

Report No.: DACE250402002RL001

RF TEST REPORT

BESING TECHNOLOGY (SHENZHEN) CO., LTD

Product Name: Wireless Earphone

Test Model(s): BX27

Report Reference No. DACE250402002RL001

FCC ID 2ATU8-X27

BESING TECHNOLOGY (SHENZHEN) CO., LTD **Applicant's Name**

2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu **Address**

Community, Shiyan Street, Baoan District, Shenzhen, China

Testing Laboratory Shenzhen DACE Testing Technology Co., Ltd.

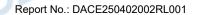
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard 47 CFR Part 15.247

Date of Receipt April 2, 2025


Date of Test April 2, 2025 to April 11, 2025

Data of Issue April 11, 2025

Result **Pass**

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Tel: +86-755-23010613 Page 1 of 91 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Apply for company information

Applicant's Name	:	ESING TECHNOLOGY (SHENZHEN) CO., LTD				
Address	:	F, Block 1, Tianxin Resident Group Industrial Park, Shangwu community, Shiyan Street, Baoan District, Shenzhen, China				
Product Name	:	Wireless Earphone				
Test Model(s)	i	BX27				
Series Model(s)		N/A				
Test Specification Standard(s)	7	47 CFR Part 15.247				

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by: Keren Huang

Supervised by:

Approved by:

Keren Huang / Test Engineer April 11, 2025 Ben Tang / Project Engineer

Tom Chen / Manager

April 11, 2025

April 11, 2025

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 91

Report No.: DACE250402002RL001

Revision History Of Report

Version Description		Description REPORT No.	
V1.0	Original	DACE250402002RL001	April 11, 2025
	1		

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 91

DAG

V1.0

CONTENTS

6 6 7
7
7
7
8
8 9
11
11
11
12
12
12
13
13
13
13
14
16
16
16
16
17
17
17
17
18
18
18
18
19
19
19
20
21
21
21
21
21 22
21 22 22
21 22 22
21 22 22 22
212222

4.8.2 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	30
4.9.1 E.U.T. Operation:	31
4.9.2 Test Data:	31
5 TEST SETUP PHOTOS	37
6 PHOTOS OF THE EUT	39
APPENDIX	50
1. DUTY CYCLE	51
3. 99% OCCUPIED BANDWIDTH	59
4. Peak Output Power	63
5. Spurious Emissions	67
6. Bandedge	73
7. CARRIER FREQUENCIES SEPARATION (HOPPING)	
8. NUMBER OF HOPPING CHANNEL (HOPPING)	86
9. DWELL TIME (HOPPING)	90

ME

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 91

DAG

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 91

Report No.: DACE250402002RL001

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD

Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community,

Shiyan Street, Baoan District, Shenzhen, China

Manufacturer : BESING TECHNOLOGY (SHENZHEN) CO., LTD

Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community,

Shiyan Street, Baoan District, Shenzhen, China

2.2 Description of Device (EUT)

Product Name:	Wireless Earphone
Model/Type reference:	BX27
Series Model:	N/A
Trade Mark:	N/A
Power Supply:	5V = 1A from adapter Battery:DC3.7V 65mAH
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type:	GFSK, π/4 DQPSK
Antenna Type:	Chip antenna
Antenna Gain:	1.8dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

Operation	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz	
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 91

16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description			
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.			
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.			
TM3	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.			
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.			
Remark:Only the data of the worst mode would be recorded in this report.					

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	DIA.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 91

Report No.: DACE250402002RL001

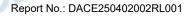
2.5 Equipments Used During The Test

Conducted Emission a	Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-05-20	2025-05-19			
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1			
Cable	SCHWARZ BECK	101	1	2024-05-20	2025-05-19			
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05			
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/			
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11			
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11			
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13			
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26			
EMI test software	EZ -EMC	EZ	V1.1.42	1	1			

Number of Hopping Frequencies

Dwell Time

Emissions in non-restricted frequency bands


Maximum Conducted Output Power

Channel Separation

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	/	2/26
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 91

Band edge emissions (Radiated) **Emissions in frequency bands (below 1GHz)** Emissions in frequency bands (above 1GHz)

Emissions in frequenc					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	/
Positioning Controller	MF	MF-7802	61	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2023-05-19	2025-05-18
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-05-19	2025-05-18
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	1	1	2024-12-19	2025-12-18
Cable(LF)#1	Schwarzbeck	1	1	2024-12-19	2025-12-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-05-20	2025-05-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-05-20	2025-05-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

Page 10 of 91

2.6 Statement Of The Measurement Uncertainty

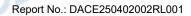
Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
RF conducted power	±0.733dB
Occupied Bandwidth	±3.63%
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location


Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 91

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

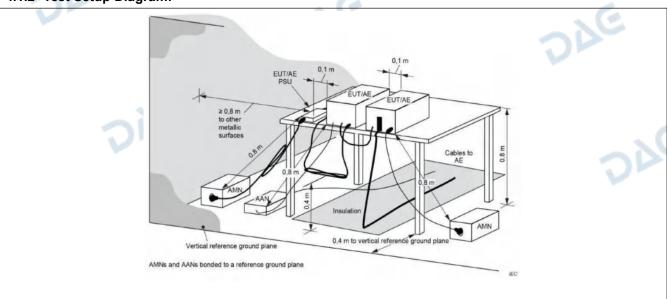
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 91

Radio Spectrum Matter Test Results (RF)

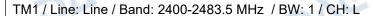

4.1 Conducted Emission at AC power line

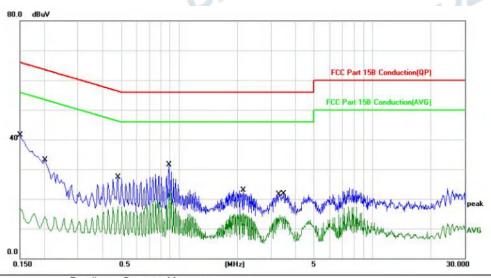
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu\text{H}/50$ ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
\	*Decreases with the logarithm of the	frequency.	<u> </u>				
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM			TM2				
Final test mode: TM1			TM2				

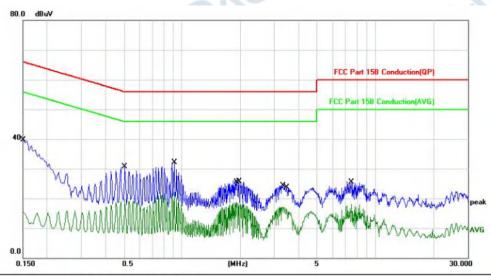
4.1.2 Test Setup Diagram:




102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Report No.: DACE250402002RL001

4.1.3 Test Data:



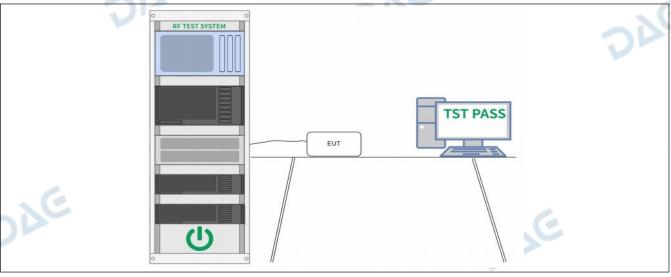
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	31.35	10.13	41.48	65.99	-24.51	QP	
2		0.1500	6.56	10.13	16.69	55.99	-39.30	AVG	
3		0.2020	22.94	10.12	33.06	63.52	-30.46	QP	
4		0.2020	3.91	10.12	14.03	53.52	-39.49	AVG	
5		0.4820	17.31	10.09	27.40	56.30	-28.90	QP	
6		0.4820	7.37	10.09	17.46	46.30	-28.84	AVG	
7		0.8860	21.50	10.10	31.60	56.00	-24.40	QP	
8	*	0.8860	13.11	10.10	23.21	46.00	-22.79	AVG	
9		2.1500	12.85	10.01	22.86	56.00	-33.14	QP	
10		2.1500	5.38	10.01	15.39	46.00	-30.61	AVG	
11		3.3140	4.34	10.09	14.43	46.00	-31.57	AVG	
12		3.4900	11.59	10.11	21.70	56.00	-34.30	QP	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 91

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	29.55	10.13	39.68	65.99	-26.31	QP	
2		0.1500	5.36	10.13	15.49	55.99	-40.50	AVG	
3		0.5060	20.66	10.09	30.75	56.00	-25.25	QP	
4		0.5060	9.58	10.09	19.67	46.00	-26.33	AVG	
5		0.9100	21.90	10.10	32.00	56.00	-24.00	QP	
6	*	0.9100	12.09	10.10	22.19	46.00	-23.81	AVG	
7		1.9220	8.68	10.00	18.68	46.00	-27.32	AVG	
8		1.9740	15.68	9.99	25.67	56.00	-30.33	QP	
9		3.3140	7.00	10.09	17.09	46.00	-28.91	AVG	
10		3.4900	13.61	10.11	23.72	56.00	-32.28	QP	
11		7.5020	15.28	10.23	25.51	60.00	-34.49	QP	
12		7.5020	7.80	10.23	18.03	50.00	-31.97	AVG	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 91


4.2 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
	a) Use the following spectrum analyzer settings:
	Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
1	2) RBW > 20 dB bandwidth of the emission being measured.
	3) VBW >= RBW.
	4) Sweep: Auto.
	5) Detector function: Peak. 6) Trace: Max hold.
XC	b) Allow trace to stabilize.
	c) Use the marker-to-peak function to set the marker to the peak of the emission.
	d) The indicated level is the peak output power, after any corrections for external
	attenuators and cables. e) A plot of the test results and setup description shall be included in the test report.
	NOTE—A peak responding power meter may be used, where the power meter and
- 16	sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.
4.2.1 E.U.T. Operation:	· C

4.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.5 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM			TM2			
Final test mode: TM1, TM2				_		

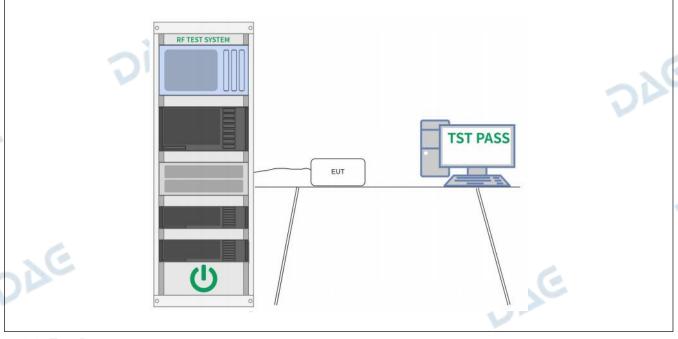
4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Page 16 of 91 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


4.3 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW.
DE	d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

4.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 22.5 °C		Humidity:	47 %		Atmospheric Pressure:	102 kPa	
Pretest mode:	TM3,	TM4	- 3	C		. 6		
Final test mode: TM3			TM4	JI			270	

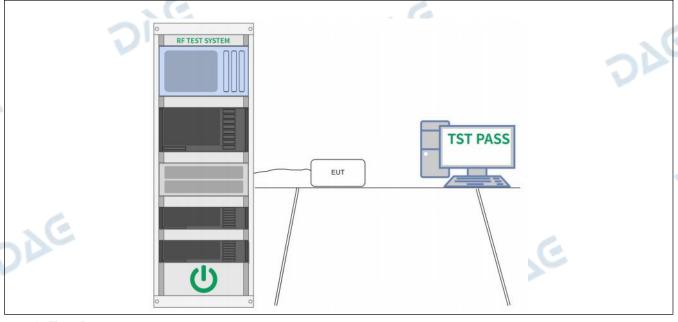
4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 17 of 91


4.4 Number of Hopping Frequencies

m. Mamber of mep	
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature: 22.5 °C			Humidity:	47 %	Atmospheric Pressure:	102 kPa		
Pretest mode:	Pretest mode: 1			V		DIA.		
Final test mode: TM3			TM4					

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 91

4.5 Dwell Time

4.5 Dwell fille	
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the
	values described in the operational description for the EUT.

Report No.: DACE250402002RL001

4.5.1 E.U.T. Operation:

Operating Environment:						
Temperature:	Temperature: 22.5 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa
Pretest mode: TN			TM4			
Final test mode: TM3		TM3,	TM4	6		

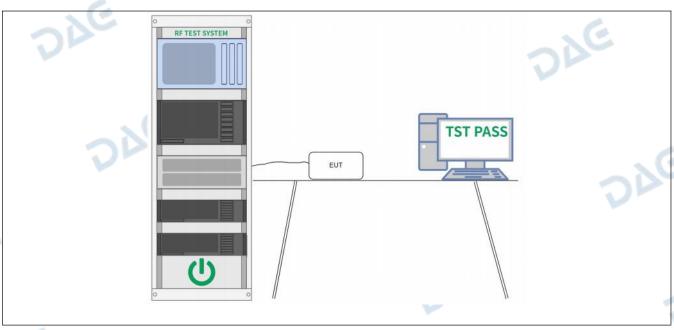
4.5.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 19 of 91



Report No.: DACE250402002RL001

DIE

DAG

DAG

DAG

4.5.3 Test Data:

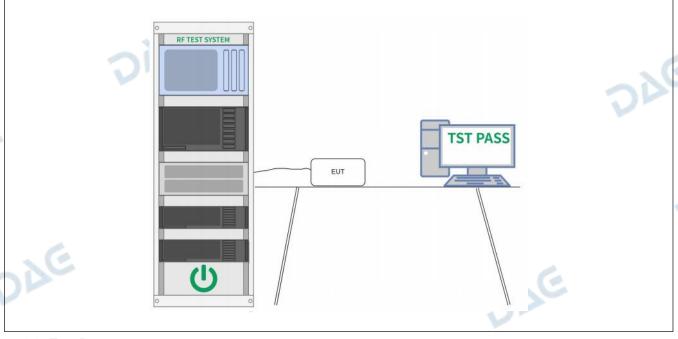
DAG

DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 91


4.6 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.6.1 E.U.T. Operation:

Operating Environment:								
Temperature: 22.5 °C		Humidity:	47 %		Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2, TM3, TM			ГМ4	C		. 6		
Final test mode: TM1		TM2, TM3, 7	ГМ4					

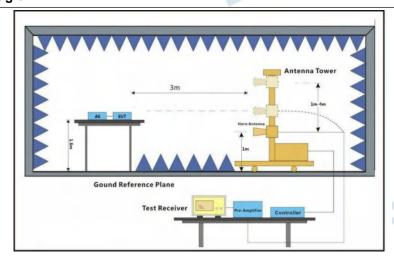
4.6.2 Test Setup Diagram:

4.6.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 91

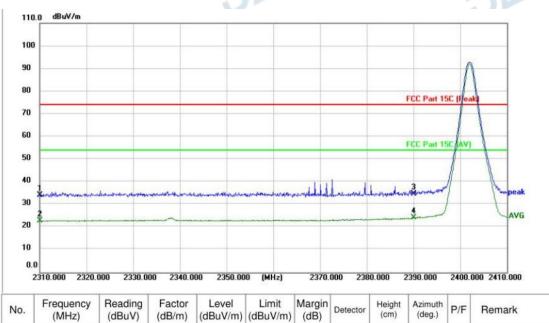

4.7 Band edge emissions (Radiated)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
1	Above 960	500	3					
1E	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.23 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands							
Test Method:	are based on measurements employing an average detector. ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	ANSI C63.10-2013 section	6.10.5.2	16					

4.7.1 E.U.T. Operation:

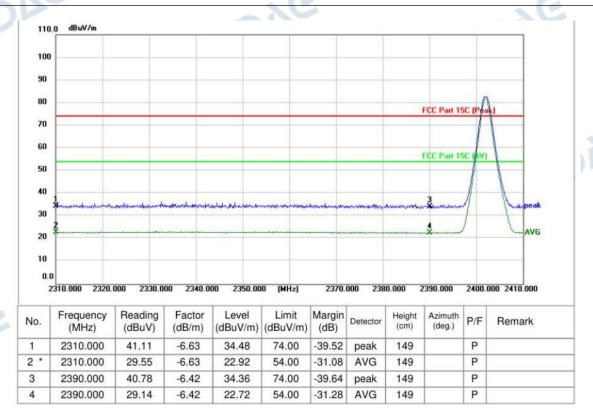
Operating Environment:								
Temperature:	mperature: 22.5 °C			47 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2					. 6			
Final test mode: TM1			TM2					

4.7.2 Test Setup Diagram:


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 22 of 91

4.7.3 Test Data:

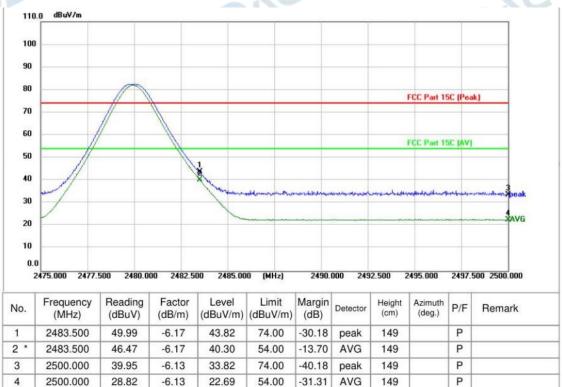
TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2310.000	40.78	-6.63	34.15	74.00	-39.85	peak	149		Р	
2	2310.000	29.68	-6.63	23.05	54.00	-30.95	AVG	149		Р	
3	2390.000	41.11	-6.42	34.69	74.00	-39.31	peak	149		Р	
4 *	2390.000	30.80	-6.42	24.38	54.00	-29.62	AVG	149		Р	

Report No.: DACE250402002RL001

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

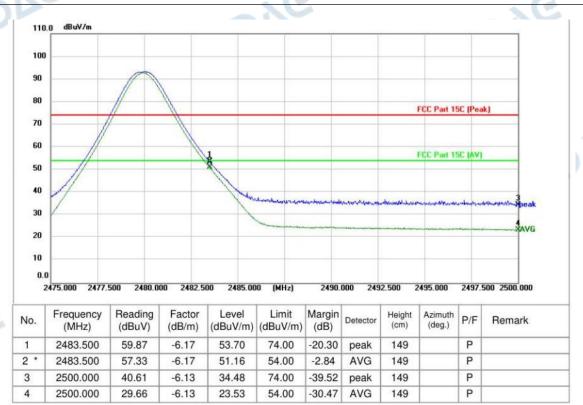

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 91

DAG

Report No.: DACE250402002RL001

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H


Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 91

DAG

DAG

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

DAG

4.8 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).								
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	The emission limits shown ir employing a CISPR quasi-po 110–490 kHz and above 100	the tighter limit applies at the bar in the above table are based on meak detector except for the freque 00 MHz. Radiated emission limits is employing an average detector.	easurements ency bands 9–90 kHz,						
Test Method:	ANSI C63.10-2013 section 6	5.6.4	4						
Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table								
	f. The test-receiver system v Bandwidth with Maximum H g. If the emission level of the specified, then testing could reported. Otherwise the emis tested one by one using pea reported in a data sheet. h. Test the EUT in the lowes i. The radiation measuremer Transmitting mode, and four j. Repeat above procedures Remark:	to 360 degrees to find the maximulas set to Peak Detect Function a cold Mode. EEUT in peak mode was 10dB low be stopped and the peak values assions that did not have 10dB malk, quasi-peak or average method to channel, the middle channel, the sare performed in X, Y, Z axis paid the X axis positioning which it is until all frequencies measured was to the the transport of the tra	wer than the limit of the EUT would be rgin would be reas specified and then e Highest channel. Positioning for sthe worst case.						

Report No.: DACE250402002RL001

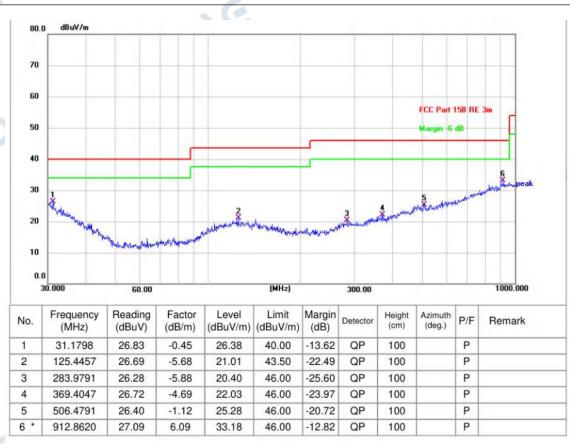
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 91

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

Report No.: DACE250402002RL001


3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.8.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.5 °C		- >	Humidity: 47 % Atmospheric Pressure: 102 kPa			102 kPa	
Pretest mode:			TM2		. 6		
Final test mode: TM1			TM2		270		

4.8.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 91

121.1231

278.0668

533.8321

958.7943

3

5

6

26.35

27.28

28.11

26.64

-5.59

-6.19

-1.24

6.35

20.76

21.09

26.87

32.99

43.50

46.00

46.00

46.00

-22.74

-24.91

-19.13

-13.01

QP

QP

QP

100

100

100

100

Р

Р

Р

Р

.0 Report No.: DACE250402002RL001

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 70 60 FCC Part 15B RE 3m 50 40 30 20 10 0.0 (MHz) 1000.000 60.00 300.00 Margin Reading Height (cm) Azimuth (deg.) Frequency Factor Level Limit No. Detector P/F Remark (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB/m) (dB) QP Р 30.5306 26.64 0.17 26.81 40.00 -13.19 100 1 2 79.2426 27.67 -12.13 15.54 40.00 -24.46 QP 100 Р

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 29 of 91

4.9 Emissions in frequency bands (above 1GHz)

Test Requirement:		ns which fall in the restricted band							
	15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).								
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.								
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02								
Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then 								
	the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and ther reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.								
	Remark:	t, through pre-scan found the wor	·						

Report No.: DACE250402002RL001

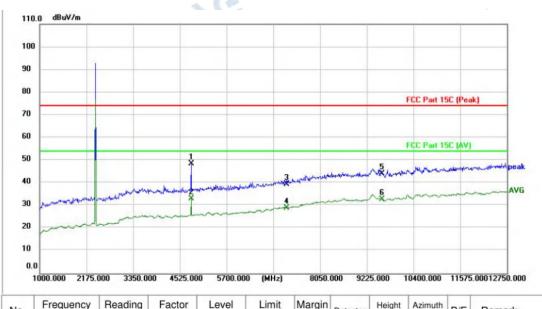
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 30 of 91

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

Report No.: DACE250402002RL001


3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.9.1 E.U.T. Operation:

Operating Environment:										
Temperature:	22.5 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa				
Pretest mode: TM1			, TM2							
Final test mode: TM1,			TM2		270					

4.9.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4807.000	49.18	-0.69	48.49	74.00	-25.51	peak	149		Р	
2 *	4807.000	33.70	-0.69	33.01	54.00	-20.99	AVG	149		Р	
3	7206.000	35.22	4.37	39.59	74.00	-34.41	peak	149		Р	
4	7206.000	24.78	4.37	29.15	54.00	-24.85	AVG	149		Р	
5	9608.000	35.98	8.09	44.07	74.00	-29.93	peak	149		Р	
6	9608.000	24.78	8.09	32.87	54.00	-21.13	AVG	149		Р	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 91

7206.000

9608.000

9608.000

5

6

24.74

36.09

24.85

4.37

8.09

8.09

Report No.: DACE250402002RL001

Р

P

Р

DAG

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 100 90 80 FCC Part 15C (Peak) 70 60 50 40 30 20 10 4525.000 8050.000 9225.000 Reading Margin Frequency Factor Level Limit Height Azimuth No. Detector P/F Remark (deg.) (MHz) (dBuV) (dBuV/m) (dBuV/m) (cm) (dB/m) (dB) -0.70 Р 4804.000 38.49 37.79 74.00 1 36.21 peak 149 2 4804.000 26.59 -0.7025.89 54.00 -28.11 AVG 149 P 7206.000 35.67 4.37 40.04 74.00 Р 3 -33.96 149 peak

29.11

44.18

32.94

54.00

74.00

54.00

-24.89

-29.82

-21.06

AVG

peak

AVG

149

149

149

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M dBuV/m 100 90 80 FCC Part 15C (Peak) 70 60 50 40 30 20 10 4525.000 8050.000 9225.000 Reading Margin Frequency Factor Level Limit Height Azimuth No. Detector P/F Remark (deg.) (MHz) (dBuV) (dBuV/m) (dBuV/m) (cm) (dB/m) (dB) Р 4877.500 50.64 -0.45 50.19 74.00 1 -23.81 peak 149 2 * 4877.500 35.61 -0.45 35.16 54.00 -18.84 AVG 149 P

4.57

4.57

8.09

8.09

40.44

26.88

35.62

24.77

3

6

DAG

7321.500

7321.500

9764.000

9764.000

45.01

31.45

43.71

32.86

74.00

54.00

74.00

54.00

-28.99

-22.55

-30.29

-21.14

peak

AVG

peak

AVG

Р

Р

P

Р

149

149

149

149

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 33 of 91

5

6

9764.000

9764.000

35.56

24.66

8.09

8.09

43.65

32.75

74.00

54.00

AVG

peak

AVG

-30.35

-21.25

149

149

149

P

Р

DAG

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M dBuV/m 100 90 80 FCC Part 15C (Peak) 70 60 50 40 30 20 10 4525.000 8050.000 9225.000 Reading Frequency Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (deg.) (MHz) (dBuV) (dBuV/m) (dBuV/m) (cm) (dB/m) (dB) Р 4882.000 38.24 -0.44 37.80 74.00 1 36.20 peak 149 2 4882.000 26.42 -0.44 25.98 54.00 -28.02 AVG 149 P 7323.000 35.70 4.57 40.27 74.00 Р 3 -33.73 149 peak Р 7323.000 24.79 4.57 29.36 54.00 -24.64

Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 34 of 91 V1.0

4959.750

7439.000

7439.000

9920.000

9920.000

36.21

38.42

25.78

37.04

25.09

-0.17

4.78

4.78

8.08

8.08

36.04

43.20

30.56

45.12

33.17

54.00

74.00

54.00

74.00

54.00

-17.96

-30.80

-23.44

-28.88

-20.83

AVG

peak

AVG

peak

AVG

149

149

149

149

149

P

Р

Р

P

Р

2 *

3

6

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H dBuV/m 100 90 80 FCC Part 15C (Peak) 70 60 50 40 AVG 30 20 10 4525.000 8050.000 9225.000 Reading Frequency Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (deg.) (MHz) (dBuV) (dBuV/m) (dBuV/m) (cm) (dB/m) (dB) 4959.750 Р 51.51 -0.17 51.34 74.00 1 -22.66 peak 149

Report No.: DACE250402002RL001

7440.000

9920.000

9920.000

5

6

4.78

8.08

8.08

29.57

44.47

33.19

54.00

74.00

54.00

-24.43

-29.53

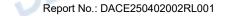
-20.81

AVG

peak

AVG

149


149

149

24.79

36.39

25.11

Р

P

Р

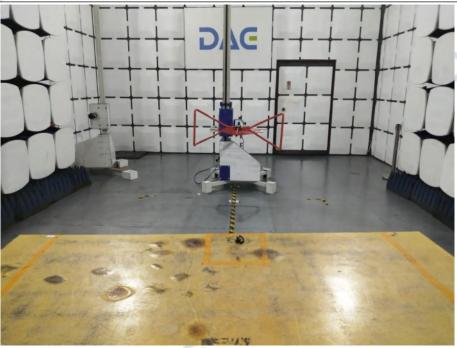
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H dBuV/m 100 90 80 FCC Part 15C (Peak) 70 60 50 40 AVG 30 20 10 4525.000 8050.000 9225.000 Reading Margin Frequency Factor Level Limit Height Azimuth No. Detector P/F Remark (deg.) (MHz) (dBuV) (dBuV/m) (dBuV/m) (cm) (dB/m) (dB) Р 4960.000 38.51 -0.17 38.34 74.00 1 -35.66 peak 149 2 4960.000 26.18 -0.1726.01 54.00 -27.99 AVG 149 P 7440.000 36.13 4.78 40.91 74.00 Р 3 -33.09 149 peak

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com


Page 36 of 91

5 TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

Emissions in frequency bands (above 1GHz)

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 37 of 91

Report No.: DACE250402002RL001

DIG

DAG

DAG

DIE

DAG

Page 38 of 91

DAG

6 PHOTOS OF THE EUT

V1.0

V1.0

External

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 41 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 42 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 43 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

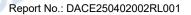
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 44 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 45 of 91

V1.0

Internal

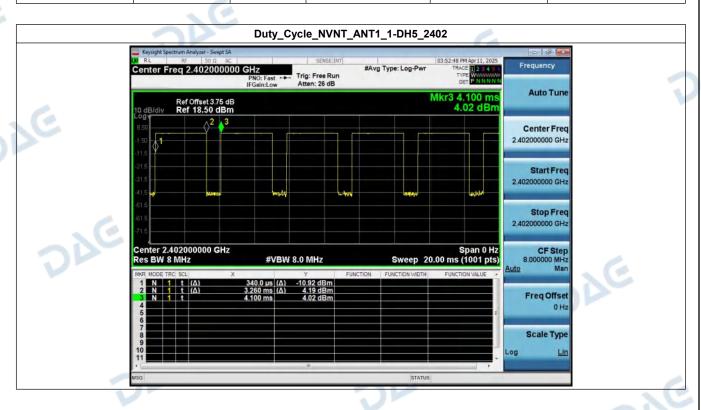
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 46 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 48 of 91 Web: http://www.dace-lab.com

DAG

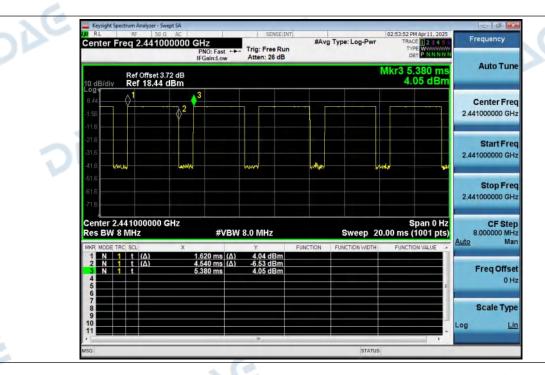
Report No.: DACE250402002RL001

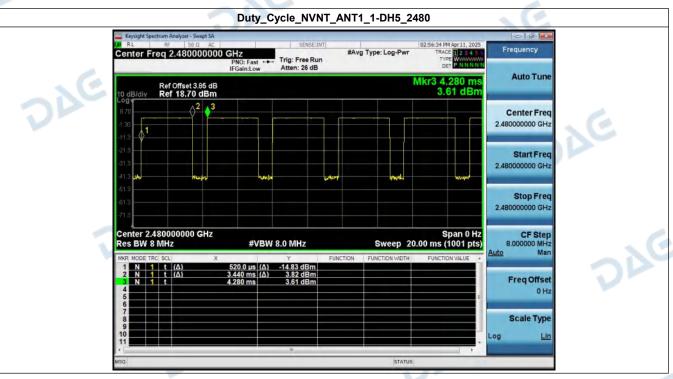

Appendix

DAG

HT250402002--X27--EDR--FCC FCC_BT (Part15.247) Test Data

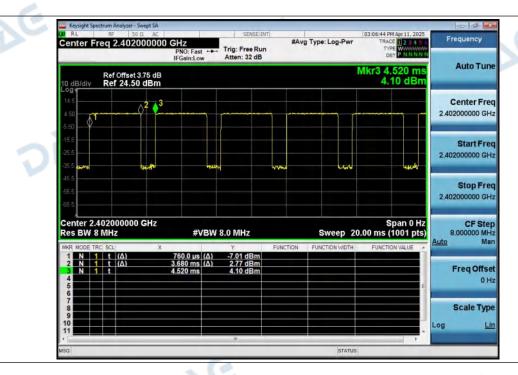
1. Duty Cycle

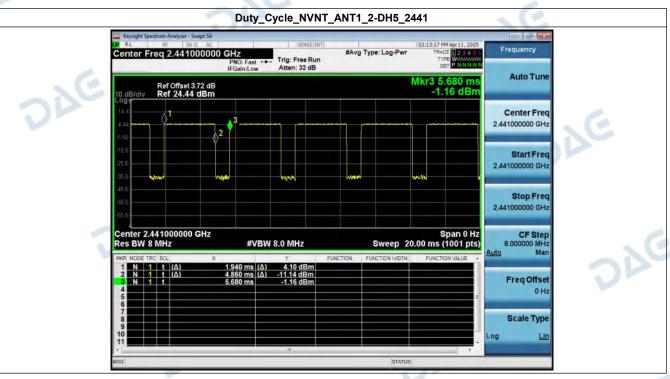

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1-DH5	2402.00	77.66	1.10
NVNT	ANT1	1-DH5	2441.00	78.19	1.07
NVNT	ANT1	1-DH5	2480.00	77.66	1.10
NVNT	ANT1	2-DH5	2402.00	77.66	1.10
NVNT	ANT1	2-DH5	2441.00	78.61	1.05
NVNT	ANT1	2-DH5	2480.00	78.61	1.05



Duty_Cycle_NVNT_ANT1_1-DH5_2441

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 51 of 91 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com





Duty_Cycle_NVNT_ANT1_2-DH5_2402

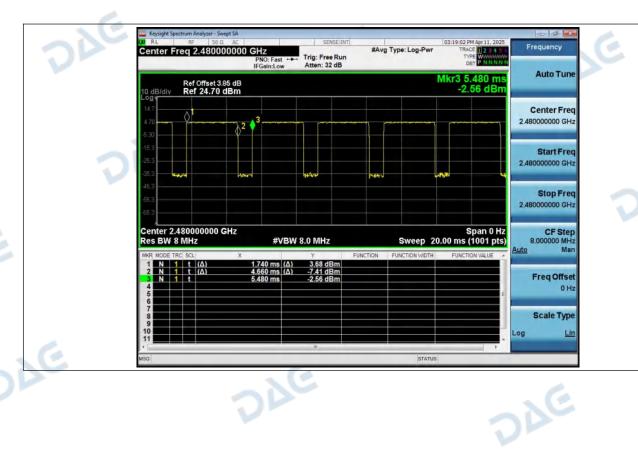
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 91

Duty_Cycle_NVNT_ANT1_2-DH5_2480

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 53 of 91

DAG

DAG

DAG

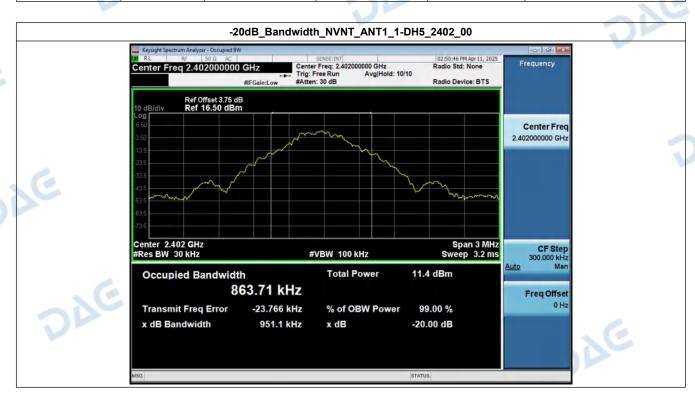
DAG

DAG

DAG

DAG

DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 91

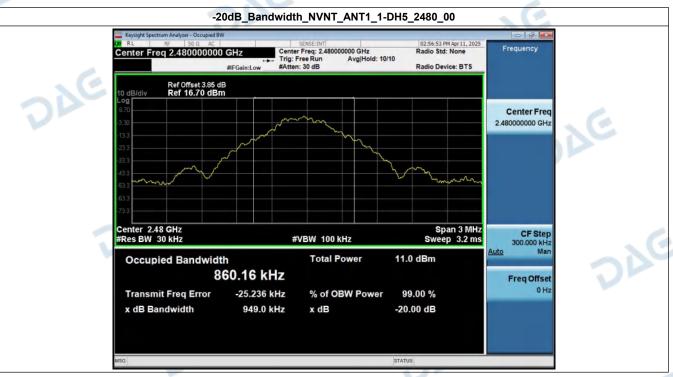
2. -20dB Bandwidth

V1.0

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS	
NVNT	ANT1	1-DH5	2402.00	0.951	No	
NVNT	ANT1	1-DH5	2441.00	0.949	No	
NVNT	ANT1	1-DH5	2480.00	0.949	No	
NVNT	ANT1	2-DH5	2402.00	1.271	Yes	
NVNT	ANT1	2-DH5	2441.00	1.266	Yes	
NVNT	ANT1	2-DH5	2480.00	1.267	Yes	

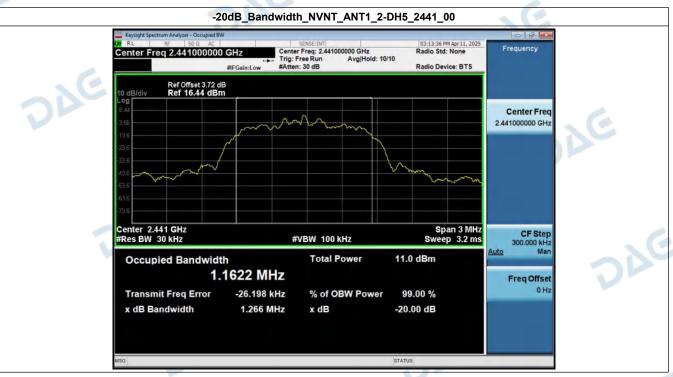
-20dB_Bandwidth_NVNT_ANT1_1-DH5_2441_00

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 55 of 91



-20dB_Bandwidth_NVNT_ANT1_2-DH5_2402_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 91

-20dB_Bandwidth_NVNT_ANT1_2-DH5_2480_00

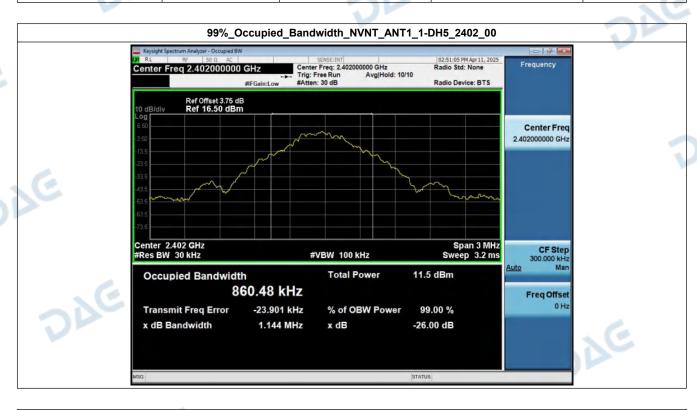
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 91

DAG

DAG

DAG

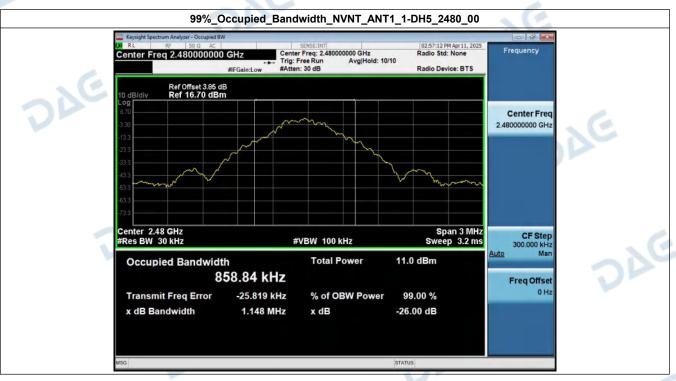
DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 91

3. 99% Occupied Bandwidth

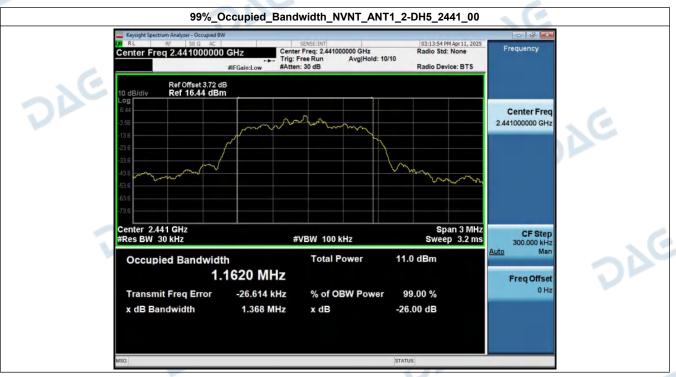
Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)	
ANT1	1-DH5	2402.00	0.860	
ANT1	1-DH5	2441.00	0.860	
ANT1	1-DH5	2480.00	0.859	
ANT1	2-DH5	2402.00	1.165	
ANT1	2-DH5	2441.00	1.162	
ANT1	2-DH5	2480.00	1.160	
	ANT1 ANT1 ANT1 ANT1 ANT1	ANT1 1-DH5 ANT1 1-DH5 ANT1 1-DH5 ANT1 2-DH5 ANT1 2-DH5	ANT1 1-DH5 2402.00 ANT1 1-DH5 2441.00 ANT1 1-DH5 2480.00 ANT1 2-DH5 2402.00 ANT1 2-DH5 2402.00	

Report No.: DACE250402002RL001



 $99\%_Occupied_Bandwidth_NVNT_ANT1_1-DH5_2441_00$

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 91



99%_Occupied_Bandwidth_NVNT_ANT1_2-DH5_2402_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 91

99%_Occupied_Bandwidth_NVNT_ANT1_2-DH5_2480_00

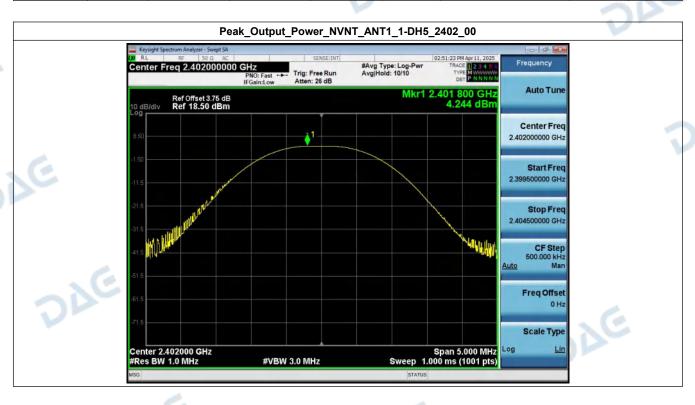
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 91

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 91

DAG

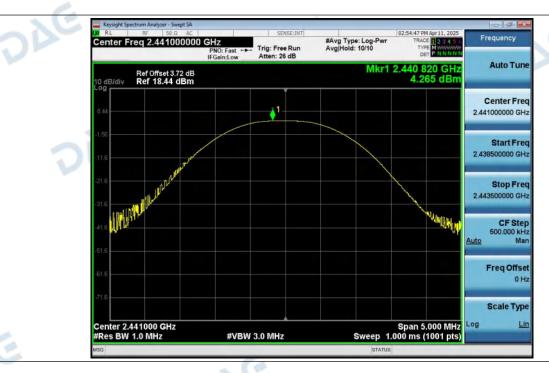

DAG

4. Peak Output Power

V1.0

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	4.24	2.66	1000	Pass
NVNT	ANT1	1-DH5	2441.00	4.26	2.67	1000	Pass
NVNT	ANT1	1-DH5	2480.00	3.83	2.41	1000	Pass
NVNT	ANT1	2-DH5	2402.00	5.07	3.22	125	Pass
NVNT	ANT1	2-DH5	2441.00	5.09	3.23	125	Pass
NVNT	ANT1	2-DH5	2480.00	4.66	2.93	125	Pass

Peak_Output_Power_NVNT_ANT1_1-DH5_2441_00

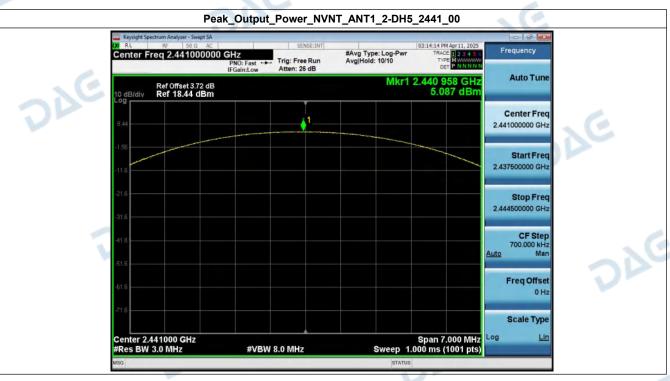

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 63 of 91

V1.0


Peak_Output_Power_NVNT_ANT1_2-DH5_2402_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 64 of 91

V1.0

Peak_Output_Power_NVNT_ANT1_2-DH5_2480_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 65 of 91

DAG

DAG

V1.0

DAG

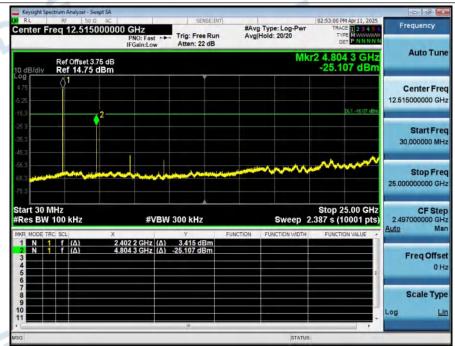
DAG

DAG

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 66 of 91

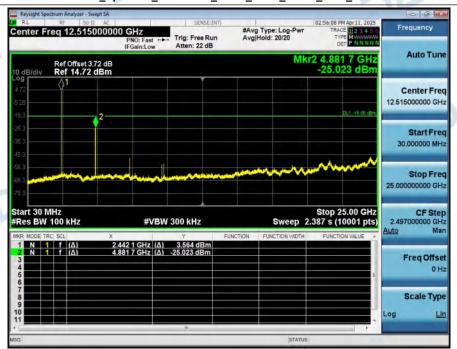


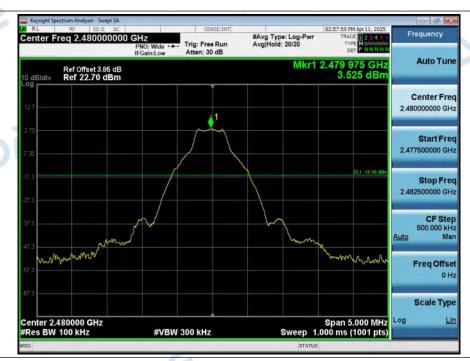
5. Spurious Emissions

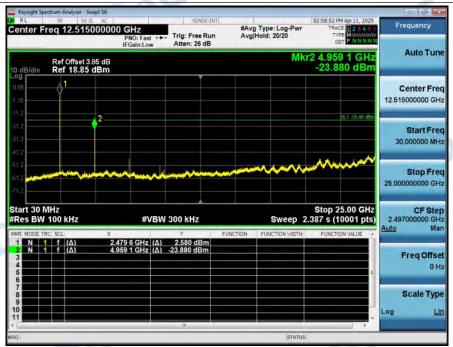
Condition	Antenna	Modulation	TX Mode	Ref_level(dBm)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	3.932	-25.107	-16.068	Pass
NVNT	ANT1	1-DH5	2441.00	3.943	-25.023	-16.057	Pass
NVNT	ANT1	1-DH5	2480.00	3.525	-23.880	-16.475	Pass
NVNT	ANT1	2-DH5	2402.00	3.908	-26.311	-16.092	Pass
NVNT	ANT1	2-DH5	2441.00	3.815	-27.136	-16.185	Pass
NVNT	ANT1	2-DH5	2480.00	3.411	-24.469	-16.589	Pass

2_Spurious_Emissions_NVNT_ANT1_1-DH5_2402_00

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 67 of 91


2_Spurious_Emissions_NVNT_ANT1_1-DH5_2441_00


1_Reference_Level_NVNT_ANT1_1-DH5_2480_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 68 of 91

2_Spurious_Emissions_NVNT_ANT1_1-DH5_2480_00

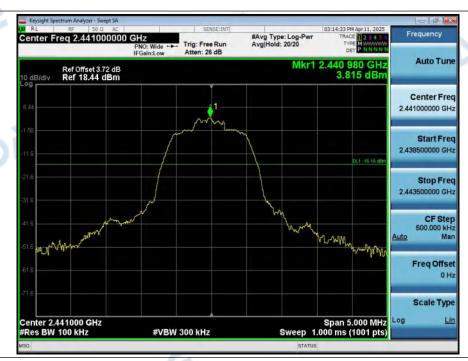
1_Reference_Level_NVNT_ANT1_2-DH5_2402_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 69 of 91

2_Spurious_Emissions_NVNT_ANT1_2-DH5_2402_00

1_Reference_Level_NVNT_ANT1_2-DH5_2441_00

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 70 of 91

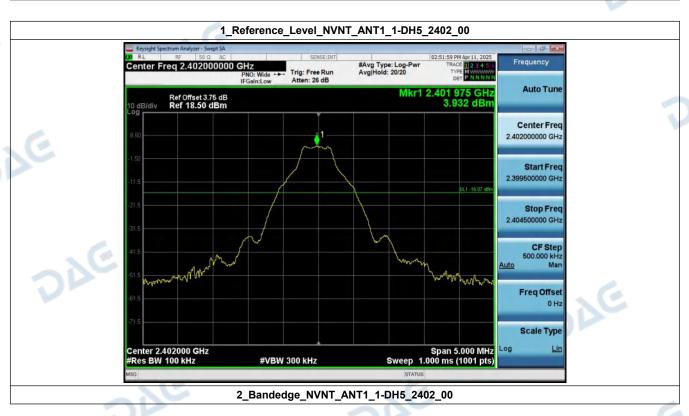
2_Spurious_Emissions_NVNT_ANT1_2-DH5_2441_00

1_Reference_Level_NVNT_ANT1_2-DH5_2480_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 71 of 91

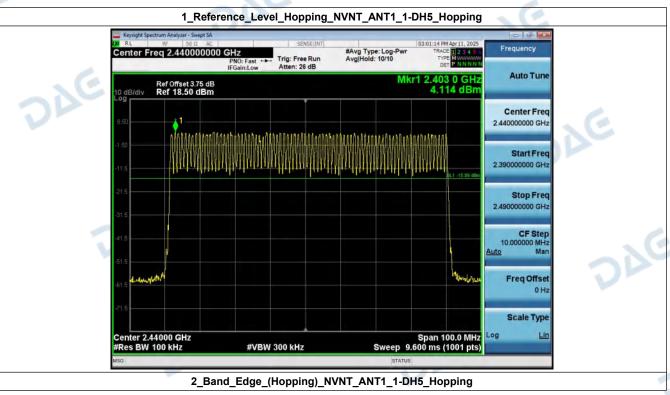
V1.0

2_Spurious_Emissions_NVNT_ANT1_2-DH5_2480_00

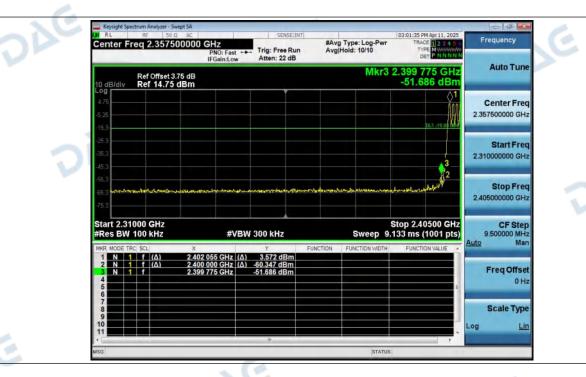

Page 72 of 91 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: DACE250402002RL001

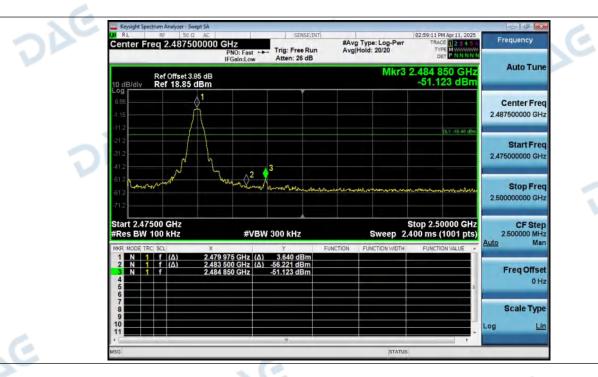
6. Bandedge

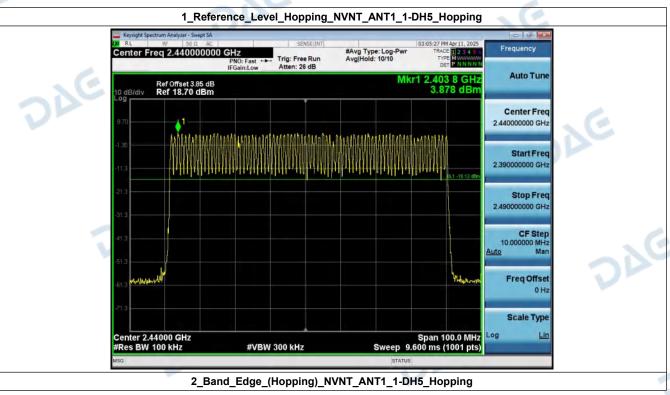

Condition	Antenna	Modulation	TX Mode	Ref_level(dBm)	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	3.932	-50.770	-16.068	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	4.114	-51.686	-15.886	Pass
NVNT	ANT1	1-DH5	2480.00	3.525	-51.123	-16.475	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	3.878	-57.690	-16.122	Pass
NVNT	ANT1	2-DH5	2402.00	3.908	-47.567	-16.092	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	3.997	-53.581	-16.003	Pass
NVNT	ANT1	2-DH5	2480.00	3.411	-50.422	-16.589	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	3.833	-53.044	-16.167	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 73 of 91



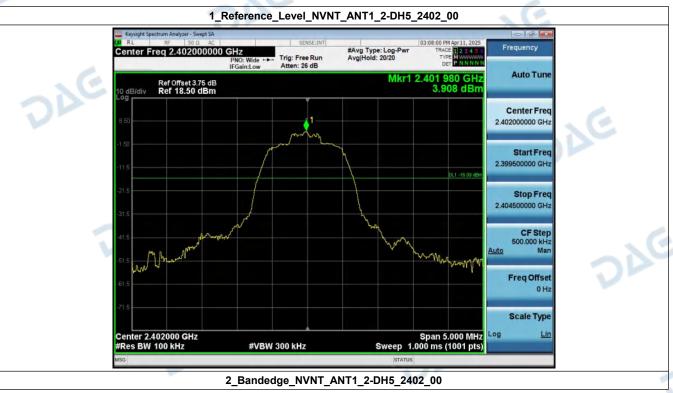
Page 74 of 91 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

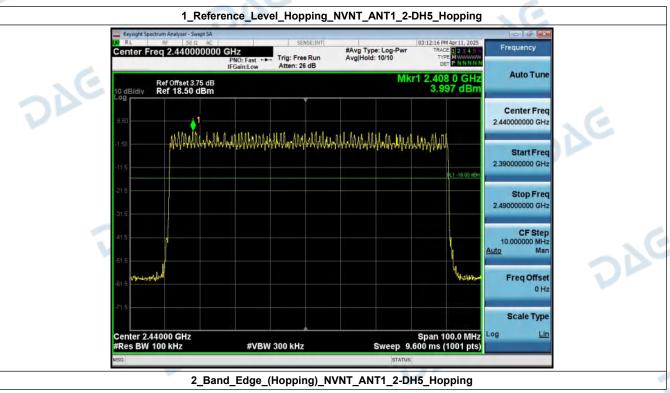




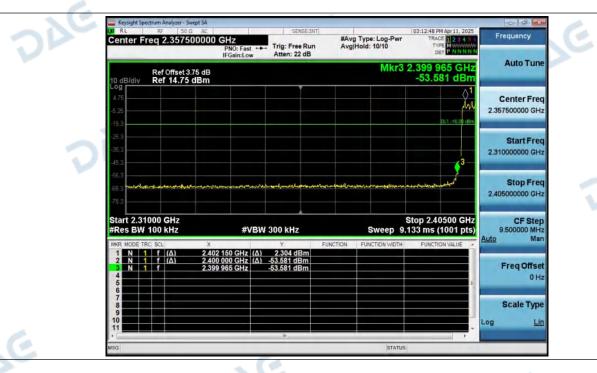
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 75 of 91



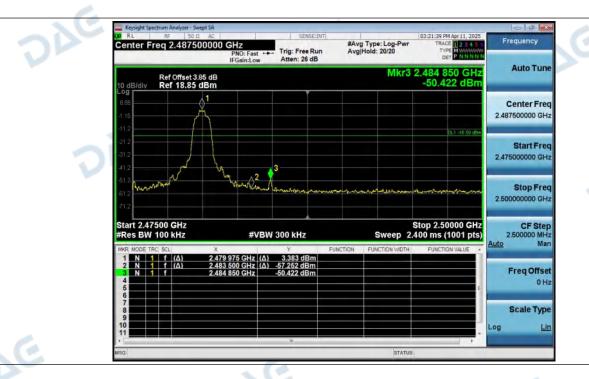


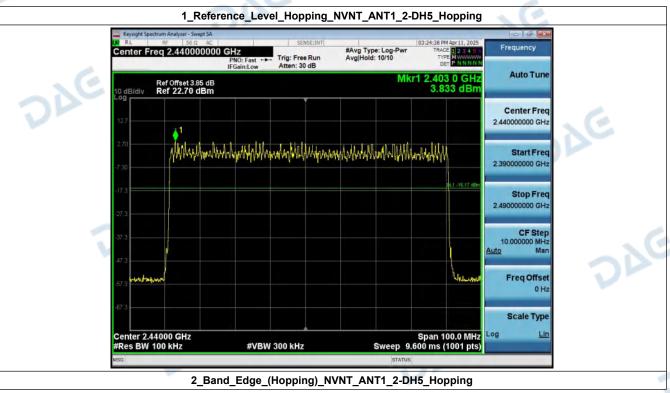
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 77 of 91



DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613





Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 79 of 91

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 80 of 91

DAG

DAG

DAG

V1.0

DAG

DAG

DAG

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 81 of 91

Report No.: DACE250402002RL001

7. Carrier Frequencies Separation (Hopping)

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2401.801	2402.974	1.17	0.951	Pass
NVNT	ANT1	1-DH5	2441.00	2440.810	2441.812	1.00	0.949	Pass
NVNT	ANT1	1-DH5	2480.00	2478.804	2480.136	1.33	0.949	Pass
NVNT	ANT1	2-DH5	2402.00	2402.107	2403.163	1.06	0.847	Pass
NVNT	ANT1	2-DH5	2441.00	2440.807	2441.821	1.01	0.844	Pass
NVNT	ANT1	2-DH5	2480.00	2478.816	2479.806	0.99	0.845	Pass

Carrier_Frequencies_Separation_(Hopping)_NVNT_ANT1_1-DH5_Hopping

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 82 of 91

V1.0

Carrier_Frequencies_Separation_(Hopping)_NVNT_ANT1_2-DH5_Hopping

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 83 of 91

V1.0

Carrier_Frequencies_Separation_(Hopping)_NVNT_ANT1_2-DH5_Hopping

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 84 of 91

DAG

DAG

V1.0

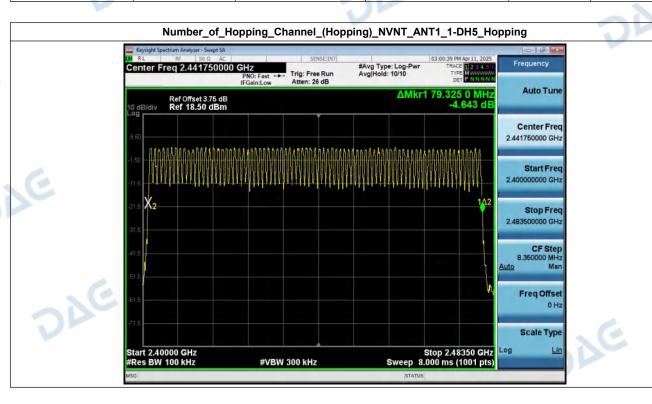
DAG

DAG

DAG

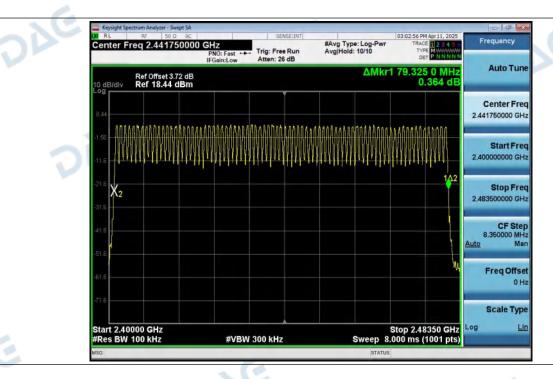
DAG

DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 85 of 91

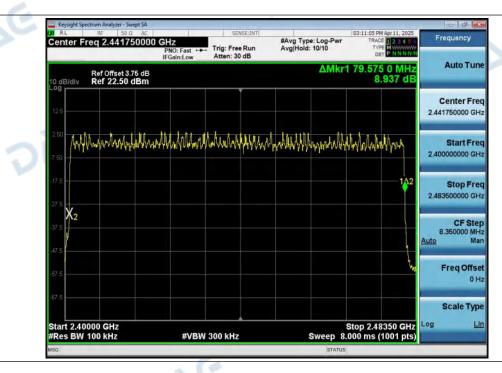
Report No.: DACE250402002RL001

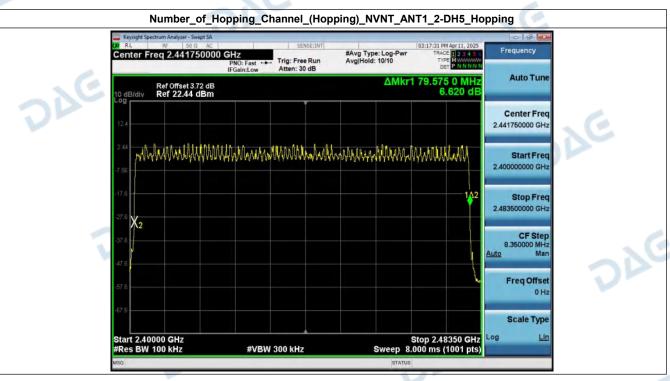
8. Number of Hopping Channel (Hopping)


Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_1-DH5_Hopping

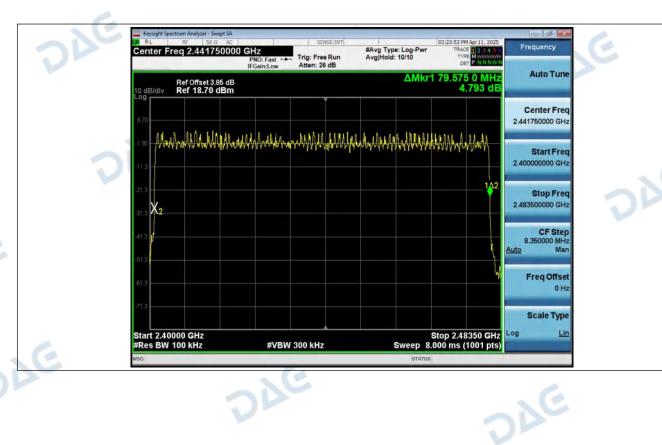
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 86 of 91





Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_2-DH5_Hopping

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 87 of 91


Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_2-DH5_Hopping

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 88 of 91

DAG

DAG

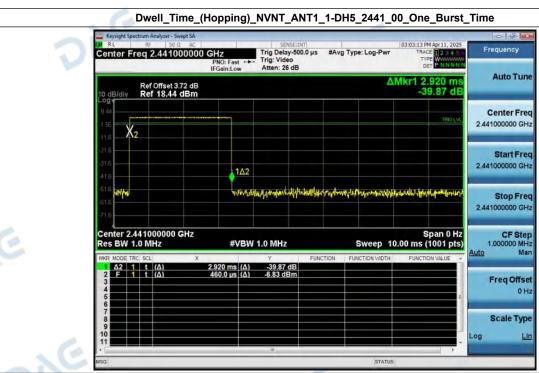
V1.0

DAG

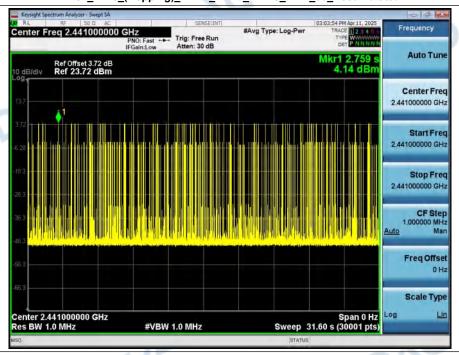
DAG

DAG

DAG


DAG

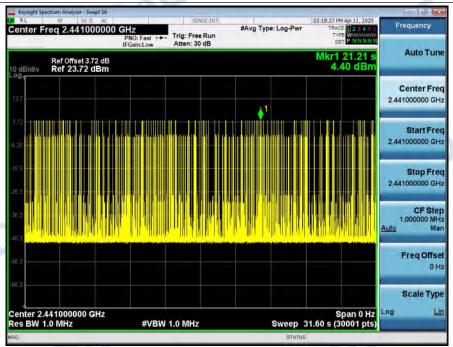
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 89 of 91



9. Dwell Time (Hopping)

Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.920	100.00	292.000	0.40	Pass
NVNT	ANT1	2-DH5	2.930	109.00	319.370	0.40	Pass


Dwell_Time_(Hopping)_NVNT_ANT1_1-DH5_2441_00_Accumulated


 $Dwell_Time_(Hopping)_NVNT_ANT1_2-DH5_2441_00_One_Burst_Time$

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 90 of 91

Dwell_Time_(Hopping)_NVNT_ANT1_2-DH5_2441_00_Accumulated

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 91 of 91