
Test Report

Report No.:	MTi241127008-01E1
Date of issue:	2025-01-14
Applicant:	Chug, Inc.
Product name:	Page Turning Remote
Model(s):	KPTR2
FCC ID:	2AO23-KPTR2

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 6 6
2	Sum	mary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	8
4	List	of test equipment	9
5	Eval	uation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radi	o Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Conducted Emission at AC power line 20dB Bandwidth Dwell Time Duty Cycle Field Strength of The Fundamental Signal Radiated Emission (below 1GHz) Radiated Emission (above 1GHz)	
Ph	otogra	aphs of the test setup	34
Ph	otogra	aphs of the EUT	35

Test Result Certification			
Applicant: Chug, Inc.			
Address:	7157 Shady Oak Road, Eden Prairie, MN 55344, USA		
Manufacturer:	Guangdong Daohe Intelligent Electronic Technology Co., Ltd		
Address:	No.9, Changan Zhenan West Road, Changan Town, Dongguan City, Guangdong Province		
Product description			
Product name:	Page Turning Remote		
Trade mark:	N/A		
Model name: KPTR2			
Series Model(s): N/A			
Standards:	47 CFR Part 15.231		
Test Method:	ANSI C63.10-2020		
Date of Test			
Date of test:	2024-12-04 to 2025-01-13		
Test result:	Pass		

Test Engineer	:	Yamice Xie
		(Yanice.Xie)
Reviewed By		Dowid. Cee
		(David Lee)
Approved By	:	leon chen
		(Leon Chen)

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: 0755-88850135-1439 Mobile: 131-433.9653-1439 (Wechat same Web: http://www.mtitest.cn E-mail: mti@51mti.com number)

1 General Description

1.1 Description of the EUT

Page Turning Remote KPTR2 I/A
1/A
I/A
nput:DC 5V Battery:DC 3.7V 200mAh
Cable: USB-A to Type-C 0.6m*1
/2.0
/2.0
/Ti241127008-01S1001
33.965MHz
ASK
PCB Antanna
dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	TX

1.2.1 Operation channel list

Test Channel List

Operation Band: 1
Channel (MHz)
433.965

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: EUT self-control

For power setting, refer to below table.

433.965MHz	
default	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list					
Description Model Serial No. Manufacturer					
/	1	1	/		
Support cable list					
Description	Length (m)	From	То		
/	1	1	/		

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
Time	±1 %
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	20dB Bandwidth	47 CFR 15.231(c)	Pass
3	Dwell Time	47 CFR 15.231(a)(1) & (a)(2)	Pass
4	Duty Cycle	47 CFR 15.231(b) & (e)	Pass
5	Field Strength of The Fundamental Signal	47 CFR 15.231(b)	Pass
6	Radiated Emission (below 1GHz)	47 CFR 15.231	Pass
7	Radiated Emission (above 1GHz)	47 CFR 15.231	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.					
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China					
Telephone:	(86-755)88850135					
Fax:	(86-755)88850136					
CNAS Registration No.:	CNAS L5868					
FCC Registration No.:	448573					
IC Registration No.:	21760					
CABID:	CN0093					

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due		
	Dwell Time Duty Cycle 20dB Bandwidth							
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19		
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20		
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20		
5	MXA Signal Analyzer	Agilent	N9020A	MY501433.965 83	2024-03-21	2025-03-20		
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20		
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20		
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19		
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20		
		Field Strength o Radiated Er	f The Fundamer nission (below 1					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10		
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22		
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19		
		Radiated Er	nission (above 1	GHz)				
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16		
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19		
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20		
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16		
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20		

5 Evaluation Results (Evaluation)

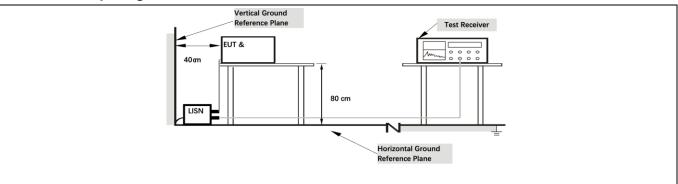
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

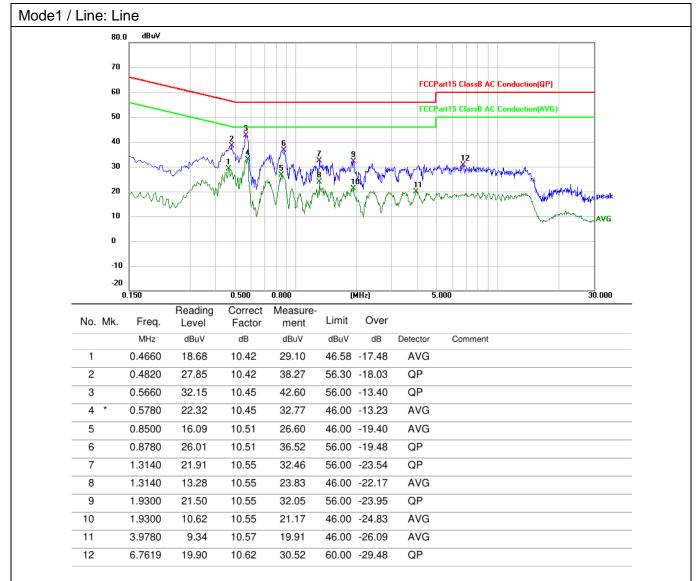
The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

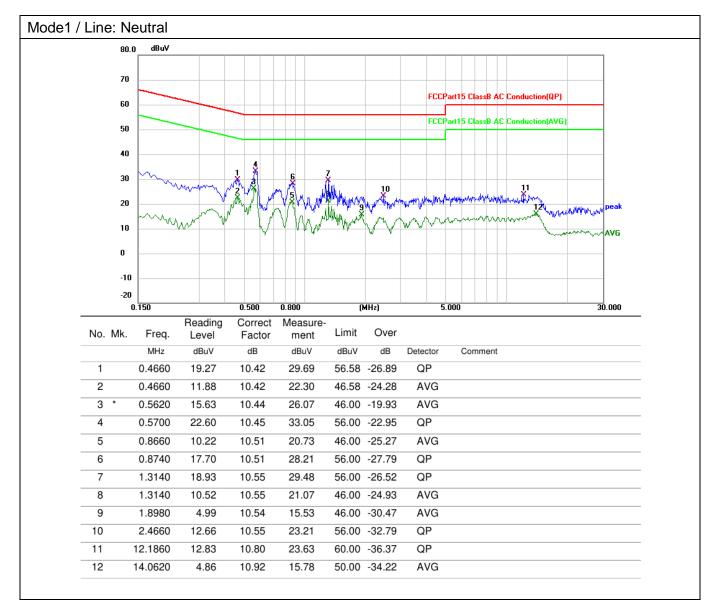

6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dB	Conducted limit (dBµV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices					

6.1.1 E.U.T. Operation:


Operating Environment:							
Temperature:	23.2 °C		Humidity:	52 %		Atmospheric Pressure:	95 kPa
Pre test mode:	Mode	e1					
Final test mode: Mod			e1				

6.1.2 Test Setup Diagram:

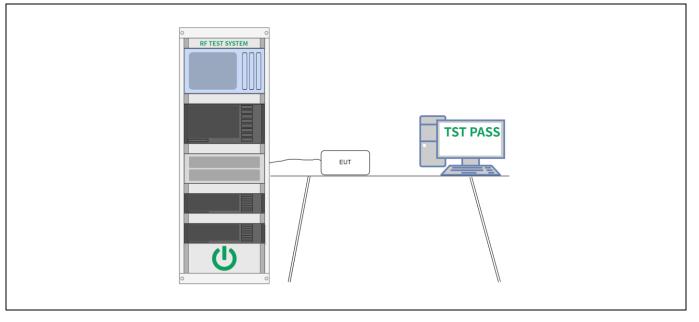


6.1.3 Test Data:

6.2 20dB Bandwidth

Test Requirement:	47 CFR 15.231(c)
Test Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
Test Method:	ANSI C63.10-2020, section 6.9.2
Test Method: Procedure:	of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier. ANSI C63.10-2020, section 6.9.2 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this
	calculation may be made by using the marker-delta function of the instrument.
	 i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the
	new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest
	frequency of the envelope of the spectral display, such that each marker is at or slightly below the "íxx dB down
	amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value,
Address: 101 No. 7 Zone 2 Xiny	ing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Page 15 of 35



then it shall be as close as possible to this value. The occupied bandwidth is the frequency
difference between the two markers. Alternatively, set a marker at the lowest
frequency of the envelope of the spectral display, such that the marker is at or slightly below the "íxx dB down
amplitude" determined in step h). Reset the marker-delta function and move the marker to the
other side of the emission until the delta marker amplitude is at the same level as the reference
marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.
k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.9 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode: Mod		e1				

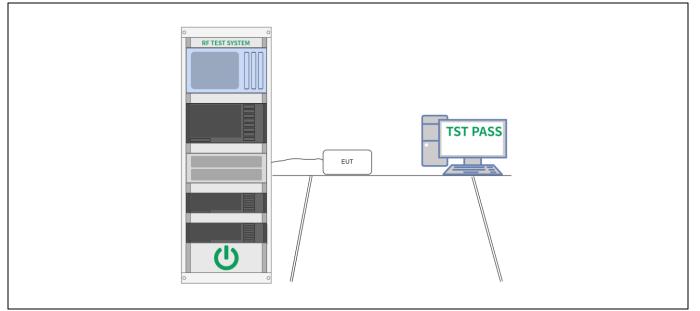
6.2.2 Test Setup Diagram:



6.2.3 Test Data:

Frequency (MHz)	20dB emission bandwidth (kHz)	Limit (MHz)	
433.965	12.84	≤ 1.085	

Test plots as below

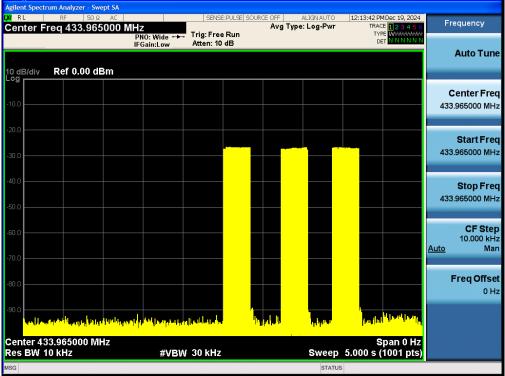

6.3 Dwell Time

Test Requirement:	47 CFR 15.231(a)(1) & (a)(2)			
Test Limit:	(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.			
	(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.			
Test Method:	ANSI C63.10-2020, Section 7.4			
Procedure:	 For evaluation of periodic operation characteristics, the following procedure may be used: a) Trigger the spectrum analyzer sweep on the RF waveform of the unlicensed wireless device. b) Set the spectrum analyzer sweep time greater than the specified time for periodic operation. c) Manually activate and deactivate the unlicensed wireless device and confirm that it ceases transmission within the specified time of deactivation. d) Document the test results. e) Verify and document that periodic transmissions at regular predetermined intervals do not exist, except where regulatory requirements allow polling or supervision transmissions, including data, to determine system integrity. Compliance is addressed by an attestation supported by the equipment theory of operation. 			

6.3.1 E.U.T. Operation:

Operating Envi	Operating Environment:						
Temperature:	22.9 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mod			e1				
Final test mode: Mode		e1					

6.3.2 Test Setup Diagram:

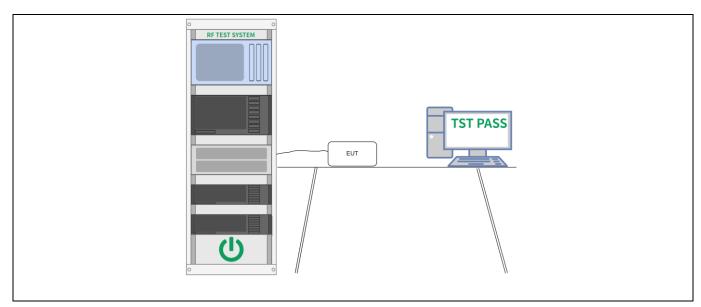


Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-433.9653-1439 (Wechat sameWeb: http://www.mtitest.cnE-mail: mti@51mti.comnumber)

6.3.3 Test Data:

The EUT cease transmission within 5s

6.4 Duty Cycle


47 CFR 15.231(b) & (e)
No limit, only for Report Use.
ANSI C63.10-2020, Section 7.5
a) Adjust and configure any EUT switches, controls, or input data streams to ensure that the EUT is transmitting or encoded to obtain the "worst-case" pulse ON time. b) Couple the final radio frequency output signal to the input of a spectrum analyzer. This may be performed by a radiated, direct connection (i.e., conducted) or by a "near-field" coupling method. The signal received shall be of sufficient level to trigger adequately the spectrum analyzer sweep display. NOTE—If the bandwidth of the pulse is greater than the RBW of the spectrum analyzer, then a similar measurement may be performed using a wideband digital storage oscilloscope (DSO). c) Adjust the center frequency of the spectrum analyzer to the center of the RF signal. d) Set the spectrum analyzer for ZERO SPAN. e) Adjust the SWEEP TIME to obtain at least a 100 ms period of time on the horizontal display axis of the spectrum analyzer. f) If the pulse train is periodic (i.e., consists of a series of pulses that repeat in a characteristic pattern over a constant time period), and the period (T) is less than or equal to 100 ms, then: 1) Set the TRIGGER on the spectrum analyzer to capture at least one period of the pulse train, including any blanking intervals. 2) Determine the total maximum pulse "ON time" (to _N) over one period of the pulse train. An example of a periodic pulse train and the associated period is shown in Figure 14. If the pulse train contains pulses of different widths, then to _N is determined by summing the duration of all of the pulses within the pulse train [i.e., to _N = Σ (t1 + t2 +tn)]. 3) The duty cycle is then determined by dividing the total maximum "ON time" by the period of the pulse train (to _N /T). g) If the pulse train is nonperiodic or is periodic with a period that exceeds 100 ms, or as an alternative to step f), then: 1) Set the TRIGGER on the spectrum analyzer to capture the greatest amount of pulse "ON time" over 100 ms. 2) Find the 100 ms period that contains the maximum "on time"; this may require summing

6.4.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.9 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode1						
Final test mode: Mode1						

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

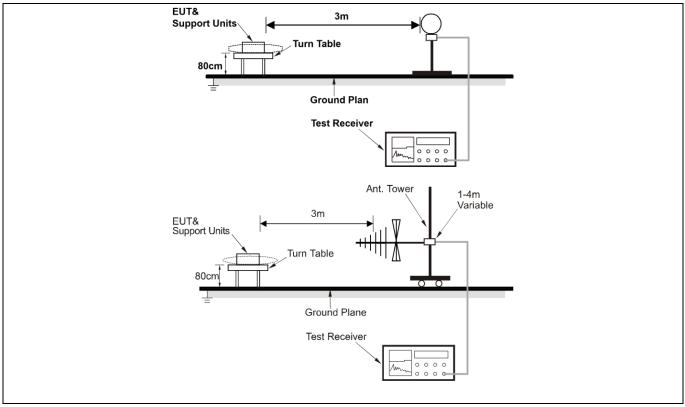
T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle correction factor (dB)
17.50	93.50	0.187	-14.56

Note: Duty cycle correction factor = 20 * log (Duty cycle)

gilent Spectrum Analyzer - Swept SA R L RF 50 Ω Δ DC	SENSE:PULSE SOU	RCE OFF ALIGN AUTO	10:26:28 AM Jan 13, 2025	
Center Freq 433.965000 MHz	ide ↔→ Trig: Free Run ow Atten: 10 dB	Avg Type: Log-Pwr Avg Hold: 2/2	TRACE 123456 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Ref 0.00 dBm		ΔΙ	Mkr3 93.50 ms -7.854 dB	Auto Tune
	1 ∕2Δ1 			Center Freq 433.965000 MHz
40.0				Start Freq 433.965000 MHz
70.0 80.0 90.0 Henry Harry H. May Ling Harry H	humphantanta an	undharen Marthar	unifrancia.	Stop Fred 433.965000 MHz
	≇VBW 30 kHz		Span 0 Hz 0.0 ms (1001 pts)	CF Step 10.000 kHz Auto Mar
MKR MODE TRC SCL X 1 N 1 t 165.5 m 2 A1 1 t A 3 A1 1 t (Δ) 17.50 m 3 A1 1 t (Δ) 93.50 m 4 5 4 5 4	s -27.969 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offse
6 7 8 9 10				
sg		SULATS	DC Coupled	

6.5 Field Strength of The Fundamental Signal

Test Requirement:	47 CFR 15.231(b)		
Test Limit:	Fundamental	Field strength of	Field strength of
	frequency (MHz)	fundamental	spurious emissions
		(microvolts/meter)	(microvolts/meter)
	40.66-40.70	2,250	225
	70-130	1,250	125
	130-174	¹ 1,250 to 3,750	¹ 125 to 375
	174-260	3,750	375
	260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
	Above 470		·
	Above 470	12,500	1,250
	¹ Linear interpolations		
	tighter limits apply at	the band edges.	at a distance of 3 meters. The
Test Method:	ANSI C63.10-2020, S	Section 6.5	
Procedure:	Below 1GHz:		
	 a. For below 1GHz, the meters above the growas rotated 360 degrees. b. The EUT was set 33 antenna, which was noted and vertical polarization of the network of the netwo	und at a 3 meter semi-an ees to determine the posi- or 10 meters away from nounted on the top of a va- t is varied from one meter he maximum value of the ons of the antenna are se- d emission, the EUT was tuned to heights from 1 m 0MHz, the antenna was tu- is turned from 0 degrees from 0 degrees from 0 degrees from 1 of the EUT in peak mode g could be stopped and the therwise the emissions the by one using quasi-pea- a sheet. I owest channel, the mide surements are performed ind found the X axis positi edures until all frequencies + Cable Loss+ Antenna F 30MHz, the disturbance in above plots are the high above points had been d om the radiator which are not be reported.	in X, Y, Z axis positioning for oning which it is the worst as measured was complete. Factor- Preamp Factor below 30MHz was very low. test emissions could be found lisplayed. The amplitude of a attenuated more than 20dB and the harmonics were the
	highest point could be been displayed.	e tound when testing, so c	only the above harmonics had


Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, fo

6.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	ure: 22.9 °C		Humidity:	51 %	A	tmospheric Pressure:	101 kPa
Pre test mode: Mode1			e1				
Final test mode: Mode1							

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

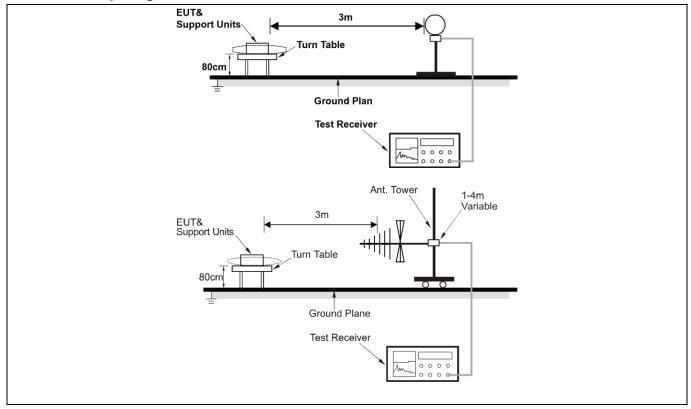
Frequency	Reading Level	Correct Factor	Measurement	Limit	Margin	Detector
(MHz)	(dBµV)	dB/m	(dBµV/m)	(dBµV/m)	dB	(MHz)
433.965	62.30	-10.6	51.70	100.90	-49.20	Peak
433.965	47.74	-10.6	37.14	80.90	-43.76	AVG

Notes: AVG Measurement (dBµV/m) = Peak Measurement (dBµV/m) + Duty cycle correction factor (dB)

6

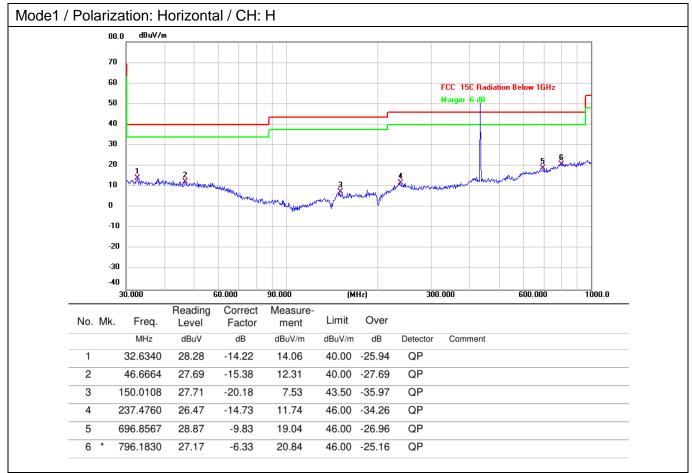
6.6 Radiated Emission (below 1GHz)

Test Requirement:	47 CFR 15.231						
Test Limit:	Frequency (MHz)	Field strength	Measuremen				
		(microvolts/meter)	t distance				
		(morevens/meter)	(meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	2400/F(kHz)	30				
		· · · ·					
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 ** 200 **	3				
	216-960	3					
	Above 960	500	3				
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
Test Method:	ANSI C63.10-2020, Sect						
Procedure:	meters above the ground was rotated 360 degrees b. The EUT was set 3 or antenna, which was mou c. The antenna height is ground to determine the and vertical polarizations d. For each suspected et then the antenna was tur frequency of below 30MI the rotatable table was tur maximum reading. e. The test-receiver syste Bandwidth with Maximur f. If the emission level of specified, then testing co would be reported. Other would be reported on a data s g. Test the EUT in the low channel. h. The radiation measure Transmitting mode, and case. i. Repeat above procedur Remark: 1. Level= Read Level+ C 2. Scan from 9kHz to 30	the EUT in peak mode was 1 ould be stopped and the peak rwise the emissions that did n by one using quasi-peak meth	chamber. The table he highest radiation. rference-receiving height antenna tower. meters above the rength. Both horizontal ke the measurement. ed to its worst case and 0.4 meters (for the test heights 1 meter) and legrees to find the anction and Specified 0dB lower than the limit values of the EUT ot have 10dB margin od as specified and anel, the Highest Z axis positioning for thich it is the worst ured was complete. Preamp Factor 0MHz was very low.				

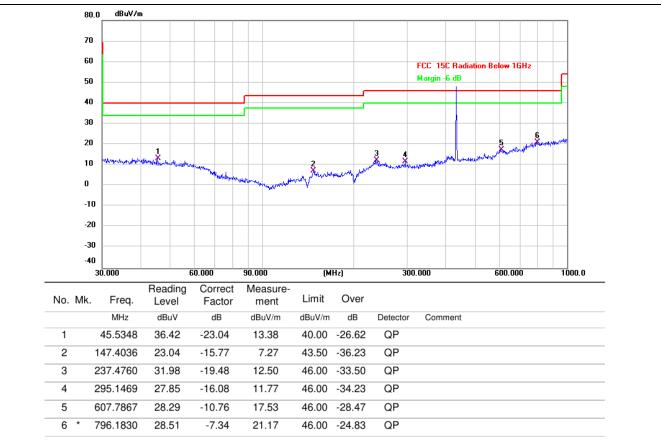

spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

6.6.1 E.U.T. Operation:


Operating Environment:							
Temperature:	ature: 26 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mod			e1				
Final test mode: Mode			e1				

6.6.2 Test Setup Diagram:

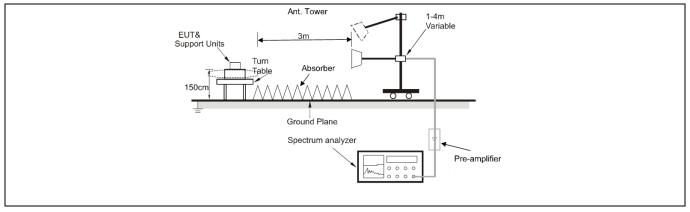


6.6.3 Test Data:

Mode1 / Polarization: Vertical / CH: H

6.7 Radiated Emission (above 1GHz)

Test Requirement:	47 CFR 15.231							
Test Limit:	Frequency (MHz)	Field strength	Measuremen					
		(microvolts/meter)	t distance					
			(meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	** Except as provided in	oaragraph (g), fundamental em	issions from					
	intentional radiators oper	ating under this section shall ne	ot be located in the					
	frequency bands 54-72 M	1Hz, 76-88 MHz, 174-216 MHz	or 470-806 MHz.					
		n these frequency bands is per	mitted under other					
	sections of this part, e.g.,							
		ve, the tighter limit applies at th	0					
		n in the above table are based						
		i-peak detector except for the						
		pove 1000 MHz. Radiated emis						
		n measurements employing an	average detector.					
Test Method:	ANSI C63.10-2020, Sect	ion 6.6						
Procedure:	a. For above 1GHz, the E	EUT was placed on the top of a	rotating table 1.5					
		at a 3 meter fully-anechoic cha						
	•	etermine the position of the hig						
		eters away from the interferenc						
		ne top of a variable-height ante						
		varied from one meter to four n						
	•	maximum value of the field stre	•					
		of the antenna are set to make						
		nission, the EUT was arranged						
		ned to heights from 1 meter to 4	`					
		Iz, the antenna was tuned to he	č ,					
		rned from 0 degrees to 360 de	grees to find the					
	maximum reading.	m was act to Back Dotact Eur	ation and Specified					
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit							
		becified, then testing could be stopped and the peak values of the EUT						
		wise the emissions that did not						
		y one using peak or average m	•					
	and then reported in a da		· · · · · · · · · · · · · · ·					
		vest channel, the middle chann	el. the Highest					
	channel.	,	, O					
	h. The radiation measure	ments are performed in X, Y, Z	axis positioning for					
		ound the X axis positioning wh						
	case.							
		res until all frequencies measu	red was complete.					
	Remark:							
	1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor							
		0GHz, the disturbance above 1						
	-	ove plots are the highest emiss						
		ove points had been displayed.						
	spurious emissions from	the radiator which are attenuat	ed more than 20dB					



 below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had
been displayed.

6.7.1 E.U.T. Operation:

Operating Environment:						
Temperature:	26 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode1			e1			
Final test mode: Mode1			e1			

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
_	1		1302.000	43.85	-8.69	35.16	74.00	-38.84	peak
-	2		1302.000	36.95	-8.69	28.26	54.00	-25.74	AVG
-	3		1736.000	45.21	-7.63	37.58	74.00	-36.42	peak
-	4		1736.000	37.88	-7.63	30.25	54.00	-23.75	AVG
-	5		2170.000	46.20	-5.34	40.86	74.00	-33.14	peak
-	6	*	2170.000	48.60	-5.34	43.26	54.00	-10.74	AVG

		k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1302.000	44.99	-8.69	36.30	74.00	-37.70	peak
2	2	1302.000	38.31	-8.69	29.62	54.00	-24.38	AVG
3	5	1736.000	45.80	-7.63	38.17	74.00	-35.83	peak
4		1736.000	38.77	-7.63	31.14	54.00	-22.86	AVG
5	;	2170.000	45.13	-5.34	39.79	74.00	-34.21	peak
6	; *	2170.000	38.01	-5.34	32.67	54.00	-21.33	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----