

Element Materials Technology (formerly PCTEST)

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. 408.538.5600 http://www.element.com

SAR EVALUATION REPORT

Applicant Name:

Apple, Inc.

One Apple Park Way Cupertino, CA 95014 USA Date of Testing:

06/14/2023 - 07/18/2023

Test Report Issue Date:

08/10/2023

Test Site/Location:

Element Morgan Hill, CA, USA

Document Serial No.:

1C2305110022-01.BCG (Rev 2)

FCC ID: BCG-A2980

APPLICANT: APPLE, INC.

DUT Type: Watch

Application Type: Certification FCC Rule Part(s): CFR §2.1093

Model: A2980

Equipment	Band & Mode	Tx Frequency	SAR		
Class	Bana a Mode	TXTTEQUETICS	1g Head (W/kg)	10g Extremity (W/kg)	
DTS	2.4 GHz WLAN	2412 - 2472 MHz	0.45	0.12	
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	
NII	U-NII-2A	5260 - 5320 MHz	0.14	< 0.1	
NII	U-NII-2C	5500 - 5720 MHz	0.16	< 0.1	
NII	U-NII-3	5745 - 5825 MHz	0.19	< 0.1	
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.28	0.10	
NII	802.15.4 ab-NB	5728.75 - 5846.25 MHz	<0.1	<0.1	
Simultaneou	s SAR per KDB 690783 D01v	0.47	0.12		

Note: This revised Test Report supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This watch has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

RJ Ortanez

Executive Vice President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogg 1 of 20
1C2305110022-01 BCG (Rev 2)	Watch	Page 1 of 30

TABLE OF CONTENTS

1	DEVICE	JNDER TEST	3
2	INTRODU	JCTION	7
3	DOSIME	TRIC ASSESSMENT	8
4	TEST CC	NFIGURATION POSITIONS	9
5	RF EXPO	SURE LIMITS	. 10
6	FCC MEA	ASUREMENT PROCEDURES	. 11
7	RF CONI	DUCTED POWERS	. 14
8	SYSTEM	VERIFICATION	. 17
9	SAR DAT	'A SUMMARY	. 19
10	FCC MUI	TI-TX AND ANTENNA SAR CONSIDERATIONS	. 23
11	SAR MEA	ASUREMENT VARIABILITY	. 25
12	EQUIPMI	ENT LIST	. 26
13	MEASUR	EMENT UNCERTAINTIES	. 27
14	CONCLU	SION	. 28
15	REFERE	NCES	. 29
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCC-A2900	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 2 of 30
1C2305110022-01.BCG (Rev 2)	Watch	rage 2 01 30

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
802.15.4 ab-NB	Data	5728.75 - 5846.25 MHz
NFC	Data	13.56 MHz
UWB	Data	6489.6 - 7987.2 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Maximum Output Power – 2.4 GHz WiFi Mode

			IEEE 802.1	1b (2.4 GHz)	IEEE 802.11g (2.4 GHz)		IEEE 802.11n (2.4 GHz)	
Mode/ Band		Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	20.00	19.00	17.00	16.00	17.00	16.00
		2	20.00	19.00	19.00	18.00	19.00	18.00
		3	20.00	19.00	19.00	18.00	19.00	18.00
	20 MHz Bandwidth	4	20.00	19.00	19.00	18.00	19.00	18.00
Modulated		5	20.00	19.00	19.00	18.00	19.00	18.00
Average -		6	20.00	19.00	19.00	18.00	19.00	18.00
Single Tx Chain		7	20.00	19.00	19.00	18.00	19.00	18.00
(dBm)		8	20.00	19.00	19.00	18.00	19.00	18.00
(dBiii)		9	20.00	19.00	19.00	18.00	19.00	18.00
		10	20.00	19.00	19.00	18.00	19.00	18.00
		11	20.00	19.00	17.00	16.00	17.00	16.00
		12	20.00	19.00	14.50	13.50	14.50	13.50
		13	18.00	17.00	2.50	1.50	2.50	1.50

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCC-A2900	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Dogo 2 of 20
1C2305110022-01.BCG (Rev 2)	Watch	Page 3 of 30

Maximum Output Power – 5 GHz WiFi Mode 1.3.2

Mode/ Band			IEEE 802.	11a (5 GHz)	IEEE 802.11n (5 GHz)	
		Channel	Maximum	Nominal	Maximum	Nominal
		36	17.00	16.00	17.00	16.00
		40	17.00	16.00	17.00	16.00
		44	17.00	16.00	17.00	16.00
		48	17.00	16.00	17.00	16.00
		52	17.00	16.00	17.00	16.00
		56	17.00	16.00	17.00	16.00
		60	17.00	16.00	17.00	16.00
		64	17.00	16.00	17.00	16.00
	20 MHz Bandwidth	100	17.00	16.00	17.00	16.00
		104	17.00	16.00	17.00	16.00
		108	17.00	16.00	17.00	16.00
Modulated Average -		112	17.00	16.00	17.00	16.00
Single Tx Chain		116	17.00	16.00	17.00	16.00
(dBm)		120	17.00	16.00	17.00	16.00
		124	17.00	16.00	17.00	16.00
		128	17.00	16.00	17.00	16.00
		132	17.00	16.00	17.00	16.00
		136	15.00	14.00	15.00	14.00
		140	12.50	11.50	12.50	11.50
		144	17.00	16.00	17.00	16.00
		149	17.00	16.00	17.00	16.00
		153	17.00	16.00	17.00	16.00
		157	17.00	16.00	17.00	16.00
		161	17.00	16.00	17.00	16.00
		165	17.00	16.00	17.00	16.00

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 4 of 30
1C2305110022-01.BCG (Rev 2)	Watch	Fage 4 01 30

1.3.3 Maximum Output Power – Bluetooth Mode

Mode / Ban	Modulated Average - Single Tx Chain (dBm)	
Bluetooth BDR	Maximum	19.00
Diuetootii DDK	Nominal	18.00
Bluetooth EDR	Maximum	14.50
Biuetootii EDK	Nominal	13.50
Bluetooth HDR	Maximum	14.50
מועפנטטנוו חטג	Nominal	13.50
Bluetooth LE	Maximum	19.00
Biuetootii LE	Nominal	18.00

1.3.4 Maximum Output Power – 802.15.4 ab-NB Mode

Mode / Band			Modulated Average - Single Tx Chain (dBm)
802.15.4 ab-NB		Maximum	16.00
		Nominal	14.00

1.4 DUT Antenna Locations

A diagram showing the location of the device antennas can be found in the DUT Antenna Diagram & SAR Test Setup Photographs Appendix.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in the DUT Antenna Diagram & SAR Test Setup Photographs Appendix.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCC-A2900	SAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 5 of 30
1C2305110022-01.BCG (Rev 2)	Watch	rage 5 of 50

Table 1-1 **Simultaneous Transmission Scenarios**

No.	Capable Transmit Configuration	Head	Extremity
1	2.4 GHz Bluetooth + 5 GHz WI-FI	Yes	Yes
2	2.4 GHz Bluetooth + 802.15.4 ab-NB	Yes	Yes
3	802.15.4 ab-NB + 2.4 GHz WI-FI	Yes	Yes

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. 2.4 GHz WLAN, and 5 GHz WLAN share the same antenna path and cannot transmit simultaneously.
- 3. 802.15.4 ab-NB, and 5 GHz WLAN share the same antenna path and cannot transmit simultaneously.
- This device supports VOWIFI.

1.7 **Miscellaneous SAR Test Considerations**

(A) WIFI/BT

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6, and 11 were considered for SAR testing per KDB 248227 D01v02r02.

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

1.8 **Guidance Applied**

- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance, Wrist-worn Device Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- IEEE 1528-2013

1.9 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

1.10 **Device Housing Types and Wrist Band Types**

This device has one housing type that was evaluated independently for SAR: Aluminum. The device can also be used with different wristband accessories. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 66 15. 500 7/2300	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 6 of 30
1C2305110022-01.BCG (Rev 2)	Watch	rage 6 01 30

2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996, and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 00 lb. BCG-A2900	SAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 7 of 30
1C2305110022-01.BCG (Rev 2)	Watch	raye / UI 30

DOSIMETRIC ASSESSMENT

3.1 **Measurement Procedure**

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface, and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

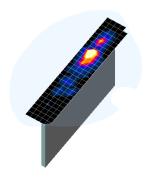


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

Maximum Area Scan				Maximum Zoom Scan Spatial Resolution (mm)		
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2305110022-01.BCG (Rev 2)	DUT Type: Watch	Page 8 of 30

4 TEST CONFIGURATION POSITIONS

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. Additionally, a manufacturer provided low-loss foam was used to position the device for head SAR evaluations.

4.2 Positioning for Head

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions.

4.3 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with head tissue-equivalent medium. The device was evaluated with Sport wristband unstrapped and touching the phantom. For Metal Loop and Metal Links wristbands, the device was evaluated with wristbands strapped and the distance between wristbands and the phantom was minimized to represent the spacing created by actual use conditions.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 00 IB. BOO 7/2000	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 9 of 30
1C2305110022-01.BCG (Rev 2)	Watch	rage 9 of 30

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e., as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT		
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCC-A2900	SAK LVALGATION KLI OKT	Technical Manager
Document S/N:	DUT Type:	Dogg 10 of 20
1C2305110022-01.BCG (Rev 2)	Watch	Page 10 of 30

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6 FCC MEASUREMENT PROCEDURES

Measured and Reported SAR 6.1

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 **SAR Testing with 802.11 Transmitters**

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset-based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

6.2.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 11 of 30
1C2305110022-01.BCG (Rev 2)	Watch	Page 11 01 30

6.2.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel, i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.5 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation, and data rate etc., the lower order 802.11 mode i.e., 802.11a. then 802.11n or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements. SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

Initial Test Configuration Procedure 6.2.6

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.5). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.7 **Subsequent Test Configuration Procedures**

For OFDM configurations in each frequency band and aggregated band. SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCC-A2900	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 12 of 30
1C2305110022-01.BCG (Rev 2)	Watch	Fage 12 01 30

subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dama 12 of 20
1C2305110022-01.BCG (Rev 2)	Watch	Page 13 of 30

7 RF CONDUCTED POWERS

7.1 WLAN Conducted Powers

Table 7-1
2.4 GHz WLAN Maximum Average RF Power

2.4GHz Conducted Power [dBm]						
		IEEE Transmission Mode				
Freq [MHz]	Channel	802.11b	802.11g	802.11n		
		Average	Average	Average		
2412	1	18.72	16.02	16.01		
2417	2		18.05	18.04		
2437	6	18.80	18.16	18.09		
2457	10		17.95	17.94		
2462	11	18.78	16.04	16.02		

Table 7-2
5 GHz WLAN Maximum Average RF Power

		ducted Power				
		IEEE Transn	mission Mode			
Freq [MHz]	Channel	802.11a	802.11n			
		Average	Average			
5180	36	16.15	16.00			
5200	40	16.17	16.28			
5220	44	16.18	16.27			
5240	48	16.11	16.15			
5260	52	16.06	16.06			
5280	56	16.02	15.97			
5300	60	16.19	16.17			
5320	64	16.00	16.13			
5500	100	16.37	16.32			
5600	120	16.15	16.17			
5620	124	16.34	16.01			
5720	144	15.95	15.86			
5745	149	16.16	15.93			
5785	157	16.08	15.99			
5825	165	16.00	16.09			

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

• Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.

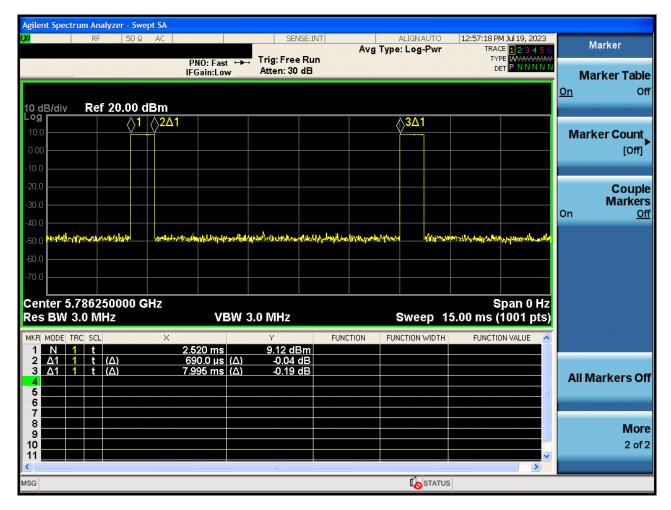
FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 14 of 30
1C2305110022-01.BCG (Rev 2)	Watch	1 age 14 01 30

- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Figure 7-1 **Power Measurement Setup**

7.2 **Bluetooth Conducted Powers**

Table 7-3 Bluetooth Average RF Power


Frequency		Data		Avg Conducted Power				
Frequency [MHz]	Modulation	Rate [Mbps]	Channel No.	[dBm]	[mW]			
2402	GFSK	1.0	0	18.57	71.945			
2441	GFSK	1.0	39	18.43	69.663			
2480	GFSK	1.0	78	18.17	65.615			

Note 1: Bluetooth was evaluated with a test mode with 100% transmission duty factor.

Table 7-4 802.15.4 ab-NB Average RF Power

Band	Channel	Frequency	Average							
	Low	5728.75	15.85							
802.15.4 ab-NB	Mid	5786.25	15.79							
	High	5846.25	15.83							

	SAR EVALUATION REPORT	Approved by:	
	OAK EVALUATION KEI OKT	Technical Manager	
Document S/N:	DUT Type:	Dogo 15 of 20	
1C2305110022-01.BCG (Rev 2)	Watch	Page 15 of 30	

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{0.690}{7.995} * 100\% = 8.6\%$$

Figure 7-2 802.15.4 ab-NB Duty Cycle Plot & Calculation

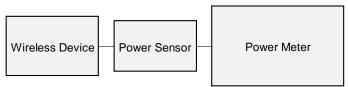


Figure 7-3 **Power Measurement Setup**

		Approved by:	
FCC ID: BCG-A2980	SAR EVALUATION REPORT	Technical Manager	
Document S/N:	DUT Type:	Page 16 of 30	
1C2305110022-01.BCG (Rev 2)	Watch	rage 10 01 30	

8.1

Table 8-1

Measured Head Tissue Properties

Tissue Timp Measured Measured TARGET TARGET TARGET

0910200 Page 141	Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, s	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, z	% dev σ	% dev ɛ
### CONTROLS ### 222 283 1920 2929 1230 2920 2620 2620 1750 1750			. ,	2400	1.839	39.756	1.756	39.289		
### 1997 1997 1998 1997 1998 1999				2480	1.900	39.618	1.833	39.162	3.66%	1.16%
00190000 0000 News 2.12 2520 1180 2520 1280 2520 2419 1078					1.922					
2009 1586 2028 1286 1380 3000 2295 1286	06/14/2023	2450 Head	22.2							
00110000 00000 New 213				2560	1.964	39.481	1.920	39.060	2.29%	1.08%
00*10020 000-800 has 2 239				2650	2.038	39.361	2.018	38.945	0.99%	1.07%
0/19/2003 000: 44803 553.51 44805 55.98 677% 1485 14				2700		39.292	2.073	38.882	0.14%	1.05%
0010 4000 1 33-11				5190		35.340 35.334				-1.84%
00190000 000-000 Heat 000-000 Heat 000-000 000-00000 000-00000 000-00000 000-00000 000-00000 000-00000 000-00000 000-000000 000-00				5200	4.668		4.655	35.986	0.28%	-1.87%
00190000 500-8600 Head 2019 2019 2019 2019 2019 2019 2019 2019				5220	4.692		4.676	35.963	0.34%	-1.96%
07192020 000-0600 Head 001-0600 000-0600 Head 001-0600 001-0600 000-0600 Head 001-0600 001-060				5250	4.729		4.706	35.929	0.49%	-2.02%
00190000 0.077 0.081 0.081 0.087 0.0				5260 5270	4.741 4.750	35.184 35.164	4.717 4.727	35.917 35.906	0.51%	-2.04% -2.07%
0010 0010										
\$200 4.910 1.2004 1.200				5300	4.788	35.103	4.758	35.871	0.63%	-2.14%
				5320	4.810	35.084	4.778	35.849	0.67%	-2.13%
9500 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1				5510	5.019	34.712	4.973	35.632	0.92%	-2.58%
500 500										
980				5540	5.048	34.649	5.004		0.88%	
5000 5.12				5560	5.075	34.606	5.024	35.574	1.02%	-2.72%
00190000 Head				5600	5.123	34.526	5.065	35.529	1.15%	-2.82%
00190202 200-9800 Near 20.5 5600				5620	5.148	34,487	5.086	35.506	1.22%	-2.87%
6970				5640 5660					1.35%	-2.91% -2.98%
5000 5.28	06/19/2023	5200-5800 Head	20.5		5.208		5.137	35.449	1.38%	
8710				5690	5.238	34.342	5.158	35.426	1.55%	-3.06%
8746				5710	5.262	34.325	5.178	35.403	1.62%	-3.04%
\$755										
6765 6.530 34.227 6.524 85.340 8.527 1.555 3.196 6.575 5.342 85.3					5.309 5.315			35.357 35.351	1.72%	
8796				5765	5.330	34.227	5.234	35.340	1.83%	-3.15%
6600 5.376 34.199 5.270 55.300 2.0716 32.276 6600 5.376 34.199 5.270 55.300 2.0716 32.276 6605 5.386 34.197 5.275 35.284 2.095 32.276 6605 5.386 34.197 5.286 32.271 6.2876 6605 5.386 34.197 5.286 32.271 6.2876 6605 5.386 34.197 5.286 32.271 6.2876 6605 5.481 34.198 5.286 32.270 6.2876 6606 5.481 34.096 5.296 35.190 2.0716 2.276 6606 5.481 34.098 5.386 35.100 2.0716 2.276 6605 5.444 34.098 5.386 35.100 2.0716 2.276 6605 5.444 34.098 5.386 35.100 2.075 32.276 6605 5.444 34.098 5.386 35.100 2.075 32.776 6605 5.444 34.098 5.386 35.100 2.075 32.776 6605 5.441 34.098 5.386 35.100 2.075 32.776 6605 5.441 34.098 5.386 35.100 2.075 32.776 6605 5.441 34.098 5.386 35.100 2.075 32.776 6605 5.441 34.098 5.386 35.100 2.075 32.776 6605 5.441 34.098 5.387 35.100 2.075 32.776 6605 5.441 34.098 5.387 35.100 2.075 32.776 6605 5.441 34.098 5.387 35.100 2.075 32.776 6605 5.441 34.098 5.387 35.100 2.075 32.776 6605 5.441 34.098 5.387 35.100 2.075 32.776 6605 5.441 34.098 5.387 35.100 2.075 32.776 6605 4.411 35.780 4.665 35.000 4.475 0.075 6705 4.421 35.780 4.665 35.000 4.475 0.075 6705 4.421 35.780 4.665 35.000 4.475 0.075 6706 4.421 35.780 4.666 35.840 4.675 0.085 6806 4.421 35.780 4.466 35.840 4.675 0.085 6807 4.461 35.660 4.677 35.877 4.475 0.075 6800 4.471 35.560 4.477 35.877 4.475 0.075 6800 4.471 35.560 4.470 35.860 4.467 0.085 6800 4.471 35.560 4.470 35.860 4.467 0.085 6800 4.471 35.860 4.477 35.877 4.475 0.075 6800 4.471 35.860 4.470 35.860 35.600 4.475 0.075 6800 4.471 35.860 4.470 35.8				5785	5.353	34.177	5.255	35.317	1.86%	-3.23%
5600 5.380 34.157 5.276 30.284 2.079 3.278 3.278 3.278 3.288 3.2				5800	5.376	34.159	5.270	35.300	2.01%	-3.23%
								35.300 35.294		
5660 5.410 3.4(61) 5.316 55.710 1.959 3.2716 1.959 3.2716 1.959				5825				35.271	1.98%	-3.28%
6965 5-444 34,038 5-306 35,160 2,078 3279 6965 5-444 34,038 5-306 35,160 2,078 3279 6965 6-444 34,038 5-306 35,160 2,078 3279 6965 6-444 34,038 5-306 35,160 2,078 3279 6965 6-448 34,038 5-306 35,160 2,078 3279 7279				5845	5.419	34.081	5.315	35.210	1.96%	-3.21%
				5865	5.444	34.038	5.336	35.190	2.02%	-3.27%
6675 5.422 34.030 5.347 25.183 1.569 3.279 6685 5.421 34.028 5.357 35.178 1.469 3.269 6985 5.421 34.028 3.357 35.178 3.278 6985 5.421 34.028 33.020 34.030 34.030 6185 34.028 34.028 34.028 35.028 34.030 6185 34.028 34.028 34.028 35.028 34.030 6185 34.028 34.028 34.028 34.028 34.038 6200 4.441 32.714 4.696 35.088 4.778 6.708 6200 4.441 35.714 4.696 35.088 4.778 6.708 6200 4.461 35.088 4.676 35.689 35.970 4.778 6.708 6200 4.461 35.688 4.676 35.685 4.778 6.708 6200 4.461 35.688 4.677 35.081 4.758 6.708 6200 4.461 35.688 4.777 35.080 4.678 6.087 6200 4.461 35.686 4.777 35.087 4.678 6.087 6200 4.691 35.686 4.777 35.081 4.678 6.087 6200 4.691 35.691 4.788 35.081 4.778 6.078 6200 4.691 35.691 4.788 35.081 4.778 6.078 6200 4.691 35.691 4.788 35.081 4.778 6.078 6200 4.691 35.691 4.788 35.081 4.778 4.098 6.078 6200 4.691 35.691 4.788 35.081 4.798 6.078 6200 4.691 35.691 4.788 35.081 4.678 6.088 6200 4.691 35.691 4.788 35.081 4.678 6.088 6200 4.790 35.601 4.790 35.601 4.798 6.078 6200 4.790 35.601 4.980 35.640 4.718 1.728 6200 4.691 35.891 4.980 35.660 4.798 1.728 6200 4.691 35.891 4.980 35.660 4.798 1.728 6200 4.691 35.891 4.980 35.660 4.678 1.728 6200 4.691 35.891 4.980 35.660 4.678 1.728 6200 4.691 35.891 36.001 4.678 1.728 6200 4.691 35.891 36.001 4.678 1.728 6200 4.691 35.891 36.001 4.678 1.728 6200 4.691 36.001 36					5.444 5.444		5.336 5.336	35.190 35.190	2.02%	-3.27%
6885 5.480 31.036 5.527 25.177 1.99% 32.27% 5950 5.496 31.020 5.527 25.177 1.99% 32.27% 5950 4.412 35.730 4.655 35.000 4.47% 4.75% 5950 4.421 35.730 4.656 35.000 4.47% 4.75% 5210 4.441 35.730 4.666 35.930 4.47% 4.75% 5210 4.441 35.730 4.666 35.930 4.47% 4.75% 5220 4.441 35.730 4.666 35.930 4.47% 4.75% 5230 4.447 35.560 4.690 35.930 4.47% 4.07% 5250 4.447 35.560 4.696 35.930 4.697 4.69% 5250 4.447 35.560 4.696 35.930 4.697 4.69% 5250 4.491 35.830 4.777 35.917 4.42% 4.00% 5250 4.491 35.830 4.777 35.917 4.42% 4.00% 5250 4.491 35.830 4.777 35.917 4.42% 4.00% 5250 4.331 55.503 4.740 55.830 4.51% 6.09% 5250 4.450 55.503 4.740 55.830 4.51% 6.09% 5250 4.450 55.503 4.740 55.830 4.51% 6.09% 5250 4.450 55.503 4.740 55.830 4.67% 6.09% 5250 4.470 35.830 4.740 55.830 4.67% 6.09% 5250 4.470 55.830 4.770 35.800 4.67% 6.09% 5250 4.470 55.830 4.770 35.800 4.67% 6.09% 5250 4.470 55.830 4.770 35.800 4.67% 6.09% 5250 4.470 55.830 4.770 35.800 4.67% 6.09% 5250 4.470 55.830 4.770 35.800 4.70% 6.09% 5250 4.470 55.800 4.790 35.800 4.70% 30.90% 5250 4.470 55.800 4.790 35.800 35.800 4.70% 1.00% 5250 4.470 55.800 4.790 35.800 35.800 4.70% 1.00% 5250 4.470 35.800 4.790 35.800 35.800 3.20% 1.72% 5250 4.470 35.800 4.790 35.800 35.800 3.20% 1.72% 5250 4.470 35.800 4.870 35.800 35.800 3.20% 1.72% 5250 4.470 35.800										
\$150				5885	5.463	34.026	5.357	35.177	1.98%	-3.27%
\$200				5180	4.412	35.749	4.635	36.009	-4.81%	-0.72%
\$200 4.478 35.629 4.696 35.940 4.778 3.7798 3.620 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.678 0.6789 3.6789 4.6789 0.6789 3.6789 4.6789 0.6789 3.6789 4.6789 0.6789 3.6789 4.6789 0.6789 3.6789 4.6789 0.6789 3.6789 4.6789 0.6789 3.6789				5200	4.434	35.714	4.655	35.986	-4.75%	-0.76%
\$260 4.478 35.602 4.696 35.840 4.697 4.008 2.008				5220						
\$200 \$4.00 \$5.000 \$4.777 \$5.9717 \$4.67% \$6.07% \$6.07% \$2.00% \$4.00% \$6.							4.696 4.706	35.940	-4.64% -4.65%	-0.83% -0.85%
\$200						35.606		35.917	-4.62%	
\$200				5280	4.524	35.577	4.737	35.894	-4.50%	-0.88%
\$500 4.97 35.510 4.778 50.840 4.67% 0.00% 5000 5000 4.778 50.500 4.778				5300	4.545	35.543	4.758	35.871	-4.48%	-0.91%
5510				5320	4.567	35.510	4.778	35.849	-4.42%	-0.95%
				5520	4.783	35.165	4.983	35.620	-4.01%	-1.28%
5500				5540	4.808	35.131	5.004	35.597	-3.92%	-1.31%
				5560	4.833	35.082	5.024	35.574	-3.80%	-1.38%
1000-9900 10				5600	4.874	35.021	5.065	35.529	-3.77%	-1.43%
07/18/2002 200-5800 Nead 21.0 5660 4.03 3.6800 5.106 25.440 1.3.6801 1.5060 5660 4.037 3.4800 1.5109 5.107 3.4400 1.3.507 1.5050 1.5060				5610	4.886		5.076		-3.74%	-1.46%
\$\begin{array}{cccccccccccccccccccccccccccccccccccc				5640	4.923	34.930	5.106	35.483	-3.58%	-1.56%
5600 4.977 34.869 5.159 35.469 3.2678 3.267	07/18/2023	5200-5800 Head	21.0	5670	4.957	34.905	5.137	35.449	-3.50%	-1.53%
\$710				5690	4.977	34.868	5.158	35.426	-3.51%	-1.58%
\$740					5.003			35.403	-3.38%	
8790										
\$796 \$600 \$3479 \$524 \$5340 \$3570 \$1778 \$778 \$778 \$778 \$779 \$779 \$779 \$779 \$				5750	5.048	34.758	5.219	35.357	-3.28%	-1.69%
8786 5.000 34.706 5.205 5.205 30.317 3.4 6% 1.77% 5.005 5.001 5.005 36.007 5.205 30.305 3.5000 3.17% 1.77% 5.000 5.007 5.000 5.007 5.000 5				5765	5.067	34.731	5.234	35.340	-3.19%	-1.72%
5900 5.97 34.691 5.70 35.000 3.09% 1.77%				5785	5.090	34.706	5.255	35.317	-3.14%	-1.73%
\$600 \$172 \$34.691 \$2.70 \$3.200 \$3.200 \$1.728 \$600 \$1.728 \$3.601 \$1.728 \$3.601 \$1.728 \$3.601 \$1.728 \$3.601 \$1.728 \$3.601 \$1.728 \$3.601 \$1.728 \$3.601 \$1.728 \$3.601 \$3.601 \$1.728 \$3.601				5800		34.691		35.300	-3.09%	-1.73%
6625 5.132 34.6411 5.296 35.271 3.00% 1.779% 5936 5.144 34.639 5.302 35.200 3.078 4.779% 5845 5.154 34.639 5.302 35.200 3.027% 4.779% 5855 5.152 34.830 5.325 35.197 3.027% 4.779% 5965 5.172 34.578 5.306 35.190 3.077% 4.749 5965 5.177 34.578 5.306 35.190 3.07% 4.749 5965 5.177 34.578 5.306 35.190 3.07% 4.749 6965 5.172 34.578 5.306 35.190 3.07% 4.749 6965 5.172 34.578 5.306 35.190 3.07% 4.749 6965 5.172 34.578 5.306 35.190 3.07% 4.749 6975 5.186 34.596 5.347 35.189 3.07% 4.729% 6985 5				5800	5.107	34.691	5.270	35.300	-3.09%	-1.73%
5645 5.154 34.610 5.315 55.210 3.2076 1.70%				5825	5.132	34.641	5.296	35.271	-3.10%	-1.79%
5985 5.172 34.576 5.336 35.190 3.07% 17.476 5985 5.172 34.576 5.336 35.190 3.07% 17.476 5985 5.172 34.576 5.336 35.190 3.07% 17.476 5985 5.172 34.576 5.336 35.190 3.07% 17.476 5985 5.172 34.576 5.337 35.190 3.07% 17.476 5987 5.185 34.596 5.347 35.180 3.03% 17.576 5985 5.185 34.596 5.347 35.180 3.03% 17.576 5985 5.196 34.551 5.357 35.177 25.777 27.577 37.577 27.577 37.5				5845	5.154	34.610	5.315	35.210	-3.03%	-1.70%
5005 5.172 34.576 5.306 35.100 3.07% 1.72%				5865	5.172	34.576	5.336	35.190	-3.07%	-1.74%
5865 5.172 34.576 5.336 35.190 -3.07% -1.74% 5875 5.185 34.586 5.347 35.183 -2.07% -1.79% 5885 5.198 34.551 5.357 35.17 2.27% -1.79%					5.172		5.336	35.190	-3.07%	
5885 5.198 34.551 5.357 35.177 -2.97% -1.78%				5865	5.172		5.336	35.190	-3.07%	-1.74%
5905 5.222 34.504 5.379 35.163 -2.52% -1.87%				5885	5.198		5.357	35.177	-2.97%	-1.78%
	L			5905	5.222	34.504	5.379	35.163	-2.92%	-1.87%

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
FCC ID. BCG-A2900	SAR EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Dogo 17 of 20
1C2305110022-01.BCG (Rev 2)	Watch	Page 17 of 30

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Per April 2019 TCB Workshop Notes, single head-tissue simulating liquid specified in IEC 62209-1 is permitted to use for all SAR tests.

Test System Verification 8.2

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in the SAR System Validation Appendix.

> Table 8-2 System Verification Results - 1a

	Cyclem vermoune 19													
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	Measured SAR1g (W/kg)	1W Target SAR1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation 1g (%)		
AM2	2450	HEAD	06/14/2023	21.1	21.2	0.10	921	7308	5.200	54.200	52.000	-4.06%		
AM1	5250	HEAD	06/19/2023	22.0	20.5	0.05	1123	7420	4.040	80.500	80.800	0.37%		
AM1	5250	HEAD	07/18/2023	22.5	20.7	0.05	1123	7420	3.850	80.500	77.000	-4.35%		
AM1	5600	HEAD	06/19/2023	22.0	20.5	0.05	1123	7420	4.280	83.700	85.600	2.27%		
AM1	5600	HEAD	07/18/2023	22.5	20.7	0.05	1123	7420	4.260	83.700	85.200	1.79%		
AM1	5750	HEAD	06/19/2023	22.0	20.5	0.05	1123	7420	3.830	80.500	76.600	-4.84%		
AM1	5750	HEAD	07/18/2023	22.5	20.7	0.05	1123	7420	3.810	80.500	76.200	-5.34%		

Table 8-3 System Verification Results - 10g

SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	Measured SAR10g (W/kg)	1W Target SAR10g (W/kg)	1W Normalized SAR 10g (W/kg)	Deviation 10g (%)
AM2	2450	HEAD	06/14/2023	21.1	21.2	0.10	921	7308	2.420	25.500	24.200	-5.10%
AM1	5250	HEAD	06/19/2023	22.0	20.5	0.05	1123	7420	1.140	22.900	22.800	-0.44%
AM1	5250	HEAD	07/18/2023	22.5	20.7	0.05	1123	7420	1.100	22.900	22.000	-3.93%
AM1	5600	HEAD	06/19/2023	22.0	20.5	0.05	1123	7420	1.200	23.700	24.000	1.27%
AM1	5600	HEAD	07/18/2023	22.5	20.7	0.05	1123	7420	1.210	23.700	24.200	2.11%
AM1	5750	HEAD	06/19/2023	22.0	20.5	0.05	1123	7420	1.080	22.700	21.600	-4.85%
AM1	5750	HEAD	07/18/2023	22.5	20.7	0.05	1123	7420	1.080	22.700	21.600	-4.85%

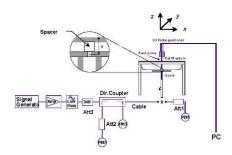


Figure 8-1 **System Verification Setup Diagram**

Figure 8-2 **System Verification Setup Photo**

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:	
FCC ID. BCG-A2900	SAK EVALUATION REPORT	Technical Manager	
Document S/N:	DUT Type:	Dogo 19 of 20	
1C2305110022-01.BCG (Rev 2)	Watch	Page 18 of 30	

9 SAR DATA SUMMARY

Standalone Head SAR Data 9.1

Table 9-1 2.4 GHz WLAN Head SAR

	MEASUREMENT RESULTS																		
FREQUENCY	Side	Spacing	Mode	Service	Housing Type	Wristband Type	Device Serial Number	Bandwidth [MHz]	Data Rate	Maximum Allowed	Conducted	Power Drift [dB]	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#	
MHz	Ch.								(Mbps)	Power [dBm]	Power [dBm]	Driit [dB]	(%)	(W/kg)	(Power)	Cycle)	(W/kg)	1	
2437	6	front	10 mm	802.11b	DSSS	Aluminum	Sport	FQ21R9LF2Q	22	1	20.0	18.80	0.03	99.6	0.336	1.318	1.004	0.445	A1
2437	6	front	10 mm	802.11b	DSSS	Aluminum	Metal Loop	FQ21R9LF2Q	22	1	20.0	18.80	-0.02	99.6	0.271	1.318	1.004	0.359	
2437	6	front	10 mm	802.11b	DSSS	Aluminum	Metal Links	FQ21R9LF2Q	22	1	20.0	18.80	0.01	99.6	0.235	1.318	1.004	0.311	
					ANSI / IEEE C	95.1 1992 - SA	FETY LIMIT								н	ead			
	Spatial Peak									1.6 W/kg (mW/g)									
				U	ncontrolled E:	xposure/Gener	al Population	1				averaged over 1 gram							

Table 9-2 5 GHz WLAN Head SAR

	MEASUREMENT RESULTS																		
FREQUI	ENCY	Side	Spacing	Mode	Service	Housing Type	Wristband	Device Serial Number	Bandwidth	Data Rate (Mbps)	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.						Type		[MHz]	(MDps)	Power [dBm]	Power [asm]	Drift (dB)	(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5300	60	front	10 mm	802.11a	OFDM	Aluminum	Sport	R7016HW6R0	20	6	17.0	16.19	0.08	98.6	0.113	1.205	1.014	0.138	
5300	60	front	10 mm	802.11a	OFDM	Aluminum	Metal Loop	R7016HW6R0	20	6	17.0	16.19	0.09	98.6	0.088	1.205	1.014	0.108	
5300	60 front 10 mm 802.11a OFDM Aluminum Metal Links R7016HW6R0 20 6												-0.05	98.6	0.111	1.205	1.014	0.136	
5500	100	front	10 mm	802.11a	OFDM	Aluminum	Sport	R7016HW6R0	20	6	17.0	16.37	0.07	98.6	0.132	1.156	1.014	0.155	
5500	100	front	10 mm	802.11a	OFDM	Aluminum	Metal Loop	R7016HW6R0	20	6	17.0	16.37	0.18	98.6	0.118	1.156	1.014	0.138	
5500	100	front	10 mm	802.11a	OFDM	Aluminum	Metal Links	R7016HW6R0	20	6	17.0	16.37	0.04	98.6	0.129	1.156	1.014	0.151	
5745	149	front	10 mm	802.11a	OFDM	Aluminum	Sport	R7016HW6R0	20	6	17.0	16.16	0.04	98.6	0.158	1.213	1.014	0.194	A2
5745	149	front	10 mm	802.11a	OFDM	Aluminum	Metal Loop	R7016HW6R0	20	6	17.0	16.16	-0.09	98.6	0.137	1.213	1.014	0.169	
5745	149	149 front 10 mm 802.11a OFDM Aluminum Metal Links R7016HW6R0 20 6											0.03	98.6	0.136	1.213	1.014	0.167	
	149 front 10 mm 802.11a OFDM Aluminum Metal Links R7016HW6R0 20 6 17.0														1.6 W/I	ead kg (mW/g) over 1 gram			

Table 9-3 **Bluetooth Head SAR**

								Jiaotootii			<u> </u>							
	MEASUREMENT RESULTS																	
FREQU	ENCY	Side	Spacing	Mode	Service	Housing Type	Wristband	Device Serial Number	Data Rate	Maximum Allowed	Conducted		Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.		.,			3	Type		(Mbps)	Power [dBm]	Power [dBm]	Drift [dB]	(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2402	2402 0 front 10 mm Bluetooth FHSS Aluminum Sport D02WJ26VQF								1	19.0	18.57	-0.08	100.0	0.248	1.104	1.000	0.274	A3
2402	0	front	10 mm	Bluetooth	FHSS	Aluminum	Metal Loop	D02WJ26VQF	1	19.0	18.57	0.00	100.0	0.215	1.104	1.000	0.237	
2402	0	front	10 mm	Bluetooth	FHSS	Aluminum	Metal Links	D02WJ26VQF	1	19.0	18.57	-0.01	100.0	0.192	1.104	1.000	0.275	
				ANSI / IEEE	C95.1 1992 - S	SAFETY LIMIT								Head				
					Spatial Peak									6 W/kg (mW				
				Uncontrolled	Exposure/Gen	eral Populatio	n						ave	raged over 1	gram			

Table 9-4 802.15.4 ab-NB Head SAR

							002.10	. T UD I	10 110	uu OAI	•						
	MEASUREMENT RESULTS																
FREG	UENCY	Side	Spacing	Mode	Housing Type	Wristband Type	Device Serial Number	Data Rate	Maximum Allowed Power	Conducted	Power Drift	Duty Cycle (%)	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.							(Mbps)	[dBm]	Power [dBm]	[dB]	, -, (.,	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5728.75	Low	front	10 mm	802.15.4 ab-NB	Aluminum	Metal Links	LL2NXY3F4T	1	16.00	15.85	0.21	8.6	0.005	1.035	1.035	0.005	
5728.75				802.15.4 ab-NB	Aluminum	Metal Loop	LL2NXY3F4T	1	16.00	15.85	-0.21	8.6	0.007	1.035	1.035	0.007	A4
5728.75						Sport	LL2NXY3F4T	1	16.00	15.85	-0.21	8.6	0.004	1.035	1.035	0.004	
	Α	NSI / IEEE C9	5.1 1992	- SAFETY LIMIT							Head						
			patial Pe								1.6 W/kg (r						
	Un	controlled Exi	posure/G	eneral Populatio	n					a	veraged over	r 1 gram					

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 19 of 30
1C2305110022-01.BCG (Rev 2)	Watch	1 age 19 01 30

Note: The reported SAR was scaled to the 8.9% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 8.9% per the manufacturer.

Standalone Extremity SAR Data 9.2

Table 9-5 2.4 GHz WLAN Extremity SAR

	MEASUREMENT RESULTS																		
FREQU	ENCY	Side	Spacing	Mode	Service	Housing Type	Wristband	Device Serial Number	Bandwidth	Data Rate	Maximum Allowed	Conducted		Duty Cycle	Scaling Factor	Scaling Factor (Duty	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.					5 //	Type		[MHz]	(Mbps)	Power [dBm]	Power [dBm]	Drift [dB]	(%)	(Power)	Cycle)	(W/kg)	(W/kg)	
2437	437 6 back 0 mm 802.11b DSSS Aluminum Sport D02WJ26VQF 22 1 20.0							20.0	18.80	0.00	99.6	1.318	1.004	0.078	0.103				
2437	6	back	0 mm	802.11b	DSSS	Aluminum	Metal Loop	D02WJ26VQF	22	1	20.0	18.80	-0.02	99.6	1.318	1.004	0.092	0.122	A5
2437	6	back	0 mm	802.11b	DSSS	Aluminum	Metal Links	D02WJ26VQF	22	1	20.0	18.80	-0.04	99.6	1.318	1.004	0.068	0.090	
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Ext	remity		•	
						Spatial Peak									4.0 W/F	g (mW/g)			
				Un	controlled Ex	posure/Gener	al Population	on							averaged	over 1 gram			

Table 9-6 **5 GHz WLAN Extremity SAR**

								MEASU	REMENT I										
FREQUE	ENCY	Side	Spacing	Mode	Service	Housing Type	Wristband	Device Serial Number	Bandwidth		Maximum Allowed	Conducted	Power		Scaling Factor		SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.		.,				Type		[MHz]	(Mbps)	Power [dBm]	Power [dBm]	Drift [dB]	(%)	(Power)	(Duty Cycle)	(W/kg)	(W/kg)	
5300	60	back	0 mm	802.11a	OFDM	Aluminum	Sport	D9PYGNVJYK	20	6	17.0	16.19	0.07	98.6	1.205	1.014	0.008	0.010	
5300	60	back	0 mm	802.11a	OFDM	Aluminum	Metal Loop	D9PYGNVJYK	20	6	17.0	16.19	0.05	98.6	1.205	1.014	0.012	0.015	
5300	60 back 0 mm 802.11a OFDM Aluminum Metal Links D9PYGNVJYK 20 6 1												0.01	98.6	1.205	1.014	0.013	0.016	A6
5500	100	back	0 mm	802.11a	OFDM	Aluminum	Sport	D9PYGNVJYK	20	6	17.0	16.37	0.07	98.6	1.156	1.014	0.006	0.007	
5500	100	back	0 mm	802.11a	OFDM	Aluminum	Metal Loop	D9PYGNVJYK	20	6	17.0	16.37	0.08	98.6	1.156	1.014	0.009	0.011	
5500	100	back	0 mm	802.11a	OFDM	Aluminum	Metal Links	D9PYGNVJYK	20	6	17.0	16.37	0.04	98.6	1.156	1.014	0.010	0.012	
5745	149	back	0 mm	802.11a	OFDM	Aluminum	Sport	D9PYGNVJYK	20	6	17.0	16.16	0.01	98.6	1.213	1.014	0.010	0.012	
5745	149	back	0 mm	802.11a	OFDM	Aluminum	Metal Loop	D9PYGNVJYK	20	6	17.0	16.16	0.04	98.6	1.213	1.014	0.006	0.007	
5745	149 back 0 mm 802.11a OFDM Aluminum Metal Links D9PYGNVJYK 20 6											16.16	0.05	98.6	1.213	1.014	0.004	0.005	
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT													В	ody			
		Spatial Peak														g (mW/g)			
				ı	Jncontrolled E	xposure/Genera	I Population					ĺ			averaged	over 1 gram			

Table 9-7 **Bluetooth Extremity SAR**

								· · · · · · · · · · · · · · · · · · ·		. •	• • • • • • • • • • • • • • • • • • • •								
	MEASUREMENT RESULTS																		
FREQU	ENCY	Side	Spacing	Mode	Service	Housing Type	Wristband	Device Serial Number	Data Rate	Maximum Allowed	Conducted	Power	Maximum Duty Cycle	Duty Cycle	Scaling Factor (Cond	Scaling Factor (Duty	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Type							(Mbps)	Power [dBm]	Power [dBm]	Drift [dB]	(%)	(%)	Power)	Cycle)	(W/kg)	(W/kg)		
2402	0	back	0 mm	Bluetooth	FHSS	Aluminum	Sport	D02WJ26VQF	1	19.0	18.57	-0.02	100.0	100.0	1.104	1.000	0.069	0.076	
2402	0	back	0 mm	Bluetooth	FHSS	Aluminum	Metal Loop	D02WJ26VQF	1	19.0	18.57	0.01	100.0	100.0	1.104	1.000	0.078	0.086	A7
2402	0	back	0 mm	Bluetooth	FHSS	Aluminum	Metal Links	D02WJ26VQF	1	19.0	18.57	-0.02	100.0	100.0	1.104	1.000	0.070	0.100	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Ex	tremity				
	Spatial Peak													4.0 W	/kg (mW/g)				
				Uncontrolled	Exposure/Ger	neral Population	n							average	d over 1 gran	n			

Table 9-8

							802.15.4	ab-NB	Extre	mity 5	AK						
	MEASUREMENT RESULTS																
FREQ	JENCY	Side	Spacing	Mode	Housing Type	Wristband	Device Serial Number	Data Rate	Maximum Allowed Power	Conducted	Power Drift		Scaling Factor	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot#
MHz	Ch.	Olde	opaomg	occ	riousing Type	Type	bevice certai reamber	(Mbps)	[dBm]	Power [dBm]	[dB]	(%)	(Power)	(Duty Cycle)	(W/kg)	(W/kg)	1101#
5728.75	Low	back	0 mm	802.15.4 ab-NB	Aluminum	Metal Links	LL2NXY3F4T	1	16.0	15.85	-0.21	8.6	1.035	1.035	0.000	0.000	
5728.75	Low	back	0 mm	802.15.4 ab-NB	Aluminum	Metal Loop	LL2NXY3F4T	1	16.0	15.85	0.21	8.6	1.035	1.035	0.000	0.000	
5728.75	Low	back	0 mm	802.15.4 ab-NB	Aluminum	Sport	LL2NXY3F4T	1	16.0	15.85	0.21	8.6	1.035	1.035	0.000	0.000	A8
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Extrem	ity					
	Spatial Peak										4.0 W/kg (r	nW/g)					
	I I i	acutualled Ev		maral Danidation							mragad augr	10 00000					

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 00 121 200 / 1200	\$7.11. 3 7.11 3 7.11 3 7.11	Technical Manager
Document S/N:	DUT Type:	Dogo 20 of 20
1C2305110022-01.BCG (Rev 2)	Watch	Page 20 of 30

Note: The reported SAR was scaled to the 8.9% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 8.9% per the manufacturer.

9.3 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg and 2.0 W/kg for 10g SAR.
- 7. This device has one housing type: Aluminum. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.
- 8. This device is a portable wrist-worn device and does not support any other use conditions. Therefore, the procedures in FCC KDB Publication 447498 D01v06 Section 6.2 have been applied for extremity and next to mouth (head) conditions.
- Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 10. The orange highlights throughout the report represent the highest scaled SAR per Equipment Class

WLAN Notes:

- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
 single transmission chain operations, the highest measured maximum output power channel for DSSS
 was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to
 the maximum allowed powers and the highest reported DSSS SAR. See Section 6.2.4 for more
 information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 6.2.5 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance.

Bluetooth Notes

1. To determine compliance, Bluetooth SAR was measured with the maximum power condition. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

802.15.4 ab-NB Notes

1. To determine compliance, the reported SAR was scaled to the 8.9% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 8.9% per the

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
1 CC ID. BCC-A2900	SAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 21 of 30
1C2305110022-01.BCG (Rev 2)	Watch	Page 21 01 30

manufacturer. See Section 7.2 for the time domain and plot and calculation for the duty factor of the device.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 22 of 30
C2305110022-01.BCG (Rev 2)	Watch	Fage 22 01 30

10 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

10.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit together.

10.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

10.3 Head SAR Simultaneous Transmission Analysis

For SAR summation, the highest reported SAR across all housing and wristband types was used as a conservative evaluation for the simultaneous transmission analysis.

Table 10-1
Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and 5 GHz WLAN (Head at 1.0 cm)

Exposure Condition	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
Head SAR	0.275	0.194	0.469

Table 10-2
Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and 802.15.4 ab-NB (Head at 1.0 cm)

Exposure Condition	2.4 GHz Bluetooth SAR (W/kg)	802.15.4 ab-NB SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
Head SAR	0.275	0.007	0.282

Table 10-3
Simultaneous Transmission Scenario with 2.4 GHz WLAN and 802.15.4 ab-NB (Head at 1.0 cm)

<u> </u>		,	112 (11040 41 110 0111)
Exposure Condition	2.4 GHz WLAN SAR (W/kg)	802.15.4 ab-NB SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
Head SAR	0.445	0.007	0.452

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2305110022-01.BCG (Rev 2)	DUT Type: Watch	Page 23 of 30

10.4 Extremity SAR Simultaneous Transmission Analysis

For SAR summation, the highest reported SAR across all housing and wristband types was used as a conservative evaluation for the simultaneous transmission analysis.

Table 10-4
Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and 5 GHz WLAN (Extremity at 0.0 cm)

Exposure Condition	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
Extremity SAR	0.100	0.016	0.116

Table 10-5

Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and 802.15.4 ab-NB (Extremity at 0.0 cm)

Exposure Condition	2.4 GHz Bluetooth SAR (W/kg)	802.15.4 ab-NB SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
Extremity SAR	0.100	0.000	0.100

Table 10-6

Simultaneous Transmission Scenario with 2.4 GHz WLAN and 802.15.4 ab-NB (Extremity at 0.0 cm)

Exposure Condition	2.4 GHz WLAN SAR (W/kg)	802.15.4 ab-NB SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
Extremity SAR	0.122	0.000	0.122

10.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
PCC ID. BCG-A2980	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 24 of 30
1C2305110022-01.BCG (Rev 2)	Watch	Page 24 01 30

SAR MEASUREMENT VARIABILITY

Measurement Variability 11.1

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed for each frequency band since all measured SAR values are < 0.8 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.

11.2 **Measurement Uncertainty**

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis was not required.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
FCC ID. BCG-A2980	SAK EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Page 25 of 30
1C2305110022-01.BCG (Rev 2)	Watch	Fage 25 01 50

12 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	4/25/2023	Annual	4/25/2024	US41460739
Agilent	E4438C	ESG Vector Signal Generator	11/17/2022	Annual	11/17/2023	MY45093852
Agilent	N5182A	MXG Vector Signal Generator	4/1/2023	Annual	4/1/2024	MY47420837
Agilent	N5182A	MXG Vector Signal Generator	11/17/2022	Annual	11/17/2023	US46240505
Agilent	8753ES	S-Parameter Vector Network Analyzer	6/2/2023	Annual	6/2/2024	MY40003841
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MN8110B	I/O Adaptor	CBT	N/A	CBT	6261747881
Anritsu	ML2496A	Power Meter	6/15/2023	Annual	6/15/2024	1138001
Anritsu	ML2496A	Power Meter	8/16/2022	Annual	8/16/2023	1351001
Anritsu	MA2411B	Pulse Power Sensor	1/10/2023	Annual	1/10/2024	1315051
Anritsu	MA2411B	Pulse Power Sensor	10/21/2022	Annual	10/21/2023	1207364
Anritsu	MA24106A	USB Power Sensor	4/21/2023	Annual	4/21/2024	1244515
Anritsu	MA24106A	USB Power Sensor	6/15/2023	Annual	6/15/2024	1827526
Anritsu	MA24106A	USB Power Sensor	6/15/2023	Annual	6/15/2024	1827527
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774678
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774685
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774675
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/17/2023	Annual	1/17/2024	160574418
Mitutoyo	500-196-30	CD-6"ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2023	Annual	3/15/2024	US46470561
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	NC-100	Torque Wrench	11/28/2022	Biennial	11/28/2024	81962
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/17/2022	Annual	10/17/2023	1091
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	9/19/2022	Annual	9/19/2023	1045
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1243
SPEAG	D2450V2	2450 MHz SAR Dipole	11/9/2021	Biennial	11/9/2023	921
SPEAG	D5GHzV2	5 GHz SAR Dipole	3/22/2022	Biennial	3/22/2024	1123
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/15/2023	Annual	2/15/2024	467
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/13/2022	Annual	10/13/2023	1333
SPEAG	EX3DV4	SAR Probe	2/13/2023	Annual	2/13/2024	7308
SPEAG	EX3DV4	SAR Probe	10/20/2022	Annual	10/20/2023	7420

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler, or filter were connected to a calibrated source (i.e., a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Each equipment item was used solely within its respective calibration period.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:	
FCC ID. BCG-A2900	SAK EVALUATION REPORT	Technical Manager	
Document S/N:	DUT Type:	Dogo 26 of 20	
1C2305110022-01.BCG (Rev 2)	Watch	Page 26 of 30	

13 MEASUREMENT UNCERTAINTIES

a	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	cxg/e	
	IEEE	Tol.	Prob.		C _i	C _i	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
	Sec.	(= /-/			. 3		(± %)	(± %)	-1
Measurement System	'		,			•	, ,		
Probe Calibration	E2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	∞
Linearity	E2.4	0.3	N	1	1	1	0.3	0.3	∞
System Detection Limits	E2.4	0.25	R	1.732	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E2.7	0.8	R	1.732	1	1	0.5	0.5	∞
Integration Time	E2.8	2.6	R	1.732	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E6.1	3	R	1.732	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E6.1	3	R	1.732	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	0.8	R	1.732	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)						1	12.2	12.0	191
Expanded Uncertainty k=2							24.4	24.0	\Box
F							27.7	24.0	1 1

The above measurement uncertainties are according to I \boxplus Std. 1528-2013

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
FCC ID. BCG-A2900	SAK EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Dogo 27 of 20
1C2305110022-01.BCG (Rev 2)	Watch	Page 27 of 30

14 CONCLUSION

14.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g., ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g., age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:
	OAK EVALUATION KEI OKT	Technical Manager
Document S/N:	DUT Type:	Page 28 of 30
1C2305110022-01.BCG (Rev 2)	Watch	Fage 26 01 30

15 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada; 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2305110022-01.BCG (Rev 2)	DUT Type: Watch	Page 29 of 30

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: BCG-A2980	SAR EVALUATION REPORT	Approved by:		
		Technical Manager		
Document S/N:	DUT Type:		D 00 -f 00	
1C2305110022-01.BCG (Rev 2)	Watch		Page 30 of 30	
			REV 22.0	