

FCC TEST REPORT

Test report
On Behalf of
Shenzhen Topstar Industry Co., Ltd.

For

POWER BANK

Model No.: BI-B43, BI-B44, BI-B7, BI-B71, BI-B72, BI-B73, BI-B74, BI-B75, BI-B1, BI-B2, BI-B11, BI-B12, BI-B21, BI-B9, BI-B91

FCC ID: 2A2ND-BIB43

Prepared For: Shenzhen Topstar Industry Co., Ltd.

Room 929, Jiaxiye Plaza, No.318, Minzhi Avenue, Minzhi Community, Minzhi

Street, Longhua District, Shenzhen, 518131 China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Apr. 03, 2023 ~ Apr. 10, 2023

Date of Report: Apr. 10, 2023

Report Number: HK2304031211-1E

TEST RESULT CERTIFICATION

Applicant's name...... Shenzhen Topstar Industry Co., Ltd.

Room 929, Jiaxiye Plaza, No.318, Minzhi Avenue, Minzhi

Report No.: HK2304031211-1E

Address Community, Minzhi Street, Longhua District, Shenzhen, 518131

China

Manufacture's Name: Shenzhen Topstar Industry Co., Ltd.

Room 929, Jiaxiye Plaza, No.318, Minzhi Avenue, Minzhi

China

Product description

Trade Mark: INIU

Product name...... POWER BANK

Model and/or type reference : BI-B43, BI-B44, BI-B7, BI-B71, BI-B72, BI-B73, BI-B74, BI-B75, B

BI-B1, BI-B2, BI-B11, BI-B12, BI-B12, BI-B21, BI-B9, BI-B91

Standards • FCC CFR 47 PART 18

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests...... Apr. 03, 2023 ~ Apr. 10, 2023

Date of Issue Apr. 10, 2023

Test Result Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

Table of Contents Page 1 . TEST SUMMARY 1.1 . Test Procedures And Results 1.2 . Information of the Test Laboratory 1.3 . Measurement Uncertainty 2. GENERAL INFORMATION 2.1. General Description of EUT 2.2. Carrier Frequency of Channels 2.3. Operation of EUT during testing 2.4. Description of Test Setup 9 2.5. Measurement Instruments List 3. CONDUCTED EMISSION TEST 3.1. Block Diagram of Test Setup 10 3.2. Conducted Power Line Emission Limit 10 3.3. Test Procedure 10 4. RADIATED EMISSIONS 13 4.1. Block Diagram of Test Setup 13 4.2. Rules and specifications 13 4.3. Test Procedure 14 5. ANTENNA REQUIREMENT 19 6. PHOTOGRAPH OF TEST 20 7. PHOTOS OF THE EUT 23

** Modified History **

Revision	Description	Issued Data	Remark	
Revision 1.0	Initial Test Report Release	Apr. 10, 2023	Jason Zhou	
TESTING	STANG TESTANG	ESTING	TESTING	
JAN HUAN	HUAN	HUAN	HUAN-	

1. TEST SUMMARY

1.1. Test Procedures And Results

DESCRIPTION OF TEST	SECTION NUMBER	RESULT
CONDUCTED EMISSIONS TEST	18.307	COMPLIANT
RADIATED EMISSION TEST	18.305	COMPLIANT

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3. Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. GENERAL INFORMATION

2.1. General Description of EUT

Equipment:	POWER BANK			
Model Name:	BI-B43	9		9
Series Models:	BI-B44, BI-B7, BI-B BI-B11, BI-B12, BI-	TING	11/25	BI-B1, BI-B2,
Model Difference:	All model's the fund			
Trade Mark:	INIU	Y TESTING	TSTING	TESTING
FCC ID:	2A2ND-BIB43	(C) HUAN	HUAK	HUAN
Antenna Type:	Coil Antenna			
Antenna Gain:	0dBi	W.C	THE	THE
Operation frequency:	111.5KHz~205KHz	HUAKTES	HUAK TES	HUAK TES
Test frequency:	143KHz			
Number of Channels:	1 JAKTESTIN	NA.	"IAK TESTING	TNG
Modulation Type:	ASK	ALLAK TESS	0,	HUAKTES
Power Source:	Battery Capacity: 1 IN USB-C: 5V/3A 9 OUT USB-C: 5V/3A OUT USB-A: 4.5V/9	V/2A 12V/1.5A A 9V/2.2A 12V/1.5 5A 5V/4.5A 9V/2A		HALAKTESTING
Power Rating:	Battery Capacity: 1 IN USB-C: 5V/3A 9 OUT USB-C: 5V/3A OUT USB-A: 4.5V/5 OUT Wireless: 5W/	0000mAh/37Wh V/2A 12V/1.5A A 9V/2.2A 12V/1.5 5A 5V/4.5A 9V/2A		HUAK TESTING

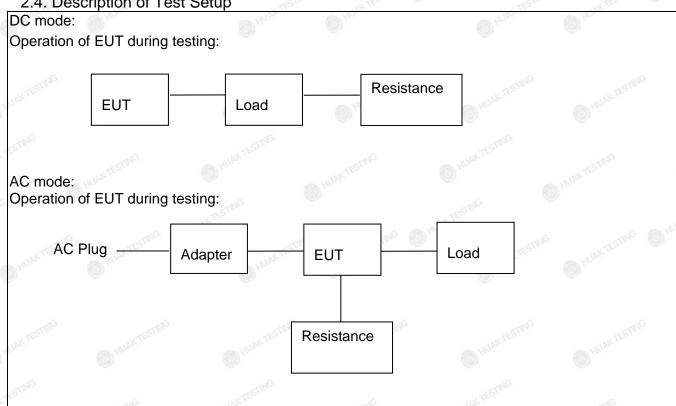
AFICATION.

2.2. Carrier Frequency of Channels

Operation I	Frequency each of channel	WAK TESTING	WAKTESTIN	MAKTES	THE WANTESTI
Channel	Frequency	O HO	0	9 m	0
1	143KHz				

2.3. Operation of EUT during testing

The equipment under test(EUT) was configured to measure its highest possible emission level. The test modes were adapted according to the operation manual for use, more detailed description as follows:


Test Mode	Description	Remark
DC mode:	OUT Wireless: 5W	HUAKTESTING
0	OUT Wireless: 5W+OUT USB-C: 12V/1.5A	0,
	OUT Wireless: 5W+OUT USB-A: 12V/1.5A	
TESTING	OUT Wireless: 7.5W	TESTING
HUAK	OUT Wireless: 7.5W+OUT USB-C: 12V/1.5A	Mink.
-m/G	OUT Wireless: 7.5W+OUT USB-A: 12V/1.5A	, wG
TESTI	OUT Wireless: 10W	THAN TESTIN
- Y	OUT Wireless: 10W+OUT USB-C: 12V/1.5A	W HUAKTES
3	OUT Wireless: 10W+OUT USB-A: 12V/1.5A	STING
AC mode:	OUT Wireless: 5W	Connect to the adapter
- WAKTESTIN	OUT Wireless: 5W+OUT USB-C: 12V/1.5A	HUAKTESTIN
0	OUT Wireless: 5W+OUT USB-A: 12V/1.5A	0 0
	OUT Wireless: 7.5W	
TESTING	OUT Wireless: 7.5W+OUT USB-C: 12V/1.5A	TESTING
HUAK.	OUT Wireless: 7.5W+OUT USB-A: 12V/1.5A	Mar. Mah
TING	OUT Wireless: 10W	THIS .
TEST	OUT Wireless: 10W+OUT USB-C: 12V/1.5A	HUAKTES!"
- T	OUT Wireless: 10W+OUT USB-A: 12V/1.5A	HUAKTE

Note: All modes are tested, and the report shows only the worst mode data.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.4. Description of Test Setup

Adapter information Model: GD2B9

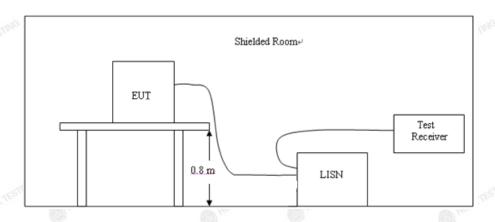
Input: 100-240V~ 50/60Hz, 2A Max

USB-C1 Output: 5V 3A, 9V 3A, 12V 3A, 15V 3A, 20V 5A, 28V 5A 140W MAX

USB-C2 Output: 5V 3A, 9V 3A, 12V 3A, 15V 3A, 20V 5A 100W MAX USB-A Output: 5V 4.5A, 4.5V 5A, 5V 3A, 9V 2A, 12V 1.5A 22.5W MAX

Total output power: 140W Max

The sample was placed (0.8m (30MHz~1GHz), 0.8m (9KHz~30MHz)) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.


2.5. Measurement Instruments List

Z.J. I	Measurement mou	umento List				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
1.	L.I.S.N Artificial Mains R&S Network		ENV216	HKE-002	Feb. 17, 2023	1 Year
2.	Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Feb. 17, 2023	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 17, 2023	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	⊳ HKE-013	Feb. 17, 2023	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Feb. 17, 2023	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	N/A	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 17, 2023	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Feb. 17, 2023	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Feb. 17, 2023	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 09, 2021	3 Year

Page 10 of 23 Report No.: HK2304031211-1E

CONDUCTED EMISSION TEST

3.1. Block Diagram of Test Setup

3.2. Conducted Power Line Emission Limit

According to FCC Part 18.307(b)

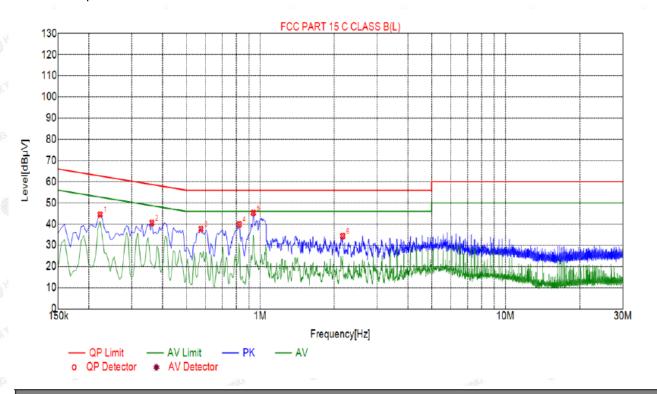
- I.	Maximum RF Line Voltage (dBμV)					
Frequency (MHz)	CLAS	SS A	CLASS B			
(141112)	Q.P.	Ave.	Q.P.	Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

Decreasing linearly with the logarithm of the frequency

For intentional device, according to §18.307 Line Conducted Emission Limit is same as above table.

3.3. Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes



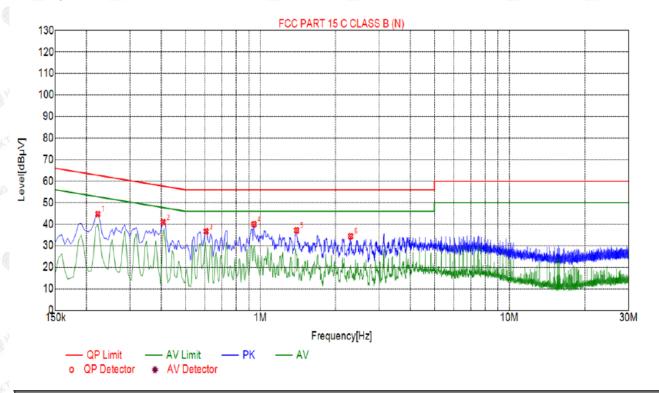
3.4. Test Result PASS

All the test modes completed for test. only the worst result was reported as below:

Report No.: HK2304031211-1E

Test Specification: Line

Sus	Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре				
1	0.2220	44.54	20.04	62.74	18.20	24.50	PK	L				
2	0.3615	40.58	20.04	58.69	18.11	20.54	PK	L				
3	0.5730	37.69	20.05	56.00	18.31	17.64	PK	L				
4	0.8205	39.88	20.06	56.00	16.12	19.82	PK	L				
5	0.9375	45.26	20.06	56.00	10.74	25.20	PK	L				
6	2.1705	34.37	20.16	56.00	21.63	14.21	PK	L				


Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

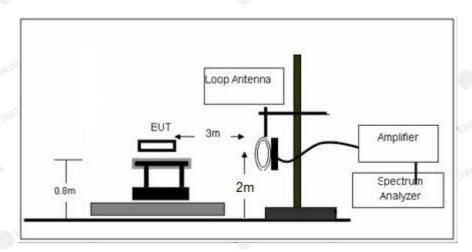
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

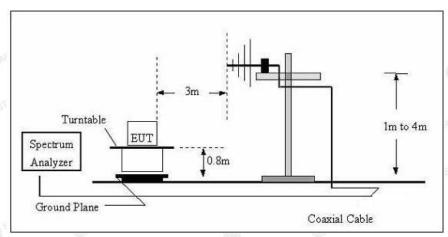
Test Specification: Neutral

	Suspected List											
	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре			
NODE OF	1	0.2220	44.72	20.04	62.74	18.02	24.68	PK	N			
	2	0.4065	40.91	20.03	57.72	16.81	20.88	PK	N			
	3	0.6045	36.59	20.05	56.00	19.41	16.54	PK	N			
5	4	0.9420	39.97	20.06	56.00	16.03	19.91	PK	N			
<	5	1.3965	37.11	20.11	56.00	18.89	17.00	PK	N			
	6	2.3055	34.40	20.18	56.00	21.60	14.22	PK	N			

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss


Level=Test receiver reading + correction factor


CATIO_M

4. RADIATED EMISSIONS

4.1. Block Diagram of Test Setup

4.2. Rules and specifications

Except as provided elsewhere in this Subpart 18.305 (b), the field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following table:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)	
(miscellaneous)					
	Any non- ISM frequency	Below 500 500 or more	15 15 × SQRT(power/500)	300 1300	

Page 14 of 23 Report No.: HK2304031211-1E

Remark:

- (1) Emission level dBuV/m for 0.009~30MHz = 20log (15) + 40log (300/3) dBuV/m;
- (2) Calculated according FCC 18.305.
- (3) The smaller limit shall apply at the cross point between two frequency bands.
- (4) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4.3. Test Procedure

Measurement distance 3m

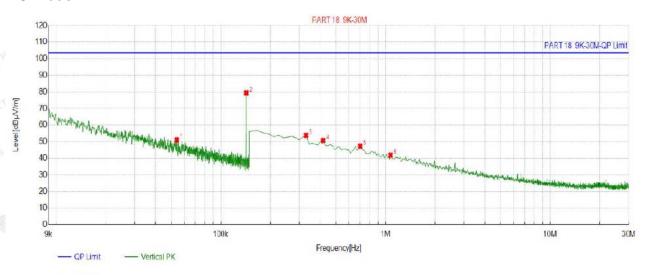
For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurements are extrapolated to 300m and 30m distance respectively, by 40dB/decade, Per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4. Test Result

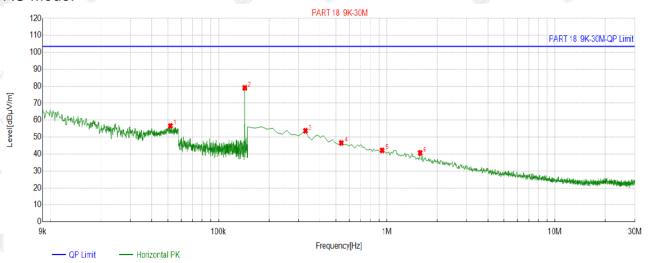

PASS

Note: All the test modes completed for test. Only the worst result (OUT Wireless: 10W+OUT USB-A: 12V/1.5A) was reported as below:

For 9KHz - 30MHz

DC Mode:

QP Detector

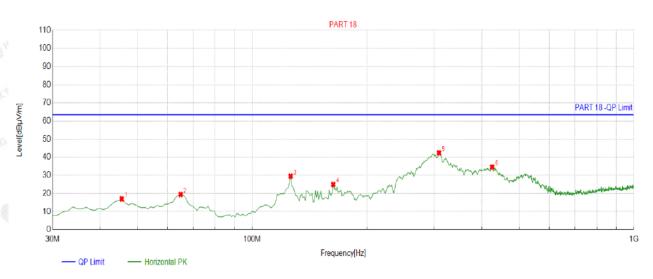

Suspe	Suspected List											
NO	Freq.	Factor	Reading	Level	Limit	Margin						
NO.	[MHz]	[dB]	[dBµ∀/m]	[dBµ√/m]	[dBµV/m]	[dB]						
1	0.0540	13.93	37.10	51.03	103.50	52.47						
2	0.1429	13.77	65.80	79.57	103.50	23.93						
3	0.3292	13.72	40.07	53.79	103.50	49.71						
4	0.4188	13.77	36.92	50.69	103.50	52.81						
5	0.7025	13.81	33.47	47.28	103.50	56.22						
6	1.0758	14.14	27.71	41.85	103.50	61.65						

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

For 9KHz - 30MHz

AC Mode:

QP Detector


	Qi Detector											
Suspe	Suspected List											
NO	Freq.	Factor	Reading	Level	Limit	Margin						
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]						
1	0.0516	13.92	42.71	56.63	103.50	46.87						
2	0.1434	13.77	65.55	79.32	103.50	24.18						
3	0.3292	13.72	40.00	53.72	103.50	49.78						
4	0.5382	13.72	32.83	46.55	103.50	56.95						
5	0.9414	14.12	28.05	42.17	103.50	61.33						
6	1.5835	14.36	26.34	40.70	103.50	62.80						

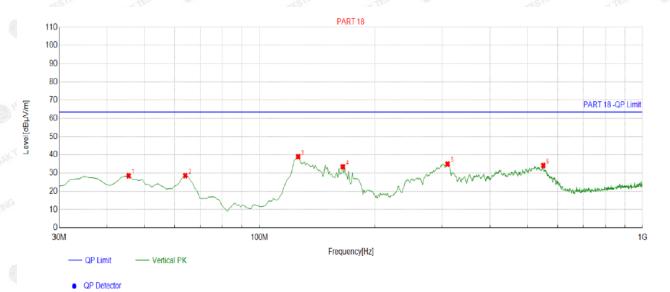
Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

For 30MHz-1GHz

Antenna polarity: H

QP Detector

	Suspected List										
7	NO.	Freq. [MHz]	Factor [dB]	Reading [dBuV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
			= =				= =				
	1	45.5355	-14.97	31.91	16.94	63.50	46.56	100	104	Horizontal	
3	2	64.9550	-14.59	34.02	19.43	63.50	44.07	100	358	Horizontal	
	3	126.1261	-16.21	45.76	29.55	63.50	33.95	100	247	Horizontal	
	4	163.0230	-17.19	42.20	25.01	63.50	38.49	100	311	Horizontal	
	5	308.6687	-11.85	54.24	42.39	63.50	21.11	100	255	Horizontal	
ø	6	425.1852	-8.54	43.20	34.66	63.50	28.84	100	259	Horizontal	


Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor;

Margin = Limit - Level

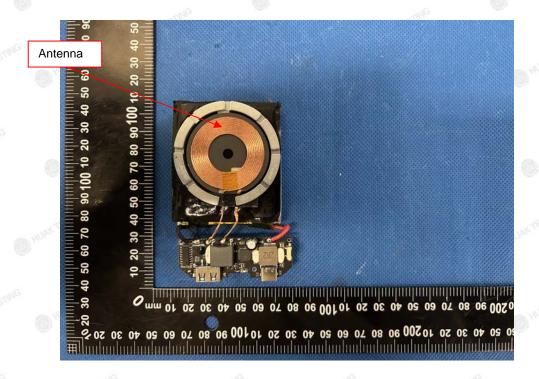
Antenna polarity: V

Suspe	Suspected List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	
1	45.5355	-14.97	43.53	28.56	63.50	34.94	100	289	Vertical
2	63.9840	-14.68	43.28	28.60	63.50	34.90	100	13	Vertical
3	126.1261	-16.21	55.22	39.01	63.50	24.49	100	245	Vertical
4	164.9650	-17.39	50.88	33.49	63.50	30.01	100	173	Vertical
5	309.6396	-11.84	46.88	35.04	63.50	28.46	100	197	Vertical
6	550.4404	-6.08	40.27	34.19	63.50	29.31	100	193	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

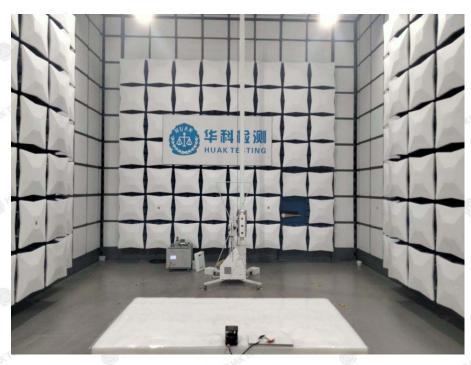

5. ANTENNA REQUIREMENT

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.

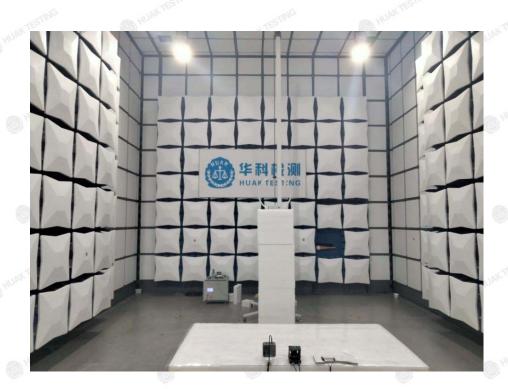


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOGRAPH OF TEST

Radiated Emission DC Mode:





The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AC Mode:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

7. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.