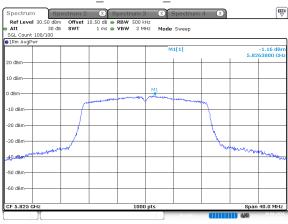
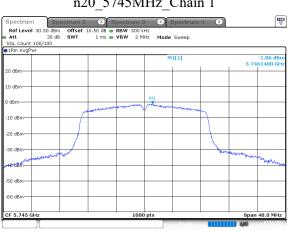
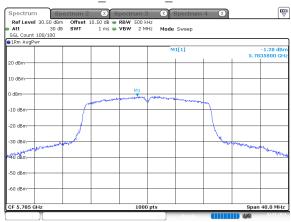

n20_5745MHz_Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 28.JUN.2024 16:40:17

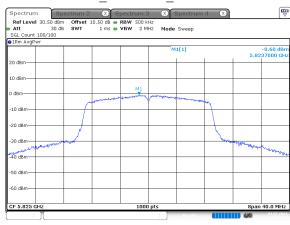
n20_5785MHz_Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 28.JUN.2024 16:41:26

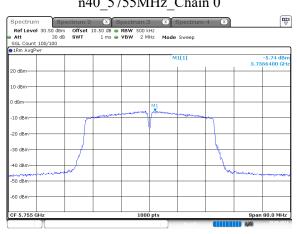
n20_5825MHz_Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 28.JUN.2024 16:43:00

n20_5745MHz_Chain 1


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 1.JUL.2024 17:59:05

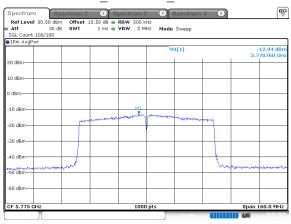
n20_5785MHz_Chain 1


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 1.JUL.2024 17:59:53

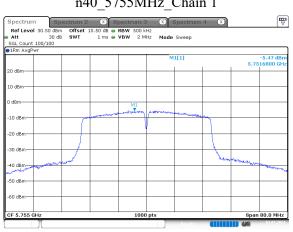
n20_5825MHz_Chain 1

ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 1.JUL.2024 18:02:46

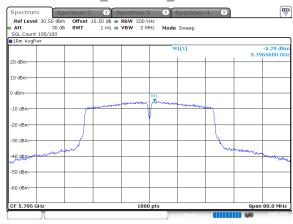
n40_5755MHz_Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 28.JUN.2024 16:47:43

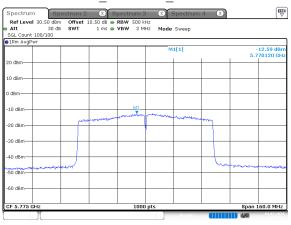
n40_5795MHz_Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 28.JUN.2024 16:50:53

ac80_5775MHz_Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 28.JUN.2024 16:53:36

n40_5755MHz_Chain 1


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 1.JUL.2024 18:03:54

n40_5795MHz_Chain 1

ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 1.JUL.2024 18:04:43

ac80_5775MHz_Chain 1

ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 1.JUL.2024 18:05:39

Report No.: 2402U81798E-RF-00B

5.8 Duty Cycle

Serial No.:	2N6D-2	Test Date:	2024/06/27
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	/

Environmental Conditions:

Temperature: (°C):	26.9	Relative Humidity: (%)	57	ATM Pressure: (kPa)	100.5
--------------------	------	------------------------------	----	---------------------	-------

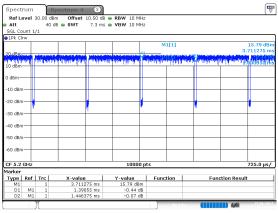
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM504	2024/06/07	2025/06/07

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

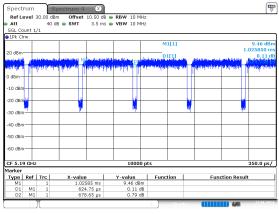
Test Data:

Note: Test only was performed at Chain 0.

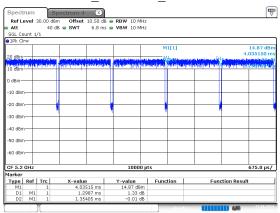

5.2G

Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/Ton (Hz)	VBW Setting (kHz)
a_5200MHz_Chain 0	1.391	1.446	96.20	0.17	719.0	1.000
n20_5200MHz_Chain 0	1.299	1.354	95.94	0.18	770.0	1.000
n40_5190MHz_Chain 0	0.625	0.679	92.05	0.36	1600.0	2.000
ac80_5210MHz_Chain 0	0.324	0.377	85.94	0.66	3086.0	5.000

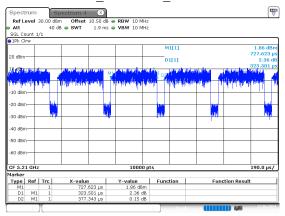
Duty Cycle = Ton/(Ton+Toff)*100%


5.2G

a_5200MHz_Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiac Date: 27.JUN.2024 15:12:03

n40 5190MHz Chain 0


ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 27.JUN.2024 15:16:13

n20 5200MHz Chain 0

ProjectNo.:2402U81798E-RF Tester:Roy Xiao Date: 27.JUN.2024 15:13:04

ac80 5210MHz Chain 0

ProjectNo.:2402U81798E-RF Tester:Roy Xiao

APPENDIX A - EUT PHOTOGRAPHS

Please refer to the attachment 2402U81798E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2402U81798E-RF-INP EUT INTERNAL PHOTOGRAPHS.

Report Template Version: FCC+IC-WiFi5-Client-V1.2 Page 115 of 120

APPENDIX B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402U81798E-RF-00B-TSP TEST SETUP PHOTOGRAPHS.

Report Template Version: FCC+IC-WiFi5-Client-V1.2 Page 116 of 120

APPENDIX C - RF EXPOSURE EVALUATION

Maximum Permissible Exposure (MPE)

Applicable Standard

According to subpart §1.1310,15.247(i) and 15.407(f)systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: 2402U81798E-RF-00B

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)				
0.3-1.34	614	1.63	*(100)	30				
1.34–30	824/f	2.19/f	*(180/f ²)	30				
30–300	27.5	0.073	0.2	30				
300–1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Calculated Data:

Mode	Frequency (MHz)	Ante	Antenna Gain		Tune-up Tolerance		Power Density (mW/cm²)	MPE Limit (mW/cm²)
		(dBi)	(numeric)	(dBm)	(mW)			
BT	2402-2480	4.85	3.05	12	15.85	20.00	0.010	1.0
BLE	2402-2480	4.85	3.05	7	5.01	20.00	0.003	1.0
2.4G WiFi	2412-2462	5.94	3.93	24	251.19	20.00	0.196	1.0
	5150-5250	4.69	2.94	14	25.12	20.00	0.015	1.0
5G WiFi	5250-5350	5.17	3.29	16	39.81	20.00	0.026	1.0
JG WIFI	5470-5725	5.55	3.59	16	39.81	20.00	0.028	1.0
	5725-5850	4.86	3.06	16	39.81	20.00	0.024	1.0

Note:

The Conducted output power including Tune-up Tolerance provided by manufacturer. BT and BLE can't transmit simultaneously, 2.4G WiFi and 5G WiFi can't transmit simultaneously, 2.4G WiFi or 5G WiFi can transmit simultaneously with BT or BLE:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}}$$

 $= S_{BT}/S_{limit\text{-}BT} + S_{2.4G \text{ WiFi}}/S_{limit\text{-}2.4G \text{ WiFi}}$

=0.010/1+0.196/1

=0.206

< 1.0

Result: The device meet FCC MPE at 20 cm distance

Exemption Limits For Routine Evaluation-RF Exposure Evaluation

Applicable Standard

According to RSS-102 Issue 5 Amendment 1 February 2021, § 4Table 4, RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range	Electric Field	, ,		Reference Period
(MHz)	(V/m rms)	(A/m rms)	(A/m rms) (W/m²)	
$0.003-10^{21}$	83	90	1	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	0.008335 f ^{0.3417}	0.02619f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}

Note: f is frequency in MHz.

According to RSS-102 Issue 5 Amendment 1 February 2021, § 4Table 6, RF Field Strength Limits for Devices Used by the Controlled Use Devices (Controlled Environment)

Table 6: RF Field Strength Limits for Controlled Use Devices (Controlled Environment)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	$(A/m rms) \qquad (W/m^2)$	
$0.003 - 10^{23}$	170	180	-	Instantaneous*
0.1-10	-	1.6/ f	-	6**
1.29-10	$193/f^{0.5}$	-	-	6**
10-20	61.4	0.163	10	6
20-48	$129.8/f^{0.25}$	$0.3444/f^{0.25}$	$44.72/f^{0.5}$	6
48-100	49.33	0.1309	6.455	6
100-6000	15.60 f ^{0.25}	$0.04138 f^{0.25}$	$0.6455 f^{0.5}$	6
6000-15000	137	0.364	50	6
15000-150000	137	0.364	50	616000/ f ^{1.2}
150000-300000	$0.354 f^{0.5}$	$9.40 \times 10^{-4} f^{0.5}$	$3.33 \times 10^{-4} f$	616000/ f ^{1.2}

Note: f is frequency in MHz.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

MPE Calculation

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For <u>simultaneously</u> transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \leq 1$$

Calculated Data:

Mode	Frequency (MHz)	Antenna Gain	Conducted output power including Tune-up Tolerance	EIRP		Distance (cm)		MPE Limit (W/m²)
		(dBi)	(dBm)	(dBm)	(mW)			
BT	2402-2480	4.85	12	16.85	48.42	20.00	0.096	5.35
BLE	2402-2480	4.85	7	11.85	15.31	20.00	0.030	5.35
2.4G WiFi	2412-2462	5.94	24	29.94	986.28	20.00	1.963	5.37
	5150-5250	4.69	14	18.69	73.96	20.00	0.147	9.01
5G WiFi	5250-5350	5.17	16	21.17	130.92	20.00	0.261	9.13
JG WIFI	5470-5725	5.55	16	21.55	142.89	20.00	0.284	9.39
	5725-5850	4.86	16	20.86	121.90	20.00	0.243	9.69

Note:

The Maximum Conducted Power including Tune-up Tolerance was declared by manufacturer

For Simultaneous transmission:

BT and BLE can't transmit simultaneously, 2.4G WiFi and 5G WiFi can't transmit simultaneously, 2.4G WiFi or 5G WiFi can transmit simultaneously with BT or BLE:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}}$$

$$=S_{BT}/S_{limit-BT}+S_{2.4GWiFi}/S_{limit-2.4GWiFi}$$

=0.383

< 1.0

Result: The device meet MPE requirement at 20cm distance

***** END OF REPORT *****