

MPE TEST REPORT

Applicant Nokia Shanghai Bell Co., Ltd.

FCC ID 2ADZRHA140WB

Product 7368 Intelligent Services Access Manager CPE

Model HA-140W-B

Report No. R1910B0142-M2V3

Issue Date February 21, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

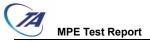
Performed by: Yu Wang

Tu Wang

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.


No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Report No.: R1910B0142-M2V3

Table of Contents

1 Test Laboratory	3
1.1 Notes of the Test Report	
1.2. Test facility	
1.3 Testing Location	
1.4 Laboratory Environment	
2 Description of Equipment under Test	
3 Maximum conducted output power (measured) and antenna Gain	. 8
4 Test Result	

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

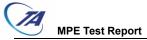
Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com



1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

Report No.: R1910B0142-M2V3

2 Description of Equipment under Test

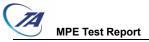
Client Information

Applicant Nokia Shanghai Bell Co., Ltd.			
Applicant address No. 388, Ningqiao Rd. Pilot Free Trade Zone, Shanghai, Ch			
Manufacturer	SHENZHEN TWOWING TECHNOLOGIES CO.,LTD.		
Manufacturer address	Nangang Industrial Building, Tangtou Industrial Park,Shiyan,		
ivialiulactulei audiess	Shengzhen,China		

General Technologies

HA-140W-B
1#
PEM2
3FE48210FGCB55
December 12, 2019 ~ January 13, 2020

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

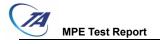

2. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Information of Configuration:

No.	Name	Model/Code No.	Edition	Serial No. or Quantity
1.1	HA-140W-B	3FE48130AA	PEM2	1
2.2	Power adapter	UES36WU-120250SPA	A/0	1
2.3	Power adapter	SUV-1200300	A/0	1

	Kit Code	EMA	Part Description	Power Adaptor
LIA 440\A/ D	3FE	7368CPE,AC2800,1xPOTS,4xG	UES36WU-120250SPA	
ПА-140VV-В	HA-140W-B 3FE48111AA	48130AA	UNI,US plug	SUV-1200300

	Name	RCR	KIT code	EMA code	PBA code	PB code	Part Description
HA-140							7368CPE,AC2800,
W-B	He	ALU02	3FE4811	3FE48130	3FE48132	3FE48133	1xPOTS,
	US	561014	1AAAA	AAAA	AAAA	AAAA	4xGE UNI,
							US plug

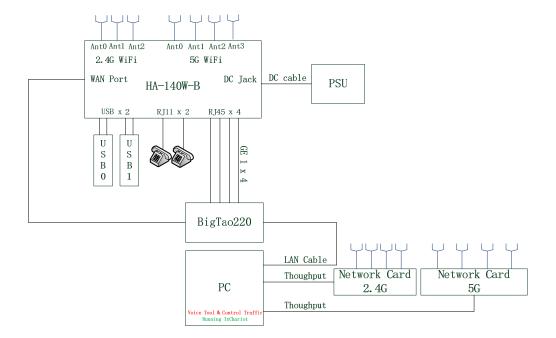

Auxiliary equipment details

No.	Name	Brand name	Model	NSB code	Valid Until
1	BigTao220	XINERTEL	DE8709	-	No Cal. Required
2	PC	Thinkpad	T470	-	No Cal. Required
3	Phone	NA	NA	-	No Cal. Required
4	USB	Sandisk	CZ73-16	-	No Cal. Required
5	2.4G WIFI Card	Asus	PCE-AC88	-	No Cal. Required
6	5G WIFI Card	Asus	PCE-AC88	-	No Cal. Required

Information of Ports

No.	Port name	Number	Shielded or unshielded	Cable type (optic, twisted pair, etc.)	Max. Cable length
1	Power	1	unshielded	-	-
2	GE	4	unshielded	-	-
3	POTS	1	unshielded	-	-
4	USB	2	shielded	-	-
5	WAN	1	unshielded	-	-

Note: This revised report (Report No.: R1910B0142-M2V3) supersedes and replaces the previously issued report (Report No.: R1910B0142-M2V2). Please discard or destroy the previously issued report and dispose of it accordingly.

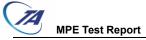


Test Configuration

Description: The HA-140W-B is an ethernet gateway which has 1 POT, 4 GE ports, 1 ethernet WAN port, 2 USB ports, 2.4G wi-fi and 5G wi-fi.

Function test should be done during the test for EUT operating status, and or should be done after the test for EUT power off status.

The basic functional test consists of the traffic test, POTs connection test and WIFI connection test, which establishes the communication traffic generator and HA-140W-B (EUT). The POTs keep connecting though OFLT program. The 2.4G wi-fi and 5G wi-fi keep connecting. The USB ports run read/write script though program. The EUT runs 4 traffics on each line with BigTao, the each upstream of 3 GE is 300Mbps, and downstream is 900Mbps.


Report No.: R1910B0142-M2V3

3 Maximum conducted output power (measured) and antenna Gain

The numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band	Maximum Conducted Output Power (dBm)		Antenna Gain	Numeric gain
	(dBm)	(mW)	(dBi)	
WI-FI 2.4G	24.57	286.418	3	1.995
WI-FI 5G	27.58	572.796	3	1.995

4 Test Result

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following

TABLE 1 – LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		
	(V/m)	(A/m)	(mW/cm2)	(minutes)
	(A) Limits for Occu	upational/Controlle	d Exposures	
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

MPE Test Report No.: R1910B0142-M2V3
The maximum permissible exposure for 1500~100,000MHz is 1.0.So

Band	The maximum permissible exposure
Wi-Fi 2.4G	1.0mW/cm ²
Wi-Fi 5G	1.0mW/cm ²

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation.

Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

$$S = PG / 4 \square R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	PG (mW)	Test Result (mW/cm2)	Limit Value (mW/cm²)	The MPE ratio	Conclusion
Wi-Fi 2.4G	571.479	0.114	1.000	0.114	PASS
Wi-Fi 5G	1142.878	0.227	1.000	0.227	PASS

Note: **R** = 20cm \square = 3.1416

The MPE ratio = Mac Test Result ÷ Limit Value

So the simultaneous transmitting antenna pairs as below:

∑of MPE ratios=WiFi 2.4G + WiFi 5G =0.114 +0.227 =0.341 <1

******END OF REPORT ******

Report No.: R1910B0142-M2V3