FCC 47 CFR MPE REPORT

GUANGZHOU RANTION TECHNOLOGY CO., LTD.

DAC DIGITAL SPEAKER

Model Number: Rarity40

Additional Model: Rarity30

FCC ID: 2AV7NRARITY

Applicant:	GUANGZHOU RANTION TECHNOLOGY CO., LTD.			
Address:	Room 432, Building 4, No. 50 Nanxiang 1st Road, Huangpu District,			
	Guangzhou, China			
Prepared By:	EST Technology Co., Ltd.			
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R2201104		
Date of Test:	Dec. 13, 2021~Jan. 11, 2022		
Date of Report:	Jan. 13, 2022		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2$, $ H ^2$ or S
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency	Peak output power	Peak output	Target power	Antenna gain	
Wiode	(MHz)	(dBm)	power (mW)	(dBm)	(dBi)	(Linear)
GFSK	2402	7.06	5.08	7±1	-2	0.631
	2441	6.98	4.99	7±1	-2	0.631
	2480	7.08	5.11	7±1	-2	0.631
8-DPSK	2402	9.94	9.86	10±1	-2	0.631
	2441	9.95	9.89	10±1	-2	0.631
	2480	10.06	10.14	10±1	-2	0.631

3. Calculated Result and Limit

Mode	Target power (dBm)	Antenn (dBi)	na gain (Linear)	(S)	Limited of Power Density (S) (mW/cm ²)	Test Result	
2.4G Band							
GFSK	8	-2	0.631	0.00079	1	Complies	
8-DPSK	11	-2	0.631	0.00158	1	Complies	

End of Test Report