

FCC Test Report

Test report
On Behalf of

Dongguan City Ledefu intelligent electronics Co., LTD

For

Wireless FHD Transmitter & Receiver Kit
Model No.: H101, H102, H103, H104, H201, H202, H203, H204,
H301, H302, H303, H304, H401, H402, H403, H404, HC101, HC102,
HC103, HC104, HC201, HC202, HC203, HC204, HC301, HC302,
HC303, HC304, HC401, HC402, HC403, HC404, 3C0019BK,
3C0019GY

FCC ID: 2BO2G-H101

Prepared For: Dongguan City Ledefu intelligent electronics Co., LTD

Room 401, Building 1, No. 156 Tongxing Road, Youganpu, Fenggang Town,

Dongguan City, Guangdong Province, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Apr. 08, 2025 ~ Apr. 15, 2025

Date of Report: Apr. 15, 2025

Report Number: HK2504081730-E

Test Result Certification

٩p	plicant's name	:	Dongguan (City	Ledefu intellic	gent	electronics	Co.	, LTI	D

Room 401, Building 1, No. 156 Tongxing Road, Youganpu, Address.....

Fenggang Town, Dongguan City, Guangdong Province, China

Manufacturer's Name.....: Dongguan City Ledefu intelligent electronics Co., LTD

Room 401, Building 1, No. 156 Tongxing Road, Youganpu, Address......

Fenggang Town, Dongguan City, Guangdong Province, China

Product description

Trade Mark: N/A

Product name Wireless FHD Transmitter & Receiver Kit

> H101, H102, H103, H104, H201, H202, H203, H204, H301, H302, H303, H304, H401, H402, H403, H404, HC101, HC102,

HC103, HC104, HC201, HC202, HC203, HC204, HC301, Model and/or type reference :

HC302, HC303, HC304, HC401, HC402, HC403, HC404,

3C0019BK, 3C0019GY

FCC Rules and Regulations Part 15 Subpart E Section 15.407 Standards......

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

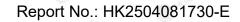
Date (s) of performance of tests....: Apr. 08, 2025 ~ Apr. 15, 2025

Apr. 15, 2025 Date of Issue

Test Result...... **Pass**

Testing Engineer

(Len Liao)


Technical Manager

(Sliver Wan)

Authorized Signatory:

(Jason Zhou)

Table of Contents

1.		ary		
	1.1. Test Procedures and	Results	W.F.S.TING	5
	1.2. Information of the Tes	st Laboratory	NIA.	5
	1.3. Measurement Uncerta	ainty		6
2.	EUT Description	White Less.	MI AVETES	7
	2.1. General Description of	of EUT		
	2.2. Operation Frequency	Each of Channel	MATES TING	8
	2.3. Operation of EUT Dur	ing Testing	D HOW	8
	2.4. Description of Test Se	etup	W Wax Tes	9
	2.5. Description of Suppo	rt Units	<u> </u>	10
3.		١		
	3.1. Test Environment and	d Mode	MAN TESTING	11
4.		leasurement Data		
	4.1. AC Power Line Condu	ucted Emission	NATS ING	13
	4.2. Maximum Conducted	Output Power	HUA"	17
		idth		
	4.4. 26db Bandwidth and	99% Occupied Bandwidth	- JOAN TESTIN	25
	4.5. Power Spectral Densi	ty	D	26
	4.6. Band Edge	Huar II	HIAK.	31
	4.7. Spurious Emission			40
	4.8. Frequency Stability M	leasurement		53
	_ 10,	t		
5.	Test Setup Photos	of the EUT	(i)	56
G TIN	Dhotos of the EUT			5 0

Page 4 of 58 Report No.: HK2504081730-E

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Apr. 15, 2025	Jason Zhou
STING	STING	STING	

1. Test Result Summary

1.1. Test Procedures and Results

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A HARTE
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
^G 1	Conducted Emission	±0.37dB
2	RF power, conducted	±3.35dB
3	Spurious emissions, conducted	±2.20dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT Description

2.1. General Description of EUT

Equipment:	Wireless FHD Transmitter & Receiver Kit
Model Name:	H101 HUAR TO HUAR TO HUAR TO HUAR TO
Series Models:	H102, H103, H104, H201, H202, H203, H204, H301, H302, H303, H304, H401, H402, H403, H404, HC101, HC102, HC103, HC104, HC201, HC202, HC203, HC204, HC301, HC302, HC303, HC304, HC401, HC402, HC403, HC404, 3C0019BK, 3C0019GY
Model Difference:	All model's the function, software and electric circuit are the same, only with a product appearance and model named different. other the letter HC represents different appearances, the first number represents the number of transmissions, and the third number represents the number of acceptances, that is, one to many or many to one configurations. Test sample mode: H101.
Trade Mark:	N/A STATE STATE
FCC ID:	2BO2G-H101
Operation Frequency:	IEEE 802.11a/n (HT20)5.745GHz-5.825GHz IEEE 802.11n (HT40)5.755GHz-5.795GHz
Modulation Technology:	IEEE 802.11a/n
Modulation Type:	64QAM, 16QAM, QPSK, BPSK for OFDM
Antenna Type:	PCB Antenna
Antenna Gain:	2dBi
Power Source:	DC 5V From Type-C
Power Supply:	DC 5V From Type-C
Hardware Version:	V12 MEETING
Software Version:	V12

Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2. Operation Frequency Each of Channel

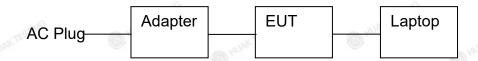
802.11a/8	02.11n(HT20)	802.1	1n(HT40)
Channel	Frequency	Channel	Frequency
149	5745	151	5755
153	5765	159	5795
× 157	5785	TESTING	HUAKTE
161	5805	Dr.	9
165	5825		ESTING

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT During Testing

	all?	
Bar	nd IV (5725 - 5850 MH	łz)
F	For 802.11a/n (HT20)	
Channel Number	Channel	Frequency (MHz)
149	Low	5745
157	Mid	5785
165	High	5825


	For 802.11n (HT40)	
Channel Number	Channel	Frequency (MHz)
151 MANAGE	Low	5755
159	High	5795

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. Description of Test Setup

Operation of EUT during AC conducted testing and radiation testing:

Operation of EUT during RF conducted testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	Wireless FHD Transmitter & Receiver Kit	N/A	H101	N/A N/A	EUT
2	USB Cable	N/A	N/A	Length:1.0m	Accessory
3 NYTES	Adapter	N/A	MDY-10-EH	Input: 100-240V, 50/60Hz, 0.7A Output: 5V, 3A/9V, 3A/12V, 2.25A/20V, 1.35A	Peripheral
4	Adapter	N/A	N/A	Input: 100-240V, 50/60Hz, 0.5A Output: 5VDC, 2A	Peripheral
5	Laptop	N/A	TP00096A	Input: DC 20V, 2.25~3.25A	Peripheral

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6db Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

3. Genera Information

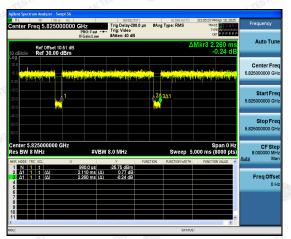
3.1. Test Environment and Mode

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations

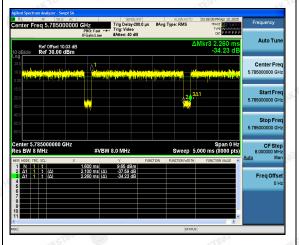
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

6 Mbps
o mapo
MCS0
MCS0

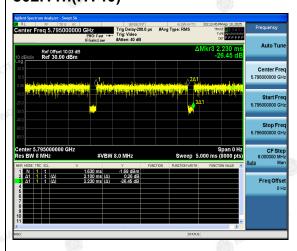
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



Mode Test Duty Cycle:


Mode	Duty Cycle
802.11a	0.93
802.11n(HT20)	0.93
802.11n(HT40)	0.94

Test plots as follows:


802.11a

802.11n(HT20)

802.11n(HT40)

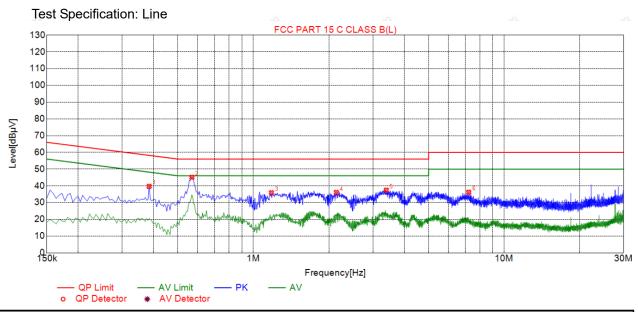
/

4. Test Results and Measurement Data

4.1. AC Power Line Conducted Emission

4.1.1. Test Specification

STINE	TSTINE TST	NA STI	STILL			
Test Requirement:	FCC Part15 C Section	15.207	MILIAK I			
Test Method:	ANSI C63.10:2013	TESTING				
Frequency Range:	150 kHz to 30 MHz	O HUAN	WAKTESTING			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
	Frequency range	Limit (d	BuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	1537(N)	NG TESTI	NG LESTI			
	HUAKT	"IAK I				
	Reference A	ce Plane				
	40cm					
	E.U.T AC power	er 80cm LISN				
Test Setup:	WG	Filter	- AC power			
	Test table/Insulation plane		•			
		<u> Емі</u>				
	Remark E.U.T: Equipment Under Test					
	LISN: Line Impedence Stabilization N Test table height=0.8m	Vetwork				
Test Mode:	Tx Mode	INC NYTESTY	N TESTI			
	HUM HUM	HUAN HUAN	HUAN			
	1. The E.U.T and simu					
	power through a line (L.I.S.N.). This pro	-				
	impedance for the m					
	2. The peripheral device	•				
		power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please				
Test Procedure:		refer to the block diagram of the test setup and				
	photographs).	A Tr. Alle Are				
	3. Both sides of A.C. line are checked for maximum					
		conducted interference. In order to find the maximum				
	emission, the relative	e positions of equi	pment and all of			
	the interface cables					
	ANSI C63.10: 2013					
Test Result:	PASS	AK TESTING	.Ca			
	The state of the s	MAN	ESUNG.			

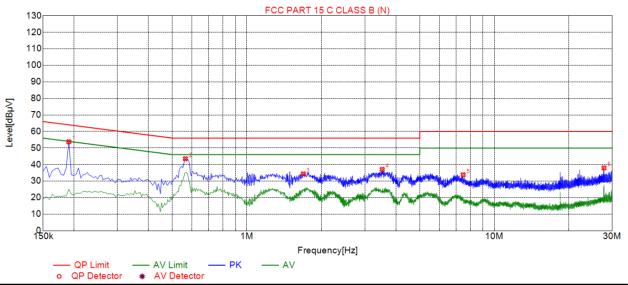

4.1.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESR	HKE-005	Feb. 19, 2025	Feb. 18, 2026
LISN	R&S	ENV216	HKE-002	Feb. 19, 2025	Feb. 18, 2026
LISN	R&S	ENV216	HKE-059	Feb. 19, 2025	Feb. 18, 2026
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 19, 2025	Feb. 18, 2026
EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	N/A	N/A
10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 19, 2025	Feb. 18, 2026

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.3. Test data



Sus	Suspected List							
NO.	Freq. [MHz]	Level [dBµ√]	Factor [dB]	Limit [dBµ∀]	Margin [dB]	Reading [dBµ∀]	Detector	Туре
1	0.3840	39.71	19.84	58.19	18.48	19.87	PK	L
2	0.5685	45.11	19.79	56.00	10.89	25.32	PK	L
3	1.1805	35.90	19.84	56.00	20.10	16.06	PK	L
4	2.1435	36.09	20.17	56.00	19.91	15.92	PK	L
5	3.3900	37.43	20.31	56.00	18.57	17.12	PK	L
6	7.2285	36.20	20.45	60.00	23.80	15.75	PK	L

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Test Specification: Neutral

Sus	Suspected List							
NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµ∀]	Margin [dB]	Reading [dBµ∀]	Detector	Туре
1	0.1905	53.79	19.64	64.01	10.22	34.15	PK	N
2	0.5640	43.51	19.76	56.00	12.49	23.75	PK	N
3	1.6890	34.33	19.90	56.00	21.67	14.43	PK	N
4	3.5250	37.07	20.13	56.00	18.93	16.94	PK	N
5	7.4850	33.80	20.57	60.00	26.20	13.23	PK	N
6	27.7800	37.93	24.97	60.00	22.07	12.96	PK	N

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)			
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E			
Limit:	Frequency Band (MHz)			
	5725-5850 1 W			
Test Setup:	RF automatic control unit EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the RF automatic control unit by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS			
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.2. Test Instruments

ASSEC 1		WHO.	10000	7587 c 102	(0)
	RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026
Power meter	Agilent	E4419B	HKE-085	Feb. 19, 2025	Feb. 18, 2026
Power Sensor	Agilent	E9300A	HKE-086	Feb. 19, 2025	Feb. 18, 2026
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

	Configura	tion Band IV (5725 - 5850 M	Hz)	
Mode	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result
802.11a	CH149	6.57	30	PASS
802.11a	CH157	5.92	30	PASS
802.11a	CH165	5.88	30	PASS
802.11n(HT20)	CH149	5.54	30	PASS
802.11n(HT20)	© CH157	5.24	30	PASS
802.11n(HT20)	CH165	6.21	30	PASS
802.11n(HT40)	CH151	5.94	30	PASS
802.11n(HT40)	CH159	6.23	30	PASS

4.3. 6db Emission Bandwidth

4.3.1. Test Specification

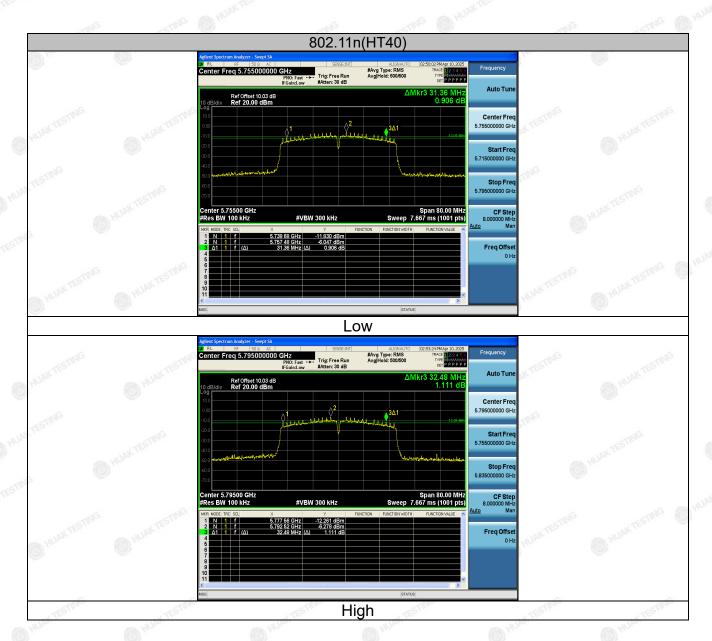
Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

4.3.2. Test Instruments

		RF Test R	oom		
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.3.3. Test data


	Band IV (5725 - 5850 MHz)				
Mode	Test Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
802.11a	CH149	5745	15.08	0.5	PASS
802.11a	CH157	5785	15.08	0.5	PASS
802.11a	CH165	5825	15.08	0.5	PASS
802.11n(HT20)	CH149	5745	15.12	6.5 O.5	PASS
802.11n(HT20)	CH157	5785	15.12	0.5	PASS
802.11n(HT20)	CH165	5825	15.08	0.5	PASS
802.11n(HT40)	CH151	5755	31.36	0.5	PASS
802.11n(HT40)	CH159	5795	32.48	0.5	PASS

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. 26db Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	No restriction limits
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	N/A TESTING WITHER WALLSTING TESTING

4.4.2. Test Instruments

RF Test Room											
Equipment Manufacturer Model Serial Number Calibration Date Cal											
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026						
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026						
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026						
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A MARK						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. Power Spectral Density

4.5.1. Test Specification

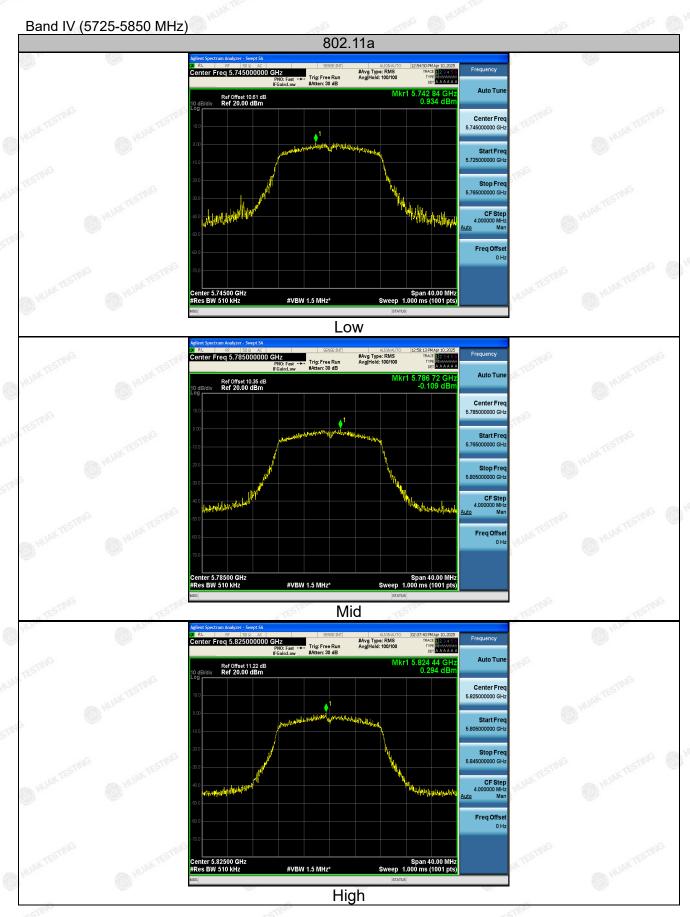
Total Book States of	EOO D 145 E O 11 45 407 ()
Test Requirement:	FCC Part15 E Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
Test Result:	PASS

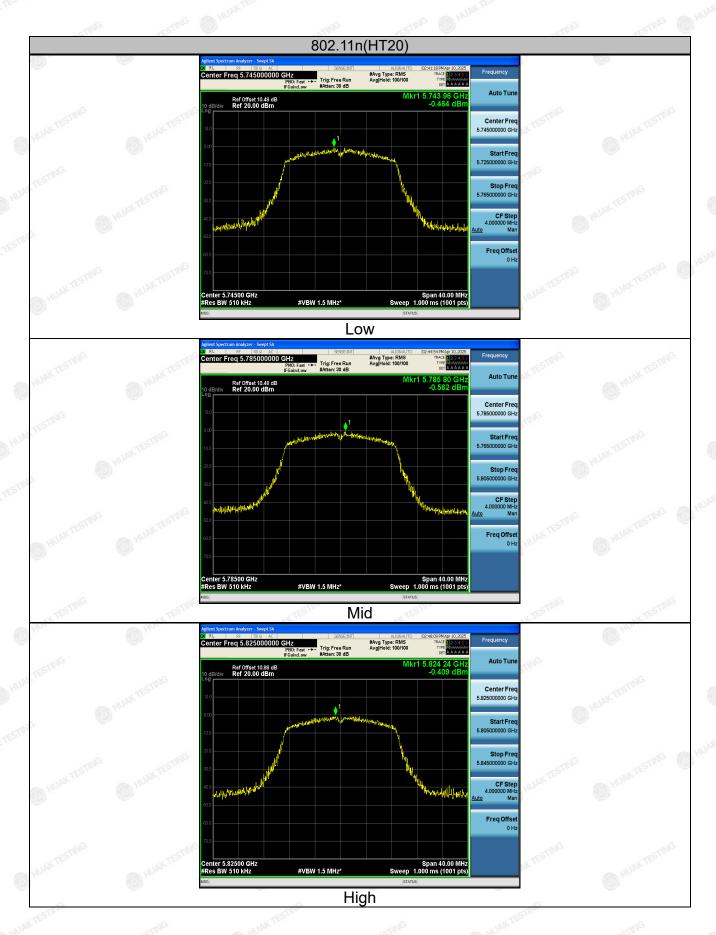
4.5.2. Test Instruments

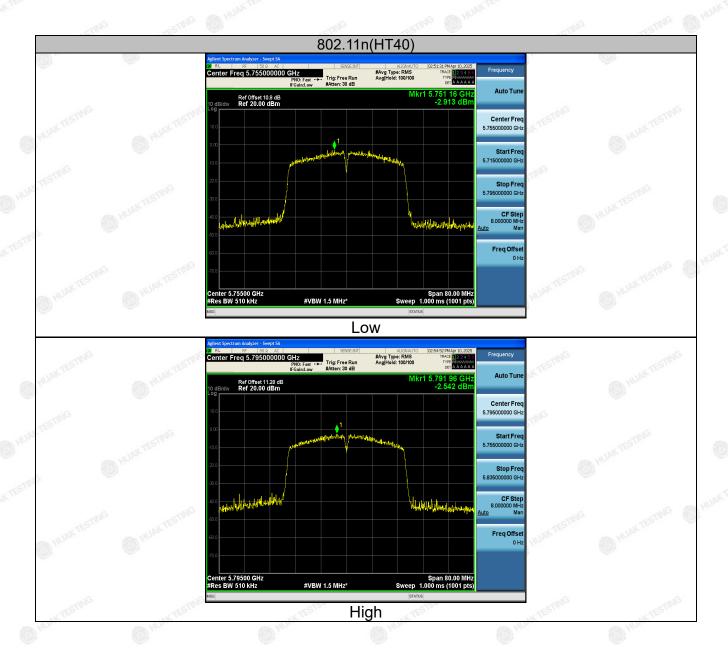
RF Test Room											
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due						
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026						
RF cable	Times	1-40G	HKE-034	Feb. 19, 2025	Feb. 18, 2026						
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 19, 2025	Feb. 18, 2026						
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


4.5.3. Test data


	Configuration Band IV (5725 - 5850 MHz)											
Mode	Mode Test Channel		10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result						
802.11a	CH149	0.93	-0.086	0.844	30	PASS						
802.11a	CH157	-0.11	-0.086	-0.196	30	PASS						
802.11a	CH165	0.29	-0.086	0.204	30	PASS						
802.11n(HT20)	CH149	-0.46	-0.086	-0.546	30	PASS						
802.11n(HT20)	CH157	-0.56	-0.086	-0.646	30	PASS						
802.11n(HT20)	CH165	-0.41	-0.086	-0.496	30	PASS						
802.11n(HT40)	CH151	-2.91	-0.086	-2.996	30 s	PASS						
802.11n(HT40)	CH159	-2.54	-0.086	-2.626	30	PASS						


Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6. Band Edge

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407							
Test Method:	ANSI C63.10 2013							
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.							
Test Setup:	Ant. feed point 1.4 m Ground Plane Receiver Amp.							
Test Mode:	Transmitting mode with modulation							
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							

Page 32 of 58 Report No.: HK2504081730-E

		10dB lower t stopped and reported. Oth 10dB margin	ssion level of the chan the limit so the peak value herwise the end would be re-ter average meters.	pecified, then es of the EUT nissions that o ested one by	testing co would be did not hav one using	ould be e ve g peak,
Test Resul	t:	PASS	TING	- MAKTESTING		TING

4.6.2. Test Instruments

	Ra	diated Emission	Test Site (96	6)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025	Feb. 18, 2026
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 19, 2025	Feb. 18, 2026
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 19, 2025	Feb. 18, 2026
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 19, 2025	Feb. 18, 2026
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 19, 2025	Feb. 18, 2026
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 19, 2025	Feb. 18, 2026
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 19, 2025	Feb. 18, 2026
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A
RSE Test Software	Tonscend	JS36-RSE 5.0. 0	HKE-184	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	51.26	-2.06	49.2	68.2	19	peak
5700	80.13	-1.96	78.17	105.2	27.03	peak
5720	84.06	-2.87	81.19	110.8	29.61	peak
5725	100.31	-2.14	98.17	122.2	24.03	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

AK TES	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
NG	5650	50.58	-2.06	48.52	68.2	19.68	peak
	5700	75.47	-1.96	73.51	105.2	31.69	peak
60	5720	82.88	-2.87	80.01	110.8	30.79	peak
9	5725	98.06	-2.14	95.92	122.2	26.28	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.75	-1.97	96.78	122.2	25.42	peak
5855	79.72	-2.13	77.59	110.8	33.21	peak
5875	80.69	-2.65	78.04	105.2	27.16	peak
5925	50.21	-2.28	47.93	68.2	20.27	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	O HOW
TIME	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5850	93.29	-1.97	91.32	122.2	30.88	peak
	5855	86.71	-2.13	84.58	110.8	26.22	peak
	5875	73.44	-2.65	70.79	105.2	34.41	peak
MUR	5925	50.91	-2.28	48.63	68.2	19.57	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11n/HT20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.36	-2.06	48.3	68.2	19.9	peak
5700	78.99	-1.96	77.03	105.2	28.17	peak
5720	90.56	-2.87	87.69	110.8	23.11	peak
5725	103.25	-2.14	101.11	122.2	21.09	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

		THE STATE OF THE S			~711-	- TII-
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5650	50.33	-2.06	48.27	68.2	19.93	peak
5700	87.19	-1.96	85.23	105.2	19.97	peak
5720	90.78	-2.87	87.91	110.8	22.89	peak
5725	102.51	-2.14	100.37	122.2	21.83	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atox Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	101.51	-1.97	99.54	122.2	22.66	peak
5855	85.64	-2.13	83.51	110.8	27.29	peak
5875	82.48	-2.65	79.83	105.2	25.37	peak
5925	52.41	-2.28	50.13	68.2	18.07	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

V.L.	10%	* 1/2 C	· 1/2		100	* V.L.
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	95.77	-1.97	93.8	122.2	28.4	peak
5855	83.78	-2.13	81.65	110.8	29.15	peak
5875	81.26	-2.65	78.61	105.2	26.59	peak
5925	52.31	-2.28	50.03	68.2	18.17	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Operation Mode: 802.11n/HT40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at 4 TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.73	-2.06	50.67	68.2	17.53	peak
5700	86.29	-1.96	84.33	105.2	20.87	peak
5720	84.06	-2.87	81.19	110.8	29.61	peak
5725	103.15	-2.14	101.01	122.2	21.19	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Frequency Meter Reading		or Emission Level Limits		Margin	HUAKTE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.93	-2.06	48.87	68.2	19.33	peak
5700	86.83	-1.96	84.87	105.2	20.33	peak
5720	80.44	-2.87	77.57	110.8	33.23	peak
5725	99.62	-2.14	97.48	122.2	24.72	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Frequency Meter Reading		Emission Level	Limits	Margin	Data et a Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.43	-1.97	95.46	122.2	26.74	peak
5855	83.19	-2.13	81.06	110.8	29.74	peak
5875	82.59	-2.65	79.94	105.2	25.26	peak
5925	50.14	-2.28	47.86	68.2	20.34	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

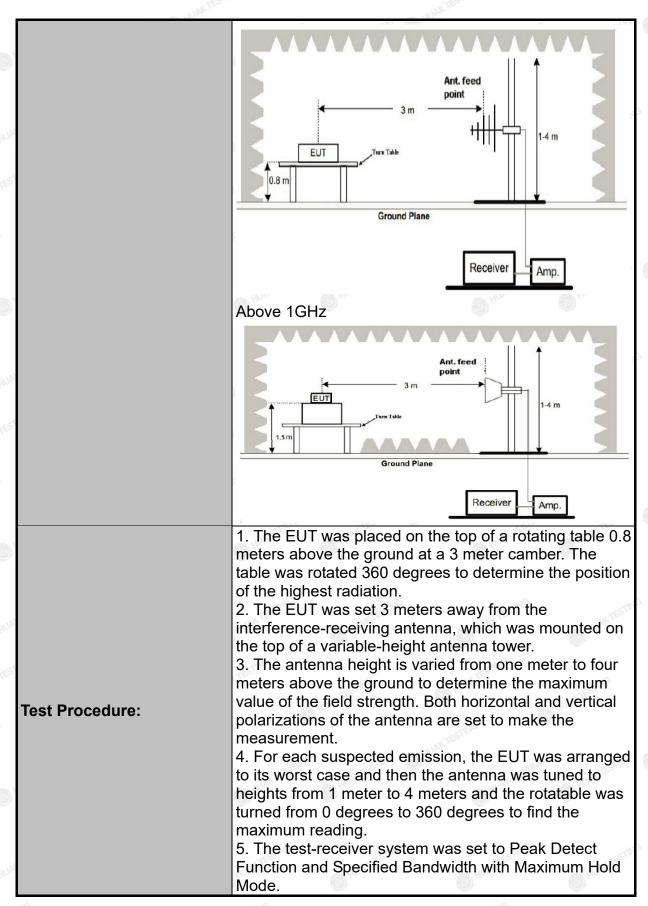
Vertical:

					A 1 100	4 1 1 2 2
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.57	-1.97	97.6	122.2	24.6	peak
5855	87.34	-2.13	85.21	110.8	25.59	peak
5875	81.95	-2.65	79.3	105.2	25.9	peak
5925	52.13	-2.28	49.85	68.2	18.35	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


4.7. Spurious Emission

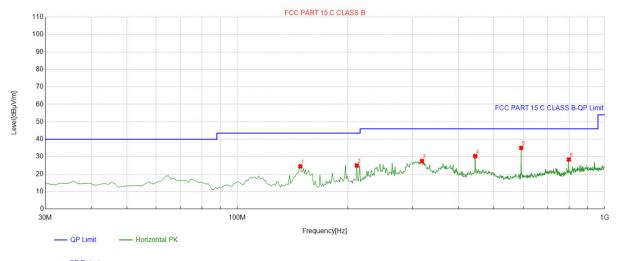
4.7.1.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ction 15.	407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02r0	1 (HOP	O HOW
Frequency Range:	9kHz to 40G	Hz		TESTING	
Measurement Distance:	3 m	AK TESTING	(a) hir	Dr	JAK TESTING
Antenna Polarization:	Horizontal &	Vertical		nJG	0
Operation mode:	Transmitting	mode with	modulat	ion	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz- 30MHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak	RBW 200Hz 9kHz 120KHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value
Limit:	an e.i.r.p. of -2 (2) For transmemissions outs an e.i.r.p. of -2 (3) For transmemissions outs an e.i.r.p. of -2 (4) For transmemission of -2 (4) For transmemission MHz or more at the second of 10 dBm/MH from 25 MHz at the second of 15 dedge, and from linearly to a level of 15	side of the 5. 27 dBm/MHz itters operation 27 dBm/MHz itters operation 27 dBm/MHz itters operation 27 dBm/MHz itters operation 28 shall be liminated by the solution 29 at 25 MHz above or below 20 dBm/MHz above or below 21 dBm/MHz 22 dBm/MHz 23 dBm/MHz 24 dBm/MHz 25 dBm/MHz 26 dBm/MHz 27 dBm 28 quency below	15-5.35 G . ng in the { 15-5.35 G . ng in the { 47-5.725 G . ng in the { nited to a l ow the bar above or ow the bar at 5 MHz ve or below n/MHz at 1 w 1GHz a	Hz band and and and and and and and and and	shall not exceed GHz band: All shall not exceed GHz band: All d shall not exceed GHz band: GHz b
Test setup:	For radiated	3 m		RX Antenna Receiver	JANA TESTING
	30MHz to 10	SHz	JH 200	AKTES	STAG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test results:	PASS

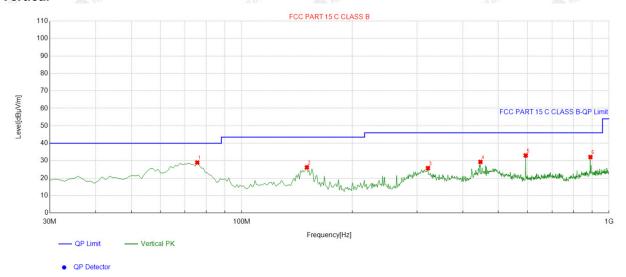

4.7.2. Test Data

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Report No.: HK2504081730-E

Below 1GHz


Horizontal


QP Detector

Suspe	Suspected List									
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	148.45845	-18.14	42.59	24.45	43.50	19.05	100	2	Horizontal	
2	211.57157	-14.85	39.80	24.95	43.50	18.55	100	80	Horizontal	
3	318.37837	-11.27	38.76	27.49	46.00	18.51	100	99	Horizontal	
4	444.60460	-8.64	38.99	30.35	46.00	15.65	100	205	Horizontal	
5	593.16316	-5.37	40.45	35.08	46.00	10.92	100	8	Horizontal	
6	799.97998	-3.01	31.41	28.40	46.00	17.60	100	165	Horizontal	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Suspe	Suspected List								
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	75.635636	-17.98	46.90	28.92	40.00	11.08	100	129	Vertical
2	150.4004	-18.13	44.33	26.20	43.50	17.30	100	57	Vertical
3	321.29129	-11.16	36.91	25.75	46.00	20.25	100	193	Vertical
4	446.54654	-8.69	38.00	29.31	46.00	16.69	100	181	Vertical
5	593.16316	-5.37	38.38	33.01	46.00	12.99	100	187	Vertical
6	890.28028	-1.59	33.70	32.11	46.00	13.89	100	25	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)			
	TESTING	TESTING			
TESTINE	TESTINE	HUAT TESTINE			
MHOIN	17/100	HUM			
	NG	-STING			

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:

	51110	W HODI	-CSTATE	AND HOLDING		CSTAIL
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.82	-4.59	46.23	68.2	21.97	peak
11096	43.88	4.21	48.09	74	25.91	peak
11096	41.14	4.21	45.35	54	8.65	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data Struc
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.81	-4.59	49.22	68.2	18.98	peak
11096	42.26	4.21	46.47	74	27.53	peak
11096	43.62	4.21	47.83	54	6.17	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	53.16	-4.59	48.57	68.2	19.63	peak
10523	50.21	4.21	54.42	68.2	13.78	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	53.42	-4.59	48.83	68.2	19.37	peak
10523	50.13	4.21	54.34	68.2	13.86	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
2705	52.95	-4.59	48.36	74	25.64	peak
2705	43.57	-4.59	38.98	54	15.02	AVG
11717	51.63	4.84	56.47	74	17.53	peak
11717	40.21	4.84	45.05	54	8.95	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.73	-4.59	49.14	74	24.86	peak
2705	41.66	-4.59	37.07	54	16.93	AVG
11717	50.42	4.84	55.26	74	18.74	peak
11717	40.16	4.84	45	54	9 5 111	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n/HT20 Mode

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.78	-4.59	50.19	68.2	18.01	peak
11096	47.91	4.21	52.12	74	21.88	peak
11096	42.13	4.21	46.34	54	7.66	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.29	-4.59	49.7	68.2	18.5	peak
11096	52.79	4.21	57	74	17	peak
11096	40.28	4.21	44.49	54	9.51	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.04	-4.59	49.45	68.2	18.75	peak
10523	50.18	4.21	54.39	68.2	13.81	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.05	-4.59	47.46	68.2	20.74	peak
10523	43.99	4.21	48.2	68.2	20	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

HIGH CH165

Horizontal:

OAK"	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
STI	2705	53.67	-4.59	49.08	74	24.92	peak
	2705	42.11	-4.59	37.52	54	16.48	AVG
	11717	51.22	4.84	56.06	74	17.94	peak
	11717	40.31	4.84	45.15	54	8.85	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.31	-4.59	49.72	74	24.28	peak
2705	46.06	-4.59	41.47	54	12.53	AVG
11717	52.09	4.84	56.93	74	17.07	peak
11717	43.18	4.84	48.02	54	5.98	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n/HT40 Mode

LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	55.71	-4.59	51.12	68.2	17.08	peak
11096	52.17	4.21	56.38	74	17.62	peak
11096	40.22	4.21	44.43	54	9.57	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

4.17		-1/1/	477		11/1/	-1/1/
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	57.58	-4.59	52.99	68.2	15.21	peak
11096	53.07	4.21	57.28	74	16.72	peak
11096	42.35	4.21	46.56	54	7.44	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	56.62	-4.59	52.03	68.2	16.17	peak
10523	52.11	4.21	56.32	68.2	11.88	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.16	-4.59	49.57	68.2	18.63	peak
10523	51.33	4.21	55.54	68.2	12.66	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit-Level.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.8. Frequency Stability Measurement

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)				
Test Method:	ANSI C63.10: 2013				
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.				
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply				
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.				
Test Result:	PASS MARTESTING WHARTESTING MARTESTING MARTESTING				
Remark:	N/A				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Result as follows:

Mode Voltage (V)		FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.25V	5744.989	-11	5825.013	13
5.8G Band	5.0V	5745.016	16	5824.985	-15
HUAR	5.75V	5744.977	-23	5824.991	-9

Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
ß	-30	5744.976	-24	5825.015	15
MUAKTE	-20	5745.008	8 8	5825.009	9 111/1
	-10	5744.982	-18	5824.988	-12
Y TESTING	O HUAKT	5744.971	-29	5824.976	-24
5.8G Band	10	5744.966	-34	5825.011	11
	20	5745.022	22	5824.992	-8
STINGAKTEST	30	5744.984	-16	5824.978	-22
	40	5744.991	-9	5824.971	-29
	50	5744.973	-27	5825.019	19

0

TEICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

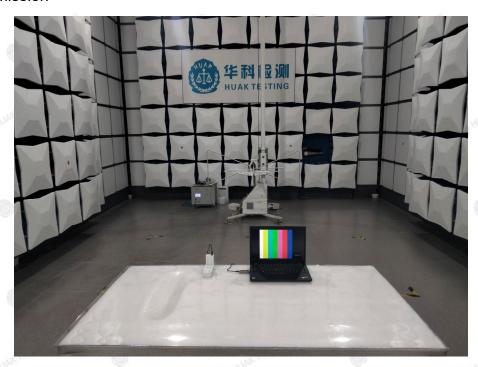
Report No.: HK2504081730-E

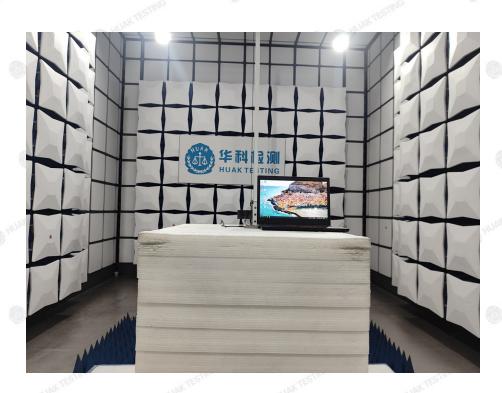
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

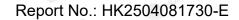
The antenna used in this product is a PCB Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 2dBi.


<u>Antenna</u>



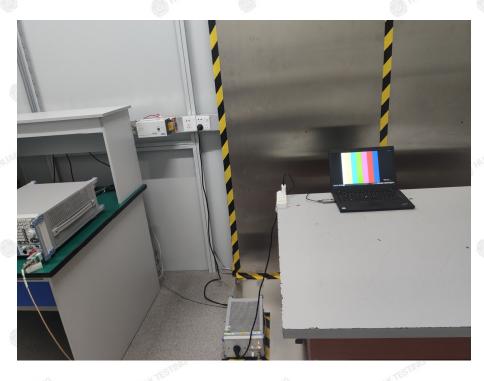
5. Test Setup Photos of the EUT

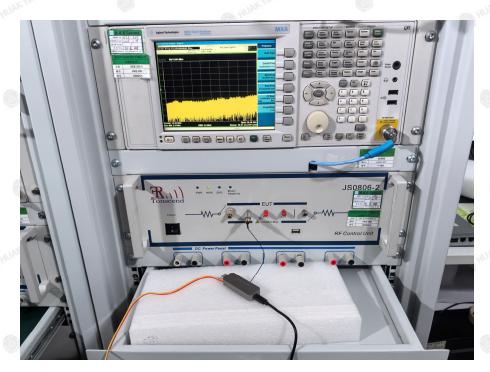
Radiated Emission



H:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



AC Conducted Emission

HUAK TESTING

RF Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 58 of 58 Report No.: HK2504081730-E

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

End of test report----