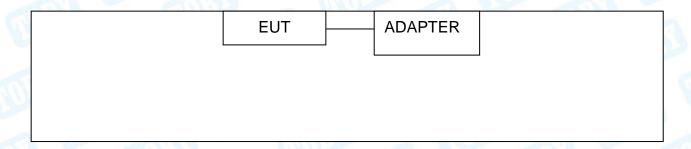
(4) Channel List:

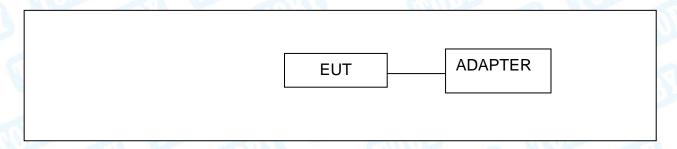
1M						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	903.5	09	911.5	17	919.5	
02	904.5	10	912.5	18	920.5	
03	905.5	11	913.5	19	921.5	
04	906.5	12	914.5	20	922.5	
05	907.5	13	915.5	21	923.5	
06	908.5	14	916.5	22	924.5	
07	909.5	15	917.5	23	925.5	
08	910.5	16	918.5	24	926.5	

2M						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	905	06	915	11	925	
02	907	07	917		a William	
03	909	08	919		. 15	
04	911	09	921			
05	913	10	923	11:37	HAD	

4M Channel (MHz)				
02	910			
03	914			
04	918			
05	922			

8M				
Channel	Frequency (MHz)			
01	908			
02	916			
03	924			




Report No.: TBR-C-202502-0171-33 Page: 7 of 65

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

Equipment Information								
Name Model FCC ID/SDOC Manufacturer Used "√"								
Adapter HUAWEI √								
Cable Information								
Number Shielded Type Ferrite Core Length Note								
Cable	<u> </u>	112	0.8M	Accessory				

Page: 8 of 65

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test						
Final Test Mode Description						
Mode 1	TX Mode					
	For Radiated Test					
Final Test Mode Description						
Mode 2	TX Mode					
Mode 3	TX Mode 1M (Channel 01/13/24)					
Mode 4	TX Mode 2M (Channel 01/06/11)					
Mode 5	TX Mode 4M (Channel 01/03/05)					
Mode 6 TX Mode 8M (Channel 01/02/03)						

Note:

- (1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.
 - According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.
 - (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
 - (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 65

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	4	SecureCRT.ex	e
Frequency	903.5MHz	915.5MHz	926.5MHz
1M	-14	-14	-14

Test Software Version	SecureCRT.exe		
Frequency	905MHz	915MHz	925MHz
2M	-14	-14	-14

Test Software Version	SecureCRT.exe		
Frequency	906MHz	914MHz	922MHz
4M	-14	-14	-14

Test Software Version	SecureCRT.exe		
Frequency	908MHz	916MHz	924MHz
8M	-10	-10	-10

Report No.: TBR-C-202502-0171-33 Page: 10 of 65

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence

of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz	±3.50 dB
William III	150kHz to 30MHz	±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	Level Accuracy: Above 1000MHz	±0.95 dB
Power Spectral Density-Conducted	Level Accuracy: Above 1000MHz	±3dB
Occupied Bandwidth	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±3.8%
Unwanted Emission-Conducted	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±2.72 dB
Temperature	YUBE	±0.6°C
Humidity		±4%
Supply voltages		±2%
Time		±4%

Page: 11 of 65

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202502-0171-33 Page: 12 of 65

2. Test Summary

Standard Section	- Test Item	Tool Comple(s)	ludament	Damark
FCC	- rest item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	Conducted Emission	RW-C-202502-0171-2-1#	PASS	N/A
CC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202502-0171-2-1#	PASS	N/A
FCC 15.203	Antenna Requirement	RW-C-202502-0171-2-2#	PASS	N/A
FCC 15.247(a)(2)	6dB Bandwidth	RW-C-202502-0171-2-2#	PASS	N/A
1	99% Occupied bandwidth	RW-C-202502-0171-2-2#	PASS	N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P	RW-C-202502-0171-2-2#	PASS	N/A
FCC 15.247(e)	Power Spectral Density	RW-C-202502-0171-2-2#	PASS	N/A
FCC 15.207	Conducted Unwanted Emissions	RW-C-202502-0171-2-2#	PASS	N/A
FCC 15.247(d)	Emissions in nonrestricted frequency bands	RW-C-202502-0171-2-2#	PASS	N/A
1	On Time and Duty Cycle	RW-C-202502-0171-2-2#	1	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202502-0171-33 Page: 13 of 65

4. Test Equipment and Test Site

Test Site				
No.	Test Site	Manufacturer	Specification	Used
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	√
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	√
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	V

Conducted Emissi	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 17, 2024	Jun. 16, 2025
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 17, 2024	Jun. 16, 2025
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 17, 2024	Jun. 16, 2025
LISN	Rohde & Schwarz	ENV216	101131	Jun. 17, 2024	Jun. 16, 2025
Radiation Emissio	n Test (B Site)			NIKO.	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 29, 2024	Aug. 28, 2025
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 20, 2025	Feb. 19, 2026
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Jun. 14, 2024	Jun. 13, 2026
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb. 26, 2026
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 14, 2024	Jun. 13, 2026
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 29, 2024	Aug. 28, 2025
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Attenuator	YINSAIGE	DC-18G 10dB	DC18G	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 29, 2024	Aug. 28, 2025
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 29, 2024	Aug. 28, 2025
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Aug. 29, 2024	Aug. 28, 2025

Report No.: TBR-C-202502-0171-33 Page: 14 of 65

Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 29, 2024	Aug. 28, 2025
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 29, 2024	Aug. 28, 2025
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 29, 2024	Aug. 28, 2025
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 29, 2024	Aug. 28, 2025
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

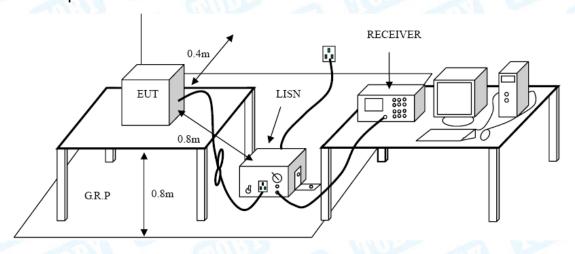
Page: 15 of 65

5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- ●The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- ●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 16 of 65

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 17 of 65

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz					
Frequency Field Strength Field Strength Measurement (MHz) (µA/m)* (microvolt/meter)** Distance (meter)					
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	Distance (meters)		
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30		
1.705~30.0	0.08	30	30		

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2, *is for RSS Standard, **is for FCC Standard.

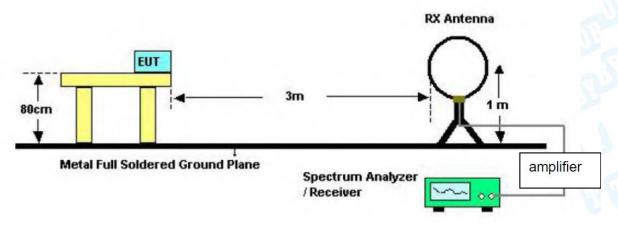
General field strength limits at frequencies above 30 MHz					
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

General field strength limits at frequencies Above 1000MHz				
Frequency Distance of 3m (dBuV/m)				
(MHz)	Peak	Average		
Above 1000	74	54		
Note				

Note:

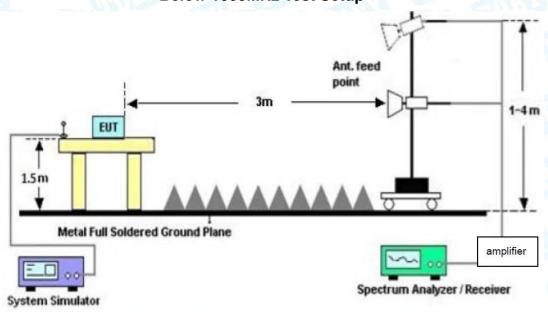
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



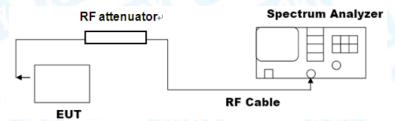
Page: 18 of 65

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 19 of 65

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 20 of 65

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Please refer to the Attachment B inside test report.

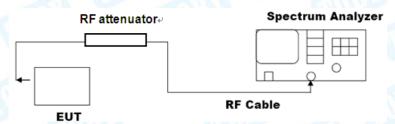
Conducted measurement please refer to the external appendix B.

Page: 21 of 65

7. Emissions in nonrestricted frequency bands

7.1 Test Standard and Limit

7.1.1 Test Standard


FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

Conducted measurement

7.3 Test Procedure

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ [3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Page: 22 of 65

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW ≥ [3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

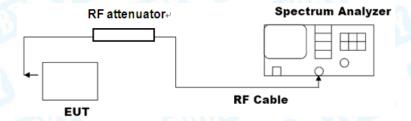
Please refer to the description of test mode.

7.6 Test Data

Page: 23 of 65

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit
-6dB bandwidth (DTS bandwidth)	>=500 KHz
99% occupied bandwidth	

8.2 Test Setup

8.3 Test Procedure

--- DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

Page: 24 of 65

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

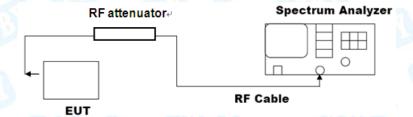
Please refer to the description of test mode.

8.6 Test Data

Page: 25 of 65

9. Peak Output Power

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit
Peak Output Power	not exceed 1 W or 30dBm
E.I.R.P	not exceed 4 W or 36dBm

9.2 Test Setup

9.3 Test Procedure

---RBW≥DTS bandwidth

● The following procedure shall be used when an instrument with a resolution bandwidth that is greater than

the DTS bandwidth is available to perform the measurement:

- a) Set the RBW≥DTS bandwidth.
- b) Set VBW≥[3*RBW].
- c) Set span≥[3*RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

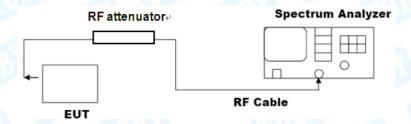
Please refer to the description of test mode.

9.6 Test Data

Page: 26 of 65

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit		
Power Spectral Density	8dBm(in any 3 kHz)		

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Page: 27 of 65

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

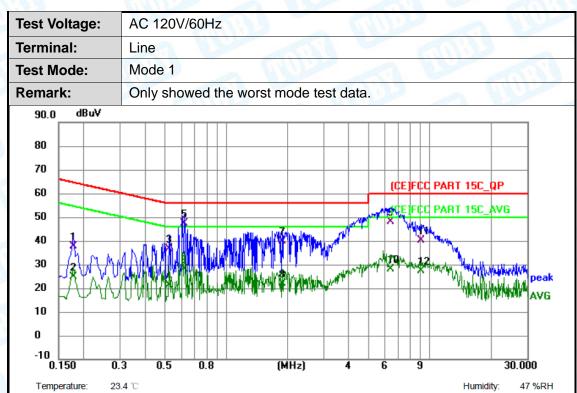
11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 3.5dBi, and the antenna de-signed with Unique connector antenna and consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a Dipole Antenna. It complies with the standard requirement.

Antenna Type	
Permanent attached antenna	
⊠Unique connector antenna	Mary Control
☐Professional installation antenna	



Page: 28 of 65

Humidity:

Attachment A-- Conducted Emission Test Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.177	28.23	9.55	37.78	64.63	-26.85	QP
2	0.177	15.18	9.55	24.73	54.63	-29.90	AVG
3	0.523	27.14	9.47	36.61	56.00	-19.39	QP
4	0.523	11.91	9.47	21.38	46.00	-24.62	AVG
5 *	0.623	37.78	9.47	47.25	56.00	-8.75	QP
6	0.623	18.43	9.47	27.90	46.00	-18.10	AVG
7	1.891	30.29	9.59	39.88	56.00	-16.12	QP
8	1.891	12.31	9.59	21.90	46.00	-24.10	AVG
9	6.432	38.56	9.64	48.20	60.00	-11.80	QP
10	6.432	18.34	9.64	27.98	50.00	-22.02	AVG
11	9.082	30.65	9.61	40.26	60.00	-19.74	QP
12	9.082	17.58	9.61	27.19	50.00	-22.81	AVG

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202502-0171-33 Page: 29 of 65

Humidity:

Test Voltage:	AC 120V/60Hz					
Terminal:	Neutral	eutral				
Test Mode:	Mode 1					
Remark:	Only showed the worst mode test data.					
90.0 dBuV						
80						
70						
60	(ÇEJFÇC PART 150	C_QP				
50	3 VICE FCC PART 15	C_AVG				
40	A R. A. T.					
30	BL PY P	the treatment of				
20		AVG				
10						
0						
-10 0.150 0.3	3 0.5 0.8 (MHz) 4 6 9	30.000				

No. N	Лк. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.398	33.81	9.47	43.28	57.90	-14.62	QP
2	0.398	19.77	9.47	29.24	47.90	-18.66	AVG
3	0.582	38.40	9.47	47.87	56.00	-8.13	QP
4	0.582	21.91	9.47	31.38	46.00	-14.62	AVG
5 *	0.627	42.70	9.48	52.18	56.00	-3.82	QP
6	0.627	25.29	9.48	34.77	46.00	-11.23	AVG
7	4.213	36.11	9.51	45.62	56.00	-10.38	QP
8	4.213	17.16	9.51	26.67	46.00	-19.33	AVG
9	6.045	41.59	9.55	51.14	60.00	-8.86	QP
10	6.045	21.15	9.55	30.70	50.00	-19.30	AVG
11	10.221	29.92	9.56	39.48	60.00	-20.52	QP
12	10.221	18.65	9.56	28.21	50.00	-21.79	AVG

Temperature:

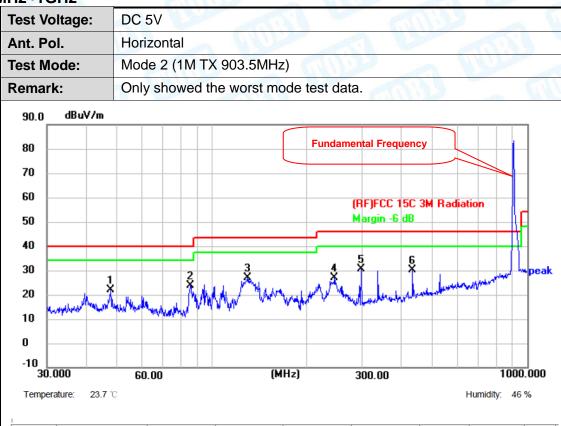
23.4 °C

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 30 of 65

Attachment B-- Unwanted Emissions Data

---Radiated Unwanted Emissions


9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.6586	46.12	-24.29	21.83	40.00	-18.17	peak	Р
2	85.2980	50.80	-27.06	23.74	40.00	-16.26	peak	Р
3	129.4677	50.04	-23.22	26.82	43.50	-16.68	peak	Р
4	245.0900	51.03	-23.97	27.06	46.00	-18.94	peak	Р
5 *	297.2241	51.85	-21.31	30.54	46.00	-15.46	peak	Р
6	432.5457	47.82	-17.51	30.31	46.00	-15.69	peak	Р

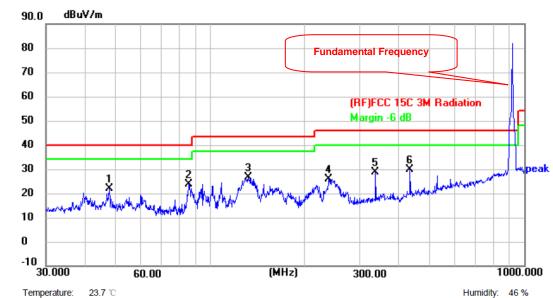
Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202502-0171-33 Page: 31 of 65

Test Voltage:	DC 5V						
Ant. Pol.	Vertical	rtical					
Test Mode:	Mode 2 (1M TX	de 2 (1M TX 903.5MHz)					
Remark:	Only showed th	nly showed the worst mode test data.					
90.0 dBuV/	m						
80		Fund	amental Frequency				
70							
60			(RF)FCC 15C 3M F	ladiation			
50			Margin -6 dB				
40	2 2		5 6	A			
30	uM. 4. M	\$	5 6 X X	peak			
20	I AND AND MAKE AND	My amy Hope and with	an han of a party of the old state of th	and what after the			
10							
0							
-10 30.000	60.00	(MHz)	300.00	1000.000			
	3.7 °C	()	300.00	Humidity: 46 %			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	40.2757	57.30	-23.55	33.75	40.00	-6.25	peak	Р
2 *	47.6586	60.08	-24.29	35.79	40.00	-4.21	peak	Р
3	60.0690	55.94	-24.46	31.48	40.00	-8.52	peak	Р
4	164.3301	47.00	-21.67	25.33	43.50	-18.17	peak	Р
5	432.5457	49.60	-17.51	32.09	46.00	-13.91	peak	Р
6	528.2458	47.97	-16.07	31.90	46.00	-14.10	peak	Р


- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 32 of 65

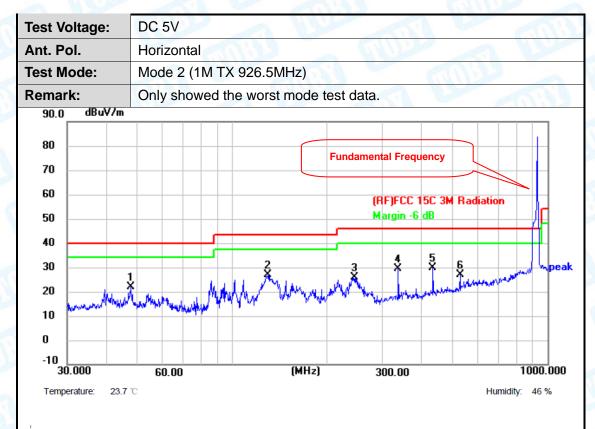
N.	Test Voltage:	DC 5V
	Ant. Pol.	Horizontal
	Test Mode:	Mode 2 (1M TX 915.5MHz)
	Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.8260	46.38	-24.26	22.12	40.00	-17.88	peak	Р
2	85.5977	50.74	-27.03	23.71	40.00	-16.29	peak	Р
3	132.2206	49.44	-22.85	26.59	43.50	-16.91	peak	Р
4	239.1473	49.88	-23.94	25.94	46.00	-20.06	peak	Р
5	336.0352	49.10	-20.52	28.58	46.00	-17.42	peak	Р
6 *	432.5457	47.38	-17.51	29.87	46.00	-16.13	peak	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202502-0171-33 Page: 33 of 65

est Voltage:	DC 5V							
nt. Pol.	Vertical	Vertical						
est Mode:	Mode 2 (1M TX 91	5.5MHz)		1313				
Remark:	Only showed the w	orst mode test	data.					
90.0 dBuV/m								
80 70		F	undamental Frequency					
50			(RF)FCC 15C 3M Ra Margin -6 dB	diation				
40 3								
30	4 4	4 ×	5 6 * *	peal				
20	hill NAT YARK, AKLAMARAN MAKAZA	was applicated and the second	May maken the land when	when the peal				
10		- "						
0								
-10 30.000	60.00	(MHz)	300.00	1000.000				


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	39.4371	57.42	-23.46	33.96	40.00	-6.04	peak	Р
2 *	47.8260	60.43	-24.26	36.17	40.00	-3.83	peak	Р
3	60.0691	55.73	-24.46	31.27	40.00	-8.73	peak	Р
4	156.4578	48.76	-21.91	26.85	43.50	-16.65	peak	Р
5	432.5457	48.31	-17.51	30.80	46.00	-15.20	peak	Р
6	528.2458	46.85	-16.07	30.78	46.00	-15.22	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 34 of 65

·								
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.6586	46.28	-24.29	21.99	40.00	-18.01	peak	Р
2	130.3789	50.07	-23.09	26.98	43.50	-16.52	peak	Р
3	245.9509	49.92	-24.01	25.91	46.00	-20.09	peak	Р
4	336.0352	50.14	-20.52	29.62	46.00	-16.38	peak	Р
5 *	432.5457	47.27	-17.51	29.76	46.00	-16.24	peak	Р
6	528.2458	43.02	-16.07	26.95	46.00	-19.05	peak	Р

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202502-0171-33 Page: 35 of 65

Test Voltage:	DC 5V						
Ant. Pol.	Vertical						
Test Mode:	Mode 2 (1M TX 926.5MHz)						
Remark:	Only showed the worst mode test data.						
90.0 dBuV/m							
80	Fundamental Frequency						
70							
60	(RF)FCC 15C 3M Radiation						
50	Margin -6 dB						
40	5 6						
30	3 5 6 peak						
20	The the things will be the transfer of the tra						
10							
0							
-10 30.000	60.00 (MHz) 300.00 1000.000						
Temperature: 23.7	Humidity: 46 %						

No	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	39.9941	57.08	-23.37	33.71	40.00	-6.29	peak	Р
2	* 47.8260	60.73	-24.26	36.47	40.00	-3.53	peak	Р
3	60.0691	55.95	-24.46	31.49	40.00	-8.51	peak	Р
4	147.9214	48.19	-21.23	26.96	43.50	-16.54	peak	Р
5	432.5457	49.15	-17.51	31.64	46.00	-14.36	peak	Р
6	528.2458	47.53	-16.07	31.46	46.00	-14.54	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202502-0171-33 Page: 36 of 65

Test Voltage:	DC 5V							
Ant. Pol.	Horizontal							
Test Mode:	Mode 2 (2M TX 905MHz)							
Remark:	Only showed the worst mode test data.							
90.0 dBuV/m								
80	Fundamental Frequency							
70								
60	(RF)FCC 15C 3M Radiation							
50	Margin -6 dB							
40								
30	2 3 4 5 6 pp							
20	Man							
10	WATCH COLORS TO THE COLORS TO							
0								
-10								
30.000	60.00 (MHz) 300.00 1000.000							
Temperature: 23.7	Humidity: 46 %							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.8260	46.14	-24.26	21.88	40.00	-18.12	peak	Р
2	128.5630	49.40	-23.28	26.12	43.50	-17.38	peak	Р
3	239.1473	49.75	-23.94	25.81	46.00	-20.19	peak	Р
4	336.0352	48.63	-20.52	28.11	46.00	-17.89	peak	Р
5 *	432.5457	47.06	-17.51	29.55	46.00	-16.45	peak	Р
6	528.2458	43.27	-16.07	27.20	46.00	-18.80	peak	Р

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202502-0171-33 Page: 37 of 65

Test V	/oltage:	DC 5V				
Ant. P	ol.	Vertical	11:35	THE PARTY OF THE P		P. D.
Test N	/lode:	Mode 2 (2M T	X 905MHz)			
Rema	rk:	Only showed t	he worst mode t	est data.	1300	
90.0	dBuV/m					
80				Fundamental Fred	quency	
70						
60				(RF)FCC 1!	5C 3M Radiation	
50				Margin -6 d		
40	1 7	3		- 	5 6	+
30	ManA	14 M. J	4		5 6 X X	peak
20	Real House	JA W AW AW	half the second of the second	May	Marine Marine Marine	
10						
0						
-10 30	D.000	60.00	(MHz)	300.00		1000.000
Temp	erature: 23.7 °C	С			Humid	lity: 46 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	40.2756	57.16	-23.55	33.61	40.00	-6.39	peak	Р
2 *	47.6584	61.24	-24.29	36.95	40.00	-3.05	peak	Р
3	60.0691	56.16	-24.46	31.70	40.00	-8.30	peak	Р
4	156.4577	49.26	-21.91	27.35	43.50	-16.15	peak	Р
5	432.5456	49.29	-17.51	31.78	46.00	-14.22	peak	Р
6	528.2458	47.51	-16.07	31.44	46.00	-14.56	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

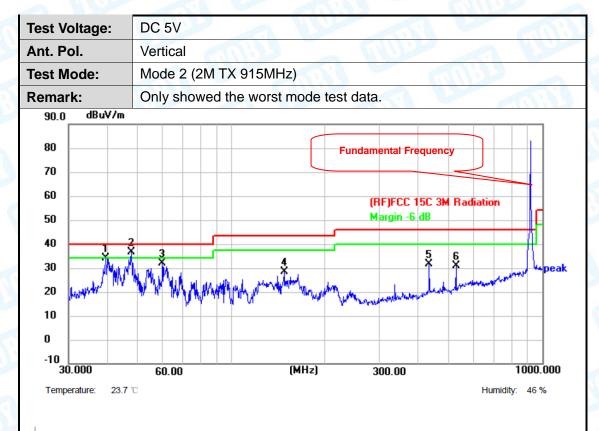
Report No.: TBR-C-202502-0171-33 Page: 38 of 65

Humidity: 46 %

Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	Mode 2 (2M TX 915MHz)	333	
Remark:	Only showed the worst mode test data.		118
90.0 dBuV/m			_
80	Fundamental Frequency		
70	r undumental requestoy		
60	(RF)FCC 15C 3M R	adiation	
50	Margin -6 dB		ď
40			Н
30	3 4 5 6 1 2 3 X		peal
20	to a la Maria de la companya de la c	Children with the state of the	_
10 Jahrania Mar	Mary Mary Mary Mary Mary Mary Mary Mary		_
0			_
-10 30.000	60.00 (MHz) 300.00	100	00.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.6584	46.91	-24.29	22.62	40.00	-17.38	peak	Р
2	94.4282	50.59	-26.13	24.46	43.50	-19.04	peak	Р
3	129.4677	49.59	-23.22	26.37	43.50	-17.13	peak	Р
4	245.0900	50.74	-23.97	26.77	46.00	-19.23	peak	Р
5	336.0351	50.10	-20.52	29.58	46.00	-16.42	peak	Р
6 *	432.5456	47.78	-17.51	30.27	46.00	-15.73	peak	Р

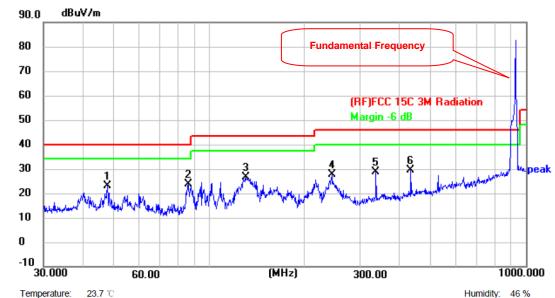
Temperature:


23.7 ℃

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 39 of 65

	1							
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1!	39.4371	57.71	-23.46	34.25	40.00	-5.75	peak	Р
2 *	47.8260	60.99	-24.26	36.73	40.00	-3.27	peak	Р
3	60.0691	56.56	-24.46	32.10	40.00	-7.90	peak	Р
4	147.9214	49.79	-21.23	28.56	43.50	-14.94	peak	Р
5	432.5456	49.18	-17.51	31.67	46.00	-14.33	peak	Р
6	528.2458	47.13	-16.07	31.06	46.00	-14.94	peak	Р


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 40 of 65

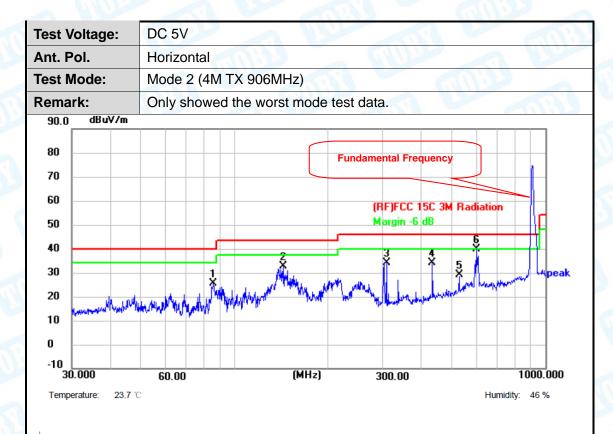
Test Voltage:	DC 5V								
Ant. Pol.	Horizontal								
Test Mode:	Test Mode: Mode 2 (2M TX 925MHz)								
Remark:	Only showed the worst mode test data.								
90.0 dBuV/m									
80	Fundamental Frequency								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	47.8260	47.19	-24.26	22.93	40.00	-17.07	peak	Р
2 *	85.8983	50.67	-26.99	23.68	40.00	-16.32	peak	Р
3	130.3790	49.61	-23.09	26.52	43.50	-16.98	peak	Р
4	244.2321	51.53	-23.95	27.58	46.00	-18.42	peak	Р
5	336.0351	49.36	-20.52	28.84	46.00	-17.16	peak	Р
6	432.5456	47.10	-17.51	29.59	46.00	-16.41	peak	Р

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202502-0171-33 Page: 41 of 65

Test Voltage:	DC 5V
Ant. Pol.	Vertical
Test Mode:	Mode 2 (2M TX 925MHz)
Remark:	Only showed the worst mode test data.
90.0 dBuV/m	
80	Fundamental Frequency
70	
60	(RF)FCC 15C 3M Radiation
50	Margin -6 dB
40 3 3	
30	3 4 5 6 peak
20 July 100 100 100 100 100 100 100 100 100 10	The Mark Mark Mark Mark Mark Mark Mark Mark
10	
0	
-10 30.000	60.00 (MHz) 300.00 1000.000
Temperature: 23.7	C Humidity: 46 %


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1!	39.4371	58.47	-23.46	35.01	40.00	-4.99	peak	Р
2 *	47.6584	60.88	-24.29	36.59	40.00	-3.41	peak	Р
3	60.0691	55.87	-24.46	31.41	40.00	-8.59	peak	Р
4	147.9214	49.21	-21.23	27.98	43.50	-15.52	peak	Р
5	432.5456	49.17	-17.51	31.66	46.00	-14.34	peak	Р
6	528.2458	46.65	-16.07	30.58	46.00	-15.42	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

42 of 65 Page:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	85.5973	52.58	-27.03	25.55	40.00	-14.45	peak	Р
2	143.3261	54.61	-21.85	32.76	43.50	-10.74	peak	Р
3	308.9126	55.13	-20.86	34.27	46.00	-11.73	peak	Р
4	432.5457	51.77	-17.51	34.26	46.00	-11.74	peak	Р
5	528.2458	45.05	-16.07	28.98	46.00	-17.02	peak	Р
6 *	601.4265	53.69	-13.83	39.86	46.00	-6.14	peak	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202502-0171-33 Page: 43 of 65

Test Voltage:	DC 5V			Vision 1	
Ant. Pol.	Vertical				
Test Mode:	Mode 2 (4M TX	906MHz)			
Remark:	Only showed th	e worst mode test	t data.		
90.0 dBuV/m					
80		F	Fundamental Frequer	псу	
70					
60			(RF)FCC 15C 3	M Radiation	
50			Margin -6 dB	- Tradiation	<u> </u>
40	<u> </u>	4	5 X	6	\mathbb{H}
30	Manufacture of the Manufacture o	May be a second		6 ×	peak
20	JAN AMANA AMANA AMANA	AND ANTHON	HAND THE WASHINGTON TO SERVE THE PARTY OF TH	halman sagara	+
10					
0					+
-10 30.000	60.00	(MHz)	300.00		1000.000
Temperature: 23.7	℃			Humidity:	46 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	47.8260	62.41	-24.26	38.15	40.00	-1.85	peak	Р
2!	62.2128	59.99	-25.10	34.89	40.00	-5.11	peak	Р
3	94.4282	56.38	-26.13	30.25	43.50	-13.25	peak	Р
4	141.3298	57.82	-22.04	35.78	43.50	-7.72	peak	Р
5	432.5457	52.10	-17.51	34.59	46.00	-11.41	peak	Р
6	528.2458	48.80	-16.07	32.73	46.00	-13.27	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202502-0171-33 Page: 44 of 65

est Voltage:	DC 5V				
nt. Pol.	Horizontal				
est Mode:	Mode 2 (4M T)	X 914MHz)	10	ANS !	
Remark:	Only showed t	he worst mode t	est data.		
90.0 dBuV/m					
80			Fundamental Fre	quanay	
70			rundamentai Fre	quency	
60			(DE)Ecc :	ISC 3M Radiation	
50			Margin -6		<u>' [[d</u>
40				- \$	
30	1	2 X	3 * 4	5 X	peak
20	Ž.	A AND WALLEY MAN TO SEE THE SEE SEE SEE SEE SEE SEE SEE SEE SEE S	Mary Mary Mary Mary Mary Mary Mary Mary	the state of marine	- Park
10	ramandry has ald half half this	M. Liva	A Abanaga		
0					
-10 30.000	60.00	(MHz)	300.00		1000.000
Temperature: 23.7				Hum	nidity: 46 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	85.8984	52.06	-26.99	25.07	40.00	-14.93	peak	Р
2	147.9214	51.02	-21.23	29.79	43.50	-13.71	peak	Р
3	213.0151	53.27	-24.44	28.83	43.50	-14.67	peak	Р
4	336.0350	47.09	-20.52	26.57	46.00	-19.43	peak	Р
5	432.5457	49.26	-17.51	31.75	46.00	-14.25	peak	Р
6 *	580.7026	54.78	-14.34	40.44	46.00	-5.56	peak	Р

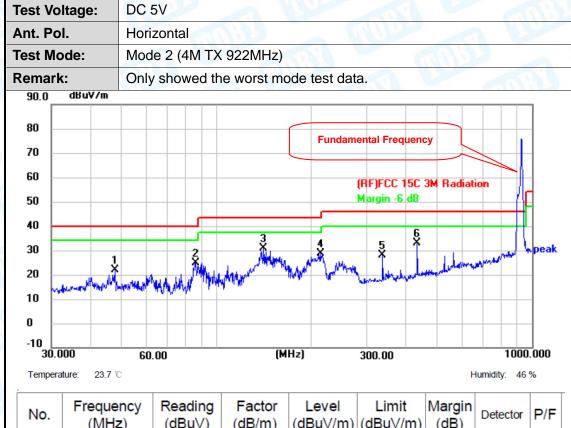
- Remark:

 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202502-0171-33 Page: 45 of 65

Test Voltage:	DC 5V				
Ant. Pol.	Vertical	11:32	CHILL		PHO S
Test Mode:	Mode 2 (4M TX	(914MHz)		anss	
Remark:	Only showed th	ne worst mode te	est data.		MAD !
90.0 dBuV/m					
80			Fundamental Frequ	uency	
70					4
60			(RF)FCC 15	5C 3M Radiation	+H
50			Margin -6 d		
40	3	3	-	× 6	+-{\}
30	Manufacture of the sales	I I. JAMANA	, , , , ,	T A	peak
20	Jahr M. Johnson Market A.	My Mark 1 . July	and the happy of the sample was pro-	A A A A A A A A A A A A A A A A A A A	+
10					
0					+++
-10 30.000	60.00	(MHz)	300.00		1000.000
Temperature: 23.7	°C			Humid	lity: 46 %


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	47.6584	62.40	-24.29	38.11	40.00	-1.89	peak	Р
2	60.0691	58.39	-24.46	33.93	40.00	-6.07	peak	Р
3	138.3873	57.66	-22.81	34.85	43.50	-8.65	peak	Р
4	336.0350	46.83	-20.52	26.31	46.00	-19.69	peak	Р
5	432.5456	51.49	-17.51	33.98	46.00	-12.02	peak	Р
6	528.2458	48.37	-16.07	32.30	46.00	-13.70	peak	Р

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 46 of 65

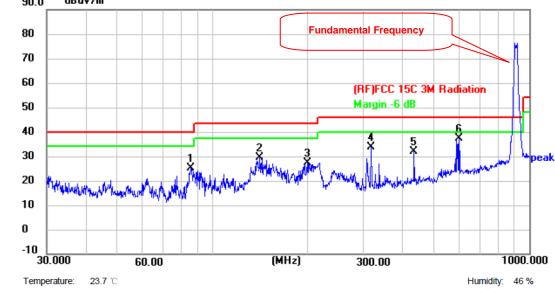
N	10.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
	1	47.6584	46.15	-24.29	21.86	40.00	-18.14	peak	Р
	2	85.8983	51.94	-26.99	24.95	40.00	-15.05	peak	Р
3	3 *	141.3296	52.86	-22.04	30.82	43.50	-12.68	peak	Р
4	4	213.7634	53.27	-24.53	28.74	43.50	-14.76	peak	Р
	5	336.0350	48.61	-20.52	28.09	46.00	-17.91	peak	Р
(6	432.5456	50.49	-17.51	32.98	46.00	-13.02	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202502-0171-33 Page: 47 of 65

1		50.514	114			
Test	Voltage:	DC 5V				
Ant. I	Pol.	Vertical	11:33	CHILL'S		Alle
Test	Mode:	Mode 2 (4M T	X 922MHz)			
Rema	ark:	Only showed t	he worst mode	test data.	630	
90.0	dBuV/m					
80				Fundamental Frequ	ency	
70						
60				(RE)ECC 1	5C 3M Radiation	
50				Margin -6		
40	1	3	3		\$ 6 *	
30		And the second second second second	L. Marine	4 *	T X	peak
20	popular de	und of the Match Match	VANYA I. AN	Mary John Mary Mary Mary Mary Mary Mary Mary Mary	A LANGE OF THE PARTY OF THE PAR	
10						+++
0						
-10 30	0.000	60.00	(MHz)	300.00		1000.000
Temp	perature: 23.7 °C				Humid	dity: 46 %

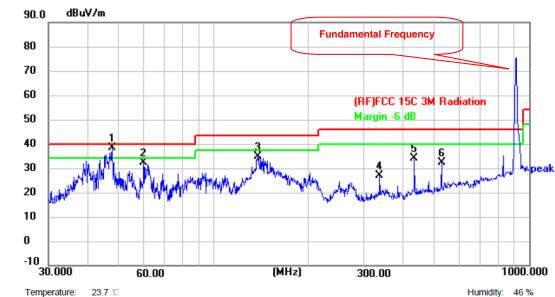
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	47.8260	62.78	-24.26	38.52	40.00	-1.48	peak	Р
2	62.2128	59.09	-25.10	33.99	40.00	-6.01	peak	Р
3	141.3296	56.80	-22.04	34.76	43.50	-8.74	peak	Р
4	336.0350	46.17	-20.52	25.65	46.00	-20.35	peak	Р
5	432.5456	52.19	-17.51	34.68	46.00	-11.32	peak	Р
6	528.2458	48.13	-16.07	32.06	46.00	-13.94	peak	Р


- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 48 of 65

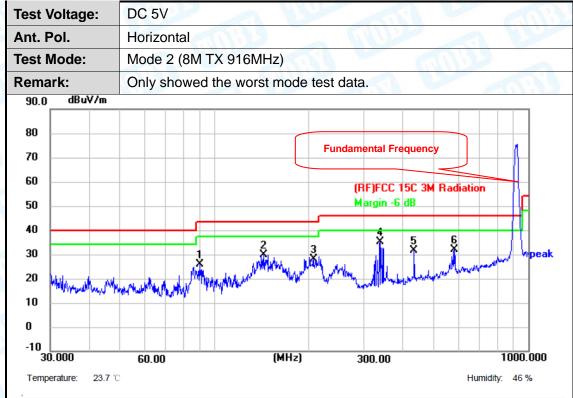
Test Voltage:	DC 5V
Ant. Pol.	Horizontal
Test Mode:	Mode 2 (8M TX 908MHz)
Remark:	Only showed the worst mode test data.
90.0 dBuV/m	1
80	Fundamental Frequency
70	
co l	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	85.5974	52.30	-27.03	25.27	40.00	-14.73	peak	Р
2	141.3296	51.65	-22.04	29.61	43.50	-13.89	peak	Р
3	199.2855	51.69	-24.53	27.16	43.50	-16.34	peak	Р
4	316.5890	54.36	-20.46	33.90	46.00	-12.10	peak	Р
5	432.5456	49.65	-17.51	32.14	46.00	-13.86	peak	Р
6 *	599.3212	51.22	-13.98	37.24	46.00	-8.76	peak	Р


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 49 of 65

Test Voltage:	DC 5V
Ant. Pol.	Vertical
Test Mode:	Mode 2 (8M TX 908MHz)
Remark:	Only showed the worst mode test data.
90.0 dBuV/m	Fundamental Frequency


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	47.6584	62.64	-24.29	38.35	40.00	-1.65	peak	Р
2	60.0691	56.72	-24.46	32.26	40.00	-7.74	peak	Р
3	138.3873	57.71	-22.81	34.90	43.50	-8.60	peak	Р
4	336.0350	47.36	-20.52	26.84	46.00	-19.16	peak	Р
5	432.5456	51.66	-17.51	34.15	46.00	-11.85	peak	Р
6	528.2458	48.55	-16.07	32.48	46.00	-13.52	peak	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 50 of 65

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	90.2202	52.87	-26.86	26.01	43.50	-17.49	peak	Р
2	143.3260	51.68	-21.85	29.83	43.50	-13.67	peak	Р
3	207.1225	52.27	-24.23	28.04	43.50	-15.46	peak	Р
4 *	337.2155	55.65	-20.50	35.15	46.00	-10.85	peak	Р
5	432.5456	49.14	-17.51	31.63	46.00	-14.37	peak	Р
6	582.7424	46.37	-14.33	32.04	46.00	-13.96	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202502-0171-33 Page: 51 of 65

est Voltage:	DC 5V	A WW		
nt. Pol.	Vertical	U.B	Chine	
est Mode:	Mode 2 (8M T	X 916MHz)		
lemark:	Only showed	the worst mode test	data.	
90.0 dBuV/	m			
80		Fu	ndamental Frequency	
70				
60			(RF)FCC 15C 3M F	ladiation
50	_	_	Margin -6 dB	<u> </u>
40	2 3 3	4 ×	5 S	
30	AND THE WALL OF THE PARTY OF TH	A DEPTH AND A DEPT	× 6	My "pea
20		WHO I THE THE THE	hipportania phone and a second	War Talk Cale Care
10		-		
0				
-10 30.000	60.00	(MHz)	300.00	1000.000
Temperature: 2	3.7 °C			Humidity: 46 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	39.4371	56.77	-23.46	33.31	40.00	-6.69	peak	Р
2 *	47.6584	62.86	-24.29	38.57	40.00	-1.43	peak	Р
3!	62.2128	59.67	-25.10	34.57	40.00	-5.43	peak	Р
4	139.3613	58.19	-22.74	35.45	43.50	-8.05	peak	Р
5	432.5457	52.19	-17.51	34.68	46.00	-11.32	peak	Р
6	528.2458	48.21	-16.07	32.14	46.00	-13.86	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202502-0171-33 Page: 52 of 65

Test '	Voltage:	DC 5V			
Ant. I	Pol.	Horizontal			7
Test	Mode:	Mode 2 (8M TX	(924MHz)		11/33
Rema	ark:	Only showed th	ne worst mode te	est data.	
90.0	dBuV/m				
80				Fundamental Frequency	
70					
60				(RF)FCC 15C 3N	Radiation
50				Margin -6 dB	
40					6 ×
30		1	2	3 4 5 * * *	peak
20	Hillian Hample Control	AND THE REPORT OF THE PARTY OF	Application of the property of	" moderate manufacture.	al a manus man to a peak
10	1444 344	4 16 AL 16 .			
0					
-10 3	0.000	60.00	(MHz)	300.00	1000.000
Temp	perature: 23.7 °C				Humidity: 46 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	85.2980	52.40	-27.06	25.34	40.00	-14.66	peak	Р
2	141.3296	50.51	-22.04	28.47	43.50	-15.03	peak	Р
3	216.0240	53.60	-24.62	28.98	46.00	-17.02	peak	Р
4	369.4047	49.69	-19.80	29.89	46.00	-16.11	peak	Р
5	432.5456	48.51	-17.51	31.00	46.00	-15.00	peak	Р
6 *	570.6100	51.94	-14.28	37.66	46.00	-8.34	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202502-0171-33 Page: 53 of 65

Test \	Voltage:	DC 5V			
Ant. F	Pol.	Vertical	11:32	Million	
Test I	Mode:	Mode 2 (8M T)	(924MHz)		U.D.
Rema	ark:	Only showed th	ne worst mode t	est data.	
90.0	dBuV/m				
80 70				Fundamental Frequency	
60 50	2			(RF)FCC 15C 3 Margin -6 dB	M Radiation
40 30			, , , , , , , , , , , , , , , , , , ,	×	6 × mpeak
20 10	J. 1840"" ""	JAN 14 HALINAMANA	KWA(K) ^{III} IIII	My Marthy was made	habro Branch Drophily and
0					
	0.000 perature: 23.7 °C	60.00	(MHz)	300.00	1000.000 Humidity: 46 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	39.5757	57.18	-23.43	33.75	40.00	-6.25	peak	Р
2 *	47.8260	62.52	-24.26	38.26	40.00	-1.74	peak	Р
3	62.2128	59.06	-25.10	33.96	40.00	-6.04	peak	Р
4	139.3611	58.51	-22.74	35.77	43.50	-7.73	peak	Р
5	432.5456	51.88	-17.51	34.37	46.00	-11.63	peak	Р
6	528.2458	47.76	-16.07	31.69	46.00	-14.31	peak	Р

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 54 of 65

Above 1GHz

Only showed the worst mode test data.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	1M TX 903.5MHz		2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1807.000	72.81	-17.42	55.39	74.00	-18.61	peak	Р
2 *	1807.000	63.39	-17.42	45.97	54.00	-8.03	AVG	Р
3	9440.500	45.92	6.16	52.08	74.00	-21.92	peak	Р

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	70	
Test Mode:	1M TX 903.5MHz		THU

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	1816.000	63.52	-17.06	46.46	74.00	-27.54	peak	Р
2 *	9364.000	47.22	5.41	52.63	74.00	-21.37	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 55 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal	$u_{\Omega} = u_{\Omega}$	
Test Mode:	1M TX 915.5MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	1841.500	68.21	-16.01	52.20	74.00	-21.80	peak	Р
2 *	9491.500	46.02	6.44	52.46	74.00	-21.54	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		All of the second
Test Mode:	1M TX 915.5MHz	(1)	CATA.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	1841.500	61.44	-16.01	45.43	74.00	-28.57	peak	Р
2 *	9491.500	44.94	6.44	51.38	74.00	-22.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 56 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	1M TX 926.5MHz		WILLIAM STATE

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	1867.000	66.03	-15.99	50.04	74.00	-23.96	peak	Р
2 *	9466.000	45.68	6.35	52.03	74.00	-21.97	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	1M TX 926.5MHz		THUL

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9415.000	45.95	5.76	51.71	74.00	-22.29	peak	Р
2	14846.500	40.69	10.07	50.76	74.00	-23.24	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 57 of 65

Temperature:	23.7°C	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		
Test Mode:	2M TX 905MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	1816.000	69.88	-17.06	52.82	74.00	-21.18	peak	Р
2	3524.500	58.01	-11.02	46.99	74.00	-27.01	peak	Р
3	9466.000	45.30	6.35	51.65	74.00	-22.35	peak	Р

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	2M TX 905MHz	2017	MULL

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1816.000	62.27	-17.06	45.21	74.00	-28.79	peak	Р
2 *	9415.000	45.91	5.76	51.67	74.00	-22.33	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 58 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		COV.
Ant. Pol.	Horizontal		
Test Mode:	2M TX 915MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	1841.500	68.67	-16.01	52.66	74.00	-21.34	peak	Р
2	3397.000	57.84	-11.20	46.64	74.00	-27.36	peak	Р
3	9440.500	45.83	6.16	51.99	74.00	-22.01	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		M. Co.
Test Mode:	2M TX 915MHz		LINE.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3524.500	57.25	-11.02	46.23	74.00	-27.77	peak	Р
2 *	9466.000	45.79	6.35	52.14	74.00	-21.86	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 59 of 65

Temperature:	23.7°C	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		District Control
Test Mode:	2M TX 925MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1841.500	67.40	-16.01	51.39	74.00	-22.61	peak	Р
2	3422.500	60.95	-11.16	49.79	74.00	-24.21	peak	Р
3 *	9338.500	46.55	5.00	51.55	74.00	-22.45	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	2M TX 925MHz		THU

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	1841.500	60.92	-16.01	44.91	74.00	-29.09	peak	Р
2 *	9415.000	45.76	5.76	51.52	74.00	-22.48	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value.

Page: 60 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal	and the same	
Test Mode:	4M TX 906MHz	W C	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	1816.000	66.14	-17.06	49.08	74.00	-24.92	peak	Р
2 *	9364.000	46.05	5.41	51.46	74.00	-22.54	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V	Millian	
Ant. Pol.	Vertical		
Test Mode:	4M TX 906MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9491.500	44.89	6.44	51.33	74.00	-22.67	peak	Р
2	15203.500	40.06	10.00	50.06	74.00	-23.94	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 61 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		OV.
Ant. Pol.	Horizontal	THE STATE OF	
Test Mode:	4M TX 914MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1816.000	61.06	-17.06	44.00	74.00	-30.00	peak	Р
2	2734.000	59.71	-12.99	46.72	74.00	-27.28	peak	Р
3 *	9440.500	46.79	6.16	52.95	74.00	-21.05	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	THE STATE OF THE S	N. Co.
Test Mode:	4M TX 914MHz		LINE CONTRACTOR

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	9491.500	45.93	6.44	52.37	74.00	-21.63	peak	Р
2	14821.000	40.26	10.01	50.27	74.00	-23.73	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 62 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal	The state of	
Test Mode:	4M TX 922MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1841.500	61.24	-16.01	45.23	74.00	-28.77	peak	Р
2	3499.000	59.46	-11.32	48.14	74.00	-25.86	peak	Р
3 *	9415.000	46.95	5.76	52.71	74.00	-21.29	peak	Р

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	4M TX 922MHz	THE PARTY OF	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	9415.000	46.42	5.76	52.18	74.00	-21.82	peak	Р
2	15101.500	40.63	9.74	50.37	74.00	-23.63	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 63 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		100
Test Mode:	8M TX 908MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1816.000	67.42	-17.06	50.36	74.00	-23.64	peak	Р
2	3422.500	61.28	-11.16	50.12	74.00	-23.88	peak	Р
3 *	9440.500	46.26	6.16	52.42	74.00	-21.58	peak	Р

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	8M TX 908MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9619.000	46.19	5.85	52.04	74.00	-21.96	peak	Р
2	14948.500	41.54	9.87	51.41	74.00	-22.59	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 64 of 65

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		TO VICE
Ant. Pol.	Horizontal	THE CALL	
Test Mode:	8M TX 916MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1841.500	67.02	-16.01	51.01	74.00	-22.99	peak	Р
2 *	9440.500	48.00	6.16	54.16	74.00	-19.84	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		N. Co.
Test Mode:	8M TX 916MHz		LINE CONTRACTOR

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9389.500	46.48	5.50	51.98	74.00	-22.02	peak	Р
2	14923.000	41.28	10.02	51.30	74.00	-22.70	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 65 of 65

1	Temperature:	23.7℃	Relative Humidity:	46%
	Test Voltage:	DC 5V		
	Ant. Pol.	Horizontal		
	Test Mode:	8M TX 924MHz		

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
140.	(MHz)	(dBuV) (dB/m)	(dBuV/m)	(dBu√/m)	(dB)	Detector	''	
1	1841.500	64.03	-16.01	48.02	74.00	-25.98	peak	Р
2 *	9644.500	46.99	5.21	52.20	74.00	-21.80	peak	Р

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	8M TX 924MHz		THU

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9440.500	46.04	6.16	52.20	74.00	-21.80	peak	Р
2	14872.000	41.89	10.11	52.00	74.00	-22.00	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

----END OF THE REPORT-----

