

RF TEST REPORT

For

Guangzhou Pinzhong Electronic Technology Co.,Ltd.

Product Name: BEITONG KunPeng 20 Intelligent Gaming
Controller

Test Model(s).: BTP-KP20

Report Reference No. : DACE241030023RL002

FCC ID : 2AWMK-BTP-KP20

Applicant's Name : Guangzhou Pinzhong Electronic Technology Co.,Ltd.

Address Room 611-612, Greenland Center of Financial City, No. 662, Huangpu

Avenue Middle Road, Tianhe District, Guangzhou City

Testing Laboratory: Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.249

Date of Receipt : October 30, 2024

Date of Test : October 30, 2024 to November 22, 2024

Data of Issue : November 22, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 42

Apply for company information

Applicant's Name	:	Guangzhou Pinzhong Electronic Technology Co.,Ltd.			
Address	:	Room 611-612, Greenland Center of Financial City, No. 662, Huangpu venue Middle Road, Tianhe District, Guangzhou City			
Product Name	:	BEITONG KunPeng 20 Intelligent Gaming Controller			
Test Model(s)	i	BTP-KP20			
Series Model(s)	4	N/A			
Test Specification Standard(s)	7	47 CFR Part 15.249			

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Keren Huang

Ben Tang

Machael Mo

Keren Huang / Test Engineer Ben Tang / Project Engineer Machael Mo / Manager

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 42

DAG

Report No.: DACE241030023RL002

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE241030023RL002	November 22, 2024
	1	2	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 42

DAG

CONTENTS

1 TEST SUMMARY	5
1.1 Test Standards	
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	6
2.4 DESCRIPTION OF SUPPORT UNITS	7 7
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	10
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	12
4.2 OCCUPIED BANDWIDTH	
4.2.1 E.U.T. Operation:	14
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 FIELD STRENGTH OF FUNDAMENTAL	
4.3.1 E.U.T. Operation:	
4.3.2 Test Data:	17
4.4 BAND EDGE EMISSIONS (RADIATED)	18
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.5.1 E.U.T. Operation:	
4.5.2 Test Data:	
4.6 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	27
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	35

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz

Report No.: DACE241030023RL002

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.249		47 CFR Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.249	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.249	ANSI C63.10-2013, section 6.9.2	47 CFR 15.215(c)	Pass
Field strength of fundamental	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6	47 CFR 15.249(a) 47 CFR 15.249(b)(1)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6.4	47 CFR 15.249(d)	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.5	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 42

GENERAL INFORMATION

2.1 Client Information

Applicant's Name Guangzhou Pinzhong Electronic Technology Co.,Ltd.

Address Room 611-612, Greenland Center of Financial City, No. 662, Huangpu

Avenue Middle Road, Tianhe District, Guangzhou City

Guangzhou Pinzhong Electronic Technology Co.,Ltd. Manufacturer

Room 611-612, Greenland Center of Financial City, No. 662, Huangpu **Address**

Avenue Middle Road, Tianhe District, Guangzhou City

2.2 Description of Device (EUT)

Product Name:	BEITONG KunPeng 20 Intelligent Gaming Controller
Model/Type reference:	BTP-KP20
Series Model:	N/A
Trade Mark:	BEITONG
Power Supply:	DC 5V/0.5A from adapter Battery:DC3.7V 600mAh
Operation Frequency:	2404MHz to 2478MHz
Number of Channels:	38
Modulation Type:	GFSK
Antenna Type:	PCB
Antenna Gain:	1.6dBi
Hardware Version:	V1.0
Software Version:	V1.0

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	1	10	2422 MHz	20	2442 MHz	30	2462 MHz
1	2404 MHz	11	2424 MHz	21	2444 MHz	31	2464 MHz
2	2406 MHz	12	2426 MHz	22	2446 MHz	32	2466 MHz
3	2408 MHz	13	2428 MHz	23	2448 MHz	33	2468 MHz
4	2410 MHz	14	2430 MHz	24	2450 MHz	34	2470 MHz
5	2412 MHz	15	2432 MHz	25	2452 MHz	35	2472 MHz
6	2414 MHz	16	2434 MHz	26	2454 MHz	36	2474 MHz
7	2416 MHz	17	2436 MHz	27	2456 MHz	37	2476 MHz
8	2418 MHz	18	2438 MHz	28	2458 MHz	38	2478 MHz
9	2420 MHz	19	2440 MHz	29	2460 MHz	/	/

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 6 of 42

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

- 16
2404MHz
2440MHz
2478MHz
-

2.3 Description of Test Modes

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
ТМЗ	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

2.5 Equipments Used During The Test

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24		
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	2023-12-12	2024-12-11		
Cable	SCHWARZ BECK	1 21	1	2024-03-20	2025-03-19		
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2023-12-12	2024-12-11		
50ΩCoaxial Switch	Anritsu	MP59B	M20531	2023-12-12	2024-12-11		
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11		
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11		
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13		
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26		
EMI test software	EZ -EMC	EZ	V1.1.42	2023-12-12	2024-12-11		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 42

Occupied Bandwidth		. 6			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V1.0.0	2023-12-12	2024-12-11
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	2023-12-12	2024-12-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Signal Generator	Keysight	N5181A	MY48180415	2023-12-11	2024-12-10
Signal Generator	Keysight	N5182A	MY50143455	2023-12-12	2024-12-11
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

Emissions in frequency bands (above 1GHz) Field strength of fundamental

Band edge emissions (Radiated)

Emissions in frequency bands (below 1GHz)

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	2023-12-12	2024-12-11
Positioning Controller	1	MF-7802	1	2023-12-12	2024-12-11
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	61	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 42

DAG

2.6 Statement Of The Measurement Uncertainty

Test Item	000	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	O-	±3.41dB
Occupied Bandwidth		±3.63%
Radiated Emission (Above 1GHz)		±5.46dB
Radiated Emission (Below 1GHz)		±5.79dB

Report No.: DACE241030023RL002

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 42

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

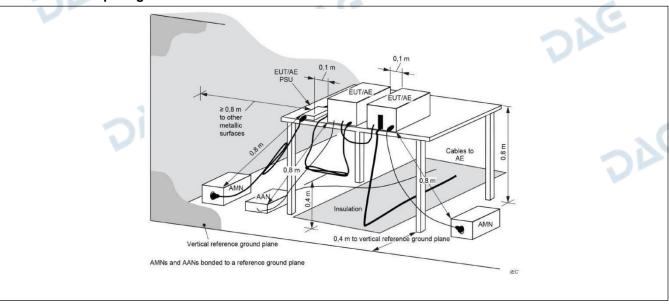
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 42

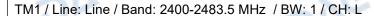
Radio Spectrum Matter Test Results (RF)

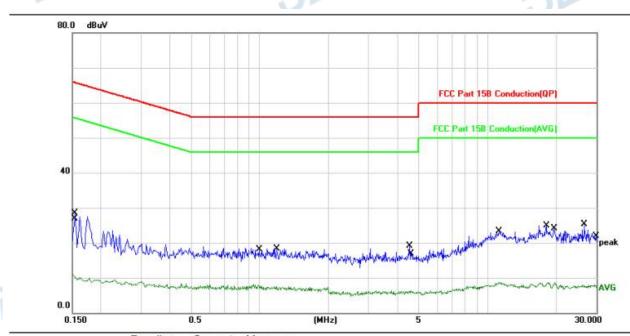

4.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)a that is designed to be connected to frequency voltage that is conducted or frequencies, within the band 150 the following table, as measured usi stabilization network (LISN).	the public utility (AC) powe back onto the AC power li kHz to 30 MHz, shall not e	er line, the radio ne on any frequency xceed the limits in				
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
\	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2	V	4				
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

4.1.1 E.U.T. Operation:

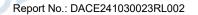
Operating Environment:										
Temperature: 22.8 °C			Humidity:	53 %		Atmospheric Pressure:	102 kPa			
Pretest mode:	Pretest mode:									
Final test mode:		TM1								

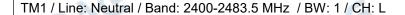

4.1.2 Test Setup Diagram:

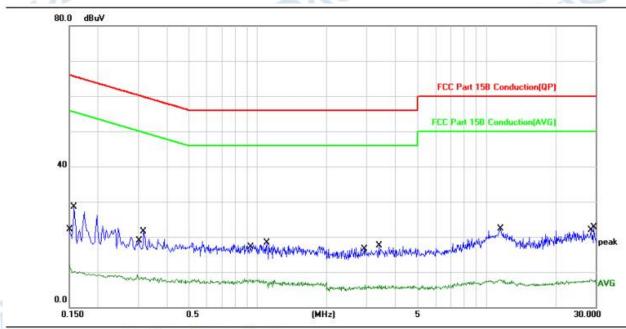


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 11 of 42 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

4.1.3 Test Data:




		Freq.	Level	Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	0.90	10.13	11.03	55.99	-44.96	AVG		
2		0.1539	18.34	10.13	28.47	65.78	-37.31	QP		
3		0.9860	-2.17	10.11	7.94	46.00	-38.06	AVG		
4		1.1900	8.29	10.10	18.39	56.00	-37.61	QP		
5		4.5460	8.86	10.17	19.03	56.00	-36.97	QP		
6		4.6140	-3.90	10.17	6.27	46.00	-39.73	AVG		
7		11.2380	12.86	10.35	23.21	60.00	-36.79	QP		
8		11.2380	-1.69	10.35	8.66	50.00	-41.34	AVG		
9		18.0459	14.41	10.55	24.96	60.00	-35.04	QP		
10		19.7860	-1.79	10.57	8.78	50.00	-41.22	AVG		
11 '	* 2	26.6660	14.45	10.85	25.30	60.00	-34.70	QP		
12	2	29.4060	-3.10	11.05	7.95	50.00	-42.05	AVG		


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613 Page 12 of 42 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	1.87	10.13	12.00	55.99	-43.99	AVG		
2	*	0.1580	18.41	10.13	28.54	65.56	-37.02	QP		
3		0.2980	-0.89	10.10	9.21	50.30	-41.09	AVG		
4		0.3180	11.47	10.10	21.57	59.76	-38.19	QP		
5		0.9220	-2.23	10.10	7.87	46.00	-38.13	AVG		
6		1.0940	8.30	10.10	18.40	56.00	-37.60	QP		
7		2.9580	-3.81	10.06	6.25	46.00	-39.75	AVG		
8		3.3940	7.42	10.10	17.52	56.00	-38.48	QP		
9		11.4180	-2.61	10.36	7.75	50.00	-42.25	AVG		
10	Į.	11.5580	11.94	10.37	22.31	60.00	-37.69	QP		
11		28.4780	-3.09	10.99	7.90	50.00	-42.10	AVG		
12	- 1	29.4140	11.71	11.05	22.76	60.00	-37.24	QP		

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 42

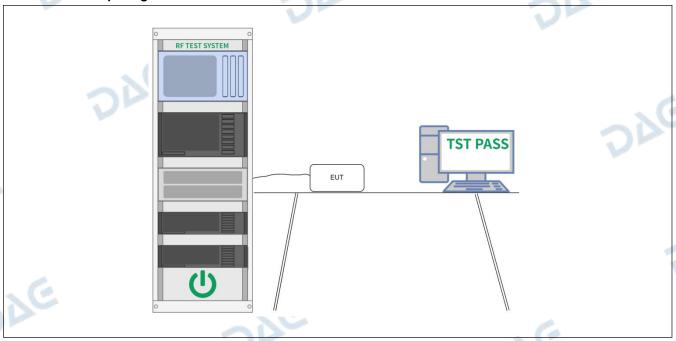
4.2 Occupied Bandwidth

4.2 Occupied Bandy	vidti –
Test Requirement:	47 CFR 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the
V.C	of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
DIE	f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
DIG DI	i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

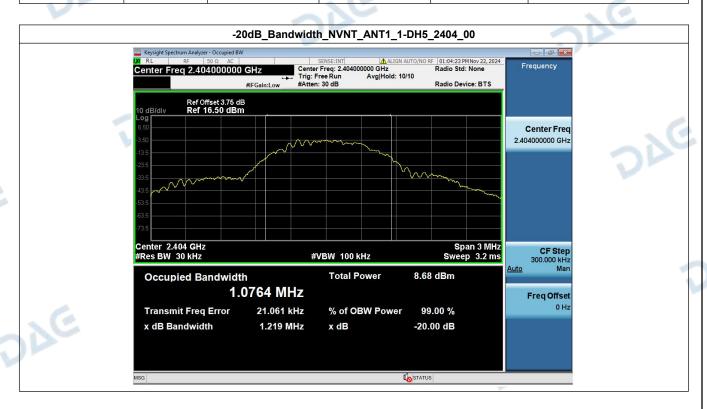
Report No.: DACE241030023RL002

4.2.1 E.U.T. Operation:

Operating Environment:										
Temperature:	22.8 °C		Humidity:	53 %	Atmospheric Pressure:	102 kPa				
Pretest mode:		TM1,	TM2,TM3							

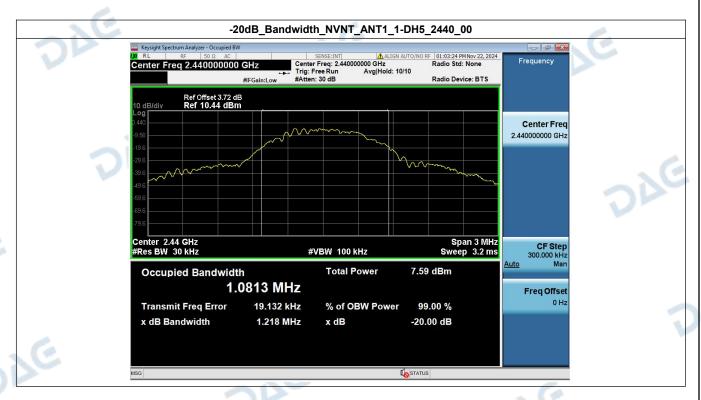

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 42


Final test mode: TM1, TM2,TM3

4.2.2 Test Setup Diagram:

4.2.3 Test Data:


Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2404.00	1.219	Yes
NVNT	ANT1	1-DH5	2440.00	1.218	Yes
NVNT	ANT1	1-DH5	2478.00	1.224	Yes

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 42

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 16 of 42

DAG

Report No.: DACE241030023RL002

4.3 Field strength of fundamental

Test Requirement:			, the field strength of emissions equency bands shall comply wit
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
	902-928 MHz	50	500
	2400-2483.5 MHz	50	500
	5725-5875 MHz	50	500
	24.0-24.25 GHz	250	2500

4.3.1 E.U.T. Operation:

Test Method:

Procedure:

Operating Envir	onment:			C		
Temperature:	Temperature: 22.8 °C		Humidity:	53 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1, TM2,TM3						
Final test mode: TM1, TM2,TM3			TM2,TM3		יט	

ANSI C63.10-2013 section 6.6

ANSI C63.10-2013 section 6.6

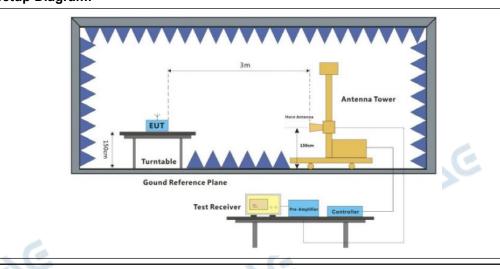
4.3.2 Test Data:

Frequency	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2404	98.35	114.00	-15.65	PK	Н
2404	91.24	94.00	-2.76	AV	Н
2404	97.24	114.00	-16.76	PK	V
2404	90.48	94.00	-3.52	AV	V
Frequency	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2440	98.65	114.00	-15.35	PK	Н
2440	92.84	94.00	-1.16	AV	Н
2440	96.68	114.00	-17.32	PK	V
2440	93.12	94.00	-0.88	AV	V
Frequency	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2478	97.58	114.00	-16.42	PK	Н
2478	92.10	94.00	-1.9	AV	Н
2478	96.24	114.00	-17.76	PK	V
2478	91.64	94.00	-2.36	AV	V

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 17 of 42

4.4 Band edge emissions (Radiated)


V1.0

Emissions radiated outside o							
Emissions radiated outside of the specified frequency bands, except for harmonics shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.							
shall be attenuated by at least	st 50 dB below the level of the fun	damental or to the					
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					
30-88	100 **	3					
88-216	150 **	3					
216-960	200 **	3					
Above 960	500	3					
radiators operating under this 54-72 MHz, 76-88 MHz, 174-these frequency bands is per and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-pe 110–490 kHz and above 100	s section shall not be located in the 216 MHz or 470-806 MHz. Howe mitted under other sections of this the tighter limit applies at the bandhe above table are based on meak detector except for the frequer 0 MHz. Radiated emission limits is	e frequency bands ver, operation within s part, e.g., §§ 15.231 d edges. easurements ncy bands 9–90 kHz,					
ANSI C63.10-2013 section 6	.6.4	200					
ANSI C63.10-2013 section 6	.6.4	V					
	shall be attenuated by at leas general radiated emission line. Emissions radiated outside of shall be attenuated by at leas general radiated emission line. Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in para radiators operating under this 54-72 MHz, 76-88 MHz, 174-84 these frequency bands is per and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-per 110-490 kHz and above 100 are based on measurements. ANSI C63.10-2013 section 6	shall be attenuated by at least 50 dB below the level of the fungeneral radiated emission limits in § 15.209, whichever is the lemissions radiated outside of the specified frequency bands, eshall be attenuated by at least 50 dB below the level of the fungeneral radiated emission limits in § 15.209, whichever is the lemission limits in § 15.209, whichev					

4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.8 °C		Humidity:	53 %	Α	Atmospheric Pressure:	102 kPa	
Pretest mode:	V	TM1,	TM2,TM3		$\overline{\mathbf{O}}$			- >(
Final test mode:		TM1						SI

4.4.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 42

4.4.3 Test Data:

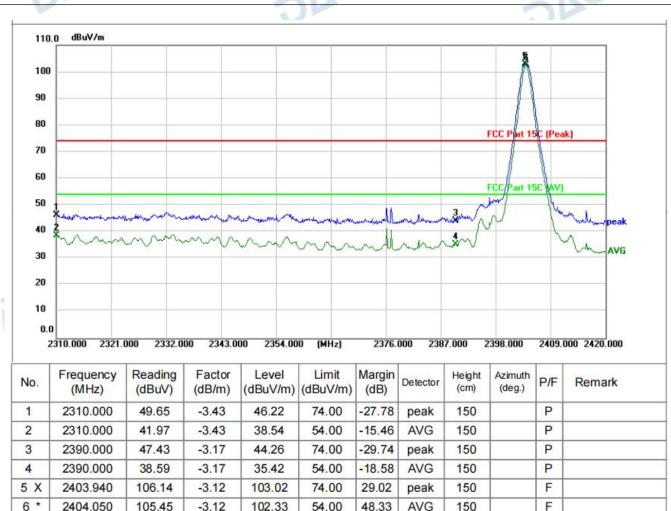
2404.050

105.45

-3.12

102.33

54.00


48.33

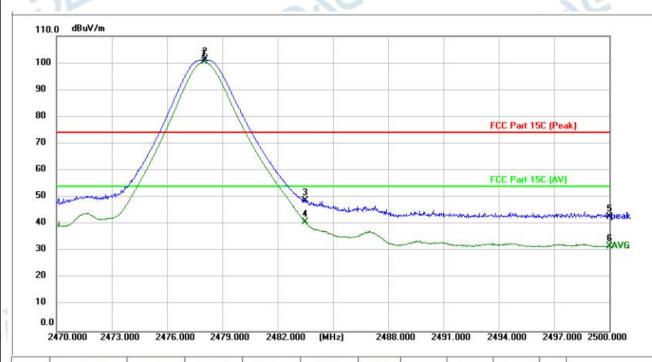
AVG

150

F

Report No.: DACE241030023RL002

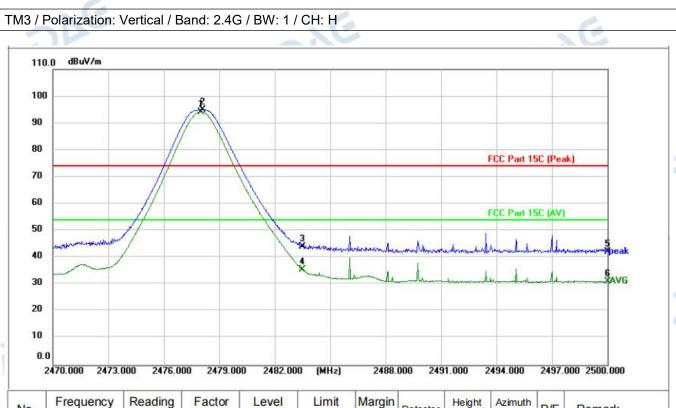
TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2310.000	47.63	-3.43	44.20	74.00	-29.80	peak	150		Р	
2	2310.000	36.54	-3.43	33.11	54.00	-20.89	AVG	150		Р	
3	2390.000	45.70	-3.17	42.53	74.00	-31.47	peak	150		Р	
4	2390.000	34.49	-3.17	31.32	54.00	-22.68	AVG	150		Р	
5 X	2403.940	100.06	-3.12	96.94	74.00	22.94	peak	150		F	8
6 *	2404.050	99.36	-3.12	96.24	54.00	42.24	AVG	150		F	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 42

TM3 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2478.010	103.32	-2.88	100.44	54.00	46.44	AVG	150		F	
2 X	2478.070	104.12	-2.88	101.24	74.00	27.24	peak	150		F	
3	2483.500	51.70	-2.86	48.84	74.00	-25.16	peak	150		Р	
4	2483.500	43.60	-2.86	40.74	54.00	-13.26	AVG	150		Р	
5	2500.000	45.54	-2.81	42.73	74.00	-31.27	peak	150		Р	S.
6	2500.000	34.58	-2.81	31.77	54.00	-22.23	AVG	150		Р	2.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 42

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2478.010	97.18	-2.88	94.30	54.00	40.30	AVG	150		F	
2 X	2478.100	97.82	-2.88	94.94	74.00	20.94	peak	150		F	
3	2483.500	46.99	-2.86	44.13	74.00	-29.87	peak	150		Р	
4	2483.500	38.40	-2.86	35.54	54.00	-18.46	AVG	150		Р	
5	2500.000	44.94	-2.81	42.13	74.00	-31.87	peak	150		Р	
6	2500.000	33.92	-2.81	31.11	54.00	-22.89	AVG	150		Р	

Note: The test software only records the worst height and cannot record the worst angle. Only the worst situation is displayed in the test report.

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 22 of 42

4.5 Emissions in frequency bands (below 1GHz)

Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	DAG
Test Limit:	Except as provided in paragraph (b)of this section, the fi from intentional radiators operated within these frequency the following:	

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

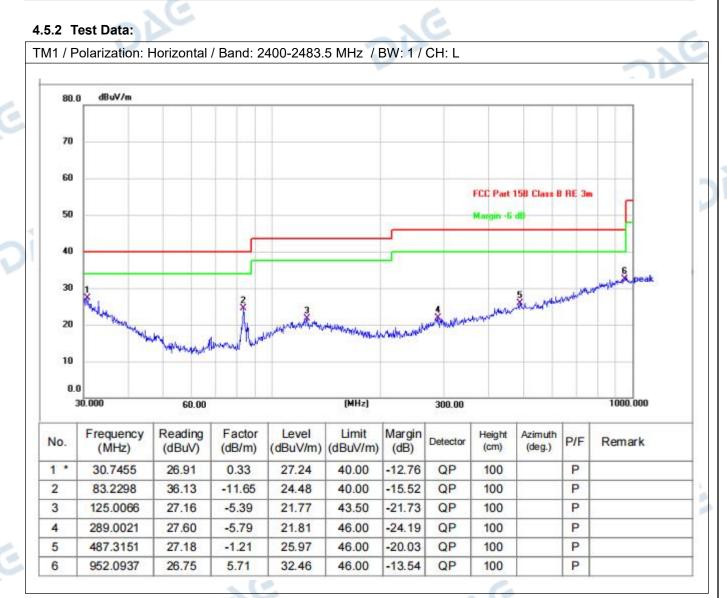
^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

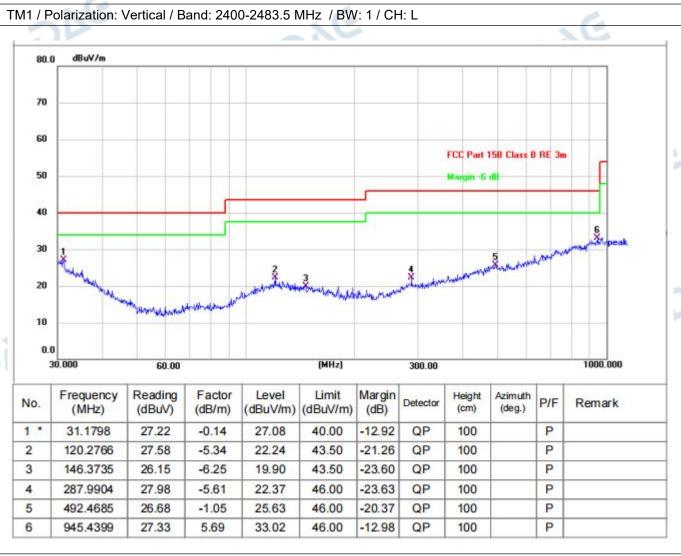
In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a)and (b)of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b)of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Test Method:	ANSI C63.10-2013 section 6.5
Procedure:	ANSI C63.10-2013 section 6.5

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 23 of 42


DAG

Operating Envir	onment:					- 76
Temperature:	22.8 °C		Humidity:	53 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM ²		TM1,	TM2,TM3			
Final test mode: TM1						

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 42

Note: The test software only records the worst height and cannot record the worst angle. Only the worst situation is displayed in the test report.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

E-mail: service@dace-lab.com

Page 25 of 42

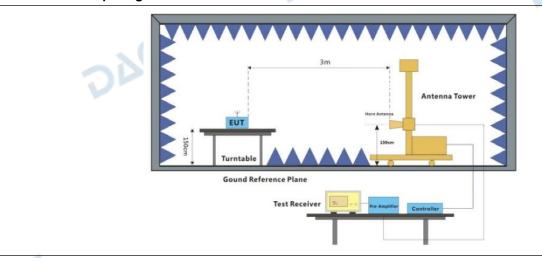
Tel: +86-755-23010613

Web: http://www.dace-lab.com

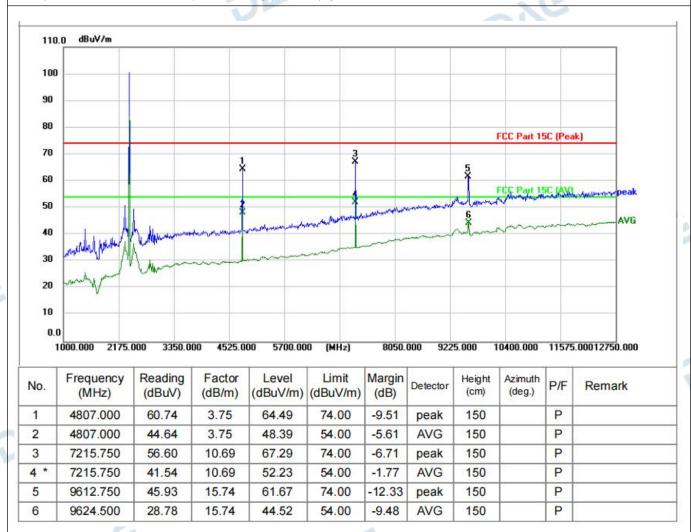
Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)			DAG
Test Limit:	Except as provided in paragetrom intentional radiators of the following:			
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	harmon	rength of iics olts/meter)
	902-928 MHz	50	500	V
	2400-2483.5 MHz	50	500	
	5725-5875 MHz	50	500	
	24.0-24.25 GHz	250	2500	
	general radiated emission I Frequency (MHz)	Field strength (microvolts/meter)	ever is the l	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	00	300
	0.490-1.705	24000/F(kHz)	V	30
	1.705-30.0	30		30
	30-88	100 **		3
	88-216	150 **		3
	216-960	200 **		3
	Above 960	500		3
	** Except as provided in paradiators operating under the 54-72 MHz, 76-88 MHz, 17 these frequency bands is pand 15.241. In the emission table above The emission limits shown employing a CISPR quasi-paragraphs (a) and above 10 are based on measurement As shown in § 15.35(b), for paragraphs (a) and (b) of this peak field strength of any eaverage limits specified abomodulation. For point-to-popeak field strength shall not	nis section shall not be I 4-216 MHz or 470-806 ermitted under other se e, the tighter limit applies in the above table are b beak detector except for 100 MHz. Radiated emists employing an averag frequencies above 100 is section are based on mission shall not excee ove by more than 20 dB int operation under para	ocated in the MHz. Howe ctions of this sat the ban pased on mean the frequents of the detector. Of MHz, the average limits of the maxing under any agraph (b) of	ne frequency bands ever, operation within s part, e.g., §§ 15.2 d edges. easurements necy bands 9–90 kH in these three band field strength limits its. However, the num permitted condition of f this section, the
XC.	antenna azimuth.			
est Method:	ANSI C63.10-2013 section		_	C
Procedure:	ANSI C63.10-2013 section	6.6		

4.6.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.8 °C	Humidity:	53 %	Atmospheric Pressure:	102 kPa	

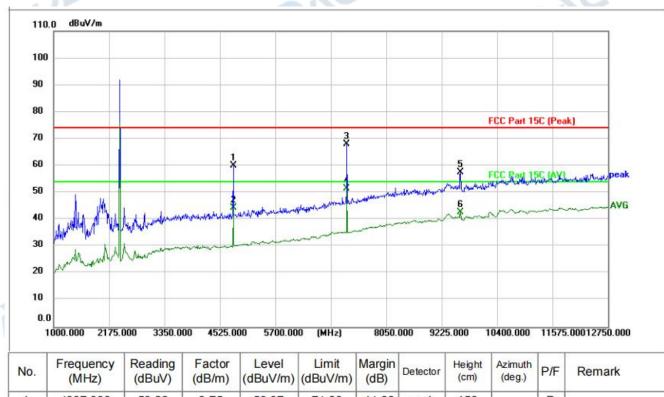

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 42


Pretest mode:	TM1, TM2,TM3	
Final test mode:	TM1	76

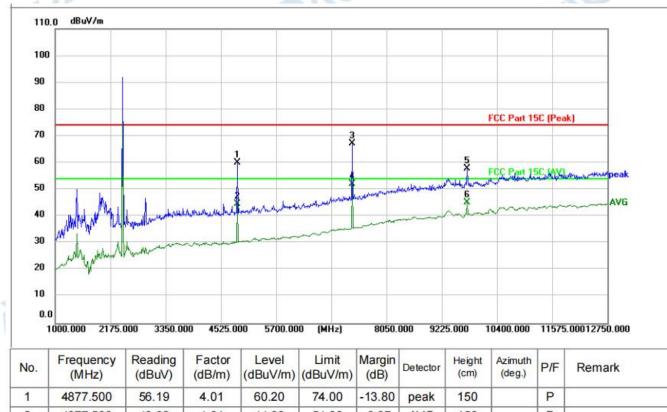
4.6.2 Test Setup Diagram:

4.6.3 Test Data:


TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 42

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4807.000	56.22	3.75	59.97	74.00	-14.03	peak	150		Р	
2	4807.000	40.65	3.75	44.40	54.00	-9.60	AVG	150		Р	
3	7215.750	57.28	10.69	67.97	74.00	-6.03	peak	150		Р	
4 *	7215.750	40.97	10.69	51.66	54.00	-2.34	AVG	150		Р	
5	9624.500	41.87	15.74	57.61	74.00	-16.39	peak	150		Р	
6	9624.500	27.13	15.74	42.87	54.00	-11.13	AVG	150		Р	2.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 42

TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	56.19	4.01	60.20	74.00	-13.80	peak	150		Р	
2	4877.500	40.62	4.01	44.63	54.00	-9.37	AVG	150		Р	Y-
3	7321.500	56.33	10.91	67.24	74.00	-6.76	peak	150		Р	
4 *	7321.500	41.08	10.91	51.99	54.00	-2.01	AVG	150		Р	
5	9765.500	42.16	15.84	58.00	74.00	-16.00	peak	150		Р	7
6	9765.500	29.30	15.84	45.14	54.00	-8.86	AVG	150		Р	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 42

9765.500

9765.500

5

6

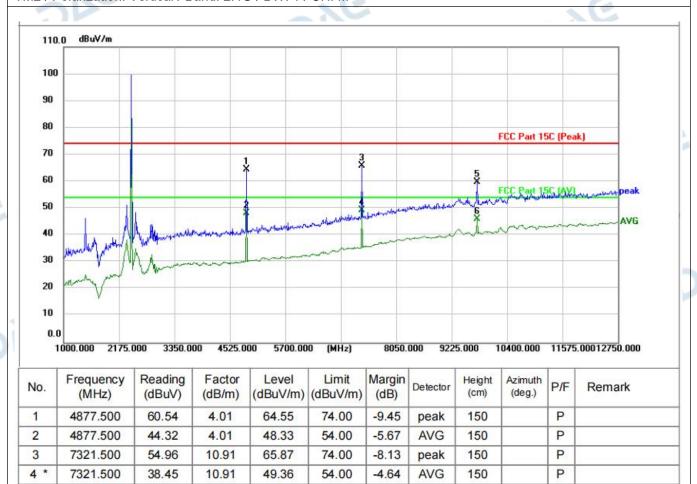
44.08

30.28

15.84

15.84

59.92


46.12

Report No.: DACE241030023RL002

P

Р

TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: M

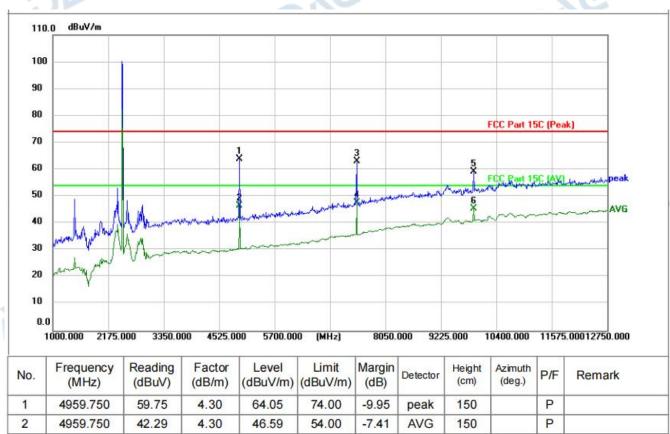
74.00

54.00

-14.08

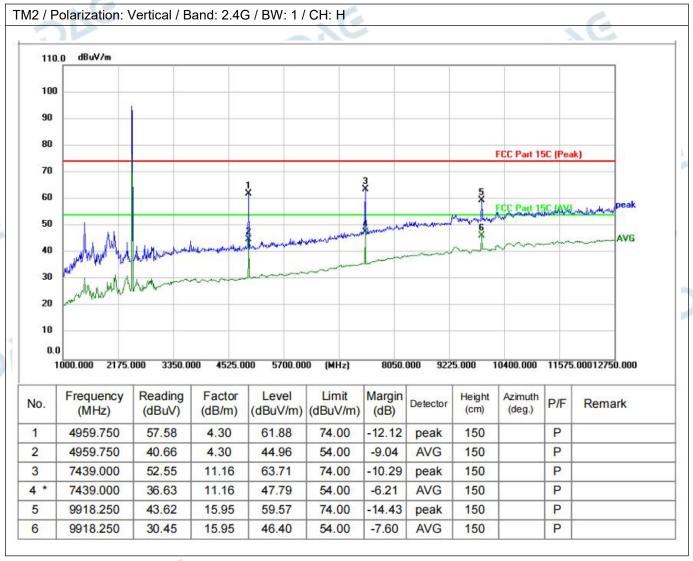
-7.88

peak


AVG

150

150


TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4959.750	59.75	4.30	64.05	74.00	-9.95	peak	150		Р	
2	4959.750	42.29	4.30	46.59	54.00	-7.41	AVG	150		Р	
3	7439.000	51.90	11.16	63.06	74.00	-10.94	peak	150		Р	
4 *	7439.000	36.63	11.16	47.79	54.00	-6.21	AVG	150		Р	
5	9918.250	43.33	15.95	59.28	74.00	-14.72	peak	150		Р	
6	9918.250	29.62	15.95	45.57	54.00	-8.43	AVG	150		Р	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 42

Note: The test software only records the worst height and cannot record the worst angle. Only the worst situation is displayed in the test report.

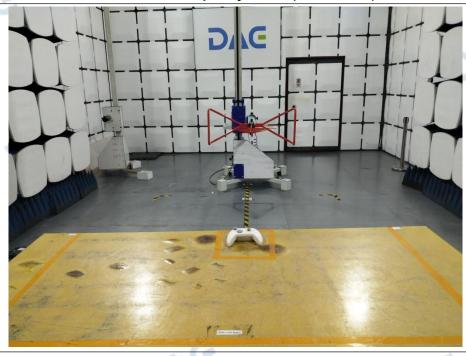
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

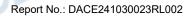
Page 32 of 42



5 TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

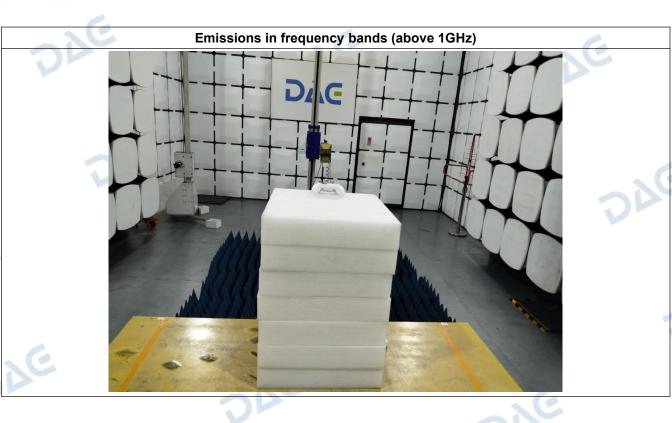


Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 33 of 42



DAG

DAG

DAG

DAG

6 PHOTOS OF THE EUT

External

Web: http://www.dace-lab.com

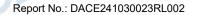
Tel: +86-755-23010613

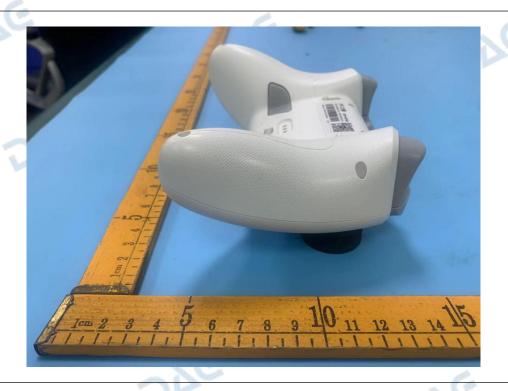
E-mail: service@dace-lab.com

Page 35 of 42

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

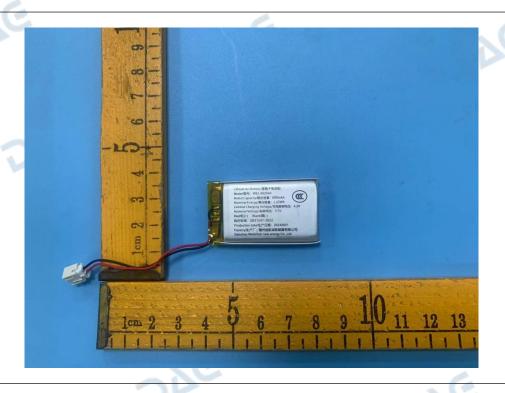

Web: http://www.dace-lab.com

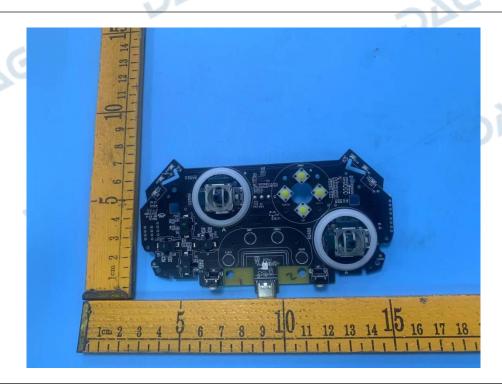

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 36 of 42

V1.0


V1.0



Internal

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

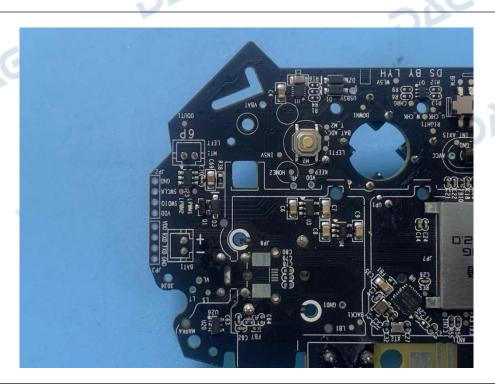
E-mail: service@dace-lab.com

Page 39 of 42

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 40 of 42

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 41 of 42

DAG

DAG

Tel: +86-755-23010613 Page 42 of 42 Web: http://www.dace-lab.com E-mail: service@dace-lab.com