Dipole Verification Data> D2450V2, serial no. 924 ### 2450MHz - Head----2021.9.1 CALIBRATION **CNAS L0570** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Sporton Fax: +86-10-62304633-2504 http://www.chinattl.cn Certificate No: Z21-60554 ## CALIBRATION CERTIFICATE Object D2600V2 - SN: 1070 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 20, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | | | Reference Probe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | Sep-22
May-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | | Jan-22 | | Network Analyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60554 Page 1 of 6 CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: tissue simulating liquid ConvF N/A TSL sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. SAR measured: SAR measured at the stated antenna input power. SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60554 Page 2 of 6 ## s p e a g #### CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|---------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | - Anni opuder | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|-----------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.97 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 200 | 1.07 11110/111 2 0 76 | ## SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.2 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5Ω- 6.60jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | N. Mariantin | |----------------------------------|--------------| | cone direction) | 1.058 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | | |-----------------|--------| | Mandractured by | SPEAG | | | 0, 0,0 | Certificate No: Z21-60554 Page 4 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Date: 2021-12-20 ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.97 S/m; ϵ_r = 40.05; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(7.5, 7.5, 7.5) @ 2600 MHz; Calibrated: 2021-05-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.3 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.14 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44.7% Maximum value of SAR (measured) = 24.5 W/kg 0 dB = 24.5 W/kg = 13.89 dBW/kg Certificate No: Z21-60554 Page 5 of 6 s p e a g ## CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL Add: No.52 Hua Yuan Bei Road, Haidian District, Longing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caicrac.cn Client Sporton Certificate No: Z22-60145 ### CALIBRATION CERTIFICATE Object D3500V2 - SN: 1076 Calibration Procedure(s) FF-Z11-003-01 Calif sil in Procedures for dipole validation kits Calibration date: May 9, 2022 This calibration Certificate documents the Paceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Calibrated by, Certificate No.) |
Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 108277 | 24 Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7307 | 6-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 2-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID # | Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 3-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 4-Jan-22 (CTTL, No.J22X00406) | Jan-23 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 13, 2022 This calibration certificate shall not be reprocused except in full without written approval of the laboratory. Certificate No: Z22-60145 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian Destrict, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulatino liquid ConvF N/A sensitivity in TSL/NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Rau Frequency Fields from Hand-held and Body-mounted Wireless Communication Device Part 1528: Human Models, Instrumentation and Procedures (Frequency range of MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stand in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Rearn Loss: These parameters are measured with the dipole positioned under the liquid little phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measure Lat the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of a surrement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage protection of approximately 95%. Certificate No: Z22-60145 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian Fefriet, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.naict.ac.cn ## Measurement Conditions DASY system configuration, as far as no liven on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx. dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 2.92 mho/m ± 6 % | | Head TSL temperature change durit c test | <1.0 °C | **** | (2002) | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.62 W/kg | | SAR for nominal Head TSL paramater | normalized to 1W | 66.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of treat TSL | Condition | | | SAR measured | 100 mW input power | 2.55 W/kg | | SAR for nominal Head TSL parameter | normalized to 1W | 25.5 W/kg ± 24.2 % (k=2) | Add: No.52 HuaYuanBei Road, Haiding Astrict, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.1Ω- 6.03jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.5dB | | #### General Antenna Parameters are Design | Electrical Delay (one direction) | 1.046 ns | |----------------------------------|----------| After long term use with 100W radialectower, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirique coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained at the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to be dipole arms, because they might bend or the soldered connections near the feed-point may in standard. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z22-60145 Add: No.52 HuaYuanBei Road, Haldran District, Beijing, 100191, China Tel: +86-10-62304633-2417 E-mail: ettl@chinattl.com DASY5 Validation Report for Head TSL Date: 2022-05-09 Test Laboratory: CTTL, Beijing, Chical DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1076 Communication System: UID 0, DW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 3500 MHz; $\sigma = 2.924$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN '307; ConvF(6.87, 6.87, 6.87) @ 3500 MHz; Calibrated: 2021-054 - Sensor-Surface: 1 Anna (Mechanical Surface Detection) - Electronics: DAE4 St 1556; Calibrated: 2022-01-12. - Phantom: MFP_V5.TC (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(153.1; SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=10 JmW, d=10mm, f=3500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube is Measurement grid dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.00 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 6.62 W/kg; SAF 10 g) = 2.55 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR A M1 = 76.4% Maximum value of SAR (me. sared) = 12.1 W/kg 0 dB = 12.1 W/kc = 10.83 dBW/kg Certificate No: Z22-60145 Add: No.52 HuaYuanBei Road, Handma Harriet, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.enict.ac.en ### Impedance Measurement Plan for Head TSL Add: No.52 HuaYuanBei Road, Heidian District, Scijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.gaii _ ic.en Client Sporton Certificate No: Z22-60146 ## CALIBRATION CERTIFICATE Object D3700V2 - SN: 1037 Calibration Procedure(s) FF-Z11 003-01 Call TransProcedures for dipole validation kits Calibration date: May 9, 3022 This calibration Certificate documents the "aceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 4-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 2 Jan-22(CTTL-SPEAG, No. Z22-60007) | Jan-23 | | Secondary Standards | ID # | Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MV49071430 | 8-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | M146110673 | 4 Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | Name Function Signatur Calibrated by: Zhao Jing SAR Test Engineer 林光 Reviewed by: Lin Hao SAR Test Engineer de, Approved by: Qi Dianyuan SAR Project Leader Issued: May 13, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60146 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidfart A. drict, Beijing, 100191, China Tel: +86-10-62304633-2417 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### Glossary: TSL tissue simulatii u liquid ConvF N/A sensitivity in TSE / NORMx,y,z not applicable cunot measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human
Exposure to Raby Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Har dbook ### Methods Applied and Interpretat in of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the senter thanking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Rearn Loss: These parameters are measured with the dipole positioned under the liquid title phantom. The impedance stated is transformed from the measurement at the SMA contractor to the feed point. The Return Loss ensures low reflected power. No uncertainty acquired. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measure Lat the stated antenna input power. - SAR normalized: SAR as mean red, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of a surement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60146 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidinn auriet, Beijing, 100191, China Tel: ±86-10-62304633-2117 E-mail: cttl@chinattl.com https:// ==w.gaict.ac.en #### Measurement Conditions DASY system configuration, as far as no liven on page 1. | The Inventor page 1. | | |---------------------------|---| | DASY52 | 52.10.4 | | Advanced Extrapolation | | | Tople Flat Phantom 5.1C | 1 | | 10 mm | with Spacer | | dx dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | 3700 MHz ± 1 MHz | | | | DASY52 Advanced Extrapolation Tople Flat Phantom 5.1C 10 mm dx dy = 4 mm, dz = 1.4 mm | ### Head TSL parameters at 37001/1-1 The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 3.11 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 2652 | 10000 | #### SAR result with Head TSL at 370 JVIHz | SAR averaged over 1 cm ³ (1 g) of A = 0 TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.69 W/kg | | SAR for nominal Head TSL parameter | normalized to 1W | 66.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 mm ³ (10 g) of read TSL | Condition | | | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameter | normalized to 1W | 24.6 W/kg ± 24.2 % (k=2) | Certificate No: Z22-60146 Add: No.52 HuaYuanBei Rond. Haid an Aarlet, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.miet.ac.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head ISL at 3700MHz | Impedance, transformed to feed point | 46.2Ω+ 0.31jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.1dB | | ## General Antenna Parameters are Design | Electrical Delay (one direction) | 1.048 ns | |----------------------------------|-----------| | | WW 104/WA | After long term use with 100W radialec power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard seming a coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained at the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to die dipole arms, because they might bend or the soldered connections near the feed point may be damaged. #### Additional EUT Data | E | | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: Z22-60146 Page 4 of 6 Add: No.52 HuaYuanBei Road, Haiding Jamest, Beijing, 100191. China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com hit :- Wanct.ac.en DASY5 Validation Report for Head TSL Date: 2022-05-09 Test Laboratory: CTTL, Beijing, China DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1037 Communication System: UID 0 W; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 3.00 MHz; $\sigma = 3.106$ S/m; $\epsilon_r = 37.12$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (JEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN 307; ConvF(6.73, 6.73, 6.73) @ 3700 MHz; Calibrated 2021-05-1 - Sensor-Surface 1 Arms (Mechanical Surface Detection) - Electronics: DAE4 Scr 556; Calibrated: 2022-01-12 - Phantom: MFP_V5 1 (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52:10.4(153.7) SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=10 J nW, d=10mm, f=3700 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cuba II Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62 62 Vivis Power Drift = -0.05 dB Peak SAR (extrapolated) = 11 W/kg SAR(1 g) = 6.69 W/kg S. T. 10 g) = 2.47 W/kg Smallest distance from peals to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR MM = 75% Maximum value of SAR (me sured) = 12.6 W/kg Certificate No: Z22-60146 Add: No.52 HuaYuanBer Rond, Haid in Patrict, Beijing, 100191, China Tel: +86-10-62304633-21/7 E-mail: cttl@chinattl.com http://www.caict.ac.en ## Impedance Measurement I lor for Head TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D3900V2-1022_Jul19 ## CALIBRATION CERTIFICATE Object D3900V2 - SN:1022 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: July 11, 2019 This calibration cartificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |--|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | ype-N mismatch combination | SN: 3503 | 25-Mar-19 (No. EX3-3503_Mar19) | Mar-20 | | Reference Probe EX3DV4
DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | XVI | | Approved by: | Katja Pokovic | Technical Manager | anne | Issued: July 11, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4100 MHz ± 1 MHz | | ### Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.2 ± 6 % | 3.23 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.03 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 70.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 3.41 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.64 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1022_Jul19 Page 3 of 6 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 47.2 Ω - 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.9 dB | #### Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | 57.0 Ω + 0.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.6 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.101 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D3900V2-1022_Jul19 Page 4 of 6 ## DASY5 Validation Report for Head TSL Date: 11.07.2019 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1022 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; $\sigma = 3.23$ S/m; $\epsilon_r = 37.2$; $\rho = 1000$ kg/m³. Medium parameters used: f = 4100 MHz; $\sigma = 3.41$ S/m; $\epsilon_r = 37$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.25, 7.25, 7.25) @ 3900 MHz, ConvF(7.05, 7.05, 7.05) @ 4100 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019. - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.25 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 7.03 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 13.7 W/kg ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.96 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 6.64 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 13.2 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg ## Impedance Measurement Plot for Head TSL ## D3900V2, Serial No. 1022 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | TVAI CAIT DC CX | | | | | | |---------------------------|---------------------------|-----------|----------------------------|-------------|---------------------------------|-------------| | | D3900V2 – serial no. 1022 | | | | | | | | | | 3900 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta (ohm) | Imaginary
Impedance
(ohm) | Delta (ohm) | | 2019.7.11 | -25.9 | | 47.2 | | -4.1 | | | 2020.7.7 | -26.3 | -1.5 | 47.9 | 0.7 | -1.7 | 2.4 | | 2021.7.7 | -25.7 | 0.8 | 48.0 | 0.8 | -4.6 | -0.5 | | D3900V2 – serial no. 1022 | | | | | | | | | | | 4100 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta (ohm) | Imaginary
Impedance
(ohm) | Delta (ohm) | | 2019.7.11 | -23.6 | | 57.0 | | 0.7 | | | 2020.7.7 | -23.3 | 1.3 | 58.2 | 1.2 | -1.1 | -1.8 | | 2021.7.7 | -23.4 | 0.8 | 57.7 | 0.7 | -1.7 | -2.4 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ## Dipole Verification Data> D3900V2, serial no. 1022 #### 3900MHz - Head----2020.7.7 ### 4100MHz - Head----2020.7.7 #### 3900MHz - Head----2021.7.7 ### 4100MHz - Head----2021.7.7 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: December 14, 2021 1 C S Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No:
D5GHzV2-1341 Dec21 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1341 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: December 13, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | MA | | Approved by: | Niels Kuster | Quality Manager | 17/ | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1341_Dec21 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.56 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.52 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1341_Dec21 Page 3 of 8 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.4 Ω + 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 35.7 dB | ## Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.8 Ω + 7.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.2 dB | ## Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.4 Ω + 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.8 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | | |----------------------------------|----------| | Licothida Bolay (one direction) | 1.211 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| ##
DASY5 Validation Report for Head TSL Date: 13.12.2021 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1341 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.56 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.91 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.06 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 01.11.2021 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.28 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.0 W/kg ## SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 71.5% Maximum value of SAR (measured) = 18.5 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.67 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.9 W/kg ## SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.6% Maximum value of SAR (measured) = 20.2 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.44 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 19.8 W/kg ## Impedance Measurement Plot for Head TSL Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client: Sporton Certificate No: Z21-60491 # **CALIBRATION CERTIFICATE** Object DAE4 - SN: 715 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: December 29, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 15-Jun-21 (CTTL, No.J21X04465) | Jun-22 | | | | | | Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao Name SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 31, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters: DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z21-60491 Page 2 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , 61nV , full range = -100...+300 mV Low Range: 1LSB = full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.122 ± 0.15% (k=2) | 404.671 ± 0.15% (k=2) | 404.495 ± 0.15% (k=2) | | Low Range | | 0.000 | 3.97797 ± 0.7% (k=2) | # **Connector Angle** | A STATE OF THE STA | | |--|----------------| | Connector Angle to be used in DASY system | 330.5° ± 1 ° | | | 330.3 <u>T</u> | s p e a 166L Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss # IMPORTANT NOTICE #### **USAGE OF THE DAE4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: **Battery Exchange**: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care
shall be used when disconnecting the probe from the DAE. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: DAE4-1664_May22 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BO - SN: 1664 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 30, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|----------------------------|--|---| | Keithley Multimeter Type 2001 | SN: 0810278 | 31-Aug-21 (No:31368) | Aug-22 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards Auto DAE Calibration Unit | ID #
SE UWS 053 AA 1001 | Check Date (in house) 24-Jan-22 (in house check) | Scheduled Check
In house check: Jan-23 | Calibrated by: Name Function Dominique Steffen Laboratory Technician V Rans Approved by: Sven Kühn Technical Manager Issued: May 30, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1664_May22 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ### **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.881 ± 0.02% (k=2) | 404.778 ± 0.02% (k=2) | 405.050 ± 0.02% (k=2) | | Low Range | 4.01145 ± 1.50% (k=2) | 4.00096 ± 1.50% (k=2) | 4.00225 ± 1.50% (k=2) | # **Connector Angle** | Connecto | or Angle to be used in DASY system | 10150+10 | |----------|------------------------------------|-----------| | Connecte | Aligie to be used in DAOT system | 101.5 ± 1 | Certificate No: DAE4-1664_May22 Page 3 of 5 ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199991.83 | 0.01 | 0.00 | | Channel X | + Input | 20002.77 | 1.01 | 0.01 | | Channel X | - Input | -20000.65 | 1.00 | -0.00 | | Channel Y | + Input | 199990.67 | -1.21 | -0.00 | | Channel Y | + Input | 20001.33 | -0.43 | -0.00 | | Channel Y | - Input | -20002.29 | -0.54 | 0.00 | | Channel Z | + Input | 199992.58 | 0.91 | 0.00 | | Channel Z | + Input | 20000.66 | -0.96 | -0.00 | | Channel Z | - Input | -20003.49 | -1.59 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.07 | 0.13 | 0.01 | | Channel X | + Input | 201.32 | 0.09 | 0.04 | | Channel X | - Input | -198.78 | -0.15 | 0.07 | | Channel Y | + Input | 2000.94 | 0.13 | 0.01 | | Channel Y | + Input | 200.35 | -0.79 | -0.39 | | Channel Y | - Input | -199.26 | -0.54 | 0.27 | | Channel Z | + Input | 2000.63 | -0.23 | -0.01 | | Channel Z | + Input | 200.31 | -0.75 | -0.37 | | Channel Z | - Input | -199.99 | -1.30 | 0.66 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -4.34 | -6.41 | | | - 200 | 7.24 | 5.70 | | Channel Y | 200 | 8.03 | 6.99 | | | - 200 | -8.51 | -8.97 | | Channel Z | 200 | 9.88 | 9.71 | | | - 200 | -12.89 | -12.53 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 2.55 | -3.06 | | Channel Y | 200 | 6.23 | - | 3.52 | | Channel Z | 200 | 7.89 | 4.61 | - | Certificate No: DAE4-1664_May22 Page 4 of 5 #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15988 | 14890 | | Channel Y | 16015 | 16376 | | Channel Z | 16025 | 13549 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.05 | -1.84 | 0.87 | 0.38 | | Channel Y | -0.38 | -1.60 | 0.46 | 0.33 | | Channel Z | -0.33 | -0.98 | 0.76 | 0.30 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1664_May22 Page 5 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No EX-3819 May22 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3819 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date May 30, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration |
----------------------------|--------------------|-----------------------------------|-----------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | OCP DAK-3.5 (weighted) | SN: 1249 | 20-Oct-21 (OCP-DAK3.5-1249_Oct21) | Oct-22 | | OCP DAK-12 | SN: 1016 | 20-Oct-21 (OCP-DAK12-1016_Oct21) | Oct-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 04-Apr-22 (No. 217-03527) | Contractor Contractor | | DAE4 | SN: 660 | 13-Oct-21 (No. DAE4-660_Oct21) | Apr-23
Oct-22 | | Reference Probe ES3DV2 | SN: 3013 | 27-Dec-21 (No. ES3-3013 Dec21) | | | | SECONDITION STATES | 27 DCC 21 (140. LG3-3013_DeC21) | Dec-22 | | Secondary Standards | ID | Check Date (in house) | 10-1-1-101 | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | | Scheduled Check | | | | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | | | RF generator HP 8648C | | | In house check: Jun-22 | | | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Name Function Signature Calibrated by Leif Klysner Laboratory Technician Seif Illy Approved by Sven Kühn Technical Manager Issued: June 9, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 #### Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid sensitivity in free space NORMx,y,z sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters φ rotation around probe axis Polarization φ Polarization & ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system # Calibration is Performed According to the Following Standards: - a) IEC/IEE 62209-1528, "Measurement Procedure for the Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-Held and Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation and Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" # Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\theta = 0$ ($f \le 900\,\mathrm{MHz}$ in TEM-cell; $f > 1800\,\mathrm{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800\,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800\,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Parameters of Probe: EX3DV4 - SN:3819 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ A | 0.46 | 0.41 | 0.45 | ±10.1% | | DCP (mV) B | 105.0 | 103.0 | 105.2 | ±4.7% | # Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | $dB\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-----|---------------------------|---|---------|------------------|------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 152.4 | ±2.7% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 169.3 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 155.1 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # Parameters of Probe: EX3DV4 - SN:3819 # Other Probe Parameters | Triangular
-65.5° | |----------------------| | -03.5 | | a marking d | | enabled | | disabled | | 337 mm | | 10 mm | | 9 mm | | 2.5 mm | | 1 mm | | 1 mm | | 1 mm | | | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. EX3DV4 - SN:3819 ### Parameters of Probe: EX3DV4 - SN:3819 # Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 750 | 41.9 | 0.89 | 9.82 | 9.82 | 9.82 | 0.45 | 0.92 | ±12.0% | | 835 | 41.5 | 0.90 | 9.51 | 9.51 | 9.51 | 0.55 | 0.80 | ±12.0% | | 900 | 41.5 | 0.97 | 9.42 | 9.42 | 9.42 | 0.53 | 0.80 | ±12.0% | | 1750 | 40.1 | 1.37 | 8.57 | 8.57 | 8.57 | 0.33 | 0.86 | ±12.0% | | 1900 | 40.0 | 1.40 | 8.32 | 8.32 | 8.32 | 0.24 | 0.86 | ±12.0% | | 2000 | 40.0 | 1.40 | 8.14 | 8.14 | 8.14 | 0.29 | 0.86 | ±12.0% | | 2300 | 39.5 | 1.67 | 7.76 | 7.76 | 7.76 | 0.35 | 0.90 | ±12.0% | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.29 | 0.90 | ±12.0% | | 2600 | 39.0 | 1.96 | 7.39 | 7.39 | 7.39 | 0.32 | 0.90 | ±12.0% | | 3300 | 38.2 | 2.71 | 6.92 | 6.92 | 6.92 | 0.20 | 1.20 | ±14.0% | | 3500 | 37.9 | 2.91 | 6.78 | 6.78 | 6.78 | 0.25 | 1.20 | ±14.0% | | 3700 | 37.7 | 3.12 | 6.72 | 6.72 | 6.72 | 0.25 | 1.25 | ±14.0% | | 3900 | 37.5 | 3.32 | 6.60 | 6.60 | 6.60 | 0.30 | 1.60 | ±14.0% | | 4100 | 37.2 | 3.53 | 6.47 | 6.47 | 6.47 | 0.30 | 1.60 | ±14.0% | | 4400 | 36.9 | 3.84 | 6.12 | 6.12 | 6.12 | 0.30 | 1.60 | ±14.0% | | 4600 | 36.7 | 4.04 | 6.10 | 6.10 | 6.10 | 0.30 | 1.70 | ±14.0% | | 4800 | 36.4 | 4.25 | 6.09 | 6.09 | 6.09 | 0.40 | 1.80 | ±14.0% | | 4950 | 36.3 | 4.40 | 5.97 | 5.97 | 5.97 | 0.40 | 1.80 | ±14.0% | | 5250 | 35.9 | 4.71 | 5.07 | 5.07 | 5.07 | 0.40 | 1.80 | ±14.0% | | 5600 | 35.5 | 5.07 | 4.55 | 4.55 | 4.55 | 0.40 | 1.80 | ±14.0% | | 5750 | 35.4 | 5.22 | 4.65 | 4.65 | 4.65 | 0.40 | 1.80 | ±14.0% | ^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4 - SN:3819 May 30, 2022 # Parameters of Probe: EX3DV4 - SN:3819 # Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 6500 | 34.5 | 6.07 | 5.50 | 5.50 | 5.50 | 0.20 | 2.50 | ±18.6% | $^{^{\}text{C}}$ Frequency validity at 6.5 GHz is $-600/+700\,\text{MHz}$, and $\pm700\,\text{MHz}$ at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies 6–10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz; below $\pm 2\%$ for frequencies between 3–6 GHz; and below $\pm 4\%$ for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)