

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

STING	FCC Part 27	
Report Reference No FCC ID		
Compiled by (position+printed name+signature) ::	File administrators Xudong Zhang	Xudary zhanes
Supervised by (position+printed name+signature) .:	Project Engineer Zoey Cao	Kog And
Approved by (position+printed name+signature) .:	RF Manager Eric Wang	approved Lyit Mang
Date of issue	 Dec. 23, 2024	
Testing Laboratory Name	Shenzhen CTA Testing Technology (Co., Ltd.
Address:	Room 106, Building 1, Yibaolai Industri Fuhai Street, Baoʻan District, Shenzher	
Applicant's name	Shenzhen Jiaqi Technology Co., Ltd	. (31)
Address	Room 108, Building E, Bantian Internat Longgang District, Shenzhen, China	tional Center, Bantian Street,
Test specification Standard	FCC CFR Title 47 Part 2, Part 27 ANSI/TIA-603-E-2016 KDB 971168 D01	
Shenzhen CTA Testing Technology Co material. Shenzhen CTA Testing Techr	Co., Ltd. All rights reserved. whole or in part for non-commercial pur a., Ltd. is acknowledged as copyright ow hology Co., Ltd. takes no responsibility for s interpretation of the reproduced mater	ner and source of the or and will not assume liability
context.	JG	·
	SMART PHONE	·
context.	SMART PHONE N/A	· · · · · · · · · · · · · · · · · · ·
context. Test item description		· · · · · · · · · · · · · · · · · · ·
context. Test item description	N/A	· · · · · · · · · · · · · · · · · · ·
context. Test item description Trade Mark Manufacturer	N/A Shenzhen Jiaqi Technology Co., Ltd.	· · · · · · · · · · · · · · · · · · ·
context. Test item description Trade Mark Manufacturer Model/Type reference	N/A Shenzhen Jiaqi Technology Co., Ltd. S25 Ultra	CTA TESTING
context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models	N/A Shenzhen Jiaqi Technology Co., Ltd. S25 Ultra Refer to page 2	· · · · · · · · · · · · · · · · · · ·
context. Test item description: Trade Mark: Manufacturer: Model/Type reference: Listed Models: Frequency	N/A Shenzhen Jiaqi Technology Co., Ltd. S25 Ultra Refer to page 2 QPSK, 16QAM	CTA TESTING

eport No.: CTA2412060110	D6	Ň	Page 2 of 2
	TEST R	EPORT	CTATES !!
Equipment under Test	SMART PHONE		
Model /Type	: S25 Ultra		TESTING
Listed Models		a, C24 Ultra, I25 Ultra, 4 Ultra, K25 Ultra, K24	I24 Ultra, U24 Ultra, U2 Ultra, G24 Pro, G25 Pr
	ESTING		_
Applicant	Shenzhen Jiaqi T	echnology Co., Lto	l.
Address	: Room 108, Building Longgang District, S		al Center, Bantian Stree
Manufacturer	Shenzhen Jiaqi T	echnology Co., Lto	
Address	2617		al Center, Bantian Stree
Address	: Room 108, Building Longgang District, S		al Center, Bantian Stree
Address Testing	Longgang District, S	Shenzhen, China	ass *
(C)	Longgang District, S esult	Shenzhen, China	al Center, Bantian Stree ass * ied page 4.
Test r * In the configuration test The test report merely control to copy It is not permitted to copy	Longgang District, S esult ted, the EUT complied wi prresponds to the test sam y extracts of these test res	Shenzhen, China P th the standards specif ple.	ass * ied page 4.
Test re * In the configuration test The test report merely co It is not permitted to copy	Longgang District, S esult ted, the EUT complied wi prresponds to the test sam y extracts of these test res	Shenzhen, China P ith the standards specif ple. ult without the written pe	ass * ied page 4. ormission of the test labora
Test r * In the configuration test The test report merely control to copy It is not permitted to copy	Longgang District, S esult ted, the EUT complied wi prresponds to the test sam y extracts of these test res	Shenzhen, China P ith the standards specif ple. ult without the written pe	ass * ied page 4. ermission of the test labora

Repo	rt No.: CTA24120601106	Page 3 of 23
	Contents	Page 3 of 23
1 S	SUMMARY	4
1.1	TEST STANDARDS	
1.2	TEST DESCRIPTION	
1.3	Address of the test laboratory	
1.4	TEST FACILITY	
1.5	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2 6	GENERAL INFORMATION	E STING
	Environmental conditions	
2.1		
2.2	GENERAL DESCRIPTION OF EUT	
2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.4	EQUIPMENTS USED DURING THE TEST	
2.5	RELATED SUBMITTAL(S) / GRANT (S)	
2.6	Modifications	-
3 Т	EST CONDITIONS AND RESULTS	9
3.1	OUTPUT POWER	<u>6</u> 9
3.2	PEAK-TO-AVERAGE RATIO (PAR)	
3.3	Occupied Bandwidth and Emission Bandwidth	
3.4	BAND EDGE COMPLIANCE	
3.5	Spurious Emission	
3.6	FREQUENCY STABILITY UNDER TEMPERATURE & VOLTAGE VARIATIONS	
4 т	EST SETUP PHOTOS OF THE EUT	
		-
5 P	PHOTOS OF THE EUT	23
	CTATES	
	C C V	STING
		CTATESTING
		C Vr

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

Page 4 of 23

CTATE

FCC Part 27 : MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

CTATES' ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

FCCKDB971168D01 Power Meas License Digital Systems

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 27.50(c)(10)	Pass
Peak-to-Average Ratio	Part 27.50(d)(4)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 27.53(h)	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(h)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(h)	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(h)	Pass
Frequency stability	Part 2.1055 Part 27.54	Pass

1.3 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. ESTING

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

1.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibility Radio spectrum Matters (ERM);Uncertainties in the measurement matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1) 51
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB 🔍	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occupied Bandwidth	9KHz~40GHz	-	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

GENERAL INFORMATION 2

2.1 Environmental conditions

Date of receipt of test sample	:	Dec. 06, 2024
TES		. C.
Testing commenced on	:	Dec. 06, 2024
C.		TES
Testing concluded on		Dec. 23, 2024
	10	

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Description:	SMART PHONE
Model/Type reference:	S25 Ultra
Power supply:	DC 3.80V from Battery and DC 5.0V from external circuit
Adapter information:	Model: SL-A85 Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version:	V1.0
Software version:	android 10.0
Testing sample ID:	CTA241206011-1# (Engineer sample) CTA241206011-2# (Normal sample)
LTE	
Operation Band:	E-UTRA Band 7
Support Bandwidth:	Band 7: 5MHz,10MHz,15MHz,20MHz,
TX/RXFrequency Range:	E-UTRA Band 7(2500 MHz -2570MHz)
Modulation Type:	QPSK, 16QAM
Category:	Cat 4
Antenna Type:	PIFA Antenna
Antenna Gain:	1.07 dBi
Note: For more details,	refer to the user's manual of the EUT.

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, CTATEST then shown on this report.

2.4 Equipments Used during the Test

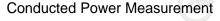
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibratior Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S ST	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/0
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/0
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/0
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/1
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/1
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/1
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/0
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/0
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/0
Automated filter bank	CTonscend	JS0806-F	CTA-404	2024/08/03	2025/08/0
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/0
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
· · · · · · · · · · · · · · · · · · ·	C.		GA CTAT	Eo.	CM CTI

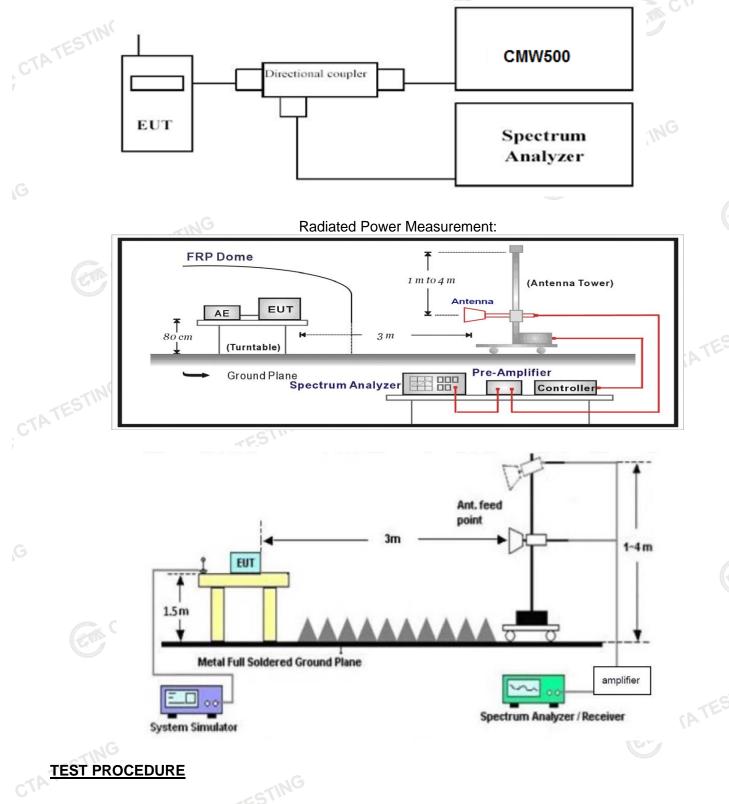
Report No.: CTA2412	20001100	GIA		F	
Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	ES N/A	N/A
2.5 Related Subn			3.1.46	N/A	
This submittal(s) (te	st report) is intende	ed for filing to comp	ly with of the F	CC Part 27 Ru	les.

2.5 Related Submittal(s) / Grant (s)

2.6 Modifications

CTA TESTING No modifications were implemented to meet testing criteria.


3 TEST CONDITIONS AND RESULTS


3.1 Output Power

<u>LIMIT</u>

According to §27.50 (d) (4): Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP.

TEST CONFIGURATION

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- Place the EUT on a bench and set it in transmitting mode. a)
- Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a b) Directional Couple.
- c) EUT Communicate with CMW500 then selects a channel for testing. TESTING
- Add a correction factor to the display of spectrum, and then test. d)

Radiated Power Measurement:

- The EUT shall be placed at the specified height on a support, and in the position closest to a) normal use as declared by provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to b) correspond to the frequency of the transmitter
- The output of the test antenna shall be connected to the measuring receiver. c)
- The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency d) of the transmitter under test.
- The test antenna shall be raised and lowered through the specified range of height until a e) maximum signal level is detected by the measuring receiver.
- The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum f) signal level is detected by the measuring receiver.
- The test antenna shall be raised and lowered again through the specified range of height until a g) maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- The transmitter shall be replaced by a substitution antenna. i)
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- I) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure
- The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level potential of the level n) radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna 0) orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input CTATESTING to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- Test site anechoic chamber refer to ANSI C63.4. q)

TEST RESULTS

Conducted Measurement:

BW				Chan	inel/Frequency(M	Hz)	
(MHz)	Modulation	RB Size	RB Offset	20850	21100	21350	
. ,			-	2510	2535	2560	
20	QPSK	1	0	23.65	23.18	23.40	
20	QPSK	1	49	23.28	23.14	23.34	
20	QPSK	1	99	23.61	23.62	22.74	
20	QPSK	50	0	21.72	22.14	22.12	
20	QPSK	50	24	22.33	22.19	22.10	
20	QPSK	50	50	22.17	22.17	22.10	
20	QPSK	100	0	22.15	22.21	22.19	
20	16QAM	1	0	22.03	21.83	22.04	
20	16QAM	1	49	22.29	22.14	21.91	
20	16QAM	1	99	22.18	22.37	21.93	
20	16QAM	50	0	21.08	21.01	21.14	
20	16QAM	50	24	21.46	21.26	21.43	
20	16QAM	50	50	21.03	21.02	21.10	
20	16QAM	100	0	21.19	21.43	21.37	
BW	Modulation	RB Size	RB Offset			nel/Frequency(MHz)	
(MHz)			_	20825	21100	21375	
				2507.5	2535	2562.5	
15	QPSK	1	0	23.43	23.44	23.56	
15	QPSK	1	37	23.00	23.24	23.26	
15	QPSK	1	74	23.03	23.37	22.98	
15	QPSK	36	0	21.93	21.84	21.89	
15	QPSK	36	20	22.36	22.16	21.96	
15	QPSK	36	39	22.14	22.00	22.10	
15	QPSK	75	0	21.92	21.99	22.16	
15	16QAM	1	0	22.31	22.20	22.10	
15	16QAM	1	37	22.08	21.81	22.28	
15	16QAM	1	74	22.10	22.22	22.10	
15	16QAM	36	0	21.09	21.25	21.50	
15	16QAM	36	20	21.08	20.99	21.22	
15	16QAM	36	39	20.88	21.22	21.18	
15	16QAM	75	0	21.15	21.09	21.22	
15 ATESTING							

(cm) ~

Page 12 of 23

BW	Modulation	RB Size	RB Offset	CI	hannel/Frequency((MHz)
(MHz)	Woddiation	ND 0126		20800	21100	21400
				2505	2535	2565
10	QPSK	1	0	23.14	23.55	22.91
10	QPSK	1	25	23.07	23.41	23.05
10	QPSK	1	49	23.02	23.03	23.57
10	QPSK	25	0	22.38	22.04	22.00
10	QPSK	25	12	21.88	22.12	21.85
10	QPSK	25	25	22.25	22.16	22.23
10	QPSK	50	0	22.40	22.25	21.99
10	16QAM	1	0	22.03	22.10	22.34
10	16QAM	1	25	21.95	21.99	22.18
10	16QAM	1	49	22.07	21.91	22.07
10	16QAM	25	0	21.35	21.11	20.89
10	16QAM	25	12	21.34	21.25	21.18
10	16QAM	25	25	21.24	21.21	21.08
10	16QAM	50	0	21.35	21.51	21.22
	BW Modulation					
BW (MHz)	Modulation	RB Size	RB Offset	CI 20775	hannel/Frequency(21100	(MHz) 21425
	Modulation	RB Size	RB Offset			· ,
	QPSK	RB Size	0	20775	21100	21425
(MHz)			_	20775 2502.5	21100 2535	21425 2567.5
(MHz) 5	QPSK QPSK QPSK	1	0	20775 2502.5 23.37	21100 2535 23.16 23.31 23.77	21425 2567.5 23.02
(MHz) 5 5	QPSK QPSK QPSK QPSK QPSK	<u>1</u> 1	0 12	20775 2502.5 23.37 23.48	21100 2535 23.16 23.31	21425 2567.5 23.02 23.45
(MHz) 5 5 5 5	QPSK QPSK QPSK	1 1 1	0 12 24	20775 2502.5 23.37 23.48 23.11	21100 2535 23.16 23.31 23.77	21425 2567.5 23.02 23.45 23.11
(MHz) 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 12	0 12 24 0	20775 2502.5 23.37 23.48 23.11 22.14	21100 2535 23.16 23.31 23.77 21.78	21425 2567.5 23.02 23.45 23.11 22.18 21.94 22.15
(MHz) 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK	1 1 1 12 12	0 12 24 0 7	20775 2502.5 23.37 23.48 23.11 22.14 22.34	21100 2535 23.16 23.31 23.77 21.78 22.38	21425 2567.5 23.02 23.45 23.11 22.18 21.94
(MHz) 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM	1 1 12 12 12 12	0 12 24 0 7 13 0 0	20775 2502.5 23.37 23.48 23.11 22.14 22.34 21.94 22.09 22.07	21100 2535 23.16 23.31 23.77 21.78 22.38 22.15 22.00 22.30	21425 2567.5 23.02 23.45 23.11 22.18 21.94 22.15 22.28 22.25
(MHz) 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 12 12 12 12 25	0 12 24 0 7 13 0 0 0 12	20775 2502.5 23.37 23.48 23.11 22.14 22.34 21.94 22.09	21100 2535 23.16 23.31 23.77 21.78 22.38 22.15 22.00	21425 2567.5 23.02 23.45 23.11 22.18 21.94 22.15 22.28 22.25 22.09
(MHz) 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 12 12 12 25 1 1 1 1	0 12 24 0 7 13 0 0	20775 2502.5 23.37 23.48 23.11 22.14 22.34 21.94 22.09 22.07	21100 2535 23.16 23.31 23.77 21.78 22.38 22.15 22.00 22.30	21425 2567.5 23.02 23.45 23.11 22.18 21.94 22.15 22.28 22.25 22.09 21.99
(MHz) 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 12 12 12 25 1 1 1 1 1 12	0 12 24 0 7 13 0 0 0 12	20775 2502.5 23.37 23.48 23.11 22.14 22.34 21.94 22.09 22.07 22.26	21100 2535 23.16 23.31 23.77 21.78 22.38 22.15 22.00 22.30 22.28	21425 2567.5 23.02 23.45 23.11 22.18 21.94 22.15 22.28 22.25 22.09
(MHz) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 12 25 1 1 1 1 1 12 12	0 12 24 0 7 13 0 0 0 12 24	20775 2502.5 23.37 23.48 23.11 22.14 22.34 21.94 22.09 22.07 22.26 22.11	21100 2535 23.16 23.31 23.77 21.78 22.38 22.15 22.00 22.30 22.28 21.96	21425 2567.5 23.02 23.45 23.11 22.18 21.94 22.15 22.28 22.25 22.09 21.99
(MHz) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 25 1 1 1 1 1 12	0 12 24 0 7 13 0 0 12 24 0	20775 2502.5 23.37 23.48 23.11 22.14 22.34 21.94 22.09 22.07 22.26 22.11 21.13	21100 2535 23.16 23.31 23.77 21.78 22.38 22.15 22.00 22.30 22.28 21.96 21.17	21425 2567.5 23.02 23.45 23.11 22.18 21.94 22.15 22.28 22.25 22.09 21.99 21.24

Radiated Measurement: Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$
- 3. All models was tested, only the recorded worst result

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
2502.5	-18.67	3.06	9.68	34.8	22.75	33.01	-10.26	V	rE
2535	-18.71	3.17	9.68	34.8	22.60	33.01	-10.41	VCTA	
2567.5	-19.11	3.22	9.75	34.8	22.22	33.01	-10.79	V	
TING								Contraction of the	-

LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK

LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505	-18.50	3.06	9.68	34.8	22.92	33.01	-10.09	V
2535	-18.97	3.17	9.68	34.8	22.34	33.01	-10.67	SIV
2565	-19.19	3.22	9.75	34.8	22.14	33.01	-10.87	V

LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	PMea (dBm)	G Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-19.09	3.06	9.68	34.8	22.33	33.01	-10.68	V
2535	-18.70	3.17	9.68	34.8	22.61	33.01	-10.40	V
2562.5	-19.28	3.22	9.75	34.8	22.05	33.01	-10.96	V
LTE FDD Ba	and 7_Cha	nnel Band	width 20MH	z_QPSK	C	CTATES		

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK

	Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	2510	-18.51	3.06	9.68	34.8	22.91	33.01	-10.10	V
-1	2535	-19.47	3.17	9.68	34.8	21.84	33.01	-11.17	V
Ç,	2560	-19.18	3.22	9.75	34.8	22.15	33.01	-10.86	V
1	LTE FDD Ba	and 7_Cha	nnel Band	width 5MHz	_16QAM	ESTIN	G		

LTE FDD Band 7_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-20.22	3.06	9.68	34.8	21.20	33.01 🤇	-11.81	V
2535	-20.37	3.17	9.68	34.8	20.94	33.01	-12.07	V
2567.5	-20.09	3.22	9.75	34.8	21.24	33.01	-11.77	V

LTE FDD Band 7_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
2505	-19.61	3.06	9.68	34.8	21.81	33.01	-11.20	V	
2535	-20.07	3.17	9.68	34.8	21.24	33.01	-11.77	V	10
2565	-20.24	3.22	9.75	34.8	21.09	33.01	-11.92	V	ED
								CIA CIA	

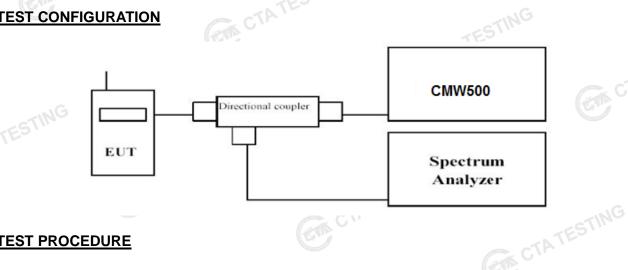
Page 14 of 23

OM

LTE FDD Band 7_Channel Bandwidth 15MHz_16QAM

Report No.:	GTA241200	001106					Pa	ige 14 of 23
LTE FDD Ba	and 7_Cha	nnel Band	<i>width</i> 15MH	z_16QAM			ATA	TES
Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-20.13	3.06	9.68	34.8	21.29	33.01	-11.72	V
2535	-19.56	3.17	9.68	34.8	21.75	33.01	-11.26	V
2562.5	-19.83	3.22	9.75	34.8	21.50	33.01	-11.51	V
			. 7	ES				

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM


	Frequency (MHz)	PMea (dBm)	Pcl (dB)	Ga Antenna Gain(dB)	PAg (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
	2510	-20.23	3.06	9.68	34.8	21.19	33.01	-11.82	VCTA	
	2535	-19.80	3.17	9.68	34.8	21.51	33.01	-11.50	V	
	2560	-20.07	3.22	9.75	34.8	21.26	33.01	-11.75	V	
, cT			CTATE	STING						

Peak-to-Average Ratio (PAR) 3.2

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
 - Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
 - 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
 - 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,

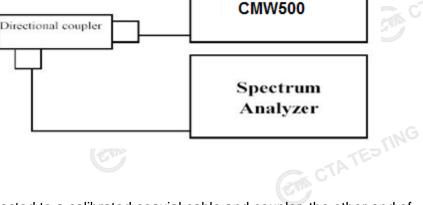
2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst CTATEST timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

---Passed-----

5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Please refer to the appendix test data.


CTING

3.3 Occupied Bandwidth and Emission Bandwidth LIMIT

N/A

TEST PROCEDURE

EUT

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded.

Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

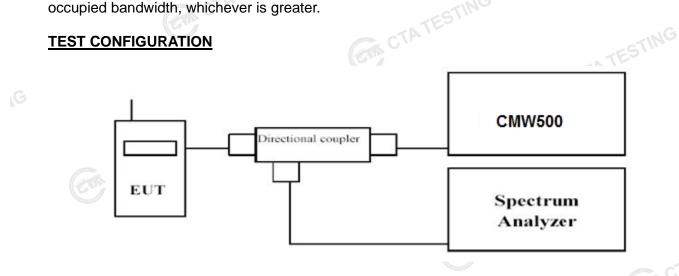
----Passed-----

TEST RESULTS

Please refer to the appendix test data.

Band Edge compliance 3.4

LIMIT


Equipment shall comply with the following unwanted emission limits:

- a) for base station and fixed subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least 43 + 10 log10 p
- b) for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:
 - 40 + 10 log10 p from the channel edges to 5 MHz away
 - 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
 - 55 + 10 log10 p at X MHz and beyond from the channel edges

In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.

In (a) and (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

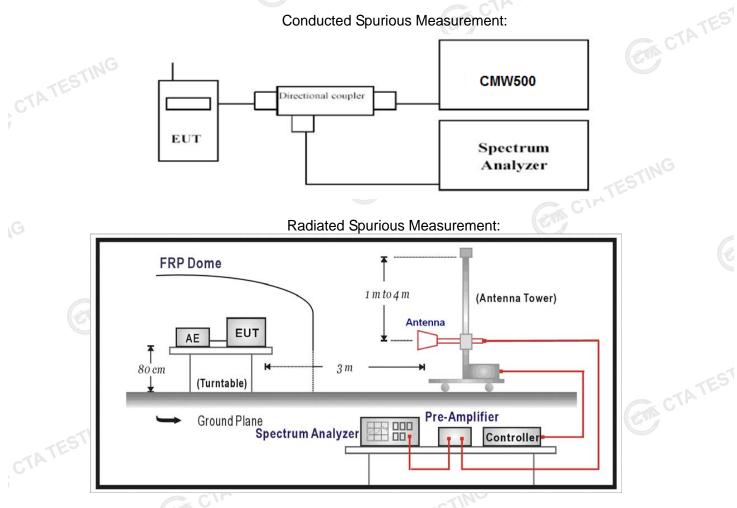
TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- CTATESTING Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

Passed-


Please refer to the appendix test data. CTA TESTING

3.5 Spurious Emission

<u>LIMIT</u>

According to 27.53 (h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500 then selects a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.

Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- The test antenna shall be raised and lowered again through the specified range of height until a g. maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- The transmitter shall be replaced by a substitution antenna. ì.
- The substitution antenna shall be orientated for vertical polarization and the length of the j. substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to Ι. increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- CTATEST q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.

Passed-----

r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Conducted Measurement:

Please refer to the appendix test data.

Radiated Measurement:

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7

FSTIN
LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK_ Low Channel

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Distance (m)	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5020	-40.34	5.11	3.00	13.38	-32.07	-25.00	-7.07	Н
7530	-47.49	6.02	3.00	13.98	-39.53	-25.00	-14.53	Н
5020	-43.49	5.11	3.00	13.38	-35.22	-25.00	-10.22	VCTA
7530	-48.27	6.02	3.00	13.98	-40.31	-25.00	-15.31	S-V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK_ Middle Channel

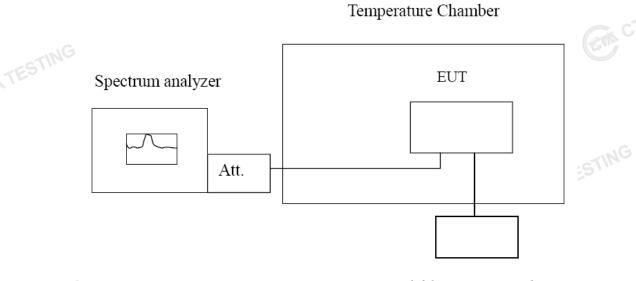
Frequency (MHz)	PMea (dBm)	Pcl (dB)	Distance (m)	Ga Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5070	-45.09	5.21	3.00	13.54	-36.76	-25.00	-11.76	HG
7605	-54.91	6.14	3.00	14.13	-46.92	-25.00	-21.92	STH
5070	-45.04	5.21	3.00	13.54	-36.71	-25.00	-11.71	V
7605	-50.14	6.14	3.00	14.13	-42.15	-25.00	-17.15	V
	~				<u>, , , , , , , , , , , , , , , , , , , </u>			

LTE FDD 7_Channel Bandwidth 20MHz_QPSK_ High Channel

Frequency (MHz)	PMea (dBm)	Pcl (dB)	Distance (m)	Ga Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
5120	-44.41	5.3	3.00	13.69	-36.02	-25.00	-11.02	Н	
7680	-54.09	6.25	3.00	14.25	-46.09	-25.00	-21.09	Н	
5120	-40.96	5.3	3.00	13.69	-32.57	-25.00	-7.57	V	
7680	-54.35	6.25	3.00	14.25	-46.35	-25.00	-21.35	V	
Notes: 1.All channel	bandwidth	were tested	d,the report r	ecorded the	worst data.			GIA CTAT	

Notes:

2. EIRP=PMea(dBm)-Pcl(dB)+PAg(dB)+Ga(dBi)


- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = EIRP Limit
- CTA TESTING 5. We measured all modes and only recorded the worst case.

Frequency Stability under Temperature & Voltage Variations 3.6

LIMIT

According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm. CTATESTING

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the user of DEC. DIGITAL RADIO COMMUNICATION TESTER.

- Measure the carrier frequency at room temperature. 1.
- Subject the EUT to overnight soak at -30°C. 2.
- With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call 3. on middle channel for LTE band 12, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any selfheating to stabilize, before continuing.
- Subject the EUT to overnight soak at +50°C. 6.
- With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call 7. on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 °C increments from +50 °C to -30 °C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure. 9. Frequency Stability under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

-Passed-----

TEST RESULTS

Please refer to the appendix test data.

