

Report No.: FZ8O0804

FCC DFS Test Report

FCC ID : 2AGOZ-F8MZ

Equipment : VR Headset

: Ooculus **Brand Name**

Model Name : MH-B

Applicant : Facebook Technologies, LLC

1 Hacker Way, Menlo Park, CA 94025, USA

: Facebook Technologies, LLC Manufacturer

1 Hacker Way, Menlo Park, CA 94025, USA

: 47 CFR FCC Part 15.407 Standard

The product was received on Jul. 25, 2018, and testing was started from Oct. 05, 2018 and completed on Oct. 05, 2018. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of United States government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

FCC ID: 2AGOZ-F8MZ

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 : 1 of 22 Page Number

FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

Table of Contents

HIST	STORY OF THIS TEST REPORT				
SUM	IMARY OF TEST RESULT	4			
1	GENERAL DESCRIPTION	5			
1.1	Information	5			
1.2	Testing Applied Standards				
1.3	Testing Location Information	8			
2	TEST CONFIGURATION OF EUT	9			
2.1	Test Channel Frequencies Configuration	9			
2.2	The Worst Case Measurement Configuration	9			
2.3	Accessories	9			
2.4	Support Equipment	9			
3	DYNAMIC FREQUENCY SELECTION (DFS) TEST RESULT	10			
3.1	General DFS Information	10			
3.2	Radar Test Waveform Calibration	12			
3.3	In-service Monitoring	17			
4	TEST EQUIPMENT AND CALIBRATION DATA	21			
5	MEASUREMENT UNCERTAINTY	22			
Appe	endix A. Test Photos				
Phot	tographs of EUT V01				

TEL: 886-3-327-3456 FAX: 886-3-327-0973

Report Template No.: HE1-D2 Ver2.2

FCC ID: 2AGOZ-F8MZ

Page Number : 2 of 22

Issued Date : Nov. 27, 2018

Report No.: FZ8O0804

Report Version : 02

History of this test report

Report No.	Version	Description	Issued Date
FZ8O0804	01	Initial issue of report	Nov. 19, 2018
FZ8O0804	02	Revise Typo	Nov. 27, 2018

TEL: 886-3-327-3456 Page Number : 3 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2

FCC ID: 2AGOZ-F8MZ

Report Version : 02

Report No.: FZ8O0804

Summary of Test Result

Report No.: FZ8O0804

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	PASS	CMT ≤ 10sec
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	PASS	CCTT ≤ 60 ms starting at CMT 200ms
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Non-Occupancy Period (NOP)	PASS	NOP ≥ 30 min

Declaration of Conformity:

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

Comments and explanations:

None

Note: Since the product is client without radar detection function, only Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period are required to perform.

Reviewed by: Ben Tseng

Report Producer: Ann Hou

TEL: 886-3-327-3456 Page Number : 4 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

1 General Description

1.1 Information

1.1.1 RF General Information

Specification Items	Description			
Product Type	WLAN (2TX, 2RX)			
Radio Type	Intentional Transceiver			
Power Type	From host system			
Modulation	IEEE 802.11a: OFDM (BPSK / QPSK / 16QAM / 64QAM)			
	IEEE 802.11n/ac: see the below table			
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)			
	IEEE 802.11n/ac: see the below table			
Channel Bandwidth	20/40/80 MHz operating channel bandwidth			
Operating Mode	Master			
	Client with radar detection			
	☐ Client without radar detection			
Communication Mode	☐ IP Based (Load Based) ☐ Frame Based			
TPC Function	☐ With TPC ☑ Without TPC			
Weather Band (5600~5650MHz)				
Power-on cycle	NA (No Channel Availability Check Function)			
Software / Firmware Version 4.4.21				
Note: TPC is not required since the	maximum EIRP is less than 500mW (27dBm).			

Report No.: FZ8O0804

Antenna & Bandwidth

Antenna	Two (TX)				
Band width Mode	20 MHz	40 MHz	80 MHz		
IEEE 802.11a	V	X	X		
IEEE 802.11n	V	V	Х		
IEEE 802.11ac	V	V	V		

TEL: 886-3-327-3456 Page Number : 5 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MCS0-15/Nss1-2
802.11n (HT40)	2	MCS0-15/Nss1-2
802.11ac (VHT20)	2	MCS 0-8/Nss1-2
802.11ac (VHT40)	2	MCS 0-9/Nss1-2
802.11ac (VHT80)	2	MCS 0-9/Nss1-2

Report No.: FZ8O0804

- Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.
- Note 2: HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- Note 3: IEEE Std. 802.11ac modulation consists of VHT20, VHT40 and VHT80 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.
- Note 4: VHT20, VHT40 and VHT80 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.
- Note 5: Modulation modes consist of below configuration:
 - 11a: IEEE 802.11a, HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac.
- Note 6: Nss 1 = Stream 1; Nss 2 = Stream 2.

1.1.2 Antenna Information

Ant.	Port	Brand	Model Name	Antenna Type	Connector
1	1	-	-	PIFA	I-PEX
2	2	-	-	PIFA	I-PEX
3	-	-	-	Monopole	I-PEX

				Gain (dBi)	- Maximum	n Peak Gair	1			
Ant.	2.4G			5G			BT GFSK			
	2412MHz	2437MHz	2462MHz	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	ы	GFSK	
1	2.92	3.24	3.30	4.28	4.28	3.34	2.21	3.3	-	
2	2.56	2.52	2.56	4.04	4.04	4.56	4.93	-	-	
3	-	-	-	-	-	-	-	-	3.8	

	DG Gain (dBi) - Correlated Gain								
2TX Stream	2.4G			5G					
Otroum	2412MHz	2437MHz	2462MHz	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3		
1	5.56	5.77	5.95	6.93	6.93	6.53	6.07		
2	2.56	2.77	2.95	3.92	3.92	3.52	3.16		

Note 1: The EUT has three antennas.

Note 2: Ant. 1 = port 1 = Chain 0 = Right; Ant. 2 = port 2 = Chain 1 = Left.

TEL: 886-3-327-3456 Page Number : 6 of 22
FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

For 2.4GHz function:

For IEEE 802.11 b/g/n mode (2TX/2RX)

Only supports 2X2 MIMO configuration.

For 5GHz function:

For IEEE 802.11 a/n/ac mode (2TX/2RX)

Only supports 2X2 MIMO configuration.

For BT function:

For IEEE 802.15.1 Bluetooth mode (1TX/1RX)

Only Ant. 1 could transmit/receive simultaneously.

For GFSK function:

For GFSK mode (1TX/1RX)

Only Ant. 3 could transmit/receive simultaneously.

1.1.3 DFS Band Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140.

Report No.: FZ8O0804

For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 118, 126, 134.

For 80MHz bandwidth systems, use Channel 58, 106, 122.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
	100	5500 MHz	120	5600 MHz
	102	5510 MHz	122	5610 MHz
	104	5520 MHz	124	5620 MHz
5470 5705 MU-	106	5530 MHz	126	5630 MHz
5470~5725 MHz Band 3	108	5540 MHz	128	5640 MHz
Dallu 3	110	5550 MHz	132	5660 MHz
	112	5560 MHz	134	5670 MHz
	116	5580 MHz	136	5680 MHz
	118	5590 MHz	140	5700 MHz

TEL: 886-3-327-3456 Page Number : 7 of 22
FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FZ8O0804

- KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
- KDB 905462 D03 Client Without DFS New Rules v01r02

1.3 Testing Location Information

	Testing Location						
\boxtimes	HWA YA ADD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)						
	TEL: 886-3-327-3456 FAX: 886-3-327-0973						
	Test site Designation No. TW1190 with FCC.						
Te	Test Condition Test Site No. Test Engineer Test Environment Test Date					Test Date	
	DFS Site DF03-HY			DF03-HY	Dexter	25°C / 59%	05/Oct/2018

TEL: 886-3-327-3456 Page Number : 8 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration			
IEEE Std.	Test Channel Freq. (MHz)		
802.11ac (VHT80)	5530 MHz		

Report No.: FZ8O0804

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests					
Tests Item Dynamic Frequency Selection (DFS)					
Test Condition	The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used.				
Modulation Mode	802.11ac (VHT80)				

2.3 Accessories

Accessories						
	Brand Name	oculus	Model Name	AQ15A-050A		
AC Adapter (US Plug)	Manufacturer	PHIHONG				
(OO i lug)	Power Rating	I/P: 100 - 240Vac, 0.5A, O/P: 5Vdc, 3A				
Type-C USB	In/Out door	In door				
Cable	Cable	2.95 meter, Shielded cable, w/o ferrite core				

Reminder: Regarding to more detail and other information, please refer to user manual.

2.4 Support Equipment

Support Equipment							
No.	Equipment	Brand Name	Model Name				
1	NoteBook	DELL	Latitude E5550				
2	Adapter for NoteBook	DELL	FA90PSO-00				
3	NoteBook	DELL	Latitude E5540				
4	Adapter for NoteBook	DELL	FA90PSO-00				
5	AP (Master)	EDIMAX	EW-7679WAC				

TEL: 886-3-327-3456 Page Number : 9 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values						
Parameter	Value					
Non-occupancy period	Minimum 30 minutes					
Channel Availability Check Time	60 seconds					
Channel Move Time	10 seconds (Note 1).					
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).					
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).					

Report No.: FZ8O0804

- Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values						
Maximum Transmit Power	Value (see note)					
EIRP≥ 200 mW	-64 dBm					
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm					
EIRP < 200 mW and PSD ≥ 10dBm/MHz	-64 dBm					

- Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
- Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911.

TEL: 886-3-327-3456 Page Number : 10 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode					
Requirement	Master	Client without radar detection	Client with radar detection			
Non-Occupancy Period	Yes	Not required (See the note)	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Report No.: FZ8O0804

Note:

According to KDB 905462 D03 Client Without DFS New Rules v01r02 (b) 6."An analyzer plot that contains a single 30-minute sweep on the original channel "

3.1.3 Applicability of DFS Requirements during Normal Operation

	DFS Operational mode					
Requirement	Master	Client without radar detection	Client with radar detection			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

3.1.4 Channel Loading/Data Streaming

	The data file (MPEG-4) has been transmitting in a streaming mode.
\boxtimes	Software to ping the client is permitted to simulate data transfer with random ping intervals.
\boxtimes	Minimum channel loading of approximately 17%.
	Unicast protocol has been used.

TEL: 886-3-327-3456 Page Number : 11 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	(1) (19×10 ⁶))	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI	$Roundup \left(\left(\frac{1}{360} \right) \times \left(\frac{19 \times 10^6}{PRI} \right) \right)$	60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrega	ate (Radar Type	80%	120		

Report No.: FZ8O0804

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

- The transmission period for the Long Pulse Radar test signal is 12 seconds.
- There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
- Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each
 pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse
 widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each
 pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For
 example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and

TEL: 886-3-327-3456 Page Number : 12 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Version

: 02

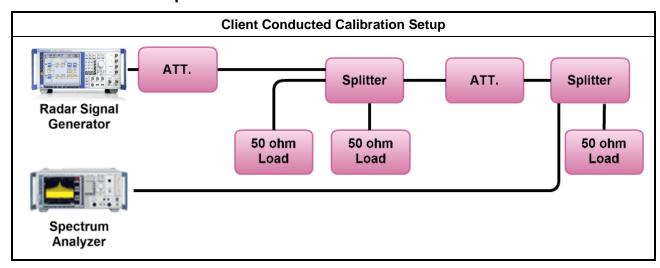
Report Template No.: HE1-D2 Ver2.2

- ends at 5310 MHz.
- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.

Report No.: FZ8O0804

The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

3.2.3 Frequency Hopping Radar Test Waveform

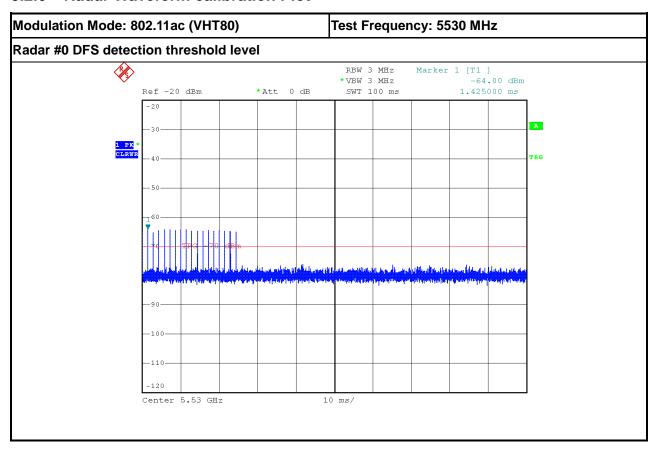

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one.

3.2.4 DFS Threshold Level

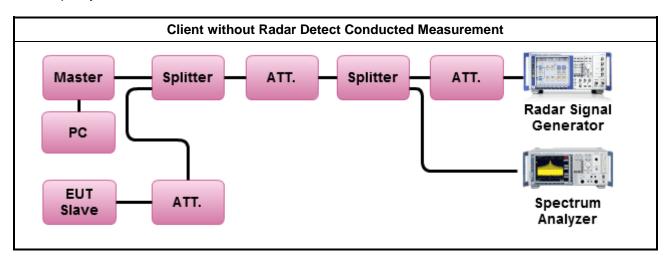
DFS Threshold Level					
DFS Threshold level: -63	dBm	at the antenna connector			
		in front of the antenna			
The Interference Radar Detection been taken into account the outp		eshold Level is is $-64 dBm + 0 [dBi] + 1 dB = -63 dBm$. That had been er range and antenna gain.			

3.2.5 Calibration Setup



TEL: 886-3-327-3456 Page Number : 13 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

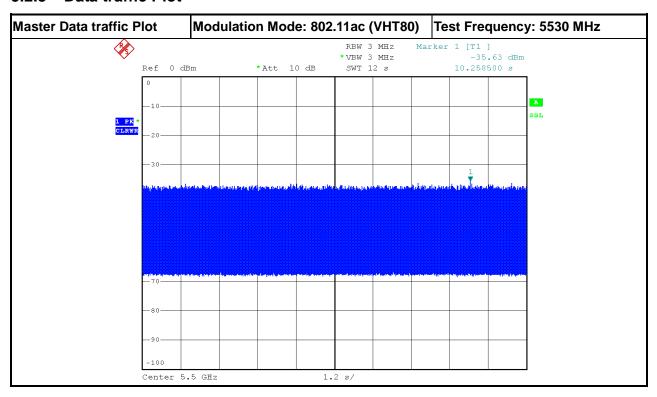

3.2.6 Radar Waveform calibration Plot

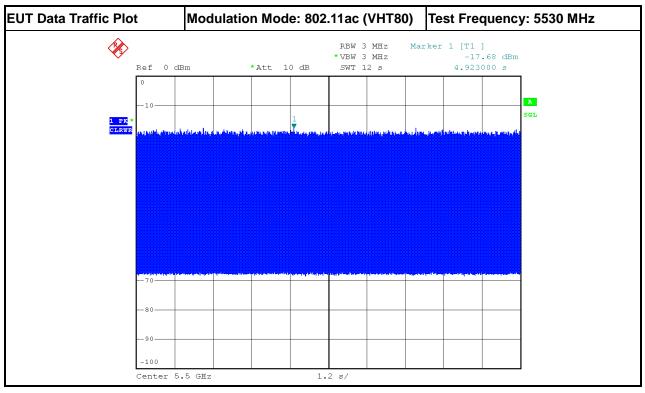
Report No.: FZ8O0804

3.2.7 Test Setup

A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.

TEL: 886-3-327-3456 Page Number : 14 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

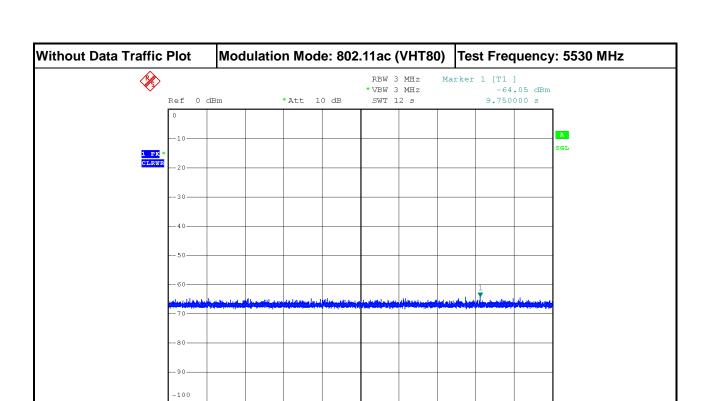

Report Template No.: HE1-D2 Ver2.2 Report Version : 02



Report No.: FZ8O0804

: 02

3.2.8 Data traffic Plot



TEL: 886-3-327-3456 Page Number : 15 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version

Center 5.5 GHz

1.2 s/

Report No.: FZ8O0804

TEL: 886-3-327-3456 Page Number : 16 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02 FCC ID : 2AGOZ-F8MZ

3.3 In-service Monitoring

3.3.1 In-service Monitoring Limit

	In-service Monitoring Limit
Channel Move Time	10 sec
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.
Non-occupancy period	Minimum 30 minutes

Report No.: FZ8O0804

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

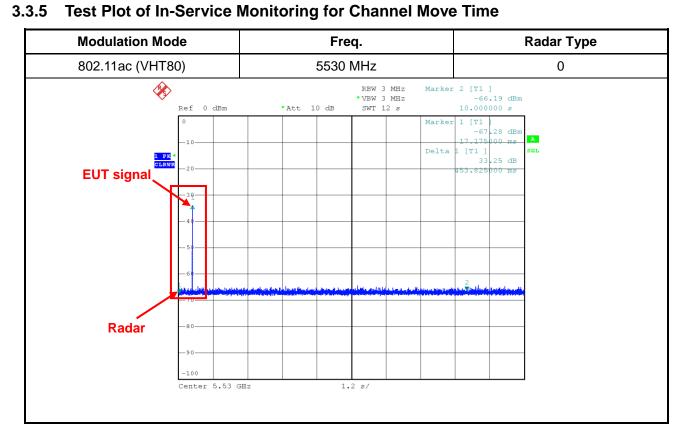
Test Method

- Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
- ✓ Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.
- ✓ Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

3.3.4 Test Result of In-service Monitoring

Modulation Mode: 802.11ac (VHT80)

Paramatan	Test Result	1 : :4
Parameter	Type 0	Limit
Test Channel (MHz)	5530 MHz	-
Channel Move Time (sec.)	0.453825	< 10s
Channel Closing Transmission Time (ms) (Note)	6.000	< 60ms
Non-Occupancy Period (min.)	≥30	≥ 30 min


Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

TEL: 886-3-327-3456 Page Number : 17 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

FCC ID: 2AGOZ-F8MZ

Report No.: FZ8O0804

TEL: 886-3-327-3456 Page Number : 18 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

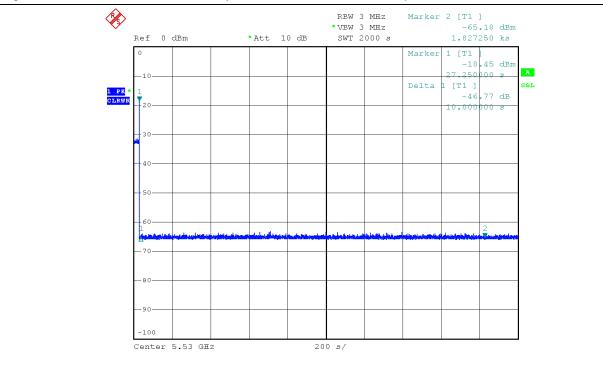
Test Plot of In-Service Monitoring for Channel Closing Transmission Time 3.3.6

Report No.: FZ8O0804

hannel Closing Transmission Time is comprised of 200 ms starting at the beginning of the Channel Mome plus 60ms additional intermittent control signals Zoom ZI[5] NaNs ZI[5] NaNs ZI[5] NaNs ZI[5] NaNs Zoom TX Gms Zoom TX Gms Zoom TX Gms Zoom TX Samp 40 DC-Zoom 001194	nannel Closing Transmission Time is comprised of 200 ms starting at the beginning of the Channel Mome plus 60ms additional intermittent control signals Coom	Modulation Mo	ode		Fred] .			Radaı	г Туре	
Zoom Zoom Zi[s] NaNs Z2[s] NaNs Z2[s] NaNs Zoom TX 6ms DC-Zoom 0.01194	Toom Too Toom Too Too	802.11ac (VHT	80)		5530 N	ЛHz			(0	
7[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 720m TX 6ms 720m TX Samp 4 70-70-70-70-70-70-70-70-70-70-70-70-70-7	72[5] NaNs 22[5] NaNs 22[5] NaNs 22[6] NaNs 250m TX 6ms 250m TX Samp 4 DC-Zoom 0.01194	nannel Closing Trans me plus 60ms additio	mission Time	e is compr ent control	ised of 20 signals	00 ms st	arting at	the begin	nning of t	he Cha	annel Mov
7[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 720m TX 6ms 720m TX Samp 4 70-70-70-70-70-70-70-70-70-70-70-70-70-7	72[5] NaNs 22[5] NaNs 22[5] NaNs 22[6] NaNs 250m TX 6ms 250m TX Samp 4 DC-Zoom 0.01194										
72[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 720m TX 6ms 720m TX Samp 4 DC-Zoom 0.01194	72[5] NaNs 22[5] NaNs 22[5] NaNs 22[6] NaNs 250m TX 6ms 250m TX Samp 4 DC-Zoom 0.01194										
7[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 720m TX 6ms 720m TX Samp 4 70-70-70-70-70-70-70-70-70-70-70-70-70-7	72[5] NaNs 22[5] NaNs 22[5] NaNs 22[6] NaNs 250m TX 6ms 250m TX Samp 4 DC-Zoom 0.01194										
7[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 72[s] NaNs 720m TX 6ms 720m TX Samp 4 70-70-70-70-70-70-70-70-70-70-70-70-70-7	72[5] NaNs 22[5] NaNs 22[5] NaNs 22[6] NaNs 250m TX 6ms 250m TX Samp 4 DC-Zoom 0.01194										
NaNs Z2[s] NaNs Zoom TX 6ms Zoom TX Samp 4 DC-Zoom 0.01194	NaNs Z2[s] NaNs Zoom TX 6ms Zoom TX Samp 4 DC-Zoom 0.01194										Z1[s]
-2030405060708090100 -	-203040506070809010										
-30405060708090100 -	-30 -40 -40 -50 -60 -70 -80 -90 -100 -100 -100 -100 -100 -100 -100										Z2[s]
-405060708090100 -	-40506070809010010010070										NaNs
-5060708090100 -	-50 - 60 - 70 - 80 - 90 - 100				D						Zoom TX
-60708090100 -	-60 -70 -80 -90 -100 -100 -100 -100 -100 -100 -100										6ms
-70 - DC-Zoom 0.01194	-70 - DC-Zoom 0.01194										Zoom TX Sampl
-80 - -90 - -100 -	-80 - 0.01194 0.01194	Ass			l						4
-90 - -100 -	-90 - -100										
-100	-100										0.01194
			00m 350m	400m	450m	500m	550m	600m	650m	700m	

TEL: 886-3-327-3456 Page Number : 19 of 22 : Nov. 27, 2018 FAX: 886-3-327-0973 Issued Date

Report Version Report Template No.: HE1-D2 Ver2.2 : 02


3.3.7 Test Plot of In-Service Monitoring for Non-Occupancy Period

Modulation Mode	Freq.
802.11ac (VHT80)	5530 MHz

Report No.: FZ8O0804

Non-Occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

TEL: 886-3-327-3456 Page Number : 20 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSP7	100644	9kHz ~ 7GHz	08/Nov/2017	07/Nov/2018
Vector Signal Generator	Keysight	N5182B	MY53051912	9kHz ~ 6GHz	4/Dec/2017	3/Dec/2018
RF cable 1m	HUBER+SUHNER	SUCOFLEX 104	MY22999/4	25 MHz ~ 26.5 GHz	01/Nov/2017	31/Oct/2018
RF cable 0.5m	HUBER+SUHNER	SUCOFLEX 104	MY23003/4	25 MHz ~ 26.5 GHz	01/Nov/2017	31/Oct/2018
RF cable 0.2m	MTJ Cooperation	000000-MT26A-20	D5101	1 GHz ~ 40 GHz	01/Nov/2017	31/Oct/2018

Report No.: FZ8O0804

: 02

TEL: 886-3-327-3456 Page Number : 21 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

Report No.: FZ8O0804

TEL: 886-3-327-3456 Page Number : 22 of 22 FAX: 886-3-327-0973 Issued Date : Nov. 27, 2018

Report Template No.: HE1-D2 Ver2.2 Report Version : 02