

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name: Tractive GPS DOG LTE

Trademark: N/A

Model Name: TRNJA4

Family Model: N/A

Report No.: S20120101603002

FCC ID: 2AVE6NJ44A

Prepared for

Tractive GmbH

Randlstrasse 18a, 4061 Pasching, Austria

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street,

Bao'an District, Shenzhen 518126 P.R.China.

Tel.: 400-800-6106, 0755-3699 5508

Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name.....: Tractive GmbH

Address: Randlstrasse 18a, 4061 Pasching, Austria

Manufacturer's Name.....: Tractive GmbH

Address: Randlstrasse 18a, 4061 Pasching, Austria

Product description

Product name: Tractive GPS DOG LTE

Trademark: N/A

Model Name: TRNJA4

Family Model: N/A

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

Standards..... IEEE Std 1528-2013

Published RF exposure KDB procedures

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests.....: Jan. 07, 2020; Dec. 18, 2020 ~ Jan. 17, 2021;

Date of Issue Jan. 26, 2021

Test Result Pass

Prepared By (Test Engineer)

Approved By

(Lab Manager)

$\ensuremath{\, \times \,} \ensuremath{\, \times \,} \ensuremath$

REV.	DESCRIPTION ISSUED DATE		REMARK	
Rev.1.0	Initial Test Report Release (Report No.: S19040802702001)	Jan. 14, 2020	Cheng Jiawen	
Rev.1.0	Updated the GSM 850/1900 Power and SAR value	Dec. 24, 2020	Cheng Jiawen	
Rev.1.0	Updated the Cat M1 Power and SAR value	Jan. 26, 2021	Cheng Jiawen	

TABLE OF CONTENTS

1.	General Information	6
	1.1. RF exposure limits	6
	1.2. Statement of Compliance	7
	1.3. EUT Description	7
	1.4. Test specification(s)	9
	1.5. Ambient Condition	9
2.	SAR Measurement System	
	2.1. SATIMO SAR Measurement Set-up Diagram	10
	2.2. Robot	
	2.3. E-Field Probe	12
	2.3.1. E-Field Probe Calibration	12
	2.4. SAM phantoms	13
	2.4.1. Technical Data	14
	2.5. Device Holder	
	2.6. Test Equipment List	16
3.	SAR Measurement Procedures	
	3.1. Power Reference	_
	3.2. Area scan & Zoom scan	
	3.3. Description of interpolation/extrapolation scheme	20
	3.4. Volumetric Scan	
	3.5. Power Drift	
4.	System Verification Procedure	
	4.1. Tissue Verification	
	4.1.1. Tissue Dielectric Parameter Check Results	
	4.2. System Verification Procedure	
	4.2.1. System Verification Results	
5.	SAR Measurement variability and uncertainty	
	5.1. SAR measurement variability	
	5.2. SAR measurement uncertainty	
6.	RF Exposure Positions	
	6.1. Body Worn Accessory	
7.	RF Output Power	
	7.1. GSM Conducted Power	
	7.2. LTE Conducted Power	
	7.3. WLAN & Bluetooth Output Power	
	7.3.1. Output Power Results Of WLAN	
	7.3.2. Output Power Results Of Bluetooth	
8.	Antenna Location	
9.	Stand-alone SAR test exclusion	32

age 5 of 144	Report No.: S20120101603002
age o or 144	10poit 110:: 020120101000002

10.	SAR Results	33
	10.1. SAR measurement results	33
	10.1.1. SAR measurement Result of GSM 850	33
	10.1.2. SAR measurement Result of GSM 1900	33
	10.1.3. SAR measurement Result of LTE Band 2	33
	10.1.4. SAR measurement Result of LTE Band 4	34
	10.1.5. SAR measurement Result of LTE Band 5	34
	10.1.6. SAR measurement Result of LTE Band 12	35
	10.1.7. SAR measurement Result of LTE Band 13	35
	10.1.8. SAR measurement Result of WLAN 2.4G	36
	10.2. SAR Summation Scenario	36
11.	Appendix A. Photo documentation	36
12.	Appendix B. System Check Plots	
13.	Appendix C. Plots of High SAR Measurement	52
14.	Appendix D. Calibration Certificate	

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
80.0	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE
HEAD AND TRUNK LIMIT
1.6 W/kg
APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for TRNJA4 are as follows.

	Max Reported SAR Va	llue(W/kg)
Band	1-g Body	Max Simultaneous Tx
	(Separation distance of 0mm)	
GSM 850	0.636	
GSM 1900	0.733	
LTE Band 2	0.640	
LTE Band 4	0.738	0.000
LTE Band 5	0.414	0.900
LTE Band 12	0.390	
LTE Band 13	0.318	
WLAN 2.4G	0.257	

Note: The Max Simultaneous Tx is calculated based on the same configuration and test position. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

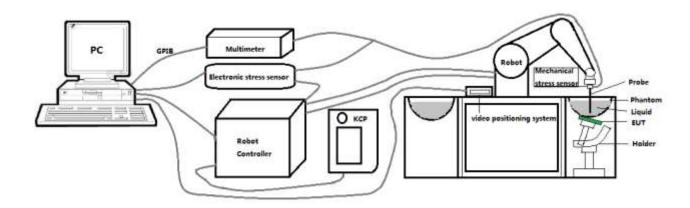
Device Information					
Product Name	Tractive GPS DOG LTE				
Trade Name	N/A				
Model Name	TRNJA4				
Family Model	N/A				
FCC ID	2AVE6NJ44A				
Device Phase	Identical Prototype				
Exposure Category	General population / Uncontrolled environment				
Antenna	FPCB Antenna				
Battery Information	DC 3.8V, 810mAh				
Device Operating Configurations					
Supporting Mode(s)	GSM 850/1900, LTE Band	2/4/5/12/13, WLAN	2.4G, Bluetooth		
Test Modulation	GSM(GMSK/8PSK), LTE(QPSK/16QAM),				
Test Wodulation	WLAN(DSSS/OFDM), Bluetooth(GFSK, π/4-DQPSK, 8DPSK)				
Device Class	В				
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)		
Operating Frequency (varige(s)	GSM 850	824-849	869-894		

Page 8 of 144

Report No.: S20120101603002

1850-1910 1930-1990 GSM 1900 LTE Band 2 1850-1910 1930-1990 LTE Band 4 2110-2155 1710-1755 LTE Band 5 824-849 869-894 LTE Band 12 699-716 729-746 LTE Band 13 777-787 746-756 WLAN 2.4G 2412-2462 Bluetooth 2402-2480 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink GPRS Multislot Class(12) 4 Max Total Timeslot 5 Max Number of Timeslots in Uplink 4 EDGE Multislot Class(12) Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 4, tested with power level 5(GSM 850) 1, tested with power level 0(GSM 1900) 3, tested with power control all Max.(LTE Band 2) **Power Class** 3, tested with power control all Max.(LTE Band 4) 3, tested with power control all Max.(LTE Band 5) 3, tested with power control all Max.(LTE Band 12) 3, tested with power control all Max.(LTE Band 13) 128-189-251(GSM 850) 512-661-810(GSM 1900) 18607-18900-19193(LTE Band 2 BW=1.4MHz) 19957-20175-20393(LTE Band 4 BW=1.4MHz) Test Channels (low-mid-high) 20407-20525-20643(LTE Band 5 BW=1.4MHz) 23017-23095-23173(LTE Band 12 BW=1.4MHz) 23205-23230-23255(LTE Band 13 BW=1.4MHz) 1-6-11(WLAN 2.4G)

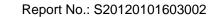
1.4. Test specification(s)


FCC 47 CFR Part 2(2.1093)
ANSI/IEEE C95.1-1992
IEEE Std 1528-2013
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting
KDB 447498 D01 General RF Exposure Guidance
KDB 248227 D01 802.11 Wi-Fi SAR
KDB 941225 D01 3G SAR Procedures
KDB 941225 D05 SAR for LTE Devices

1.5. Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2. SAR Measurement System


2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- · Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 41/18 EPGO330 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 2.5 mm

- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

Probe linearity: ±0.10 dBAxial isotropy: 0.06 dB

- Hemispherical Isotropy: 0.09 dB

- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.

- Lower detection limit: 9mW/kg

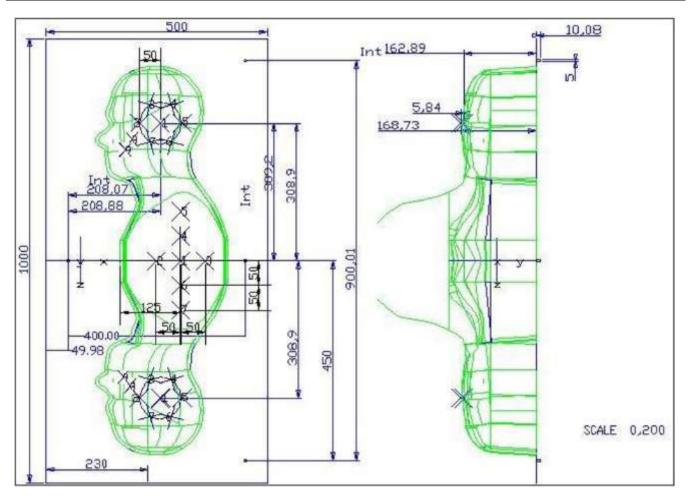
Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy shall be evaluated and within ±0.25dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

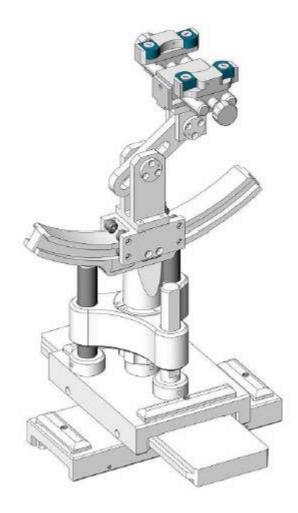
Photo of SAM phantom SN 16/15 SAM119



The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000 mm Width:500 mm Height:200 mm	Gelcoat with fiberglass	3.4	0.02


Serial Number	Left Head(mm)		Right Head(mm)		Flat Part(mm)	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 µm.

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent
SN 16/15 MSH100	Delrin	3.7	0.005

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked $\, \boxtimes \,$

	Manufacturer	Name of	Type/Model	Serial Number	Calib	ration
	Manufacturer	Equipment	i ype/iviodei	Serial Number	Last Cal.	Due Date
					May 21,	May 20,
\boxtimes	MVG	E FIELD PROBE	SSE2	SN 41/18 EPGO330	2019	2020
	IVIVG	E FIELD PROBE	SSEZ	3N 41/16 EFG0330	Sep. 21,	Sep. 20,
					2020	2021
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP	Apr. 19,	Apr. 18,
	WVG	730 WII 12 DIPOIE	310730	0G750-355	2018	2021
	MVG	835 MHz Dipole	SID835	SN 03/15 DIP	Apr. 19,	Apr. 18,
	WVG	033 WII IZ DIPOIE	310033	0G835-347	2018	2021
	MVG	900 MHz Dipole	SID900	SN 03/15 DIP	Apr. 19,	Apr. 18,
	WVG	900 MHZ DIPOIE	310900	0G900-348	2018	2021
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP	Apr. 19,	Apr. 18,
	WVG	1600 MHZ DIPOLE	31D 1000	1G800-349	2018	2021
\boxtimes	MVG	1900 MHz Dipole	SID1900	SN 03/15 DIP	Apr. 19,	Apr. 18,
	IVIVG	1900 MINZ DIPOIE	1900 סופו עוכ	1G900-350	2018	2021
	MVG	2000 MHz Dipole	SID2000	SN 03/15 DIP	Apr. 19,	Apr. 18,
	IVIVG	2000 MHZ DIPOIE	3102000	2G000-351	2018	2021
	MVG	2450 MHz Dipole	SID2450	SN 03/15 DIP	Apr. 19,	Apr. 18,
	IVIVG	2430 IVIDZ DIPOIE	SID2400	2G450-352	2018	2021
	MVG	2600 MHz Dipole	SID2600	SN 03/15 DIP	Apr. 19,	Apr. 18,
	WVG	2000 IVIHZ DIPOIE	3102000	2G600-356	2018	2021
	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Apr. 19,	Apr. 18,
	WVG	3000 MHZ DIPOLE	3000	3N 13/14 WGA 33	2018	2021
\boxtimes	MVG	Liquid measurement Kit	SCLMP	SN 21/15 OCPG 72	NCR	NCR
\boxtimes	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR
\boxtimes	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR
					Aug. 06,	Aug. 05,
\boxtimes	R&S	Universal radio	0.41.000		2019	2020
	Nas	communication	CMU200	117858	Jul. 13,	Jul. 12,
		tester			2020	2021
					Aug. 28,	Aug. 27,
\boxtimes	R&S	Wideband radio	ONAUTOO	400047	2019	2020
	Nas	communication	CMW500	103917	Jul. 13,	Jul. 12,
		tester			2020	2021

Page 17 of 144

Report No.: S20120101603002

Aug. 05, Aug. 06, 2019 2020 \boxtimes HP Network Analyzer 8753D 3410J01136 Jul. 13, Jul. 12, 2020 2021 Aug. 06, Aug. 05, 2019 2020 **PSG** Analog \boxtimes Agilent E8257D MY51110112 Jul. 13, Jul. 12, Signal Generator 2020 2021 Aug. 05, Aug. 06, 2019 2020 \boxtimes Agilent Power meter E4419B MY45102538 Jul. 13, Jul. 12, 2021 2020 Aug. 06, Aug. 05, 2019 2020 \boxtimes Agilent Power sensor E9301A MY41495644 Jul. 13, Jul. 12, 2020 2021 Aug. 06, Aug. 05, 2019 2020 \boxtimes Agilent Power sensor E9301A US39212148 Jul. 13, Jul. 12, 2020 2021 Aug. 06, Aug. 05, 2019 2020 Directional \boxtimes MCLI/USA CB11-20 0D2L51502 Jul. 17, Jul. 16, Coupler 2023 2020

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		≤ 3 GHz	> 3 GHz	
		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
		30° ± 1°	20° ± 1°	
		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
atial resolu	ntion: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one	
patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ $3 - 4 \text{ GHz}: \leq 5 \text{ mm}$ $4 - 6 \text{ GHz}: \leq 4 \text{ mm}$		
uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
ava da d	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface		≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)	
x, y, z		≥ 30 mm	$3 - 4 \text{ GHz: } \ge 28 \text{ mm}$ $4 - 5 \text{ GHz: } \ge 25 \text{ mm}$ $5 - 6 \text{ GHz: } \ge 22 \text{ mm}$	
	patial resolution graded grid	graded grid	The closest measurement point oble sensors) to phantom surface from probe axis to phantom leasurement location	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

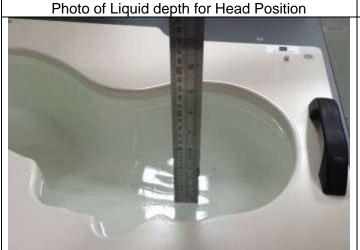
The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.


4. System Verification Procedure

4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% of weight)					Head	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23
Ingredients (% of weight)					Body ⁻	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88	79.54	79.54
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97	11.24	11.24
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99	9.22	9.22

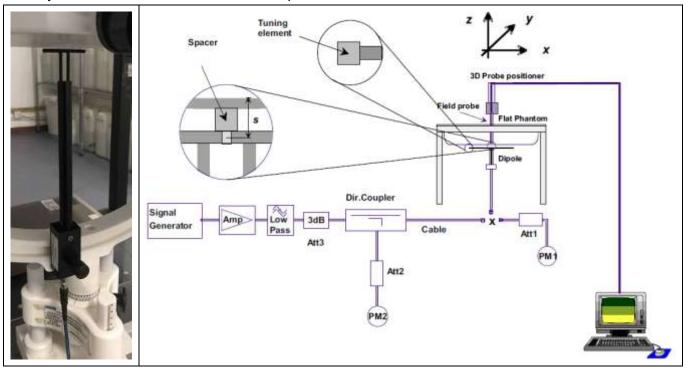
For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. **Tissue Dielectric Parameter Check Results**

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

	Measured	Target T	issue	Measure	ed Tissue		
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	εr	σ (S/m)	Liquid Temp.	Test Date
Body	750	55.55	0.96	FF 40	0.07	24.2.00	lon 44 2024
750	750	(52.77~58.33)	(0.91~1.01)	55.43	0.97	21.2 °C	Jan. 14, 2021
Body	005	55.20	0.97	55.00	0.00	04.0.00	I 45 0004
850	835	(52.44~57.96)	(0.92~1.02)	55.20	0.96	21.3 °C	Jan. 15, 2021
Body	1000	53.30	1.52	E4 E0	1.51	24.2.00	lon 45 2024
1800	1800	(50.64~55.97)	(1.44~1.60)	54.53	1.51	21.2 °C	Jan. 15, 2021
Body	1900	53.30	1.52	54.73	1.52	21.4 °C	Jan. 17, 2021
1900	1900	(50.64~55.97)	(1.44~1.60)	34.73	1.32	21.4 C	Jan. 17, 2021
Body	2450	52.70	1.95	F2 02	2.02	24.2.00	lon 07 2020
2450	2450	(50.07~55.34)	(1.85~2.05)	52.02	2.03	21.2 °C	Jan. 07, 2020
Body	005	55.20	0.97	FF 20	0.00	24.2.00	Dec 40 2020
850	835	(52.44~57.96)	(0.92~1.02)	55.20	0.96	21.3 °C	Dec. 18, 2020
Body	1000	53.30	1.52	54.72	1 50	21.4.00	Dog 10 2020
1900	1900	(50.64~55.97)	(1.44~1.60)	54.73	1.52	21.4 °C	Dec. 19, 2020

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.



4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

ontenent and the piete can be referred to Appendix B of this report.									
	Target SA	AR (1W)	Measure	ed SAR					
System	(±10	9%)	(Normalize	ed to 1W)	Liquid	Took Data			
Verification	4 (181/12)	40 (1844)	1-g	10-g	Temp.	Test Date			
	1-g (W/Kg)	10-g (W/Kg)	(W/Kg)	(W/Kg)					
	8.85	5.91							
750MHz Body	(7.97~9.74)	(5.32~6.50)	8.42	5.63	21.2 °C	Jan. 14, 2021			
	9.83	6.45							
835MHz Body	(8.85~10.81)	(5.81~7.10)	9.39	6.80	21.3 °C	Jan. 15, 2021			
	38.13	20.65							
1800MHz Body	(34.32~41.94)	(18.59~22.72)	39.62	21.36	21.2 °C	Jan. 15, 2021			
	39.02	20.57							
1900MHz Body	(35.12~42.92)	(18.51~22.63)	39.80	20.67	21.4 °C	Jan. 17, 2021			
	52.90	24.09							
2450MHz Body	(47.61~58.19)	(21.68~26.50)	52.67	25.41	21.2 °C	Jan. 07, 2020			
	9.83	6.45							
835MHz Body	(8.85~10.81)	(5.81~7.10)	9.39	6.80	21.3 °C	Dec. 18, 2020			
	39.02	20.57							
1900MHz Body	(35.12~42.92)	(18.51~22.63)	39.80	20.67	21.4 °C	Dec. 19, 2020			
	(55.12~42.52)	(10.51~22.03)							

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. RF Exposure Positions

6.1. Body Worn Accessory

- 1. Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.1). Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.</p>
- 2. Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

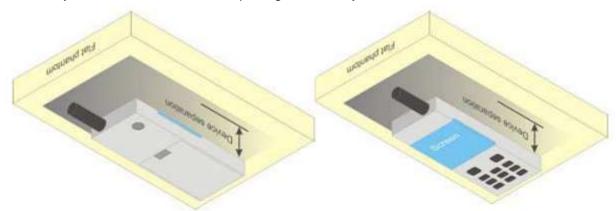


Figure 6.1 – Test positions for body-worn devices

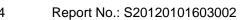
Page 27 of 144 Report No.: S20120101603002

7. RF Output Power

7.1. GSM Conducted Power

Band GSM850	Burst-Av	eraged ou	tput Powe	r (dBm)	Frame-Averaged output Power (dBm)			
Tx Channel	Tune-up	128	189	251	Tune-up	128	189	251
Frequency (MHz)	(dBm)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8
GPRS(GMSK, 1 TS)	32.00	31.54	31.55	31.53	22.97	22.51	22.52	22.50
GPRS(GMSK, 2 TS)	30.00	29.97	29.94	29.98	23.98	23.95	23.92	23.96
GPRS(GMSK, 3 TS)	29.00	28.65	28.57	28.73	24.74	24.39	24.31	24.47
GPRS(GMSK, 4 TS)	28.00	27.53	27.47	27.47	24.99	24.52	24.46	24.46
EDGE(8PSK, 1 TS)	27.00	25.52	25.54	26.16	17.97	16.49	16.51	17.13
EDGE(8PSK, 2 TS)	25.00	24.50	24.17	24.47	18.98	18.48	18.15	18.45
EDGE(8PSK, 3 TS)	24.00	23.19	22.99	23.04	19.74	18.93	18.73	18.78
EDGE(8PSK, 4 TS)	23.00	22.08	21.67	22.10	19.99	19.07	18.66	19.09
Band GSM1900	Burst-Av	eraged ou	tput Powe	r (dBm)	Frame-A	eraged οι	tput Powe	r (dBm)
Tx Channel	Tune-up	512	661	810	Tune-up	512	661	810
Frequency (MHz)	(dBm)	1850.2	1880.0	1909.8	(dBm)	1850.2	1880.0	1909.8
GPRS(GMSK, 1 TS)	28.00	27.27	27.45	27.45	18.97	18.24	18.42	18.42
GPRS(GMSK, 2 TS)	28.00	27.21	27.29	27.28	21.98	21.19	21.27	21.26
GPRS(GMSK, 3 TS)	28.00	27.12	27.09	27.00	23.74	22.86	22.83	22.74
GPRS(GMSK, 4 TS)	27.00	27.00	26.83	26.73	23.99	23.99	23.82	23.72
EDGE(8PSK, 1 TS)	24.00	23.45	23.52	23.02	14.97	14.42	14.49	13.99
EDGE(8PSK, 2 TS)	24.00	23.76	23.67	23.27	17.98	17.74	17.65	17.25
EDGE(8PSK, 3 TS)	24.00	23.57	23.60	23.22	19.74	19.31	19.34	18.96
EDGE(8PSK, 4 TS)	24.00	23.55	23.31	23.24	20.99	20.54	20.30	20.23

Note: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.


The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 TS) - 9.03 dB

Frame-averaged power = Maximum burst averaged power (2 TS) - 6.02 dB

Frame-averaged power = Maximum burst averaged power (3 TS) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 TS) - 3.01 dB

7.2. LTE Conducted Power

				RB		Chan	nel/Frequency	(MHz)		
Band	Band	Modulation	Config	iguration Tune-up		, , ,				
Bana	Width	Wioddiation	RB	RB	Tune up	10607/1060 7	40000/4000	10102/1000 2		
			Size	Offset		18607/1850.7	18900/1880	19193/1909.3		
			1	0	21.50	21.27	21.32	21.34		
			1	2	21.50	21.38	21.45	21.45		
			1	5	21.50	21.27	21.34	21.28		
		QPSK	3	0	21.50	21.30	21.30	20.91		
			3	1	21.50	21.31	21.33	20.83		
LTE			3	2	21.50	21.28	21.29	20.80		
LTE Band	1.4MHz		6	0	20.50	20.33	20.39	19.84		
2	1.4IVITZ		1	0	20.50	20.34	20.09	19.84		
			1	2	20.50	20.48	20.16	19.94		
			1	5	20.50	20.35	20.07	19.83		
		16QAM	3	0	20.50	20.38	20.39	19.92		
			3	1	20.50	20.41	20.37	19.86		
			3	2	20.50	20.42	20.38	19.85		
			6	0	19.50	19.40	19.47	18.92		

			F	₹В		Char	nel/Frequency/l	MHz)		
Band	Band	Modulation	Config	guration	Tune-up	Channel/Frequency(MHz)				
Danu	Width	Modulation	RB	RB	Tune-up	19957/1710.7	20175/1732.5	20393/1754.3		
			Size	Offset		19937/17 10.7	20173/1732.3	20393/1734.3		
		1	0	22.00	21.49	21.27	21.42			
			1	2	22.00	21.33	21.37	21.56		
			1	5	22.00	21.13	21.27	21.39		
		QPSK	3	0	21.50	21.06	21.23	21.37		
			3	1	21.50	21.08	21.20	21.38		
LTE			3	2	21.50	21.04	21.20	21.38		
LTE Band	1.4MHz		6	0	20.50	20.15	20.35	20.36		
4	1.4IVIIIZ		1	0	20.50	20.13	19.96	20.32		
4			1	2	20.50	20.24	20.08	20.47		
			1	5	20.50	20.14	19.95	20.34		
		16QAM	3	0	21.00	20.21	20.28	20.44		
			3	1	21.00	20.23	20.27	20.50		
			3	2	21.00	20.25	20.31	20.43		
			6	0	19.50	19.21	19.40	19.45		

Page 29 of 144 Report No.: S20120101603002

Dand	Band	Modulation		RB guration	T	Channel/Frequency(MHz)			
Band	Width		RB	RB	Tune-up	·	20525/836.5	20042/040.2	
			Size	Offset		20407/824.7		20643/848.3	
			1	0	22.00	21.69	20.99	20.50	
			1	2	22.00	21.34	21.09	20.73	
			1	5	22.00	21.19	20.98	20.58	
		QPSK	3	0	21.50	21.10	21.05	20.57	
			3	1	21.50	21.12	20.99	20.61	
1.75			3	2	21.50	21.06	20.57	20.53	
LTE Band	1.4MHz		6	0	20.50	20.16	19.75	19.50	
5	1.410172	Z	1	0	20.50	20.16	19.33	19.48	
3			1	2	20.50	20.25	19.45	19.61	
			1	5	20.50	20.17	19.27	19.48	
		16QAM	3	0	20.50	20.21	19.65	19.63	
			3	1	20.50	20.25	19.68	19.62	
			3	2	20.50	20.24	19.66	19.61	
			6	0	19.50	19.26	18.71	18.68	

		Modulation -		RB		Channel/Frequency(MHz)				
Band	Band		Configuration		Tune-up					
Dana	Width		RB	RB	rune up	23017/699.7	23095/707.5	23173/715.3		
			Size	Offset		23017/099.7	23093/101.3	23173/713.3		
			1	0	21.00	20.89	20.72	20.67		
			1	2	21.00	20.74	20.84	20.75		
			1	5	21.00	20.77	20.69	20.25		
		QPSK	3	0	21.00	20.60	20.81	20.28		
			3	1	21.00	20.64	20.78	20.29		
LTE			3	2	21.00	20.76	20.78	20.27		
Band	1.4MHz		6	0	20.00	19.70	19.81	19.17		
12	1.4IVITZ		1	0	20.00	19.68	19.59	19.37		
12			1	2	20.00	19.91	19.70	19.50		
			1	5	20.00	19.97	19.56	19.34		
		16QAM	3	0	20.50	19.85	19.92	19.45		
			3	1	20.50	19.93	19.93	19.46		
			3	2	20.50	20.05	19.95	19.41		
			6	0	19.00	18.86	18.97	18.41		

Band	Band	Modulation		RB juration	Tune-up	Chann	iel/Frequency	(MHz)
	Width		RB	RB		23205/779.5	23230/782	23255/784.5

Page 30 of 144

Report No.: S20120101603002

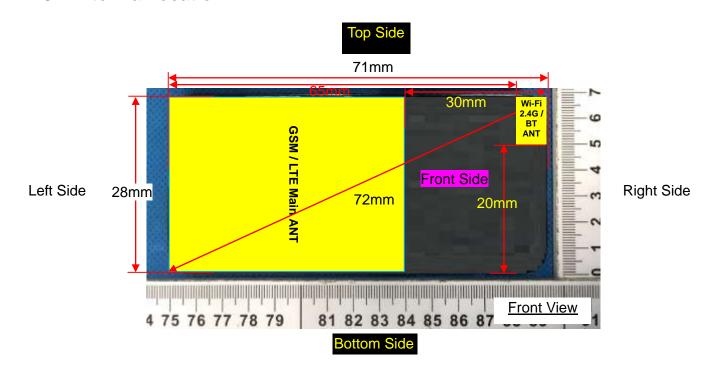
				Certificate #4298.01																												
			Size	Offset																												
			1	0	22.50	21.93	22.03	21.98																								
			1	2	22.50	22.10	22.08	21.94																								
			1	5	22.50	21.97	22.01	21.96																								
		QPSK 16QAM	3	0	21.00	20.91	20.95	20.87																								
			3	1	21.00	20.90	20.96	20.87																								
1.75	1.4MHz		3	2	21.00	20.90	20.97	20.88																								
LTE Band			6	0	21.00	20.84	20.90	20.77																								
13			1	0	22.00	21.71	21.71	21.70																								
13			1	2	22.00	21.66	21.68	21.63																								
			16QAM	16QAM				1										 					 				1	5	22.00	21.39	21.64	21.61
					3	0	21.00	20.62	20.48	20.73																						
			3	1	21.00	20.61	20.54	20.74																								
			3	2	21.00	20.59	20.68	20.75																								
			6	0	21.00	20.63	20.79	20.81																								

7.3. WLAN & Bluetooth Output Power

Output Power Results Of WLAN 7.3.1.

Mode	Channel	Frequency (MHz)	Tune-up	Output Power (dBm)
	1	2412	10.00	8.59
802.11b	6	2437	10.00	9.01
	11	2462	10.00	9.70

NOTE: Power measurement results of WLAN 2.4G.


Output Power Results Of Bluetooth 7.3.2.

	Channel	Tune-up	Output Power (dBm)
5.5	0CH	-3.000	-4.013
BLE	19CH	-3.000	-4.108
	39CH	-3.000	-4.310

8. Antenna Location

NTEK北测lac-MRA

9. Stand-alone SAR test exclusion

Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- f_(GHZ) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	P _{max}	P _{max}	Distance	f	Calculation	SAR Exclusion	SAR test
ivioue	(dBm)	(mW)	(mm)	(GHz)	Result	threshold	exclusion
Bluetooth	-3.000	0.501	5	2.48	0.2	3.0	Yes

NOTE: Standalone SAR test exclusion for Bluetooth

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f_{(GHZ)}}/x]$ W/kg for test separation distances \leq 50mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Mode Position P_{max} P_{max} P_{max} P_{max}	Distance	f	v	Estimated SAR		
Mode		(dBm)	(mW)	(mm)	(GHz)	X	(W/Kg)
Bluetooth	Body	-3.000	0.501	5	2.48	7.5	0.021

NOTE: Estimated SAR calculation for Bluetooth

10. SAR Results

10.1. SAR measurement results

10.1.1. SAR measurement Result of GSM 850

Test Position of Body with	Test channel	Test Mode		Value /kg)	Power Drift	Conducted	Tune-up	Scaled SAR
Omm	/Freq.	Test Mode	1g	10g	(±5%)	power (dBm)	power (dBm)	1g (W/Kg)
Front Side	189/836.4	GPRS(GMSK 4TS)	0.563	0.306	-3.27	27.47	28.00	0.636
Back Side	189/836.4	GPRS(GMSK 4TS)	0.183	0.107	-3.40	27.47	28.00	0.207

NOTE: Body SAR test results of GSM 850

10.1.2. SAR measurement Result of GSM 1900

Test Position of Body with	Test channel	Test Mode		Value ⁄kg)	Power Drift	Conducted power	Tune-up power	Scaled SAR
Omm	/Freq.	Test Mode	1g	10g	(±5%)	(dBm)	(dBm)	1g (W/Kg)
Front Side	661/1880	GPRS(GMSK 4TS)	0.705	0.357	-4.85	26.83	27.00	0.733
Back Side	661/1880	GPRS(GMSK 4TS)	0.251	0.155	-0.07	26.83	27.00	0.261

NOTE: Body SAR test results of GSM 1900

10.1.3. SAR measurement Result of LTE Band 2

Test Position of	Test channel	Took Made	SAR Value (W/kg)		Power	Conduc ted	Tune-u p	Scaled			
Body with 0mm	/Freq.	Test Mode	1g	10g	Drift (±5%)	power (dBm)	power (dBm)	SAR 1g (W/Kg)			
	1RB										
Front Side	18900/1880	1.4M QPSK(1,2)	0.633	0.416	-0.28	21.45	21.50	0.640			
Back Side	18900/1880	1.4M QPSK(1,2)	0.524	0.328	2.92	21.45	21.50	0.530			
	50%RB										
Front Side	18900/1880	1.4M QPSK(3,1)	0.578	0.377	-3.52	21.33	21.50	0.601			
Back Side	18900/1880	1.4M QPSK(3,1)	0.482	0.304	-3.35	21.33	21.50	0.501			

NOTE: Body SAR test results of LTE Band 2

10.1.4. SAR measurement Result of LTE Band 4

Test Position of	Test channel	Test Mode		SAR Value (W/kg)		Conduc ted	Tune-u p	Scaled SAR 1g
Body with 0mm	/Freq.	l est Mode -	1g	10g	Drift (±5%)	power (dBm)	power (dBm)	(W/Kg)
			1RB					
Front Side	20175/1732. 5	1.4M QPSK(1,2)	0.638	0.374	-1.52	21.37	22.00	0.738
Back Side	20175/1732. 5	1.4M QPSK(1,2)	0.524	0.311	4.57	21.37	22.00	0.606
			50%RB					
Front Side	20175/1732. 5	1.4M QPSK(3,1)	0.580	0.345	0.96	21.20	21.50	0.621
Back Side	20175/1732. 5	1.4M QPSK(3,1)	0.455	0.267	1.37	21.20	21.50	0.488

NOTE: Body SAR test results of LTE Band 4

10.1.5. SAR measurement Result of LTE Band 5

Test Position	Test			Value /kg)	Power	Conducted	Tune-up	Scaled SAR
of Body with 0mm	channel /Freq.	Test Mode	1g	10g	Drift (±5%)	power (dBm)	power (dBm)	1g (W/Kg)
			1RB				1	
Front Side	20525/836.5	1.4M QPSK(1,0)	0.328	0.248	-1.08	20.99	22.00	0.414
Back	20525/836.5	1.4M QPSK(1,0)	0.271	0.207	4.27	20.99	22.00	0.342
Side	20020/000.0	1.4W Q1 3K(1,0)	0.271	0.201	4.21	20.99	22.00	0.542
			50%R	В				
Front	20525/836.5	1.4M QPSK(3,1)	0.303	0.235	2.63	20.99	21.50	0.341
Side	20020/000.0	1. 1 101 Q1 O1((3,1)	0.505	0.233	2.00	20.33	21.50	0.541
Back Side	20525/836.5	1.4M QPSK(3,1)	0.250	0.189	2.64	20.99	21.50	0.281

NOTE: Body SAR test results of LTE Band 5

10.1.6. SAR measurement Result of LTE Band 12

Test Position	Test			Value ⁄kg)	Power	Conducted	Tune-up	Scaled SAR
of Body with 0mm	channel /Freq.	Test Mode	1g	10g	Drift (±5%)	power (dBm)	power (dBm)	1g (W/Kg)
			1RB					
Front Side	23095/707.5	1.4M QPSK(1,0)	0.366	0.315	-1.13	20.72	21.00	0.390
Back Side	23095/707.5	1.4M QPSK(1,0)	0.290	0.252	2.29	20.72	21.00	0.309
			50%R	В				
Front Side	23095/707.5	1.4M QPSK(3,0)	0.347	0.278	3.92	20.81	21.00	0.363
Back Side	23095/707.5	1.4M QPSK(3,0)	0.269	0.236	-1.48	20.81	21.00	0.281

NOTE: Body SAR test results of LTE Band 12

10.1.7. SAR measurement Result of LTE Band 13

Test Position	Test			Value /kg)	Power	Conducted	Tune-up	Scaled SAR
of Body with 0mm	channel /Freq.	Test Mode	1g	10g	Drift (±5%)	power (dBm)	power (dBm)	1g (W/Kg)
	1		1RB					
Front Side	23230/782	1.4M QPSK(1,2)	0.289	0.224	-0.53	22.08	22.50	0.318
Back Side	23230/782	1.4M QPSK(1,2)	0.241	0.189	-4.35	22.08	22.50	0.265
			50%R	В				
Front Side	23230/782	1.4M QPSK(3,2)	0.265	0.203	-4.89	20.97	21.00	0.267
Back Side	23230/782	1.4M QPSK(3,2)	0.216	0.178	-2.92	20.97	21.00	0.217

NOTE: Body SAR test results of LTE Band 13

SAR measurement Result of WLAN 2.4G

Test Position of Body with Omm	Test channel /Freq.	Test Mode	SAR \(\text{(W/)}\)		Power Drift (±5%)	Conducted power (dBm)	Tune-up power (dBm)	Scaled SAR 1g (W/Kg)
Front Side	6/2437	802.11 b	0.129	0.065	-1.41	9.01	10.00	0.162
Back Side	6/2437	802.11 b	0.205	0.107	-0.53	9.01	10.00	0.257

NOTE: Body SAR test results of WLAN 2.4G

10.2. SAR Summation Scenario

10.1.8.

Per KDB 447498 D01, simultaneous transmission SAR is compliant if,

- 1) Scalar SAR summation < 1.6W/kg.
- 2) SPLSR = $(SAR_1 + SAR_2)^{1.5}$ / (min. separation distance, mm), and the peak separation distance is determined from the square root of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. If SPLSR \leq 0.04, simultaneously transmission SAR measurement is not necessary.

Test Position		Scaled	SAR _{MAX}	Σ 1-g SAR	001.00	Remark
		WWAN	WLAN 2.4G	(W/Kg)	SPLSR	
Body	Front Side	0.738	0.162	0.900	N/A	N/A
	Back Side	0.606	0.257	0.863	N/A	N/A

Test Position		Scaled SAR _{MAX}		Σ1-g SAR	OD! OD	D
		WWAN	ВТ	(W/Kg)	SPLSR	Remark
5 .	Front Side	0.738	0.021	0.759	N/A	N/A
Body	Back Side	0.606	0.021	0.627	N/A	N/A

11. Appendix A. Photo documentation

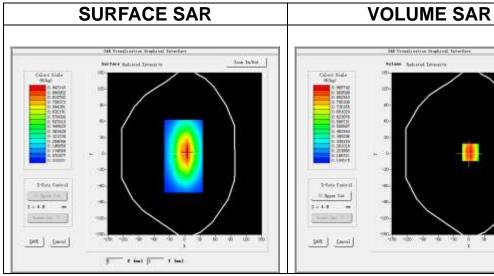
Refer to appendix Test Setup photo---SAR

12. Appendix B. System Check Plots

Table of contents			
MEASUREMENT 1 System Performance Check - SID750 - Body			
MEASUREMENT 2 System Performance Check - SID835 - Body			
MEASUREMENT 3 System Performance Check - SID1800 - Body			
MEASUREMENT 4 System Performance Check - SID1900 - Body			
MEASUREMENT 5 System Performance Check - SID2450 - Body			
MEASUREMENT 6 System Performance Check - SID835 - Body			
MEASUREMENT 7 System Performance Check - SID1900 - Body			

of 144 Report No.: S20120101603002

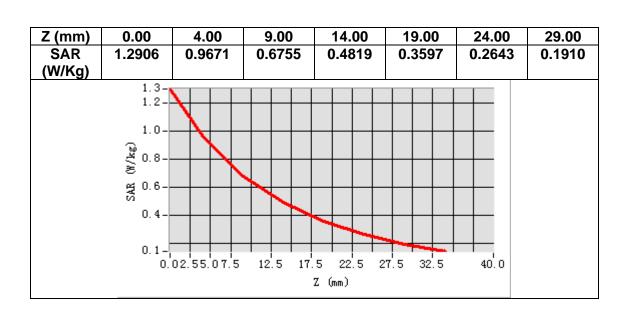
MEASUREMENT 1

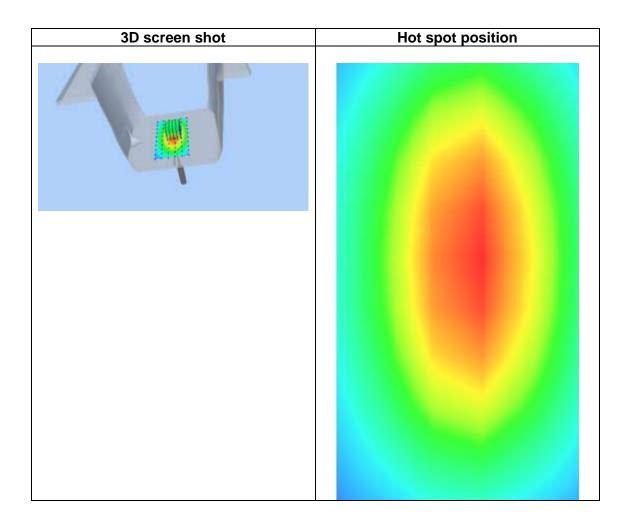

Date of measurement: 14/1/2021

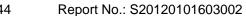
A. Experimental conditions.

dx=15mm dy=15mm, h= 5.00 mm		
5x5x7,dx=8mm dy=8mm dz=5mm		
Validation plane		
<u>Dipole</u>		
<u>CW750</u>		
<u>Middle</u>		
CW (Crest factor: 1.0)		

B. SAR Measurement Results

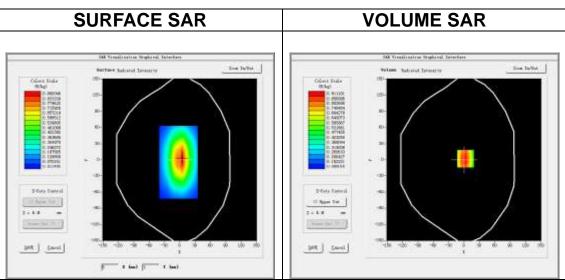

Frequency (MHz)	750.000000		
Relative permittivity (real part)	55.430582		
Relative permittivity (imaginary part)	23.323421		
Conductivity (S/m)	0.972152		
Variation (%)	-0.710000		




Maximum location: X=3.00, Y=3.00 SAR Peak: 1.30 W/kg

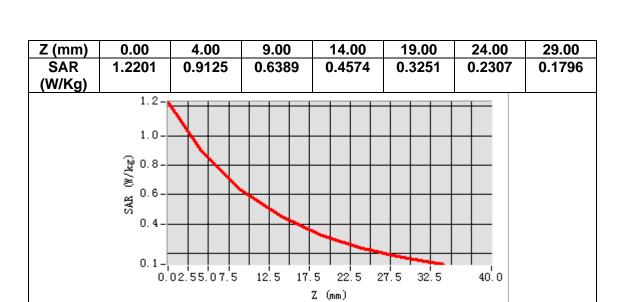
SAR 10g (W/Kg)	0.563236
SAR 1g (W/Kg)	0.842239

MEASUREMENT 2


Date of measurement: 15/1/2021

A. Experimental conditions.

A. Experimental conditions.	
Area Scan	<u>dx=15mm dy=15mm, h= 5.00 mm</u>
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	<u>Validation plane</u>
Device Position	<u>Dipole</u>
<u>Band</u>	<u>CW835</u>
<u>Channels</u>	<u>Middle</u>
Signal	CW (Crest factor: 1.0)

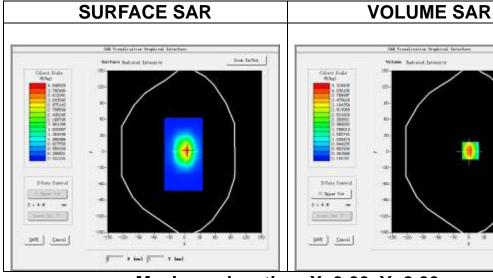

B. SAR Measurement Results

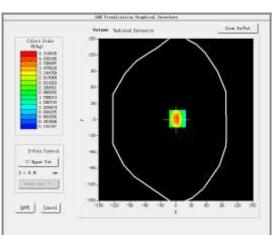

Frequency (MHz)	835.000000		
Relative permittivity (real part)	55.202222		
Relative permittivity (imaginary part)	20.723419		
Conductivity (S/m)	0.961056		
Variation (%)	-4.330000		

Maximum location: X=3.00, Y=2.00 SAR Peak: 1.23 W/kg

SAR 10g (W/Kg)	0.680102
SAR 1g (W/Kg)	0.939209

MEASUREMENT 3

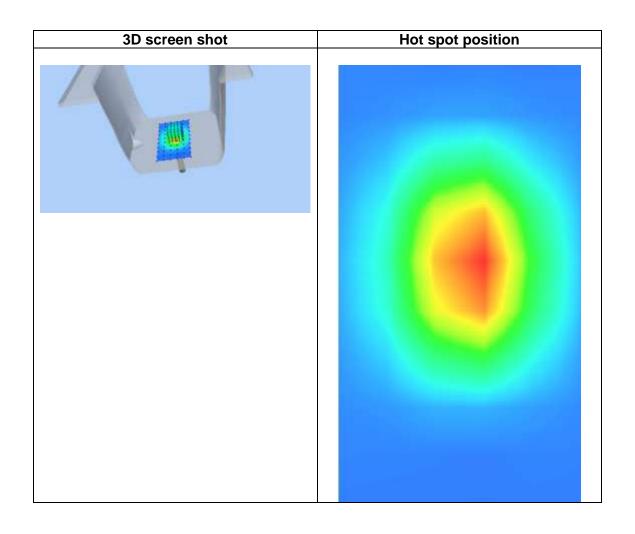

Date of measurement: 15/1/2021


A. Experimental conditions.

A. Experimental conditions.			
<u>Area Scan</u>	dx=15mm dy=15mm, h= 5.00 mm		
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm		
<u>Phantom</u>	Validation plane		
Device Position	<u>Dipole</u>		
<u>Band</u>	<u>CW1800</u>		
<u>Channels</u>	<u>Middle</u>		
Signal	CW (Crest factor: 1.0)		

B. SAR Measurement Results

Frequency (MHz)	1800.000000		
Relative permittivity (real part)	54.532310		
Relative permittivity (imaginary part)	15.061413		
Conductivity (S/m)	1.513096		
Variation (%)	1.240000		

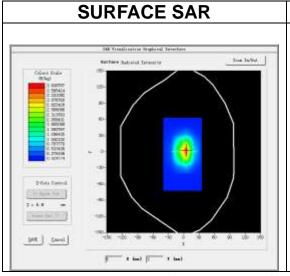


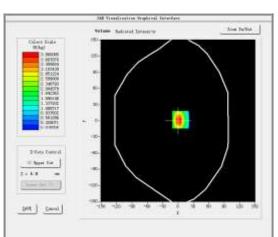
Maximum location: X=3.00, Y=2.00 SAR Peak: 6.82 W/kg

SAR 10g (W/Kg)	2.136079
SAR 1g (W/Kg)	3.962468

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	6.7445	4.3141	2.4368	1.4297	0.8515	0.5270	0.3203
(W/Kg)							
	6.75 -						
	6.00-	+++	+++		+		
	5.00-						
	% 4.00- % /≱						
	3.00- 8 2.00-						
	1.00-		+				
	0.21-				┿┷┷		
		.'02.'55.'07.'5	12.5 17	.5 22.5 2	27.5 32.5	40.0	
	Z (mm)						

MEASUREMENT 4

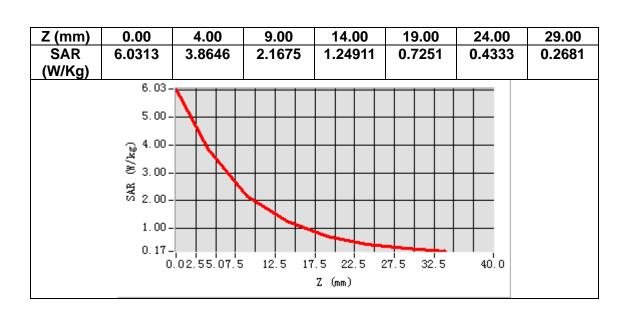

Date of measurement: 17/1/2021

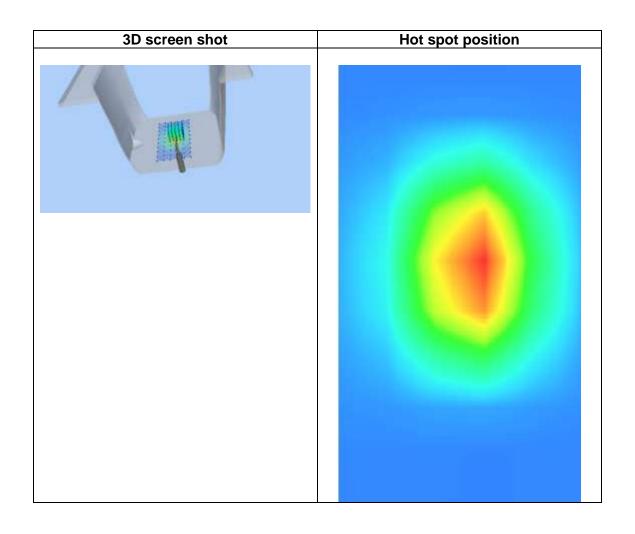

A. Experimental conditions.

A. Experimental conditions.	
Area Scan	dx=15mm dy=15mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	<u>Dipole</u>
<u>Band</u>	<u>CW1900</u>
Channels	<u>Middle</u>
Signal	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	1900.000000		
Relative permittivity (real part)	54.733435		
Relative permittivity (imaginary part)	14.413103		
Conductivity (S/m)	1.520066		
Variation (%)	1.840000		



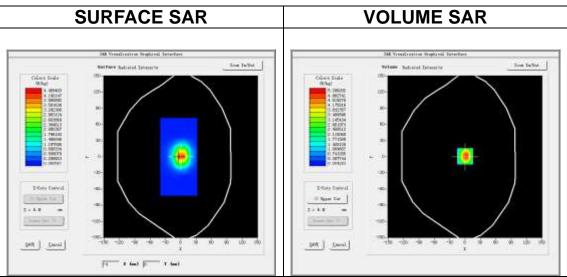


VOLUME SAR

Maximum location: X=5.00, Y=2.00 SAR Peak: 6.39 W/kg

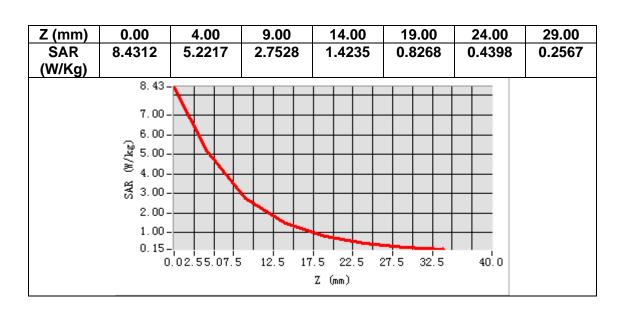
SAR 10g (W/Kg)	2.067019		
SAR 1g (W/Kg)	3.980402		

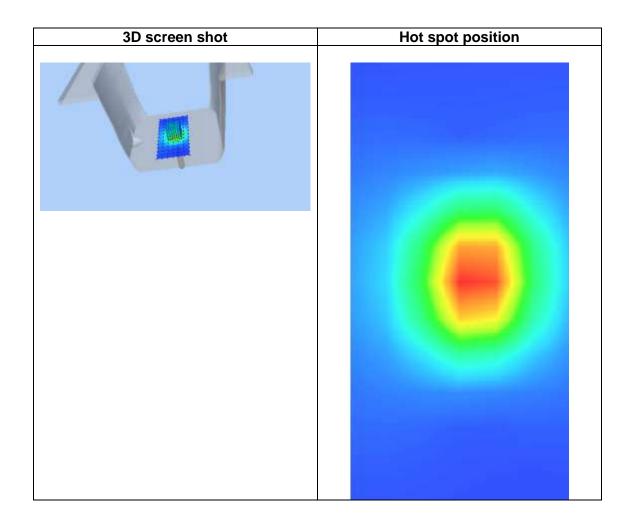
MEASUREMENT 5


Date of measurement: 7/1/2020

A. Experimental conditions.

7 ti =xpoiiiioiitai ooiiaitioiioi					
Area Scan	<u>dx=12mm dy=12mm, h= 5.00 mm</u>				
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm				
<u>Phantom</u>	<u>Validation plane</u>				
Device Position	<u>Dipole</u>				
<u>Band</u>	<u>CW2450</u>				
Channels	<u>Middle</u>				
<u>Signal</u>	CW (Crest factor: 1.0)				

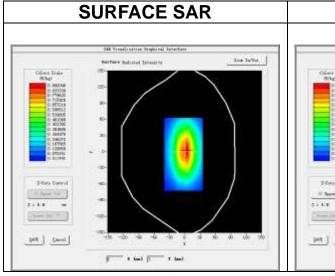

B. SAR Measurement Results

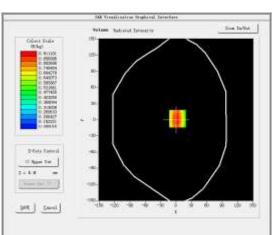

2450.000000				
52.021497				
14.933566				
2.032816				
1.420000				

Maximum location: X=0.00, Y=1.00 SAR Peak: 8.46 W/kg

SAR 10g (W/Kg)	2.541285		
SAR 1g (W/Kg)	5.267270		

MEASUREMENT 6


Date of measurement: 18/12/2020

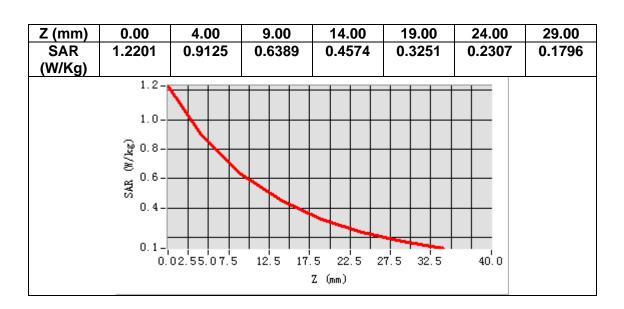

A. Experimental conditions.

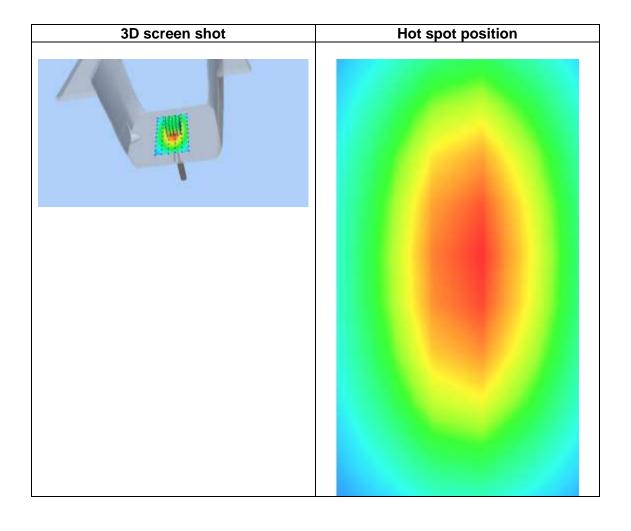
71: Experimental conditions	<u>'-</u>				
Area Scan	dx=15mm dy=15mm, h= 5.00 mm				
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm				
<u>Phantom</u>	<u>Validation plane</u>				
Device Position	<u>Dipole</u>				
<u>Band</u>	<u>CW835</u>				
Channels	<u>Middle</u>				
Signal	CW (Crest factor: 1.0)				

B. SAR Measurement Results

835.000000
55.202222
20.723419
0.961056
-4.330000



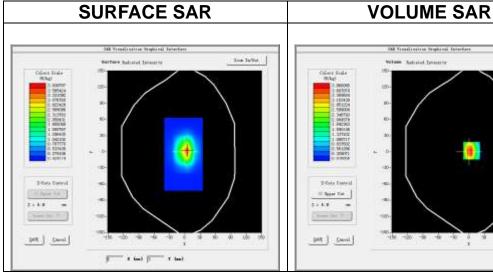


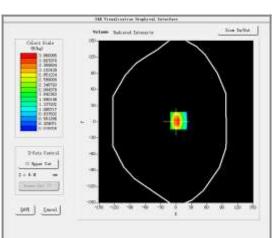

VOLUME SAR

Maximum location: X=3.00, Y=2.00 SAR Peak: 1.23 W/kg

SAR 10g (W/Kg)	0.680102		
SAR 1g (W/Kg)	0.939209		

MEASUREMENT 7

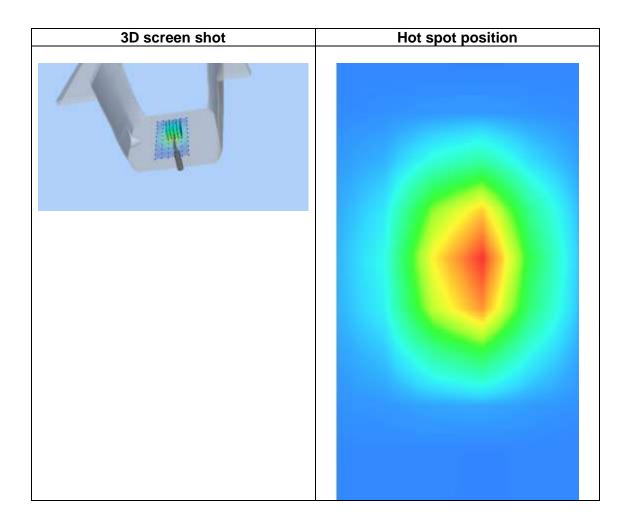

Date of measurement: 19/12/2020


A. Experimental conditions.

A. Experimental conditions.					
Area Scan	dx=15mm dy=15mm, h= 5.00 mm				
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm				
<u>Phantom</u>	Validation plane				
Device Position	<u>Dipole</u>				
<u>Band</u>	<u>CW1900</u>				
Channels	<u>Middle</u>				
Signal	CW (Crest factor: 1.0)				

B. SAR Measurement Results

1900.000000
54.733435
14.413103
1.520066
1.840000



Maximum location: X=5.00, Y=2.00 SAR Peak: 6.39 W/kg

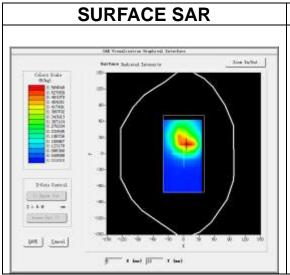
SAR 10g (W/Kg)	2.067019		
SAR 1g (W/Kg)	3.980402		

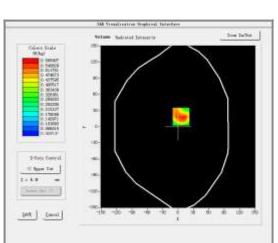
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	6.0313	3.8646	2.1675	1.24911	0.7251	0.4333	0.2681
	6. 03 - 5. 00 -						
		\longrightarrow					
	(3,4.00- 3,00- 3,00- 3,00-	+ N					
	и 2.00- 1.00-						
	0.17-		10.5		7.5 20.5	40,0	
	0.02.55.07.5 12.5 17.5 22.5 27.5 32.5 40.0 Z (mm)						

13. Appendix C. Plots of High SAR Measurement

Table of contents	
	Table of Contents
MEASUREMENT 1 GSM 850	
MEASUREMENT 2 GSM 1900	
MEASUREMENT 3 LTE Band 2	
MEASUREMENT 4 LTE Band 4	
MEASUREMENT 5 LTE Band 5	
MEASUREMENT 6 LTE Band 12	
MEASUREMENT 7 LTE Band 13	
MEASUREMENT 8 WLAN 2.4G	

MEASUREMENT 1

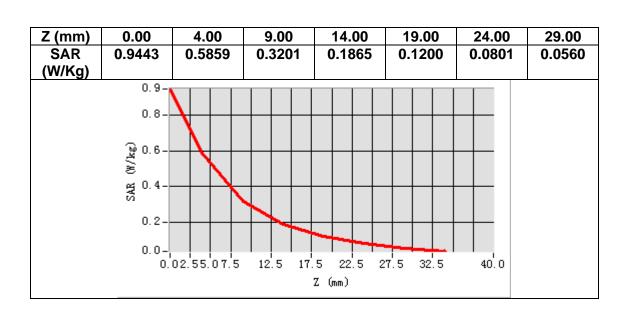

Date of measurement: 18/12/2020

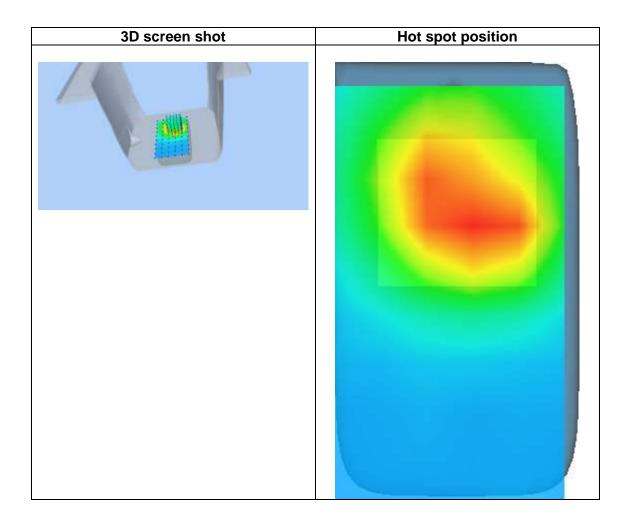

A. Experimental conditions.

Area Scan	dx=15mm dy=15mm, h= 5.00 mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
<u>Band</u>	<u>GSM850</u>
Channels	<u>Middle</u>
Signal	TDMA (Crest factor: 2.0)

B. SAR Measurement Results

111 111000011 01110111 110001110	
Frequency (MHz)	836.400000
Relative permittivity (real part)	55.216274
Relative permittivity (imaginary part)	20.705948
Conductivity (S/m)	0.962136
Variation (%)	-3.270000



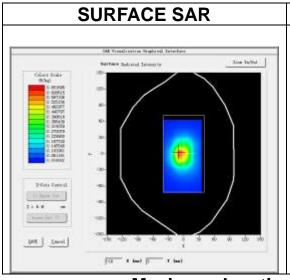

VOLUME SAR

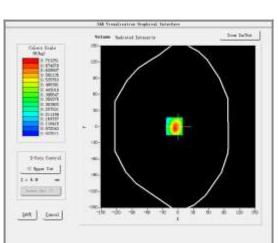
Maximum location: X=6.00, Y=19.00 SAR Peak: 0.99 W/kg

	<u> </u>
SAR 10g (W/Kg)	0.306165
SAR 1g (W/Kg)	0.563276

Page 54 of 144

MEASUREMENT 2

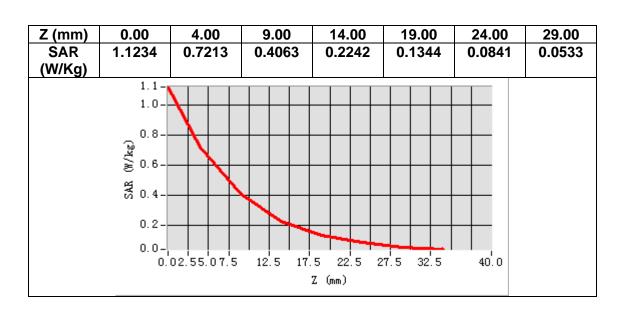

Date of measurement: 19/12/2020

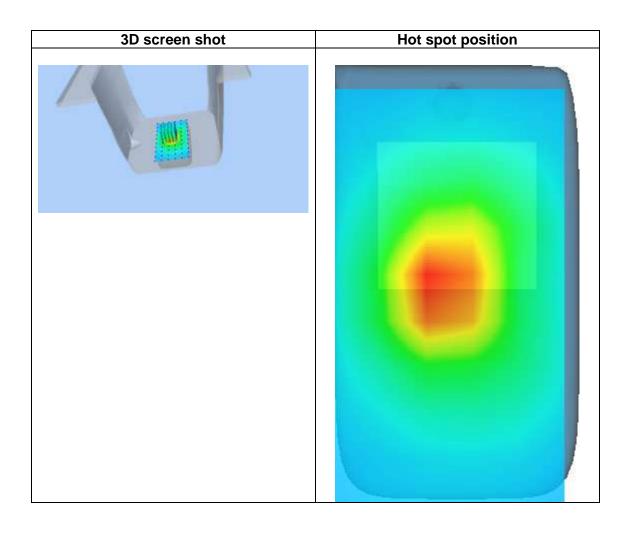

A. Experimental conditions.

<u>Area Scan</u>	dx=15mm dy=15mm, h= 5.00 mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
<u>Band</u>	<u>GSM1900</u>
Channels	<u>Middle</u>
Signal	TDMA (Crest factor: 2.0)

B. SAR Measurement Results

Frequency (MHz)	1880.00000
Relative permittivity (real part)	54.809654
Relative permittivity (imaginary part)	14.498893
Conductivity (S/m)	1.514329
Variation (%)	-4.850000


VOLUME SAR

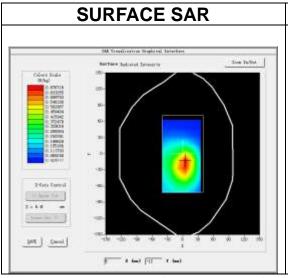

Maximum location: X=-7.00, Y=1.00

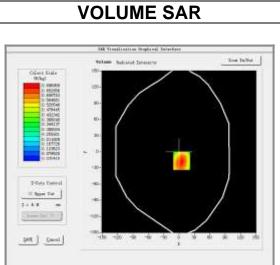
SAR Peak: 1.20 W/kg

SAR 10g (W/Kg)	0.357330
SAR 1g (W/Kg)	0.705433

Page 56 of 144

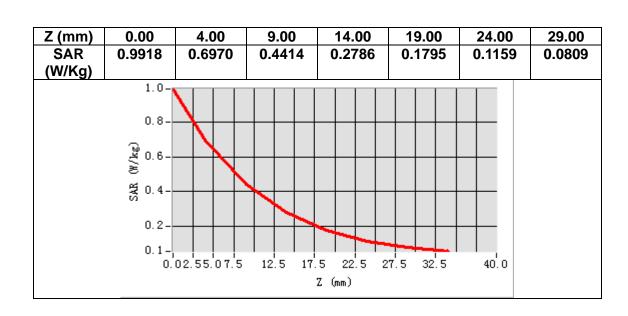
MEASUREMENT 3


Date of measurement: 17/1/2021


A. Experimental conditions.

Area Scan	dx=15mm dy=15mm, h= 5.00 mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
<u>Band</u>	LTE band 2
<u>Channels</u>	<u>Middle</u>
Signal	LTE (Crest factor: 1.0)

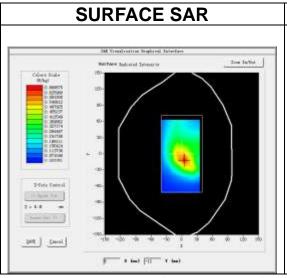
B. SAR Measurement Results

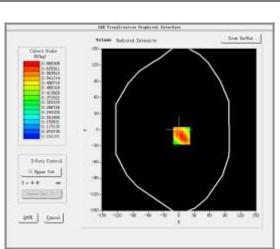

Frequency (MHz)	1880.00000
Relative permittivity (real part)	54.809654
Relative permittivity (imaginary part)	14.498893
Conductivity (S/m)	1.514329
Variation (%)	-0.280000

Maximum location: X=5.00, Y=-17.00 SAR Peak: 0.99 W/kg

SAR 10g (W/Kg)	0.415588
SAR 1g (W/Kg)	0.633079

MEASUREMENT 4

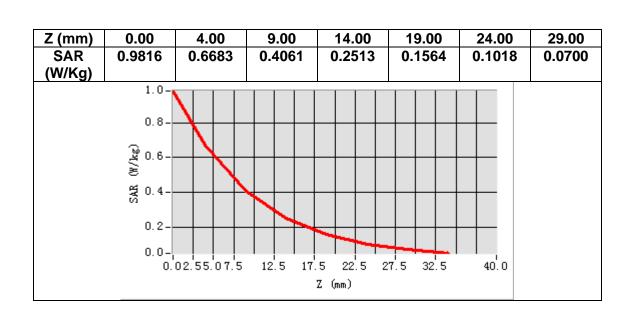

Date of measurement: 15/1/2021

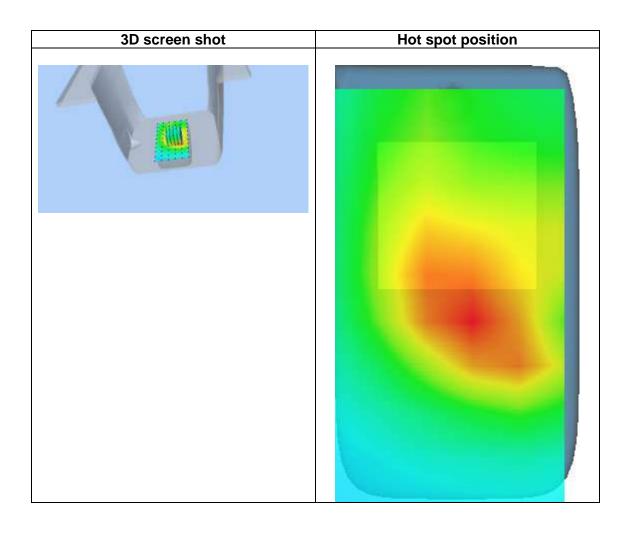

A. Experimental conditions.

<u>Area Scan</u>	dx=15mm dy=15mm, h= 5.00 mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	LTE band 4
<u>Channels</u>	<u>Middle</u>
Signal	LTE (Crest factor: 1.0)

B. SAR Measurement Results

111 1110000110111011101110	
Frequency (MHz)	1732.500000
Relative permittivity (real part)	54.914120
Relative permittivity (imaginary part)	15.089413
Conductivity (S/m)	1.452356
Variation (%)	-1.520000



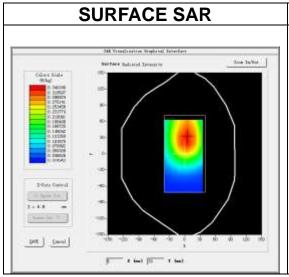


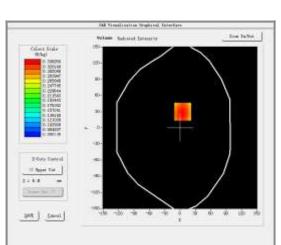
VOLUME SAR

Maximum location: X=5.00, Y=-11.00 SAR Peak: 1.01 W/kg

SAR 10g (W/Kg)	0.374253
SAR 1g (W/Kg)	0.638409

MEASUREMENT 5

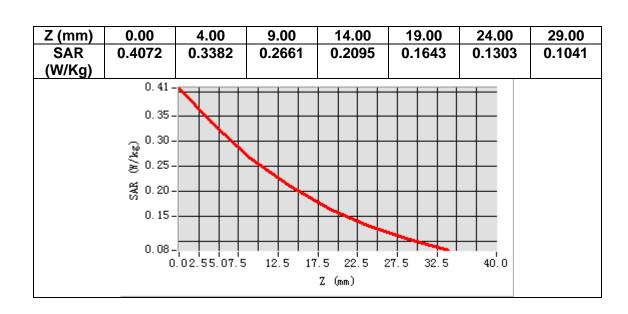

Date of measurement: 15/1/2021

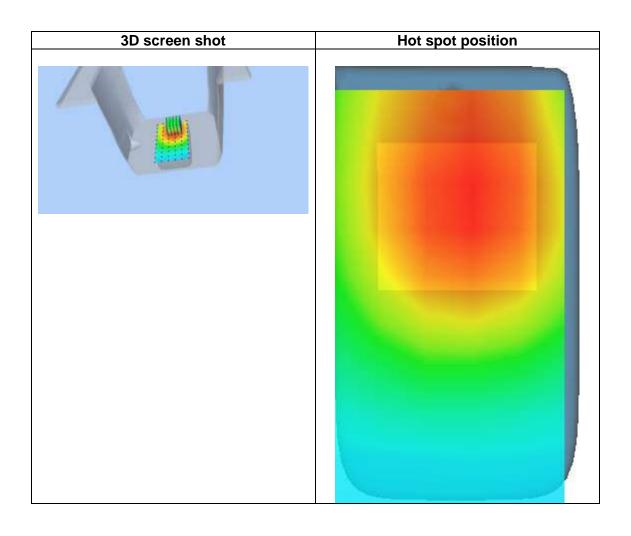

A. Experimental conditions.

<u>Area Scan</u>	dx=15mm dy=15mm, h= 5.00 mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
<u>Band</u>	LTE band 5
Channels	<u>Middle</u>
Signal	LTE (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	836.500000
Relative permittivity (real part)	55.220192
Relative permittivity (imaginary part)	20.700209
Conductivity (S/m)	0.961985
Variation (%)	-1.080000



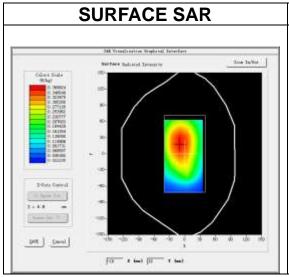


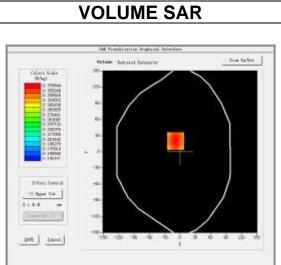
VOLUME SAR

Maximum location: X=5.00, Y=30.00 SAR Peak: 0.41 W/kg

	<u> </u>
SAR 10g (W/Kg)	0.247546
SAR 1g (W/Kg)	0.328100

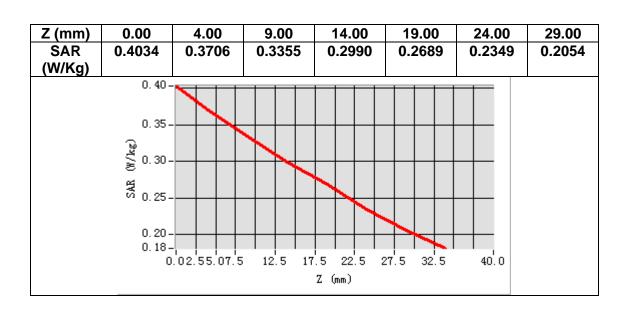
MEASUREMENT 6

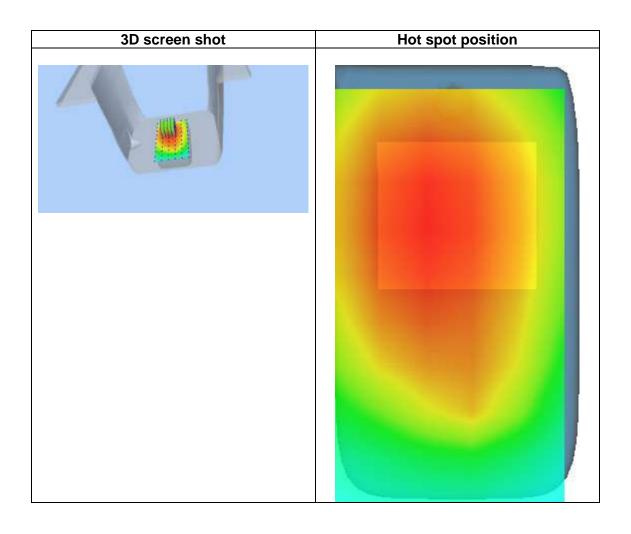

Date of measurement: 14/1/2021


A. Experimental conditions.

Area Scan	dx=15mm dy=15mm, h= 5.00 mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	Body
<u>Band</u>	LTE band 12
<u>Channels</u>	<u>Middle</u>
Signal	LTE (Crest factor: 1.0)

B. SAR Measurement Results

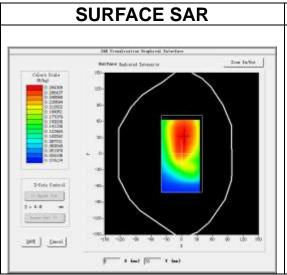

AIX Mododi ciliciti ixcodito	
Frequency (MHz)	707.500000
Relative permittivity (real part)	55.671661
Relative permittivity (imaginary part)	23.520849
Conductivity (S/m)	0.924500
Variation (%)	-1.130000

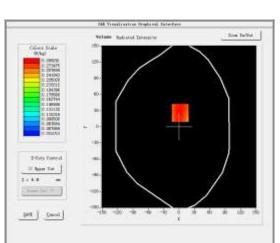


Maximum location: X=-9.00, Y=20.00 SAR Peak: 0.41 W/kg

SAR 10g (W/Kg)	0.315147
SAR 1g (W/Kg)	0.365579

MEASUREMENT 7

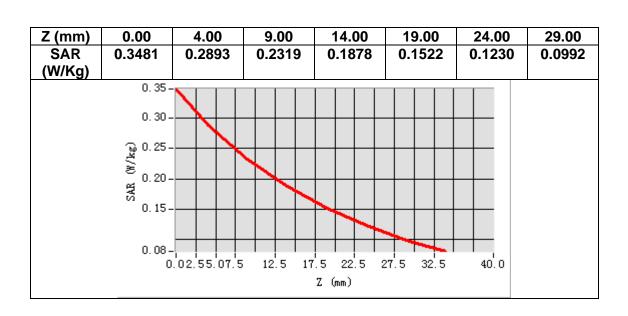

Date of measurement: 14/1/2021

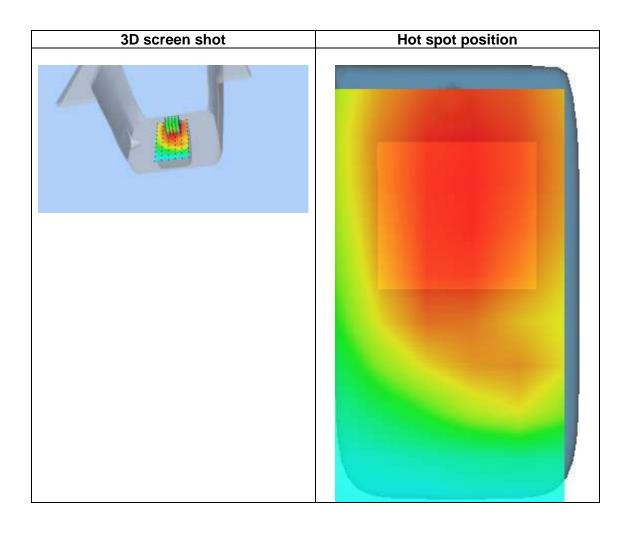

A. Experimental conditions.

7 ti Experimental conditione	<u>•</u>
Area Scan	dx=15mm dy=15mm, h= 5.00 mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	Body
<u>Band</u>	LTE band 13
Channels	<u>Middle</u>
Signal	LTE (Crest factor: 1.0)

B. SAR Measurement Results

Air Micagai cilicili ircoalio	
Frequency (MHz)	782.000000
Relative permittivity (real part)	55.123100
Relative permittivity (imaginary part)	23.017021
Conductivity (S/m)	0.999962
Variation (%)	-0.530000



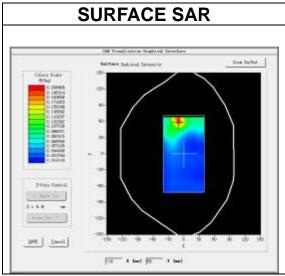


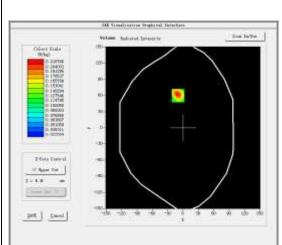
VOLUME SAR

Maximum location: X=2.00, Y=26.00 SAR Peak: 0.35 W/kg

SAR 10g (W/Kg)	0.224340
SAR 1g (W/Kg)	0.288518

MEASUREMENT 8

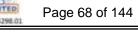

Date of measurement: 7/1/2020


A. Experimental conditions.

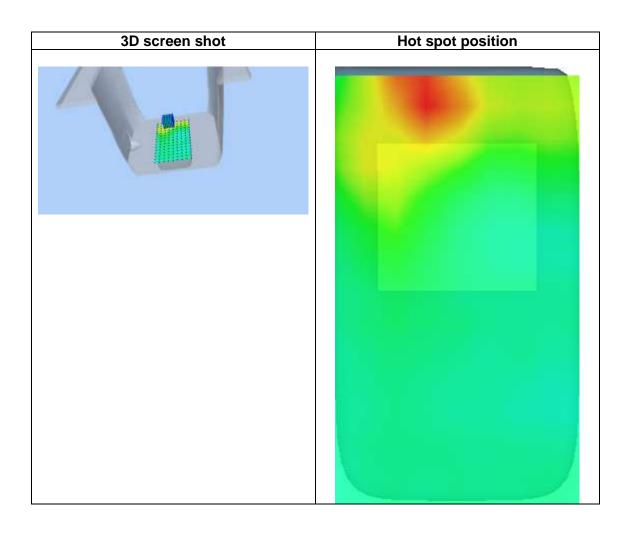
- ti =2tp 0:::::0:::0:::0:::0:::0:::0:::0:::0:::	
Area Scan	dx=12mm dy=12mm, h= 5.00 mm
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	<u>Middle</u>
Signal	IEEE802.11b (Crest factor: 1.0)

B. SAR Measurement Results

Art Measarement Results	
Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.241600
Relative permittivity (imaginary part)	14.875620
Conductivity (S/m)	2.013994
Variation (%)	-0.530000


VOLUME SAR

Maximum location: X=-10.00, Y=60.00


SAR Peak: 0.35 W/kg

SAR 10g (W/Kg)	0.106912
SAR 1g (W/Kg)	0.205372

Z (m m)	0.00	4.00	6.00	8.00	10.0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0 0	24.0 0
SA	0.38	0.21	0.15	0.13	0.09	0.08	0.06	0.05	0.04	0.04	0.03	0.03
R (W/	69	52	14	03	55	46	26	88	42	19	18	42
Kg)												
		0.3	•									I
		0.3										
		0.3	D-				++	+	_			
		(%) 0.25 (%) 0.25 (%) 0.25	5-	\leftarrow			+++		_			
				-			+++		_			
		器 0.19	5-	_/\								
		0.1	0-									
							4					
		0.0	3- 0 2	4 6	8	 10 12	14 16	18 20) 22 2	4 26		
	Z (nm)											

14. Appendix D. Calibration Certificate

Table of contents	
E Field Probe - SN 41/18 EPGO330	
750 MHz Dipole - SN 03/15 DIP 0G750-355	
835 MHz Dipole - SN 03/15 DIP 0G835-347	
1800 MHz Dipole - SN 03/15 DIP 1G800-349	
1900 MHz Dipole - SN 03/15 DIP 1G900-350	
2450 MHz Dipole - SN 03/15 DIP 2G450-352	
Extended Calibration Certificate	

COMOSAR E-Field Probe Calibration Report

Ref: ACR.142.6.20.SATU.B

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 41/18 EPGO330

> Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 09/21/20

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

Page 71 of 144

Report No.: S20120101603002

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 142.6.20.SATU.B

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/22/2020	JS
Checked by :	Jérôme LUC	Product Manager	9/22/2020	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	9/22/2020	-Mem Authorish

ta	Customer Name
Distribution:	SHENZHEN NTEK TESTING
	TECHNOLOGY CO.,

Date	Modifications		
9/22/2020	Initial release		
9/27/2020	Change customer name and address		
	9/22/2020	9/22/2020 Initial release	

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.142.6.20.SATU.B

TABLE OF CONTENTS

1	De	vice Under Test	
2	Pro	duct Description	
	2.1	General Information	
3	Me	asurement Method	
	3.1	Linearity	2
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty5	
5	Cal	ibration Measurement Results	
	5.1	Sensitivity in air	(
	5.2	Linearity	5
	5.3	Sensitivity in liquid	
	5.4	Isotropy	
6	Lis	t of Equipment10	

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.142.6.20.SATU.B

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 41/18 EPGO330		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.186 MΩ		
and seeking to the last to easy of the and think a work and the first of the last of the l	Dipole 2: R2=0.191 MΩ		
	Dipole 3: R3=0.201 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

GENERAL INFORMATION 2.1

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.142.6.20.SATU.B

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

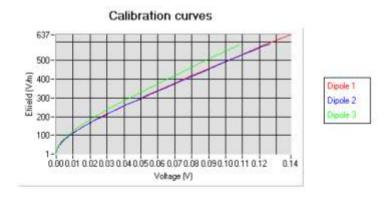
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 142.6.20.SATU.B

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


5.1 SENSITIVITY IN AIR

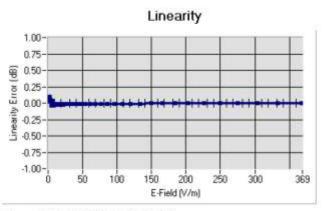
	Normy dipole 2 (uV/(V/m) ²)	Normz dipole 3 (μV/(V/m) ²)
0.92	0.79	0.63

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
90	97	92

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/10



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 142.6.20.SATU.B

5.2 LINEARITY

Linearity: I+/-2.36% (+/-0.10dB)

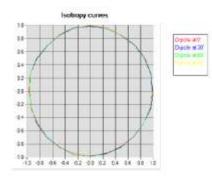
5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL750	750	40.76	0.93	1.54
BL750	750	56.70	0.98	1.59
HL850	835	40.86	0.92	1.60
BL850	835	56.35	0.99	1.64
HL900	900	42.84	0.95	1.61
BL900	900	53,25	1.05	1.65
HL1800	1800	39.56	1.40	1.74
BL1800	1800	52.84	1.45	1.81
HL1900	1900	39.67	1.38	2.03
BL1900	1900	52.84	1.59	2.08
HL2000	2000	38.71	1.42	1.86
BL2000	2000	52.03	1.52	1.92
HL2450	2450	38.72	1.80	2.05
BL2450	2450	54.91	1.97	2.12
HL2600	2600	39.98	1.89	2.06
BL2600	2600	54.42	2.18	2.11
HL5200	5200	36.68	4.45	1.85
BL5200	5200	49.02	5.46	1.92
HL5400	5400	36.08	4.69	1.75
BL5400	5400	49.55	5.53	1.83
HL5600	5600	35.34	4.95	1.88
BL5600	5600	47.60	5.77	1.95
HL5800	5800	34.81	5.08	1.89
BL5800	5800	47.81	6.12	1.94

LOWER DETECTION LIMIT: 9mW/kg

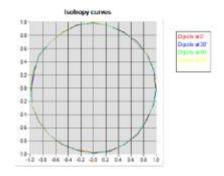
Page 77 of 144

Report No.: S20120101603002


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.142.6.20.SATU.B

5.4 ISOTROPY


HL900 MHz

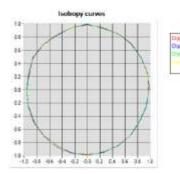
- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.07 dB

Page 78 of 144

Report No.: S20120101603002



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.142.6.20.SATU.B

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.09 dB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 142.6.20.SATU.B

6 LIST OF EQUIPMENT

	Equi	pment Summary 5	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2019	02/2022
Reference Probe	MVG	EP 94 SN 37/08	10/2019	10/2020
Multimeter	Keithley 2000	1188656	01/2020	01/2023
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2020	01/2023
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	11/2020	11/2023

SAR Reference Dipole Calibration Report

Ref: ACR.109.1.18.SATU.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: SN 03/15 DIP 0G750-355

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

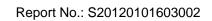
Calibration Date: 04/19/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page 81 of 144

Report No.: S20120101603002


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.109.1.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/19/2018	25
Checked by :	Jérôme LUC	Product Manager	4/19/2018	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	4/19/2018	Mim Phethoush

=	Customer Name
Distribution:	SHENZHEN NTEK TESTING
	TECHNOLOGY
	CO., LTD.

Issue	Date	Modifications	
A	4/19/2018	Initial release	

Ref. ACR 109.1.18.SATU.A

TABLE OF CONTENTS

1	Inti	oduction 4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR,109,1.18.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID750				
Serial Number	SN 03/15 DIP 0G750-355				
Product Condition (new / used)	Used				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 109.1.18 SATU A

MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

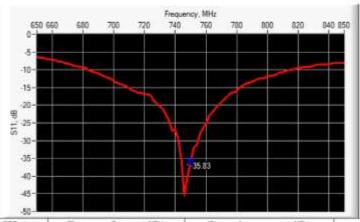
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

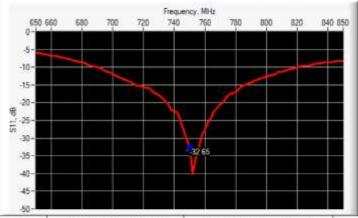
Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11



Ref. ACR,109,1.18.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
750	-35.83	-20	51.3 Ω - 1.2 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
750	-32.65	-20	$50.8 \Omega + 2.3 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lm	ım	h mi	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1.%.		250.0 ±1 %.		6.35 ±1 %.	

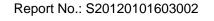
Page: 6/11

Ref: ACR.109.1.18.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PAS
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149,0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %,	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %;		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

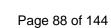

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ϵ_r')	Conductivity (a) S/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS	
835	41.5 ±5 %		0.90 ±5 %		
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %		
1500	40.4 ±5 %		1.23 ±5 %		
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1,37 ±5 %		

Page: 7/11

Ref. ACR.109.1.18.SATU.A

1800	40.0 ±5 %	1.40 ±5 %
1900	40.0 ±5 %	1.40 ±5 %
1950	40.0 ±5 %	1.40 ±5 %
2000	40.0 ±5 %	1.40 ±5 %
2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

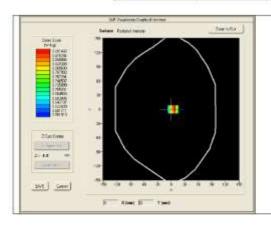

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

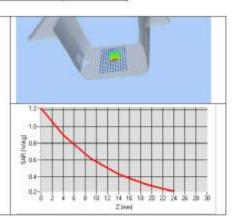
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values; eps': 40.0 sigma: 0.93
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49	8.56 (0.86)	5.55	5.61 (0.56)
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11





Ref. ACR.109.1.18.SATU.A

Report No.: S20120101603002

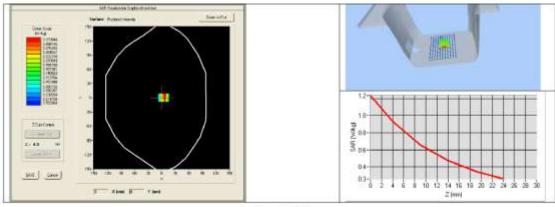
1900	39.7	20.5
1950	40.5	20.9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24,6
3000	63.8	25.7
3500	67.1	25
3700	67.4	24.2

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ε,′)		ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %	PASS	0.96 ±5 %	PASS
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.109.1.18.SATU.A

2300	52.9 ±5 %	1,81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 56.8 sigma : 1.00
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
0.3343010	measured	measured
750	8.85 (0.89)	5.91 (0.59)

Page: 10/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.109.1.18.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Calipers	Carrera	CALIPER-01	01/2017	01/2020	
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	U\$37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020	

SAR Reference Dipole Calibration Report

Ref: ACR.109.2.18.SATU.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 835 MHZ SERIAL NO.: SN 03/15 DIP 0G835-347

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

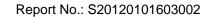
Calibration Date: 04/19/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page 92 of 144

Report No.: S20120101603002


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.109.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/19/2018	25
Checked by :	Jérôme LUC	Product Manager	4/19/2018	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	4/19/2018	ALM Puthocoshi

Distribution : Customer Name
SHENZHEN NTEK
TESTING
TECHNOLOGY
CO., LTD.

Issue	Date	Modifications	
A	4/19/2018	Initial release	

Ref: ACR.109.2.18.SATU.A

TABLE OF CONTENTS

1	Inti	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	astrement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss_	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	libration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid_	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
Q	Lie	t of Fouriement	

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.109.2.18.SATU.A.

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEL/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID835	
Serial Number	SN 03/15 DIP 0G835-347	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Ref: ACR 109 2 18 SATU A

Report No.: S20120101603002

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

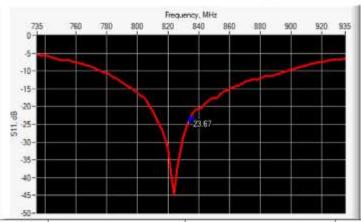
Length (mm)	Expanded Uncertainty on Le	
3 - 300	0.05 mm	

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

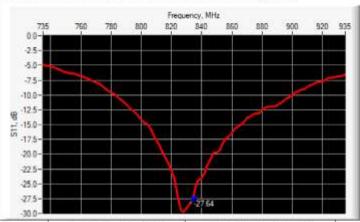
Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11



Ref. ACR.109.2.18.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-23.67	-20	56.8 Ω - 1.5 iΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-27,64	-20	$53.5 \Omega + 2.3 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		Lmm hmm dm		Lmm h mm		nm
	required	measured	required	measured	required	measure			
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.				

Page: 6/11

Ref: ACR.109.2,18.SATU,A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83,3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_{r}')		Conductivity (a) 5/m	
3090309	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref. ACR 109,2:18.SATU.A

1800	40.0 ±5 %	1.40 ±5 %
1900	40.0 ±5 %	1.40 ±5 %
1950	40.0 ±5 %	1.40 ±5 %
2000	40.0 ±5 %	1.40 ±5 %
2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

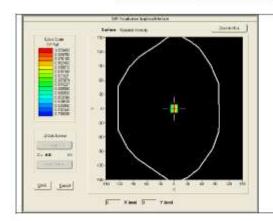
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

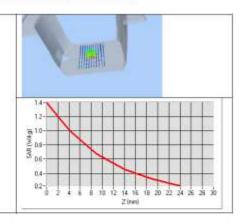
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 40.0 sigma: 0.90
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.55 (0.95)	6.22	6.10 (0.61
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11





SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.109.2.18.SATU.A

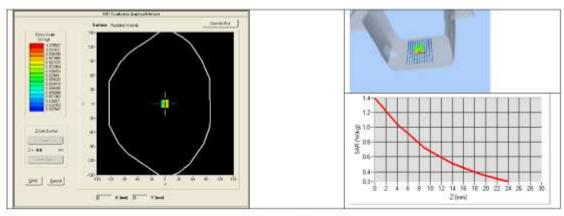
110,700,700	1	1 2001-5
1900	39.7	20.5
1950	40.5	20.9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25
3700	67.4	24.2

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (a) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref. ACR.109.2.18.SATU.A

2300	52.9 ±5 %	1.81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

SN 20/09 SAM71
COLUMN TO THE PARTY OF THE PART
SN 18/11 EPG122
Body Liquid Values: eps'; 57.5 sigma: 0.96
15.0 mm
dx=8mm/dy=8mm
dx=8mm/dy=8mm/dz=5mm
835 MHz
20 dBm
21 °C
21 °C
45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.83 (0.98)	6.45 (0.64)

Page: 10/11