

FCC Measurement/Technical Report on

INFO3 CSM MY18 HIGH

FCC ID: 2AHPN-BE2828 IC: 6434C-BE2828

Test Report Reference: MDE_HARMAN_1621_FCCc

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1 Applied Standards and Test Summary	4
1.1 Applied Standards	4
1.2 FCC-IC Correlation Table	5
1.3 Measurement Summary / Signatures	5
2 Administrative Data	12
2.1 Testing Laboratory	12
2.2 Project Data	12
2.3 Applicant Data	12
2.4 Manufacturer Data	12
3 Test object Data	13
3.1 General EUT Description	13
3.2 EUT Main components	13
3.3 Ancillary Equipment	14
3.4 Auxiliary Equipment	15
3.5 EUT Setups	15
3.6 Operating Modes	15
3.7 Product labelling	16
4 Test Results	17
4.1 26 dB Bandwidth	17
4.2 6 dB Bandwidth	21
4.3 99 % Bandwidth	24
4.4 Maximum Conducted Output Power	28
4.5 Peak Power Spectral Density	33
4.6 Undesirable Emissions; General Field Strength Limits	37
4.7 Band Edge	45
5 Test Equipment	49
6 Antenna Factors, Cable Loss and Sample Calculations	51
6.1 LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	51
6.2 Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	52
6.3 Antenna R&S HL562 (30 MHz – 1 GHz)	53
6.4 Antenna R&S HF907 (1 GHz – 18 GHz)	54
6.5 Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	55
6.6 Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	56
7 Setup Drawings	57
8 Measurement Uncertainties	58

9 Photo Report

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-15 Edition) and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- Part 15, Subpart E Unlicensed National Information Infrastructure Devices
- § 15.403 Definitions
- § 15.407 General technical requirements

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02 General U-NII Test Procedures v01r03, 2016-08-22".

ANSI C63.10-2013 is applied.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules") is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for UNII / LE-LAN (e.g. WLAN 5 GHz) equipment from FCC and IC

UNII equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.403 (i) (26 dB) / § 15.407 (e) (6 dB)	RSS-247 Issue 1: 6.2.1 (1), 6.2.2 (1), 6.2.3 (1) (99%) RSS-247 Issue 1: 6.2.4 (1) (6 dB)
Maximum conducted output power	§ 15.407 (a) (1),(2),(3),(4)	RSS-247 Issue 1: : 6.2.1 (1), 6.2.2 (1), 6.2.3 (1), 6.2.4 (1)
Maximum power spectral density	§ 15.407 (a) (1),(2),(3),(5)	RSS-247 Issue 1: : 6.2.1 (1), 6.2.2 (1), 6.2.3 (1), 6.2.4 (1)
Transmitter undesirable emissions; General Field Strength Limits, Restricted Bands	15.407 (b) § 15.209 (a)	RSS-Gen Issue 4: 6.13/8.9/8.10; RSS-247 Issue 1: : 6.2.1 (2), 6.2.2 (2), 6.2.3 (2), 6.2.4 (2)
Frequency stability	§ 15.407 (g)	RSS-Gen Issue 4: 6.11/8.11
Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	§ 15.407 (h)	RSS-247 Issue 1: 6.2.2 (1), 6.2.3 (1), 6.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407 26 dB Bandwidth

FCC §15.31, §15.403 (i)

26 dB Bandwidth The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency, Subband	Setup	FCC	IC
WLAN ac 20 MHz, mid, U-NII-1	setup_AB01	Passed	N/A
WLAN n 20 MHz, high, U-NII-3	setup_AB01	Passed	N/A
WLAN n 20 MHz, high, U-NII-1	setup_AB01	Passed	N/A
WLAN a, low, U-NII-1	setup_AB01	Passed	N/A
WLAN a, low, U-NII-3	setup_AB01	Passed	N/A
WLAN n 40 MHz, low, U-NII-3	setup_AB01	Passed	N/A
WLAN ac 20 MHz, low, U-NII-1	setup_AB01	Passed	N/A
WLAN n 40 MHz, high, U-NII-1	setup_AB01	Passed	N/A
WLAN a, high, U-NII-1	setup_AB01	Passed	N/A
WLAN ac 20 MHz, high, U-NII-3	setup_AB01	Passed	N/A
WLAN n 40 MHz, low, U-NII-1	setup_AB01	Passed	N/A
WLAN a, mid, U-NII-3	setup_AB01	Passed	N/A
WLAN a, mid, U-NII-1	setup_AB01	Passed	N/A
WLAN n 20 MHz, mid, U-NII-3	setup_AB01	Passed	N/A
WLAN n 20 MHz, low, U-NII-1	setup_AB01	Passed	N/A
WLAN ac 40 MHz, high, U-NII-3	setup_AB01	Passed	N/A
WLAN ac 40 MHz, high, U-NII-1	setup_AB01	Passed	N/A
WLAN n 20 MHz, mid, U-NII-1	setup_AB01	Passed	N/A
WLAN ac 40 MHz, low, U-NII-1	setup_AB01	Passed	N/A
WLAN ac 80 MHz, mid, U-NII-1	setup_AB01	Passed	N/A
WLAN ac 20 MHz, mid, U-NII-3	setup_AB01	Passed	N/A
WLAN ac 20 MHz, low, U-NII-3	setup_AB01	Passed	N/A
WLAN ac 80 MHz, mid, U-NII-3	setup_AB01	Passed	N/A
WLAN n 40 MHz, high, U-NII-3	setup_AB01	Passed	N/A
WLAN a, high, U-NII-3	setup_AB01	Passed	N/A
WLAN ac 20 MHz, high, U-NII-1	setup_AB01	Passed	N/A
WLAN ac 40 MHz, low, U-NII-3	setup_AB01	Passed	N/A
WLAN n 20 MHz, low, U-NII-3	setup_AB01	Passed	N/A

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

6 dB Bandwidth The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency, Subband

WLAN n 40 MHz, low, U-NII-3 WLAN n 40 MHz, high, U-NII-3 WLAN n 20 MHz, low, U-NII-3 WLAN a, mid, U-NII-3 FCC §15.31, §15.407 (e)

SetupFCCICsetup_AB01PassedPassedsetup_AB01PassedPassedsetup_AB01PassedPassedsetup_AB01PassedPassed

Final Result

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

Radio Technology, Operating Frequency, Subband

WLAN ac 80 MHz, mid, U-NII-3 WLAN ac 20 MHz, mid, U-NII-3 WLAN ac 20 MHz, high, U-NII-3

WLAN n 20 MHz, high, U-NII-3 WLAN ac 40 MHz, low, U-NII-3 WLAN ac 40 MHz, high, U-NII-3 WLAN n 20 MHz, mid, U-NII-3 WLAN ac 20 MHz, low, U-NII-3

WLAN a, high, U-NII-3

WLAN a, low, U-NII-3

OP-Mode

FCC §15.31, §15.407 (e)

6 dB Bandwidth The measurement was performed according to ANSI C63.10

3.10	Final Result		
Setup	FCC	IC	
setup_AB01	Passed	Passed	

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407 99 % Bandwidth

FCC §15.31, IC RSS 247 Ch. 6.2.x

The measurement was performed according to ANSI	C63.10	Final R	lesult
OP-Mode Radio Technology, Operating Frequency, Subband	Setup	FCC	IC
WLAN ac 40 MHz, low, U-NII-3	setup_AB01	N/A	Passed
WLAN ac 20 MHz, mid, U-NII-1	setup_AB01	N/A	Passed
WLAN a, low, U-NII-3	setup_AB01	N/A	Passed
WLAN n 20 MHz, high, U-NII-3	setup_AB01	N/A	Passed
WLAN n 20 MHz, mid, U-NII-1	setup_AB01	N/A	Passed
WLAN n 40 MHz, high, U-NII-1	setup_AB01	N/A	Passed
WLAN n 20 MHz, low, U-NII-1	setup_AB01	N/A	Passed
WLAN a, low, U-NII-1	setup_AB01	N/A	Passed
WLAN a, high, U-NII-3	setup_AB01	N/A	Passed
WLAN n 20 MHz, low, U-NII-3	setup_AB01	N/A	Passed
WLAN ac 20 MHz, high, U-NII-1	setup_AB01	N/A	Passed
WLAN ac 20 MHz, low, U-NII-1	setup_AB01	N/A	Passed
WLAN ac 40 MHz, low, U-NII-1	setup_AB01	N/A	Passed
WLAN n 40 MHz, low, U-NII-3	setup_AB01	N/A	Passed
WLAN a, mid, U-NII-1	setup_AB01	N/A	Passed
WLAN a, high, U-NII-1	setup_AB01	N/A	Passed
WLAN ac 80 MHz, mid, U-NII-1	setup_AB01	N/A	Passed
WLAN ac 40 MHz, high, U-NII-1	setup_AB01	N/A	Passed
WLAN n 20 MHz, high, U-NII-1	setup_AB01	N/A	Passed
WLAN a, mid, U-NII-3	setup_AB01	N/A	Passed
WLAN n 20 MHz, mid, U-NII-3	setup_AB01	N/A	Passed
WLAN n 40 MHz, high, U-NII-3	setup_AB01	N/A	Passed
WLAN ac 80 MHz, mid, U-NII-3	setup_AB01	N/A	Passed
WLAN ac 20 MHz, high, U-NII-3	setup_AB01	N/A	Passed
WLAN ac 40 MHz, high, U-NII-3	setup_AB01	N/A	Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

99 % Bandwidth The measurement was performed according to ANSI C63.1	.0	Final Res	sult
OP-Mode Radio Technology, Operating Frequency, Subband	Setup	FCC	IC
WLAN ac 20 MHz, mid, U-NII-3	setup_AB01	N/A	Passed

WLAN ac 20 MHz, low, U-NII-3

WLAN n 40 MHz, low, U-NII-1

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

Maximum Conducted Output Power The measurement was performed according to ANSI C63.10

	_
Final	Result

N/A

N/A

FCC §15.31, §15.407 (a)(1)

Passed

Passed

FCC §15.31, IC RSS 247 Ch.

6.2.x

setup_AB01

setup_AB01

OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Subband			
WLAN a, low, U-NII-1	setup_AB01	Passed	Passed
WLAN a, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 20 MHz, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN a, high, U-NII-1	setup_AB01	Passed	Passed
WLAN n 40 MHz, low, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 20 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN a, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN a, low, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN n 40 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, low, U-NII-1	setup_AB01	Passed	Passed
WLAN n 20 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 40 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 40 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, high, U-NII-1	setup_AB01	Passed	Passed
WLAN n 40 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 20 MHz, low, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 20 MHz, high, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 20 MHz, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 40 MHz, low, U-NII-1	setup_AB01	Passed	Passed
WLAN n 20 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN a, high, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 40 MHz, high, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 20 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN n 40 MHz, high, U-NII-1	setup_AB01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.31, §15.407 (a) (1),(5)

Peak Power Spectral Density			
The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Subband	• • • •		-
WLAN ac 40 MHz, low, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 20 MHz, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 40 MHz, high, U-NII-1	setup_AB01	Passed	Passed
WLAN a, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 20 MHz, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN n 40 MHz, low, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 20 MHz, low, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN n 40 MHz, high, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 20 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 40 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 20 MHz, high, U-NII-1	setup_AB01	Passed	Passed
WLAN a, low, U-NII-1	setup_AB01	Passed	Passed
WLAN ac 40 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN a, high, U-NII-3	setup_AB01	Passed	Passed
WLAN ac 20 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN n 40 MHz, high, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, high, U-NII-1	setup_AB01	Passed	Passed
WLAN a, low, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, mid, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN a, high, U-NII-1	setup_AB01	Passed	Passed
WLAN n 40 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN n 20 MHz, low, U-NII-3	setup_AB01	Passed	Passed
WLAN a, mid, U-NII-1	setup_AB01	Passed	Passed
WLAN n 20 MHz, low, U-NII-1	setup_AB01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.407 (b), (1),(2),(3),(4); FCC §15.205, §15.209, §15.407 (b) (5),(6)

312.209, 31:	5.4U/(D)	(5),(0)
10	Final Re	esult
Setup	FCC	IC
setup_AI02	Passed	Passed
	10 Setup setup_AI02 setup_AI02 setup_AI02 setup_AI02	SetupFCCsetup_AI02Passedsetup_AI02Passedsetup_AI02Passedsetup_AI02Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.407 (b), (1),(2),(3),(4); FCC §15.205, §15.209, §15.407 (b) (5),(6)

Undesirable Emissions; General Field Strength Limits			
The measurement was performed according to ANSI C63.10		Final Re	esuit
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Measurement range, Subband			
WLAN a, high, 1GHz - 18GHz, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 20 MHz, low, 9kHz – 30MHz, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 20 MHz, mid, 30MHz – 1GHz, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 20 MHz, low, 1GHz - 26GHz, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 20 MHz, mid, 1GHz - 26GHz, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 20 MHz, mid, 26GHz - 40GHz, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 20 MHz, high, 1GHz - 26GHz, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 20 MHz, low, 1GHz - 26GHz, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 20 MHz, mid, 9kHz – 30MHz, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 20 MHz, mid, 30MHz – 1GHz, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 20 MHz, mid, 1GHz - 26GHz, U-NII-3	setup_AA01	Passed	Passed
WLAN ac 20 MHz, mid, 26GHz - 40GHz, U-NII-3	setup_AA01	Passed	Passed
WLAN ac 20 MHz, high, 1GHz - 26GHz, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 40 MHz, high, 1GHz - 18GHz, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 40 MHz, low, 1GHz - 18GHz, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 40 MHz, high, 1GHz - 18GHz, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 40 MHz, low, 1GHz - 18GHz, U-NII-3	setup_AI02	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

Band Edge

FCC §15.407 (b), (1),(2),(3),(4)

The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency, Subband	Setup	FCC	IC
WLAN a, low, U-NII-1	setup_AA01	Passed	Passed
WLAN a, low, U-NII-3	setup_AI02	Passed	Passed
WLAN a, high, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 20 MHz, low, U-NII-1	setup_AA01	Passed	Passed
WLAN ac 20 MHz, low, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 20 MHz, high, U-NII-3	setup_AA01	Passed	Passed
WLAN ac 40 MHz, low, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 40 MHz, low, U-NII-1	setup_AI02	Passed	Passed
WLAN ac 40 MHz, low, U-NII-3	setup_AI02	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-1	setup_AA01	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-3	setup_AI02	Passed	Passed
WLAN n 20 MHz, low, U-NII-1	setup_AI02	Passed	Passed
WLAN n 20 MHz, low, U-NII-3	setup_AI02	Passed	Passed
WLAN n 20 MHz, high, U-NII-3	setup_AI02	Passed	Passed
WLAN n 40 MHz, low, U-NII-1	setup_AI02	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407	FCC §15.407 (1),(2),(3),(
Band Edge					
The measurement was performed according to ANSI	Final Result				
OP-Mode Radio Technology, Operating Frequency, Subband	Setup	FCC	IC		
WLAN n 40 MHz, low, U-NII-3 WLAN n 40 MHz, high, U-NII-3	setup_AI02 setup_AI02	Passed Passed	Passed Passed		

N/A: Not applicable N/P: Not performed

> (responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) B.Sc. Jens Dörwald

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-00
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2017-04-11

2.2 PROJECT DATA

Responsible for testing and report:	B.Sc. Jens Dörwald
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2017-05-09
Testing Period:	2016-12-22 to 2017-04-10

2.3 APPLICANT DATA

Company Name:	Harman International Industries, Inc.
Address:	30001 Cabot Drive Novi, MI 48377

USA

Contact Person:

2.4 MANUFACTURER DATA

Company Name:

please see applicant data

Address: Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device	Automotive Infotainment Unit w/ Bluetooth & WLAN
product description	
Product name	INFO3 CSM MY18
Туре	INFO3 CSM MY18 HIGH
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	13.2 V
Tested Modulation Type	DBPSK; OFDM:BPSK; OFDM:64-QAM
General product description	The EUT is a car radio infotainment system.
Specific product description	The EUT is a car radio infotainment system, it is using Bluetooth and WLAN radio technology in the 2.4 GHz ISM band and WLAN radio technology in the 5 GHz ISM band.
	In the 5 GHz ISM band the EUT supports the U-NII-1 and U-NII-3 band, the U-NII-2A and U-NII-2C bands are not supported.
Ports of the device	DC USB CAN AM/FM, SDARS GPS Rear View Camera Display
Antenna	integral / 5.0 dBi for Subband U-NII-1 integral / 4.58 dBi for Subband U-NII-3
Tested Datarates	WLAN a-mode; 6 Mbit/s WLAN n-20-mode; 72.2 Mbit/s WLAN n-40-mode; 150 Mbit/s WLAN ac-20-mode; 108.4 Mbit/s WLAN ac-40-mode; 250 Mbit/s WLAN ac-80-mode; 541.6 Mbit/s
Special software used for testing	Special commands were send by a Telnet connection to the device to set it in local transmit mode.

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
DE1009018	ab01	conducted sample
Sample Parameter		Value
Integral Antenna	deactivated	
Serial No.	SN006	
HW Version	190716	
SW Version	S20.1	
Comment		

Sample Name	Sample Code	Description				
DE1009018	ai02	radiated sample				
Sample Parameter		Value				
Integral Antenna	5.0 dBi for band U-NII-1/ 4.58 dBi for band U-NII-3					
Serial No.	-					
HW Version	190716					
SW Version	S20.1					
Comment						

Sample Name	Sample Code	Description				
DE1009018	aa01	radiated sample				
Sample Parameter		Value				
Integral Antenna	5.0 dBi for band U-NII-1/ 4.58 dBi for band U-NII-3					
Serial No.	SN005					
HW Version	190716					
SW Version	S20.1					
Comment						

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
-	-	-

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
setup_AA01	DE1009018aa01	radiated setup
setup_AI02	DE1009018ai01	radiated setup
setup_AB01	DE1009018ab01	conducted setup

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

	U-NII Subba 5150 5250	nd 1 -		2A	5250 - 5350 5470 - 5725			U-NII 5725	Nom. BW				
20 MHz Test Channels:	low	mid	high	low	mid	high	low	mid	high	low	mid	high	20 MHz
Channel:	36	44	48	-	-	-	-	-	-	149	157	165	Ch No.
Frequency [MHz]	5180	5220	5240	-	-	-	-	-	-	5745	5785	5825	MHz
40 MHz Test													40
Channels:	low	mid	high	low	mid	high	low	mid	high	low	mid	high	MHz
Channels:	38	-	46	_	-	-	-	-	-	151	_	159	Ch No.
Frequency [MHz]	5190	-	5230	-	-	-	-	-	-	5755	-	5795	MHz
		1	r	r	T	1	1	1	r	r	r	[
80 MHz Test Channels:	low	mid	high	low	mid	high	low	mid	high	low	mid	high	80 MHz
Channels:	42	-	-	-	-	-	-	-	-	155	-	-	Ch No.
Frequency [MHz]	5210	-	-	-	-	-	-	-	-	5775	-	-	MHz

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 26 DB BANDWIDTH

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): initially approx. 1 % of nominal emission bandwidth
- Video Bandwidth (VBW): > RBW z
- Span: 40 / 80 / 140 MHz (for 20 / 40 / 80 MHz nominal bandwidth)
- Trace: Maxhold
- Sweeps: 2000
- Sweeptime: 20 ms
- Detector: Sample

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart E, §15.403 (i)

There exist no applicable limits for the U-NII subbands 1, 2A and 2C. The test was performed to determine the limits for the "Maximum Conducted Output Power" test case. Therefore no result was applied.

4.1.3 TEST PROTOCOL

Ambient temperature:	24 °C		
Air Pressure:	1008 hPa		
Humidity:	32 %		
Radio Technology	Operating Frequency	Subband	26 dB Bandwidth [MHz]
WLAN a	low	U-NII-1	21.3
WLAN a	mid	U-NII-1	21.3
WLAN a	high	U-NII-1	21.4
WLAN a	low	U-NII-3	21.3
WLAN a	mid	U-NII-3	21.4
WLAN a	high	U-NII-3	21.3
WLAN n 20 MHz	low	U-NII-1	21.8
WLAN n 20 MHz	mid	U-NII-1	21.8
WLAN n 20 MHz	high	U-NII-1	21.9
WLAN n 20 MHz	low	U-NII-3	21.9
WLAN n 20 MHz	mid	U-NII-3	21.9
WLAN n 20 MHz	high	U-NII-3	21.9
WLAN n 40 MHz	low	U-NII-1	40.8
WLAN n 40 MHz	high	U-NII-1	40.8
WLAN n 40 MHz	low	U-NII-3	40.6
WLAN n 40 MHz	high	U-NII-3	40.8
WLAN ac 20 MHz	low	U-NII-1	21.9
WLAN ac 20 MHz	mid	U-NII-1	21.9
WLAN ac 20 MHz	high	U-NII-1	21.9
WLAN ac 20 MHz	low	U-NII-3	21.8
WLAN ac 20 MHz	mid	U-NII-3	21.9
WLAN ac 20 MHz	high	U-NII-3	21.9
WLAN ac 40 MHz	low	U-NII-1	40.5
WLAN ac 40 MHz	high	U-NII-1	40.5
WLAN ac 40 MHz	low	U-NII-3	40.6
WLAN ac 40 MHz	high	U-NII-3	40.6
WLAN ac 80 MHz	mid	U-NII-1	82.9
WLAN ac 80 MHz	mid	U-NII-3	82.7

Remark: Please see next sub-clause for the measurement plot.

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = WLAN a, Subband = U-NII-1, Operating Frequency = mid

Ref Level	20.00 dBm	n Offset	11.30 dB 👄	RBW 20	0 kHz					
Att	25 dE	B 🥌 SWT	20 ms 🥌	VBW 30	0 kHz	Mode	Auto Sv	/eep		
∍1Pk Max										
						M	1[1]			1.66 dBi
10 dBm									5.2	235210 GF
						MINC	1B			26.00 d
0 dBm			an agen ann ran	more more .	iner;	Man Jun By	factor	and a	21.881	000000 MH
очын		for the second s			V	Q	factor	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		238.
-10 dBm		1			1.00			\mathbf{N}		
-10 080		1						Le la		
-20 dBm		-1						La		2
-20 0811		A.								
	and the second sec	w						Usia.	and a state of the	
and when the W	Mr. Margan M. Hang								^{nan} allow former for	UNM HON UN
-40 dBm	147.7 									a waa addaar
-to ubin										S
-50 dBm—										
-30 4011										
-60 dBm—	-									-
oo abiii										
-70 dBm										
, o abiii										
CF 5.2208	GHz			6	91 pts				Spa	n 40.0 MHz
Marker										
Type Re		X-valı		Y-valu		Funct		Fu	nction Resu	
M1	1		521 GHz		dBm	ndB	down			21.881 MHz
T1	1		049 GHz	-24.41			ndB			26.00 dB
Т2	1	5.23	093 GHz	-24.92	авт	Q1	factor			238.7

Date: 11.JAN.2017 13:40:41

Spectrun									
Ref Level	20.00 dBr	n Offset	11.30 dB 👄	RBW 500 kH	z				('
Att	25 d	B 👄 SWT	20 ms 🕳			Auto Swi	еер		
●1Pk Max		and the line can be					2772273 . 100		
					M	1[1]			3.81 dBr
10 dBm								5.	197180 GH
10 dBm					Ma	HB			26.00 d
0 dBm		ستر ا	monor	money,	un Ba	www.	my	40.5200	000000 MH
o ubiii				Y	Q	factor			128.
-10 dBm									
10 0.0111						1	Acces		
-20 dBm		T1					12		
							X.	the state of the s	
-30 dBm	wanter	and when					with	martimorna	
utunentun	-way								the most town when we want to
-40 dBm——									
-50 dBm									
-60 dBm——									
-70 dBm									
, o abiii									
CF 5.19 GH	Iz			691 p	ts			Spar	n 80.0 MHz
/larker									
Type Re	f Trc	X-valu	ie	Y-value	Func	tion	Fu	nction Resul	t
M1	1		718 GHz	3.81 dBm		down			40.52 MHz
<u>T1</u>	1		974 GHz	-21.71 dBm		ndB			26.00 dB
Т2	1	5.21	026 GHz	–21.87 dBm	1 Q	factor			128.3

Dadia Tashualasu - WLAN ac 40MHz Subband - U-NII-1 One ratina -

Date: 12.JAN.2017 09:15:41

ка		ecnn	olog	y = vvL	AN ac a	30MHZ,	Subba	anu	= 0-1111	-3, C	perating	Frequency	
Spect	rum	1											(4
Ref Le	vel 2	0.00 d	Bm	Offset	11.30 dB	👄 RBW	1 MHz						
Att		25	dB 🧉	SWT	20 ms	👄 VBW	' 3 MHz	Mo	de Auto	Swee	ρ		
∋1Pk Ma	эх												
							1		M1[1]	1			5.75 dBi
10 dBm-							1		641			5.	785740 GH
TO UPIN-							Colorest and the second second		M1ndB				26.00 d
0 dBm—				man		and been	a more	-mar	BW	~~~~	manny	82.660	000000 MH
o abiii				1					Q fac	tor			70.
-10 dBm				1									
10 000				1								f.	
-20 dBm	n		, A	<u> </u>		-						A	<i>c</i>
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M	Und									how perely	Muthurho
-30 484	w ~				_								mound you
	10												100
-40 dBm			_		_								
-50 dBm													
-60 dBm	۱ <u> </u>												
-70 dBm	1 <u> </u>												
CF 5.73	75 G⊢	lz					691 p	ots				Span	140.0 MHz
Marker													
Туре	Ref	Trc	X-value		Y-V	alue		Function		Fu	nction Resu	lt	
M1		1			3574 GHz		5.75 dBr		ndB dov				82.66 MHz
T1		1			367 GHz		0.05 dBr			B			26.00 dB
T2		1		5.81	.633 GHz	-21	0.31 dBr	n	Q fact	or			70.0
	I)[Measuri	ng		1 1 1 1	11.01.2017 14:46:50

Radio Technology = WLAN ac 80MHz Subband = U-NII-3 Operating Frequency = mid

Date: 11.JAN.2017 14:46:50

- 4.1.5 TEST EQUIPMENT USED
 - R&S TS8997

4.2 6 DB BANDWIDTH

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

4.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 40 / 80 / 120 MHz (for 20 / 40 / 80 MHz nominal bandwidth)
- Trace: Maxhold
- Sweeps: 2000
- Sweeptime: 20 ms (Auto FFT)
- Detector: Peak

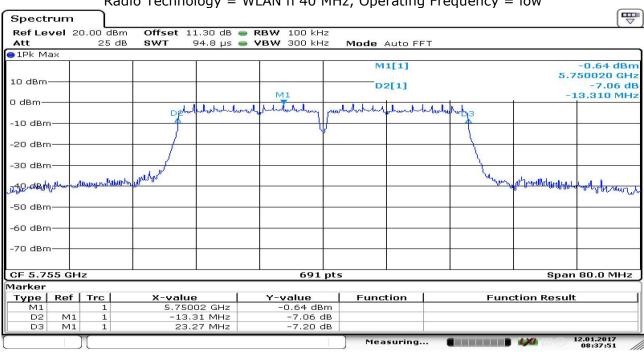
4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart E, §15.407 (e) Within the 5.725-5.850 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

4.2.3 TEST PROTOCOL

Ambient temperature:	24 °C
Air Pressure:	1008 hPa
Humidity:	32 %

Radio Technology	Operating Frequency	6 dB Bandwidth [MHz]	Limit [MHz]	Margin [MHz]
WLAN a	low	16.411	0.500	15.911
WLAN a	mid	16.411	0.500	15.911
WLAN a	high	16.411	0.500	15.911
WLAN n 20 MHz	low	17.670	0.500	17.170
WLAN n 20 MHz	mid	17.670	0.500	17.170
WLAN n 20 MHz	high	17.670	0.500	17.170
WLAN n 40 MHz	low	36.580	0.500	36.080
WLAN n 40 MHz	high	36.630	0.500	36.130
WLAN ac 20 MHz	low	17.670	0.500	17.170
WLAN ac 20 MHz	mid	17.670	0.500	17.170
WLAN ac 20 MHz	high	17.713	0.500	17.213
WLAN ac 40 MHz	low	36.580	0.500	36.080
WLAN ac 40 MHz	high	36.630	0.500	36.130
WLAN ac 80 MHz	mid	76.580	0.500	76.080


Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN a, Operating Frequency = mid

Spectrum Ref Level 2		Offset 1	.30 dB 👄	RBW 200 kHz					(4
Att	25 dE			VBW 300 kHz	Mode	Auto Swi	еер		
●1Pk Max									
					M:	L[1]		(en la tri	2.03 dBr
10 dBm								5.22	22470 GH
					M1 nd				26.00 d
			An a A a A	and the second	Thomas	factor ~		21.3020	00000 MH
o abiii		1			d'	factor ~	N 1		245.
-10 dBm—							1		
10 0.0							N		
-20 dBm		TI					A A C		
		Y					Y		
-30 dBm		r							
decision of the second	Am						las	nul an	7.1. NO
A BAT	man 1	-						Monum	1 marin
-50 dBm		-						-	
-60 dBm									
- Annala - Marcala - M									
-70 dBm					-				
CF 5.2208 (GHz			691 pt	s		•	Span	40.0 MHz
1arker									
Type Ref	Trc	X-value		Y-value Function			Fund	ction Result	
M1	1	5.22224		2.03 dBm	ndB	down		2	1.302 MHz
T1	1	5.20933	the second s	-24.03 dBm		ndB			26.00 dB
T2	1	5.23064	I GHZ	-24.10 dBm	l Q†	actor			245.1

Date: 11.JAN.2017 13:50:22

Date: 12.JAN.2017 08:37:51

		o reenno	iogy – v	VLAN ac 80 M	mz, oper	ating	riequency .	- mu	_
Spectrum									
Ref Level 2	0.00 dBm	Offset 1	1.30 dB 🧉	• RBW 100 kHz	:				
Att	25 dB	SWT 1	.32.7 µs 🧉	• VBW 300 kHz	Mode A	uto FFT			
∋1Pk Max									
					M1	[1]			-3.69 dBr
10 dBm								5.	767530 GH
					D2	[1]			-8.95 d
				64.1				-	30.910 MH
	L	June	(June M	meterlikely,	Mullin	Malen	mell selvere	Lda	
-10 dBm	- PP							TA I	
00 JD	Ť			Υ					
-20 dBm	1								
-30 dBm								3	
-30 ubm								4	
-40 dBm								L. C.	
minter had reader	in an							Anon	La lura
-50 dBm									
-60 dBm			-						
-70 dBm									2
CF 5.775 GH	łz			691 j	ots		02	Span	120.0 MHz
/larker									
Type Ref	Trc	X-valu	e	Y-value	Functi	ion	Fun	ction Resu	lt
M1	1		753 GHz	-3.69 dBr					
D2 M1			91 MHz	-8.95 di					
D3 M1	1	45.	67 MHz	-6.15 di	B				
	Π				Meas	uring			11.01.2017 14:55:33

Padia Tachpology - WIAN as 80 MHz, Operating Frequency - mid

Date: 11.JAN.2017 14:55:33

4.2.5 TEST EQUIPMENT USED

R&S TS8997 -

4.3 99 % BANDWIDTH

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): approx. ≥ 1 % of the span, but not below
- Video Bandwidth (VBW): \geq 3 times the RBW
- Span: 40 / 80 / 160 (for 20 / 40 / 80 MHz nominal bandwidth)
- Trace: Maxhold
- Sweeps: 2000
- Sweeptime: 20 ms
- Detector: Sample

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

4.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

4.3.3 TEST PROTOCOL

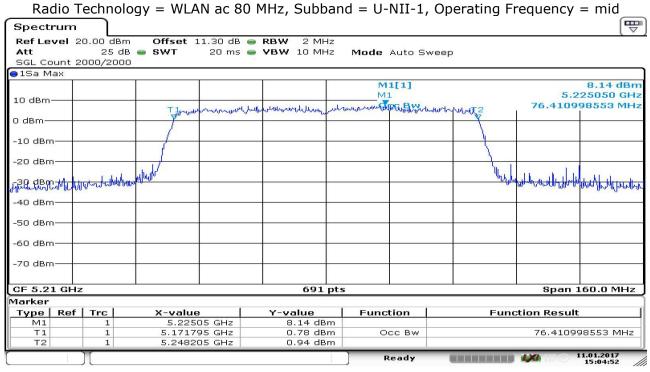
Ambient temperature:	24 °C
Air Pressure:	1008 hPa
Humidity:	32 %

Radio Technology	Operating Frequency	Subband	99% Bandwidth [MHz]
WLAN a	low	U-NII-1	18
WLAN a	mid	U-NII-1	18
WLAN a	high	U-NII-1	18
WLAN a	low	U-NII-3	18
WLAN a	mid	U-NII-3	18
WLAN a	high	U-NII-3	18
WLAN n 20 MHz	low	U-NII-1	19
WLAN n 20 MHz	mid	U-NII-1	19
WLAN n 20 MHz	high	U-NII-1	19
WLAN n 20 MHz	low	U-NII-3	19
WLAN n 20 MHz	mid	U-NII-3	19
WLAN n 20 MHz	high	U-NII-3	19
WLAN n 40 MHz	low	U-NII-1	37
WLAN n 40 MHz	high	U-NII-1	37
WLAN n 40 MHz	low	U-NII-3	37
WLAN n 40 MHz	high	U-NII-3	37
WLAN ac 20 MHz	low	U-NII-1	19
WLAN ac 20 MHz	mid	U-NII-1	19
WLAN ac 20 MHz	high	U-NII-1	19
WLAN ac 20 MHz	low	U-NII-3	19
WLAN ac 20 MHz	mid	U-NII-3	19
WLAN ac 20 MHz	high	U-NII-3	19
WLAN ac 40 MHz	low	U-NII-1	37
WLAN ac 40 MHz	high	U-NII-1	37
WLAN ac 40 MHz	low	U-NII-3	37
WLAN ac 40 MHz	high	U-NII-3	37
WLAN ac 80 MHz	mid	U-NII-1	76
WLAN ac 80 MHz	mid	U-NII-3	76

Remark: Please see next sub-clause for the measurement plot.

4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN a, Subband = U-NII-1, Operating Frequency = mid

Spectrur	n		,	<i>,</i> .	5 .	
Ref Level Att SGL Coun	25 c	18 🕳 SWT 20 m	B 👄 RBW 500 kHz s 👄 VBW 2 MHz		weep	×
●1Sa Max						
10 dBm				M1[1]		6.26 dBm 5.2222580 GHz
0 dBm		T1	menter and a second	www.occ.Bw		17.829232996 MHz
-10 dBm—					and the second s	
-20 dBm—		and the second s			The second se	hung has a second se
-30 dBm -30 dBm -40 dBm	Annahann .					www.wellow.llumble
-50 dBm—						
-60 dBm—						
-70 dBm—						
CF 5.22 G	Hz		691 pt	s		Span 40.0 MHz
Marker						
	ef Trc	X-value	Y-value	Function	Fun	ction Result
M1 T1	1	5.222258 GHz 5.2110854 GHz	6.26 dBm -4.66 dBm	Occ Bw		17.829232996 MHz
т2	1	5.2289146 GHz	-4.53 dBm			
)[]			Ready		11.01.2017


Date: 11.JAN.2017 11:02:18

Radio Technology = WLAN n 40 MHz, Subband = U-NII-1, Operating Frequency = low

Spect	rum										T
Att		20.00 dBr 25 di 2000/200	B 👄 SWT		 RBW 1 MH: VBW 3 MH: 		1ode Auto S	Sweep			
🔵 1Sa M	lax										
10 dBm					M1		M1[1]				6.94 dBm 86640 GHz 34153 MHz
0 dBm—			TJ~	monund	monerandar	www	- to man and the second	vin ven	~T2		01100 1112
-10 dBn	n										· · · · · · · · · · · · · · · · · · ·
-20 dBn		Luggar	1. Referrer W						hymbel		
	Quantita	PC-railWarAn fi	off.lfar fb.						00%	manufant	pp warden
-40 dBn											
-50 dBn	2005										
-60 dBn											
-70 dBn											
CF 5.1	9 GH	z	2		691	pts				Span	80.0 MHz
Marker		1 1									
Type M1	Ref	Trc 1	X-value	€4 GHz	<u>Y-value</u> 6.94 dB	um l	Function		Fund	ction Result	
Τ1		1	5.1715	92 GHz	-0.03 de	Sm 🛛	Occ Bv	N		36.7004	34153 MHz
т2		1	5.2082	92 GHz	-0.45 dB	m]
][Ready			1XI	11.01.2017 15:10:18

Date: 11.JAN.2017 15:10:19

Date: 11.JAN.2017 15:04:52

- R&S TS8997

^{4.3.5} TEST EQUIPMENT USED

4.4 MAXIMUM CONDUCTED OUTPUT POWER

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Trace: Average, RMS power averaging mode
- Sweeps: 100
- Sweeptime: 20 ms
- Detector: RMS
- Trigger: gated mode

The channel power function of the spectrum analyser was used (Used channel bandwidth = nominal bandwidth)

Note:

The analyser settings are according FCC Public Note "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02", method **SA-1**.

4.4.2 TEST REQUIREMENTS / LIMITS

A) FCC

For systems using digital modulation techniques in the 5.15 – 5.25 GHz bands: §15.407 (a) (1)

Limit: 50 mW (17 dBm) or 4 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules"): §15.407 (a) (1) (i): Outdoor access point:

Limit: 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

§15.407 (a) (1) (ii): Indoor access point:

Limit: 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi. §15.407 (a) (1) (iv): Mobile and portable client devices:

Limit: 250 mW (24 dBm) provided the maximum antenna gain does not exceed 6 dBi.

For systems using digital modulation techniques in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz bands: §15.407 (a) (2) Limit: 250 mW (24 dBm) or 11 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser.

For systems using digital modulation techniques in the 5.725 – 5.850 GHz bands: §15.407 (a) (3) Limit: 1 W (30 dBm) or 17 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser. FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules"): §15.407 (a) (3): Limit: 1 W (30 dBm).

§15.407 (a) (4):

The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1 (1), Band 5150-5250 MHz, indoor operation only: Limit (e.i.r.p.): 200 mW (23 dBm) or 10 + 10 log10 B [dBm], whichever power is less. B is the 99% emission bandwidth in MHz.

RSS-247, 6.2.2 (1), Band 5250-5350 MHz:

Limits:

Maximum conducted Power: 250 mW (24 dBm) or 11 + 10 log10 B [dBm], whichever power is less.

e.i.r.p.: 1.0 W (30 dBm) or 17 + 10 log10 B [dBm], whichever power is less.

Note: For EUTs operating at a higher e.i.r.p. than 200 mW (23 dBm), compliance with the e.i.r.p. elevation mask is required.

RSS-247, 6.2.3 (1), Bands 5470-5600 MHz and 5650-5725 MHz: Limits: Maximum conducted Power: 250 mW (24 dBm) or 11 + 10 log10 B [dBm], whichever power is less. e.i.r.p.: 1.0 W (30 dBm) or 17 + 10 log10 B [dBm], whichever power is less.

RSS-247, 6.2.4 (1), Band 5725-5825 MHz:

Limits:

Maximum conducted Power: 1W (30 dBm) or 17 + 10 log10 B [dBm], whichever power is less. e.i.r.p.: 4.0 W (36 dBm) or 23 + 10 log10 B [dBm], whichever power is less.

All frequency bands: B is the 99% emission bandwidth in MHz.

4.4.3 TEST PROTOCOL

Ambient temperature: 24 °C Air Pressure: 1008 hPa Humidity: 32 %

WLAN a-Mode; 20 MHz; 6 Mbit/s

					F	сс	IC			
U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	Cond. Limit [dBm]	Margin [dB]	Cond. Limit [dBm]	Margin [dB]	EIRP Limit [dBm]	Margin [dB]
1	36	5180	12.5	17.5	24.0	11.5	N/A		22.5	5.0
	44	5220	12.5	17.5	24.0	11.5	N/A		22.5	5.0
	48	5240	12.4	17.4	24.0	11.6	N/A		22.5	5.1
3	149	5745	13.7	18.3	30.0	16.3	30.0	16.3	36.0	17.7
	157	5785	13.7	18.3	30.0	16.3	30.0	16.3	36.0	17.8
	165	5825	13.6	18.2	30.0	16.4	30.0	16.4	36.0	17.8

WLAN n-Mode; 20 MHz; 72.2 Mbit/s MCS7

					F	cc	IC			
U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	Cond. Limit [dBm]	Margin [dB]	Cond. Limit [dBm]	Margin [dB]	EIRP Limit [dBm]	Margin [dB]
1	36	5180	12.4	17.4	24.0	11.6	N/A		22.7	5.3
	44	5220	12.3	17.3	24.0	11.7	N/A		22.7	5.4
	48	5240	12.4	17.4	24.0	11.6	N/A		22.7	5.3
3	149	5745	13.7	18.3	30.0	16.3	30.0	16.3	36.0	17.7
	157	5785	13.6	18.2	30.0	16.4	30.0	16.4	36.0	17.8
	165	5825	13.7	18.2	30.0	16.4	30.0	16.4	36.0	17.8

WLAN n-Mode; 40 MHz; 150 Mbit/s MCS7

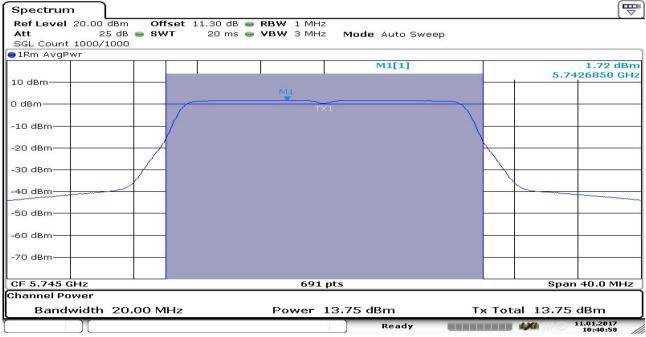
					F	CC	IC			
U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	Cond. Limit [dBm]	Margin [dB]	Cond. Limit [dBm]	Margin [dB]	EIRP Limit [dBm]	Margin [dB]
1	38	5190	12.4	17.4	24.0	11.6	N/A	-	23.0	5.6
	46	5230	12.5	17.5	24.0	11.5	N/A	-	23.0	5.5
3	151	5755	14.0	18.6	30.0	16.0	30.0	16.0	36.0	17.5
	159	5795	14.0	18.5	30.0	16.0	30.0	16.0	36.0	17.5

WLAN ac-Mode; 20 MHz; 108.4 Mbit/s MCS8

					F	CC	IC			
U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	Cond. Limit [dBm]	Margin [dB]	Cond. Limit [dBm]	Margin [dB]	EIRP Limit [dBm]	Margin [dB]
1	36	5180	12.4	17.4	24.0	11.6	N/A	-	23.0	5.3
	44	5220	12.4	17.4	24.0	11.7	N/A	-	23.0	5.4
	48	5240	12.4	17.4	24.0	11.6	N/A	-	23.0	5.3
3	149	5745	13.8	18.3	30.0	16.3	30.0	16.3	36.0	17.7
	157	5785	13.7	18.3	30.0	16.3	30.0	16.3	36.0	17.7
	165	5825	13.6	18.2	30.0	16.4	30.0	16.4	36.0	17.8

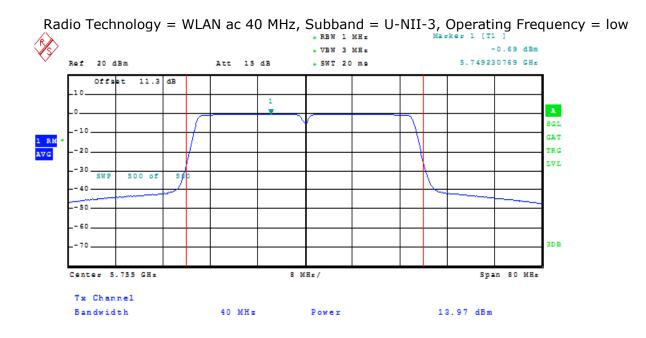
					F	CC	IC			
U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	Cond. Limit [dBm]	Margin [dB]	Cond. Limit [dBm]	Margin [dB]	EIRP Limit [dBm]	Margin [dB]
1	38	5190	12.4	17.4	24.0	11.6	N/A	-	23.0	5.6
	46	5230	12.5	17.5	24.0	11.5	N/A	-	23.0	5.5
3	151	5755	14.0	18.6	30.0	16.0	30.0	16.0	36.0	17.5
	159	5795	14.0	18.5	30.0	16.0	30.0	16.0	36.0	17.5

WLAN ac-Mode; 40 MHz; 250 Mbit/s MCS9


WLAN ac-Mode; 80 MHz; 541.6 Mbit/s MCS9

					FCC IC					
U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	Cond. Limit [dBm]	Margin [dB]	Cond. Limit [dBm]	Margin [dB]	EIRP Limit [dBm]	Margin [dB]
1	42	5210	12.5	17.5	24.0	11.5	N/A	-	23.0	5.5
3	155	5775	13.9	18.4	30.0	16.1	30.0	16.1	36.0	17.6

Remark: Please see next sub-clause for the measurement plot.


4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = WLAN ac 20 MHz, Subband = U-NII-3, Operating Frequency = low



Date: 11.JAN.2017 10:40:58

Radio Technology = WLAN ac 80 MHz, Subband = U-NII-3, Operating Frequency = mid

4.4.5 TEST EQUIPMENT USED

- R&S TS8997

4.5 PEAK POWER SPECTRAL DENSITY

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

4.5.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Maximum Power Spectral Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Trace: Average, RMS power averaging mode
- Sweeps: 100
- Sweeptime: 20 ms
- Detector: RMS
- Trigger: gated mode

Note:

The analyser settings are according FCC Public Note "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02", method **SA-1**.

4.5.2 TEST REQUIREMENTS / LIMITS

A) FCC

FCC Part 15, Subpart E, §15.407 (a) (1) For systems using digital modulation techniques in the 5.15 – 5.25 GHz bands: (i) and (ii), outdoor and indoor access points: Limit: 17 dBm/MHz. (iv), mobile and portable client devices: Limit: 11 dBm/MHz.

FCC Part 15, Subpart E, §15.407 (a) (2) For systems using digital modulation techniques in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz bands: Limit: 11 dBm/MHz.

FCC Part 15, Subpart E, §15.407 (a) (3) For systems using digital modulation techniques in the 5.725 – 5.850 GHz bands: Limit: 30 dBm/500 kHz.

Note: The limit will be also fulfilled when measuring at any bandwidth greater than 500 kHz. This applies to signals where the maximum conducted output power was measured at a bandwidth exceeding 500 kHz and which fulfil that limit of 30 dBm.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1 (1), Band 5150-5250 MHz, indoor operation only: Limit (e.i.r.p.): 10 dBm/MHz.

RSS-247, 6.2.2 (1), Band 5250-5350 MHz: Limit: 11 dBm/MHz.

RSS-247, 6.2.3 (1), Bands 5470-5600 MHz and 5650-5725 MHz: Limit: 11 dBm/MHz.

RSS-247, 6.2.4 (1), Band 5725-5850 MHz: Limit: 30 dBm/500 kHz.

4.5.3 TEST PROTOCOL

Ambient temperature: 24 °C Air Pressure: 1008 hPa Humidity: 32 %

WLAN a-Mode; 20 MHz; 6 Mbit/s

U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
1	36	5180	0.9	11.0	10.1	10.0	4.1	5.9
	44	5220	0.9	11.0	10.1	10.0	4.1	5.9
	48	5240	0.8	11.0	10.2	10.0	4.2	5.8
3	149	5745	2.0	30.0	28.0	30.0	28.0	-
	157	5785	2.0	30.0	28.0	30.0	28.0	-
	165	5825	1.9	30.0	28.1	30.0	28.1	-

WLAN n-Mode; 20 MHz; 72.2 Mbit/s MCS7

U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
1	36	5180	0.4	11.0	10.6	10.0	4.6	5.4
	44	5220	0.3	11.0	10.7	10.0	4.7	5.3
	48	5240	0.4	11.0	10.6	10.0	4.6	5.4
3	149	5745	1.7	30.0	28.3	30.0	28.3	-
	157	5785	1.6	30.0	28.4	30.0	28.4	-
	165	5825	1.6	30.0	28.4	30.0	28.4	-

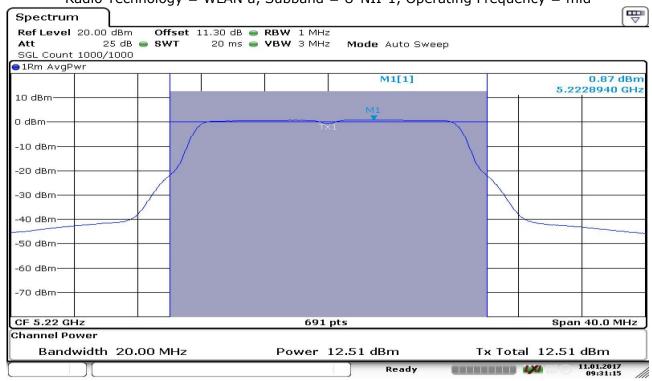
WLAN n-Mode; 40 MHz; 150 Mbit/s MCS7

U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
1	38	5190	-2.1	11.0	13.1	10.0	7.1	2.9
	46	5230	-2.1	11.0	13.1	10.0	7.1	2.9
3	151	5755	-0.7	30.0	30.7	30.0	30.7	-
	159	5795	-0.7	30.0	30.7	30.0	30.7	-

WLAN ac-Mode; 20 MHz; 108.4 Mbit/s MCS8

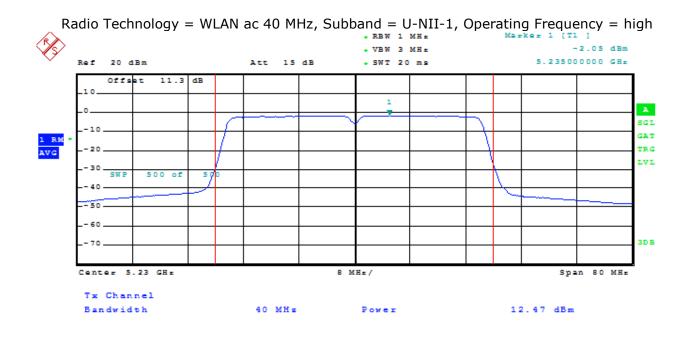
U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
1	36	5180	0.4	11.0	10.6	10.0	4.6	5.4
	44	5220	0.4	11.0	10.6	10.0	4.6	5.4
	48	5240	0.4	11.0	10.6	10.0	4.6	5.4
3	149	5745	1.7	30.0	28.3	30.0	28.3	-
	157	5785	1.7	30.0	28.3	30.0	28.3	-
	165	5825	1.6	30.0	28.4	30.0	28.4	-

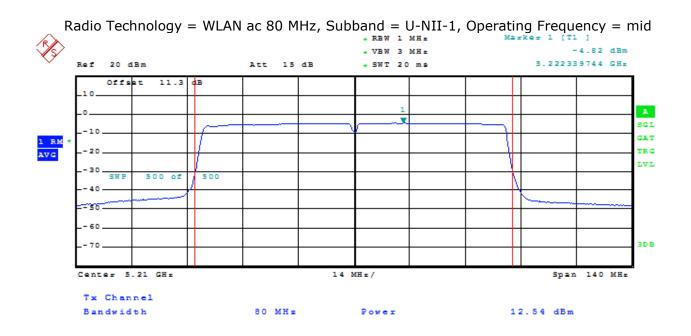
WLAN ac-Mode; 40 MHz; 250 Mbit/s MCS9


U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
1	38	5190	-2.3	11.0	13.3	10.0	7.3	2.7
	46	5230	-2.1	11.0	13.1	10.0	7.1	3.0
3	151	5755	-0.7	30.0	30.7	30.0	30.7	-
	159	5795	-0.7	30.0	30.7	30.0	30.7	-

WLAN ac-Mode; 80 MHz; 541.6 Mbit/s MCS9

U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
1	42	5210	-4.8	11.0	15.8	10.0	9.8	0.2
3	155	5775	-3.7	30.0	33.7	30.0	33.7	-


Remark: Please see next sub-clause for the measurement plot.


4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN a, Subband = U-NII-1, Operating Frequency = mid

Date: 11.JAN.2017 09:31:16

4.5.5 TEST EQUIPMENT USED

- R&S TS8997

4.6 UNDESIRABLE EMISSIONS; GENERAL FIELD STRENGTH LIMITS

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

4.6.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz

- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: \pm 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Above 26 GHz the measurement distance is reduced to 1 m.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.6.2 TEST REQUIREMENTS / LIMITS

A) FCC

FCC Part 15 Subpart E, §15.407 (b)(1) For transmitters operating in the 5150–5250 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150–5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(2) For transmitters operating in the 5250–5350 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150-5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(3) For transmitters operating in the 5470–5725 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5470–5725 MHz.

FCC Part 15 Subpart E, §15.407 (b)(4) For transmitters operating in the 5725–5850 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5715–5860 MHz and additionally Limit: -17 dBm/MHz EIRP within the frequency ranges 5715–5725 and 5850–5860 MHz.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1 (2), Emissions outside the band 5150-5250 MHz, indoor operation only: Limit: -27 dBm/MHz EIRP outside of the band 5150-5250 MHz.

RSS-247, 6.2.2 (2), Emissions outside the band 5250-5350 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5250-5350 MHz.

RSS-247, 6.2.3 (2), Emissions outside the bands 5470-5600 MHz and 5650-5725 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5470-5725 MHz. Note: No operation is permitted for the frequency range 5600-5650 MHz.

RSS-247, 6.2.4 (2), Emissions outside the band 5725-5825 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5715-5835 MHz and additionally Limit: -17 dBm/MHz EIRP within the frequency ranges 5715-5725 and 5825-5835 MHz.

C) FCC & IC

FCC Part 15 Subpart E, $\S15.405$ The provisions of $\S\S$ 15.203 and 15.205 are included.

§15.407 (b)(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

§15.407 (b)(7) The provisions of §15.205 apply to intentional radiators operating under this section

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)	
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m	
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m	
1.705 - 30	30@30m	3	29.5@30m	

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)	
30 - 88	100@3m	3	40.0@3m	
88 - 216	150@3m	3	43.5@3m	
216 - 960	200@3m	3	46.0@3m	
960 - 26000	500@3m	3	54.0@3m	
26000 - 40000	500@3m	1	54.0@3m	

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor:

- Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$
- Limit (dBµV/m) = EIRP [dBm] 20 log (d [m]) + 104.8

Limit types (in result tables on next page): RB – Emissions falls into a "Restricted Band" according FCC §§15.205 and 15.209 ^{*)} UE – "Undesirable Emission Limit" according FCC §15.407 BE-RB – Band Edge Limit basing on "Restricted Band Limits" BE-UE – Band Edge Limit basing on "Undesirable Emission Limit" *) Below 1 GHz the limits of §15.209 are applied for all frequencies.

4.6.3 TEST PROTOCOL

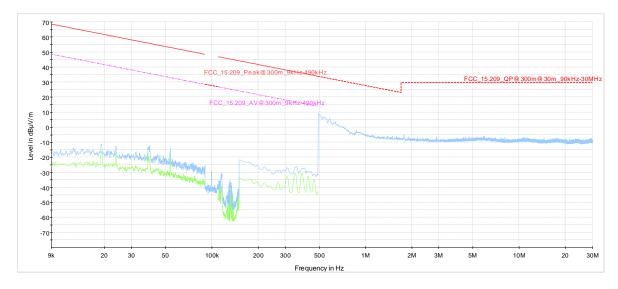
Ambient temperature: 24–29 °C Air Pressure: 1000–1009 hPa Humidity: 33–49 %

WLAN a-Mode; 20 MHz; 6 Mbit/s

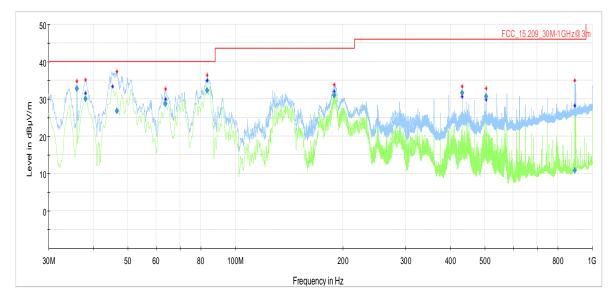
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
36	5180	-	-	-	-	-	-
48	5220	-	-	-	-	-	-
48	5240	-	-	-	-	-	-
149	5745	1995.9	56.2	PEAK	1000	68.0	11.8
157	5785	-	-	-	-	-	-
165	5825	-	-	-	-	-	-

WLAN ac-Mode; 20 MHz; 108.4 Mbit/s MCS8

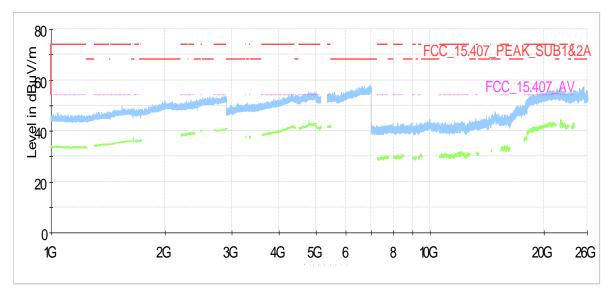
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freg. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
		Freq. [MHZ]	[apha/w]	LOF	[кп2]	[ασμν/m]	[ub]
36	5180	-	-	-	-	-	-
44	5220	36.0	32.7	QP	120	40.0	7.3
44	5220	38.1	30.1	QP	120	40.0	9.9
44	5220	46.6	26.8	QP	120	40.0	13.2
44	5220	63.8	28.7	QP	120	40.0	11.3
44	5220	83.3	32.3	QP	120	40.0	7.7
44	5220	189.1	31.0	QP	120	43.5	12.5
44	5220	432.0	31.5	QP	120	46.0	14.5
44	5220	504.0	30.6	QP	120	46.0	15.4
44	5220	36.0	32.7	QP	120	40.0	7.3
44	5220	38.1	30.1	QP	120	40.0	9.9
48	5220	-	-	-	-	-	-
48	5240	-	-	-	-	-	-
149	5745	-	-	-	-	-	-
157	5785	-	-	-	-	-	-
165	5825	-	-	-	-	-	-


WLAN ac-Mode; 40 MHz; 250 Mbit/s MCS9

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
38	5190	-	-	-	-	-	-
46	5230	-	-	-	-	-	-
151	5755	-	-	-	-	-	-
159	5795	-	-	-	-	-	-


Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN ac 20 MHz, Subband = U-NII-1, Channel = 36 9 kHz - 30 MHz



Radio Technology = WLAN ac 20 MHz, Subband = U-NII-1, Channel = 44 30 MHz - 1000 MHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.00000	32.70	40.00	7.30	1000.0	120.000	106.0	V	-21.0	15.9
38.100000	30.07	40.00	9.93	1000.0	120.000	103.0	V	85.0	15.0
46.590000	26.84	40.00	13.16	1000.0	120.000	110.0	V	-144.0	9.3
63.840000	28.73	40.00	11.27	1000.0	120.000	175.0	V	108.0	6.3
83.340000	32.33	40.00	7.67	1000.0	120.000	105.0	V	-198.0	10.4
189.090000	31.01	43.50	12.49	1000.0	120.000	102.0	V	-109.0	9.1
432.000000	31.53	46.00	14.47	1000.0	120.000	107.0	Н	-7.0	17.1
504.000000	30.60	46.00	15.40	1000.0	120.000	110.0	Н	91.0	18.8
893.010000	10.88	46.00	35.12	1000.0	120.000	324.0	V	80.0	25.0

Radio Technology = WLAN ac 20 MHz, Subband = U-NII-1, Channel = 44 1GHz - 26 GHz

Radio Technology = WLAN ac 20 MHz, Subband = U-NII-1, Channel = 44 26 GHz - 40 GHz

- 4.6.5 TEST EQUIPMENT USED
 - Radiated Emissions

4.7 BAND EDGE

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

4.7.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)	
30 - 88	100@3m	3	40.0@3m	
88 - 216	150@3m	3	43.5@3m	
216 - 960	200@3m	3	46.0@3m	
960 - 26000	500@3m	3	54.0@3m	
26000 - 40000	500@3m	1	54.0@3m	

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.7.3 TEST PROTOCOL

Ambient temperature: 24–29 °C Air Pressure: 1000–1009 hPa Humidity: 33–49 %

WLAN a-Mode; 20 MHz; 6 Mbit/s

U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
1	36	5180	5150.0	56.7	PEAK	1000	74.0	17.3
	36	5180	5150.0	43.6	AV	1000	54.0	10.4
3	149	5745	5725.0	65.6	PEAK	1000	78.0	12.4
	165	5825	5850.0	57.7	PEAK	1000	78.0	20.3

WLAN n-Mode; 20 MHz; 72.2 Mbit/s MCS7

U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
1	36	5180	5150.0	56.2	PEAK	1000	74.0	17.8
	36	5180	5150.0	43.8	AV	1000	54.0	10.2
3	149	5745	5725.0	71.8	PEAK	1000	78.0	6.2
	165	5825	5850.0	63.8	PEAK	1000	78.0	14.3

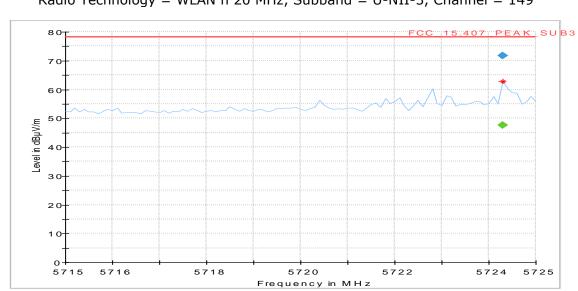
WLAN n-Mode; 40 MHz; 150 Mbit/s MCS7

U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
1	38	5190	5150.0	60.3	PEAK	1000	74.0	13.7
	38	5190	5150.0	47.0	AV	1000	54.0	7.0
3	151	5755	5725.0	67.9	PEAK	1000	78.0	10.1
	159	5795	5850.0	57.2	PEAK	1000	78.0	20.8

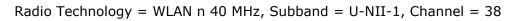
WLAN ac-Mode; 20 MHz; 108.4 Mbit/s MCS8

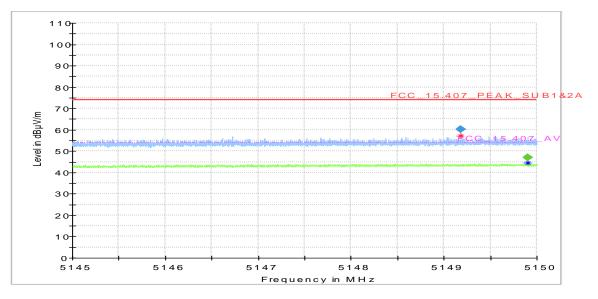
U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
1	36	5180	5150.0	56.5	PEAK	1000	74.0	17.5
	36	5180	5150.0	44.4	AV	1000	54.0	9.6
3	149	5745	5725.0	63.0	PEAK	1000	78.0	15.0
	165	5825	5850.0	59.5	PEAK	1000	78.0	18.5

WLAN ac-Mode; 40 MHz; 250 Mbit/s MCS9

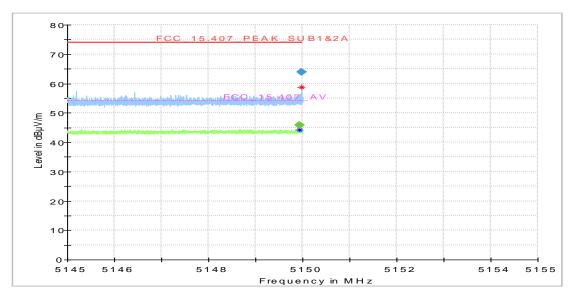

U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
1	38	5190	5150.0	56.5	PEAK	1000	74.0	17.5
	38	5190	5150.0	43.4	AV	1000	54.0	10.6

WLAN ac-Mode; 80 MHz; 541.6 Mbit/s MCS9


U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]
1	42	5210	5150.0	63.9	PEAK	1000	74.0	10.1
	42	5210	5150.0	45.7	AV	1000	54.0	8.3
3	155	5775	5725.0	68.9	PEAK	1000	78.0	9.1
	155	5775	5850.0	60.9	PEAK	1000	78.0	17.1



Remark: Please see next sub-clause for the measurement plot.



4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN n 20 MHz, Subband = U-NII-3, Channel = 149

Radio Technology = WLAN ac 80 MHz, Subband = U-NII-1, Channel = 42

- 4.7.5 TEST EQUIPMENT USED
 - Radiated Emissions

Test Equipment

1 R&S TS8997 EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2014-06	2017-06
1.2	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2016-06	2017-06
1.3	1515 / 93459		Weinschel Associates	LN673		
1.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02	2018-02
1.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.6	VT 4002	Climatic Chamber	Vötsch	58566002150010	2016-03	2018-03
1.7	A8455-4	4 Way Power Divider (SMA)		-		
1.8	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	7482		
1.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.10	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2016-11	2018-11

2 Radiated Emissions

Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
2.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005		
2.2	MFS	Rubidium	Datum GmbH	002	2016-09	2017-09
		Frequency				
		Normal MFS				
2.3	Opus10 TPR	ThermoAirpres	Lufft Mess- und	13936		
	(8253.00)	sure	Regeltechnik GmbH			
	. ,	Datalogger 13	-			
		(Environ)				
2.4	Anechoic	10.58 x 6.38 x	Frankonia	none		
	Chamber	6.00 m³				
2.5	HL 562	Ultralog new	Rohde & Schwarz	830547/003	2015-06	2018-06
		biconicals				
2.6	5HC2700/12750	High Pass	Trilithic	9942012		
		Filter				
2.7	ASP 1.2/1.8-10	Antenna Mast	Maturo GmbH	-		
	, kg					

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	Room	8.80m x 4.60m x 4.05m (l x w x h)		P26971-647-001- PRB		
2.9	Fluke 177 Digital Multimeter 03 (Multimeter)		Fluke Europe B.V.	86670383	2016-02	2018-02
2.10		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.11	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
2.12	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.13	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
2.14	-1.5-KK	High Pass Filter	Trilithic	9942011		
2.15		AC Power Source	Chroma ATE INC.	64040001304		
2.16		Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.17	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.18		Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
2.19		Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.20	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
2.21	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2014-11	2017-11
2.22		ThermoHygro	Lufft Mess- und Regeltechnik GmbH	12482		
2.23	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
2.24	JS4-00101800-		Miteq	896037		
2.25	AS 620 P	Antenna mast	HD GmbH	620/37		
2.26	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg		TD1.5- 10kg/024/37907 09		
2.27	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
2.28	PAS 2.5 - 10 kg		Maturo GmbH	-		
2.29	AM 4.0	Antenna mast		AM4.0/180/1192 0513		
2.30	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

5 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

				cable
			LISN	loss
			insertion	(incl. 10
			loss	dB
			ESH3-	atten-
Frequency	Corr.		Z5	uator)
MHz	dB		dB	dB
0.15	10.1		0.1	10.0
5	10.3		0.1	10.2
7	10.5		0.2	10.3
10	10.5		0.2	10.3
12	10.7		0.3	10.4
14	10.7		0.3	10.4
16	10.8		0.4	10.4
18	10.9		0.4	10.5
20	10.9		0.4	10.5
22	11.1		0.5	10.6
24	 11.1		0.5	10.6
26	11.2		0.5	10.7
28	11.2		0.5	10.7
30	11.3		0.5	10.8
50		l	0.0	20.0

5.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

			cable	cable	cable	cable	distance	d _{Limit}	d _{used}
			loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
_	AF	-	(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-Z2)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

5.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

5.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d _{Limit}	dused
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(<u>d_{Limit} = 10 m)</u>

	·/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

5.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			 	· ··-/				
					cable			
			cable		loss 3			
			loss 1		(switch			
			(relay +	cable	unit,			
	AF		cable	loss 2	atten-	cable		
	R&S		inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.	chamber)	chamber)	pre-amp)	receiver)		
		dB	,	dB				
MHz	dB (1/m)	-	dB	-	dB	dB		
1000	24.4	-19.4	0.99	0.31	-21.51	0.79		
2000	28.5	-17.4	1.44	0.44	-20.63	1.38		
3000	31.0	-16.1	1.87	0.53	-19.85	1.33		
4000	33.1	-14.7	2.41	0.67	-19.13	1.31		
5000	34.4	-13.7	2.78	0.86	-18.71	1.40		
6000	34.7	-12.7	2.74	0.90	-17.83	1.47		
7000	35.6	-11.0	2.82	0.86	-16.19	1.46		
7000	55.0	11.0	2.02	0.00	10.15	1.40		
						cable		
						loss 4		
			cable			(switch		
			loss 1	cable	cable	· ·		used
	<u>۸</u> ۲					unit,	a a la la	used
	AF		(relay	loss 2	loss 3	atten-	cable	for
_	R&S	-	inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.	chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	
3000	31.0	-23.4	0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3	0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7	0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2	0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8	0.66	2.82	0.86	-25.58	1.46	
			cable					
			loss 1	cable	cable	cable	cable	cable
	AF		(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S		inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.	chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	dB
		-	-	-	-	-	-	-
7000	35.6	-57.3	0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3	0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3	0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2	0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3	0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7	0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5	0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3	0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1	0.91	0.55	-61.05	4.02	1.44	1.83
16000								
	41.3	-54.1	1.23	0.49	-61.51	4.17	1.51	1.85
					6776	4.34	1.53	2.00
17000 18000	42.8 44.2	-54.4 -54.7	1.36 1.70	0.76	-62.36 -62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			•		,		
			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
requency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

5.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

Freq

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-15.6	3	0.5
27.0	43.4	-11.2	4.4				-15.6	3	0.5
28.0	43.4	-11.1	4.5				-15.6	3	0.5
29.0	43.5	-11.0	4.6				-15.6	3	0.5
30.0	43.5	-10.9	4.7				-15.6	3	0.5
31.0	43.5	-10.8	4.7				-15.6	3	0.5
32.0	43.5	-10.7	4.8				-15.6	3	0.5
33.0	43.6	-10.7	4.9				-15.6	3	0.5
34.0	43.6	-10.6	5.0				-15.6	3	0.5
35.0	43.6	-10.5	5.1				-15.6	3	0.5
36.0	43.6	-10.4	5.1				-15.6	3	0.5
37.0	43.7	-10.3	5.2				-15.6	3	0.5
38.0	43.7	-10.2	5.3				-15.6	3	0.5
39.0	43.7	-10.2	5.4				-15.6	3	0.5
40.0	43.8	-10.1	5.5				-15.6	3	0.5

5.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

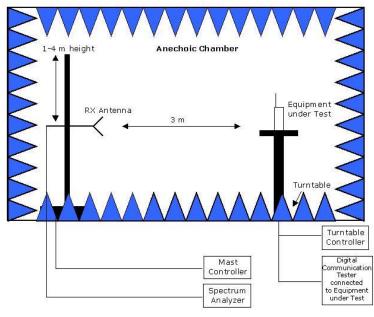
Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.


distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

7 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty	
AC Power Line	Power	± 3.4 dB	
Field Strength of spurious radiation	Power	± 5.5 dB	
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz	
Conducted Output Power	Power	± 2.2 dB	
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz	
Frequency Stability	Frequency	± 25 Hz	
Power Spectral Density	Power	± 2.2 dB	

8 PHOTO REPORT

Please see separate photo report.