Medtronic MiniMed

TEST REPORT FOR

Model: RF ID: 033686*

*(See Appendix A for Manufacturers Declaration)

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 110869-2

Date of issue: February 3, 2025

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 41 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test (EUT)	6
General Product Information:	7
FCC Part 15 Subpart C	10
15.247(a)(2) 6dB Bandwidth	10
15.247(b)(3) Output Power	14
15.247(e) Power Spectral Density	21
15.247(d) Radiated Emissions & Band Edge	27
Appendix A: Manufacturer Declaration	39
Supplemental Information	40
Measurement Uncertainty	40
Emissions Test Details	40

Administrative Information

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Medtronic MiniMed Stacey Noriega
18000 Devonshire Street CKC Laboratories, Inc.
Northridge, CA 91325 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Jonathan Tabalujan Project Number: 110869

Customer Reference Number: 6000022985

DATE OF EQUIPMENT RECEIPT:DATE(S) OF TESTING:
January 23, 2025
January 23-25, 2025

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve - Be

Page 3 of 41 Report No.: 110869-2

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E. Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 41 Report No.: 110869-2

Summary of Results

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NA1
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA2

NA = Not Applicable

NA1 = The manufacturer declares the test is not applicable because EUT does not have an external antenna port.

NA2 = The manufacturer declares the test is not applicable because the EUT is battery powered.

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 41 Report No.: 110869-2

Equipment Under Test (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Under Test (EUT):

Device	Manufacturer	Model #	S/N
Synergy Enhanced	Medtronic MiniMed	RF ID: 033686	B343017772

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude 5400	24KF433
Dongle	NA	NA	NA

Configuration 2

Equipment Under Test (EUT):

Device	Manufacturer	Model #	S/N
Synergy Enhanced	Medtronic MiniMed	RF ID: 033686	B343016735

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude 5400	24KF433
Dongle	NA	NA	NA

Page 6 of 41 Report No.: 110869-2

General Product Information:

Description of EUT
Glucose Sensor Transmitter

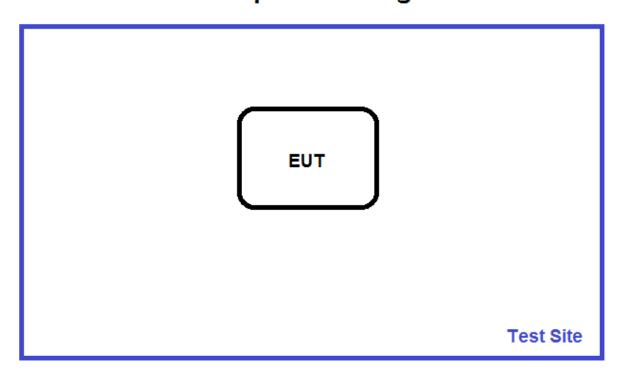
Manufacturer-Provided Details
2402-2480 MHz
Stand-Alone Equipment
DTS
100% (Tested worst case)
GFSK
1
NA
Inverted F / -4.6 dBi
Integral
3VDC Internal Battery
Sensor RF Test utility 3.0A
NA
Set to 2dB power
NA

The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

EUT Photo(s)

Support Equipment Photo(s)

Support Equipment, Laptop


Support Equipment, Dongle

Block Diagram of Test Setup(s)

Config#	Setup Description of Block Diagram
Rad EM	EUT is on test bench powered by battery

Test Setup Block Diagram

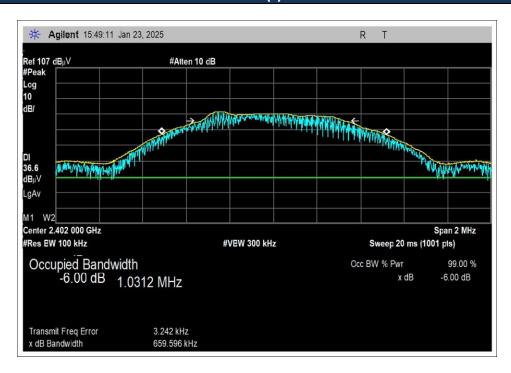
Page 9 of 41 Report No.: 110869-2

FCC Part 15 Subpart C

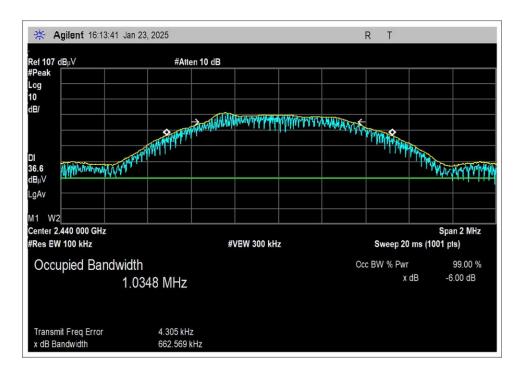
15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions						
Test Location:	Bothell Lab C3	Test Engineer:	C. Plumadore			
Test Method:	ANSI C63.10 (2020), KDB 558074	Test Date(s):	1/23/2025			
Configuration:	1	1				
Test Setup:	EUT setup on 1.5m foam table trar	nsmitting at low, mid	d, and high frequencies.			

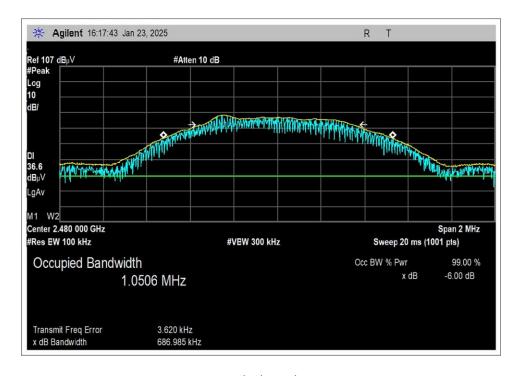
Environmental Conditions				
Temperature (°C)	22.3	Relative Humidity (%):	28	


	Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
03540	Preamp	HP	83017A	1/7/2025	1/7/2027				
02374ANSI	Horn Antenna	Electrometrics	RGA-60	5/26/2023	5/26/2025				
P05546	Cable	Andrews	Heliax	5/9/2024	5/9/2026				
P06515	Cable	Andrews	Heliax	2/28/2024	2/28/2026				
P07504	Cable	TMS	CLU40-KMKM- 02.00F	1/19/2024	1/19/2026				
03807	Spectrum Analyzer	Agilent	E4440A	10/10/2023	10/10/2025				

	Test Data Summary							
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results			
2402	1	GFSK	659.596	≥500	Pass			
2440	1	GFSK	662.569	≥500	Pass			
2480	1	GFSK	686.985	≥500	Pass			


Page 10 of 41 Report No.: 110869-2

Plot(s)



Low Channel

Middle Channel

High Channel

Page 12 of 41 Report No.: 110869-2

Test Photos

15.247(b)(3) Output Power

Test Setup/Conditions						
Test Location:	Bothell Lab C3	Test Engineer:	C. Plumadore			
Test Method:	ANSI C63.10 (2020), KDB 558074	Test Date(s):	1/23/2025			
Configuration:	1					
Test Setup:	EUT set up on foam table 1.5m high	transmitting on low,	, mid, and high channels.			

Environmental Conditions					
Temperature (ºC)	21.6	Relative Humidity (%):	29.4		

	Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
03540	Preamp	HP	83017A	1/7/2025	1/7/2027				
02374ANSI	Horn Antenna	Electrometrics	RGA-60	5/26/2023	5/26/2025				
P05546	Cable	Andrews	Heliax	5/9/2024	5/9/2026				
P06515	Cable	Andrews	Heliax	2/28/2024	2/28/2026				
P07504	Cable	TMS	CLU40-KMKM-02.00F	1/19/2024	1/19/2026				
03807	Spectrum Analyzer	Agilent	E4440A	10/10/2023	10/10/2025				

	Test Data Summary - Radiated Measurement						
Measurement Option: RBW > DTS Bandwidth							
Frequency	Modulation	Ant. Type / Gain (dBi)	RF Conducted (dBm)		EIRP (dBm)		Results
(MHz)		Gain (GBI)	Calculated	Limit	Calculated	Limit	
2402	GFSK	-4.6	-3.028	≤30	-7.628	≤36	Pass
2440	GFSK	-4.6	-2.928	≤30	-7.528	≤36	Pass
2480	GFSK	-4.6	-2.628	≤30	-7.228	≤36	Pass

EIRP is calculated as RF conducted power (dBm) + antenna gain (dBi)

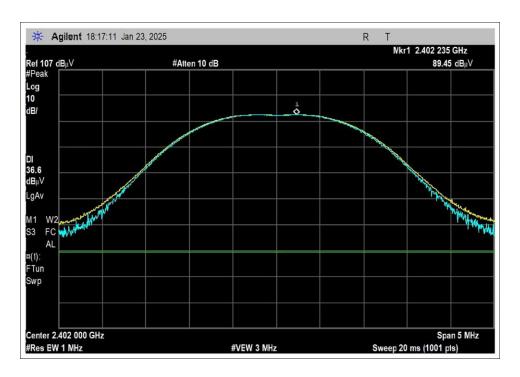
For fixed point-to-point antennas, the limit is calculated in accordance with 15.247(c)(1): $Limit = 30 - Roundup\left(\frac{G-6}{3}\right)$

For all other antennas, the RF conducted power limit is calculated according to a maximum of 1W (30 dBm) conducted power with a maximum of 6dBi gain antenna in accordance with 15.247(b) Limit = 30 - Roundup(G - 6)

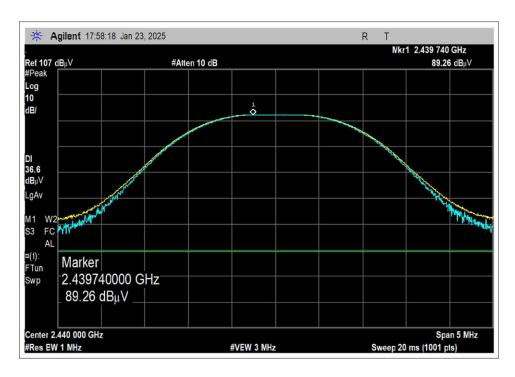
For directional beamforming antennas, the limit is calculated in accordance with 15.247(c)(2) and KDB 662911.

Conducted RF output power calculated in accordance with ANSI C63.10.

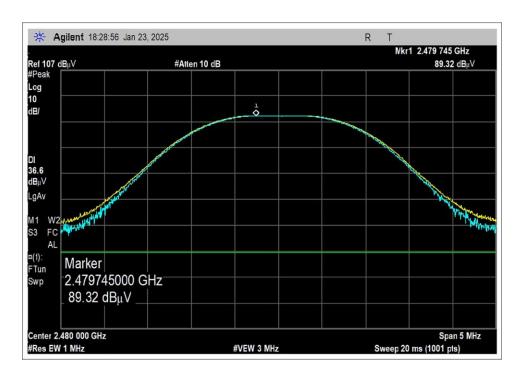
$$P(W) = \frac{(E \cdot d)^2}{30 \ G}$$


Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$


Page 14 of 41 Report No.: 110869-2

Plots



Low Channel

Middle Channel

High Channel

Page 16 of 41 Report No.: 110869-2

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

Work Order #: 110869 Date: 1/23/2025
Test Type: Radiated Scan Time: 18:22:34
Tested By: C. Plumadore Sequence#: 1

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

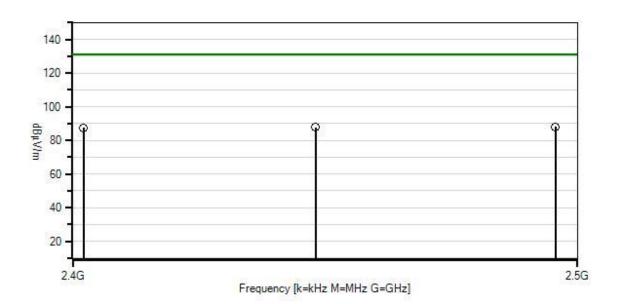
Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Setup:

EUT setup on 1.5m high foam table. transmitting on low, mid and high channel. X, Y, Z axes investigated worst case reported.

Test Environment Conditions:


Temperature: 22.1°C Humidity: 28.4% Pressure: 102.8 kPa

Test Method: ANSI 63.10

Page 17 of 41 Report No.: 110869-2

Medtronic MiniMed WO#: 110869 Sequence#: 1 Date: 1/23/2025 15.247(b) Power Output (2400-2483.5 MHz DTS) Test Distance: 3 Meters Vert

Readings

× QP Readings

▼ Ambient

--- 1 - 15.247(b) Power Output (2400-2483.5 MHz DTS)

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	1/7/2025	1/7/2027
T2	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T3	ANP05546	Cable	Heliax	5/9/2024	5/9/2026
T4	ANP06515	Cable	Heliax	1/8/2025	1/8/2027
T5	ANP07504	Cable	CLU40-KMKM-	1/7/2025	1/7/2027
			02.00F		
Т6	AN02673	Spectrum Analyzer	E4446A	3/8/2024	3/8/2026

Meası	irement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	3	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2479.745M	89.3	-34.6	+29.0	+1.1	+2.6	+0.0	88.0	131.2	-43.2	Horiz
			+0.6	+0.0			210		Z-axes		145
2	2439.790M	89.3	-34.7	+28.8	+1.1	+2.6	+0.0	87.7	131.2	-43.5	Horiz
			+0.6	+0.0			220		Z-axes		155
3	2401.770M	89.5	-34.7	+28.6	+1.1	+2.5	+0.0	87.6	131.2	-43.6	Horiz
			+0.6	+0.0			40		Z-axes		145

Page 18 of 41 Report No.: 110869-2

Test Setup Photo(s)

Test Setup

X-Axis

Y-Axis

Z-Axis

15.247(e) Power Spectral Density

Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	C. Plumadore		
Test Method:	ANSI C63.10 (2020), KDB 558074	Test Date(s):	1/24/2025		
Configuration:	1				
Test Setup:	EUT set up on foam table 1.5m high	transmitting on lo	w, mid, and high channels.		

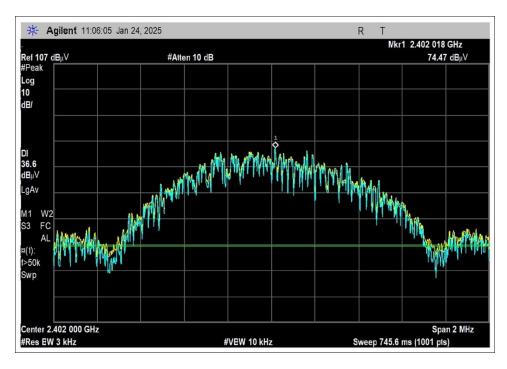
Environmental Conditions						
	Temperature (ºC)	21.5	Relative Humidity (%):	30		

	Test Equipment											
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due							
03540	Preamp	HP	83017A	1/7/2025	1/7/2027							
02374ANSI	Horn Antenna	Electrometrics	RGA-60	5/26/2023	5/26/2025							
P05546	Cable	Andrews	Heliax	5/9/2024	5/9/2026							
P06515	Cable	Andrews	Heliax	2/28/2024	2/28/2026							
P07504	Cable	TMS	CLU40-KMKM- 02.00F	1/19/2024	1/19/2026							
03807	Spectrum Analyzer	Agilent	E4440A	10/10/2023	10/10/2025							

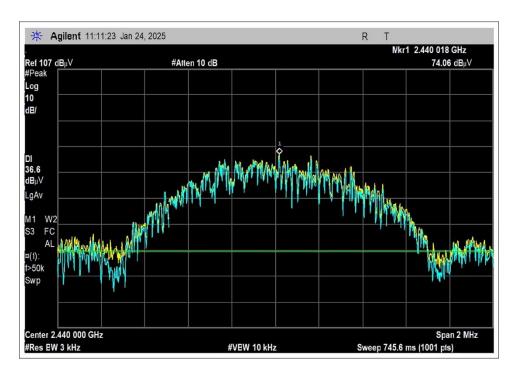
	Test Data Summary - Radiated Measurement									
Measurement Method: PKPSD										
Frequency (MHz)	. , Modulation ,, Results									
2402	GFSK	-4.6	72.6	-16.628	≤8	Pass				
2440	GFSK	-4.6	72.5	-16.728	≤8	Pass				
2480	GFSK	-4.6	73.1	-16.128	≤8	Pass				

Conducted RF output power calculated in accordance with ANSI C63.10.

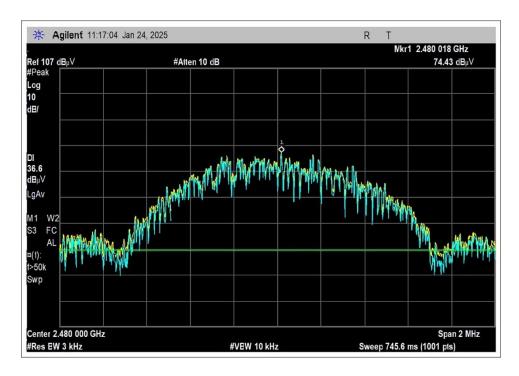
$$P(W) = \frac{(E \cdot d)^2}{30 \ G}$$


Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$


Page 21 of 41 Report No.: 110869-2

Plot(s)



Low Channel

Middle Channel

High Channel

Page 23 of 41 Report No.: 110869-2

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)

Work Order #: 10869 Date: 1/24/2025

Test Type: Radiated Scan Time: 11:11:35

Tested By: C. Plumadore Sequence#: 4

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

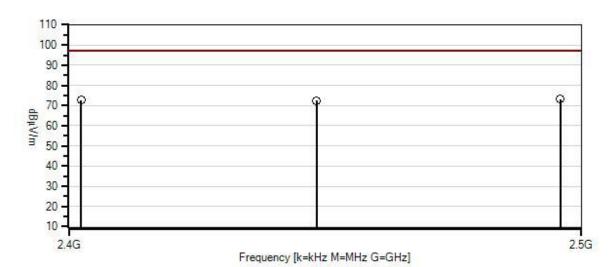
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Setup:

EUT setup on 1.5m high foam table. transmitting on low, mid and high channel. X, Y, Z axes investigated worst case reported.

Test Environment Conditions:


Temperature: 20.6°C Humidity: 30.6% Pressure: 102.8 kPa

Test Method: ANSI 63.10

Page 24 of 41 Report No.: 110869-2

Medtronic MiniMed WO#: 110869 Sequence#: 4 Date: 1/24/2025 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS) Test Distance: 3 Meters Vert

- Readings

Peak Readings

× QP Readings

* Average Readings

▼ Ambient

Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	1/7/2025	1/7/2027
T2	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T3	ANP05546	Cable	Heliax	5/9/2024	5/9/2026
T4	ANP06515	Cable	Heliax	1/8/2025	1/8/2027
T5	ANP07504	Cable	CLU40-KMKM-	1/7/2025	1/7/2027
			02.00F		
T6	AN02673	Spectrum Analyzer	E4446A	3/8/2024	3/8/2026

Measi	urement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2480.018M	74.4	-34.6	+29.0	+1.1	+2.6	+0.0	73.1	97.2	-24.1	Vert
			+0.6	+0.0							
2	2402.018M	74.5	-34.7	+28.6	+1.1	+2.5	+0.0	72.6	97.2	-24.6	Vert
			+0.6	+0.0							
3	2440.018M	74.1	-34.7	+28.8	+1.1	+2.6	+0.0	72.5	97.2	-24.7	Vert
			+0.6	+0.0							

Page 25 of 41 Report No.: 110869-2

Test Setup Photo(s)

Page 26 of 41 Report No.: 110869-2

15.247(d) Radiated Emissions & Band Edge

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 110869 Date: 1/25/2025
Test Type: Radiated Scan Time: 14:42:04
Tested By: C. Plumadore Sequence#: 2

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1 & 2

Support Equipment:

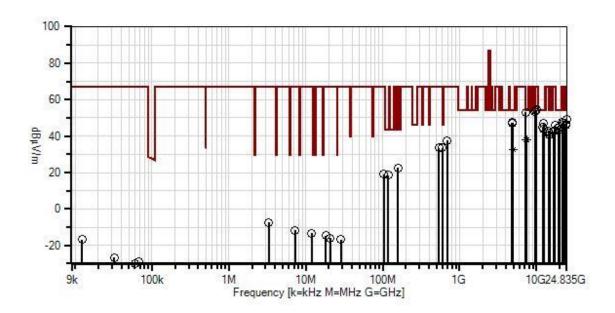
Device Manufacturer Model # S/N
Configuration 1 & 2

Test Conditions / Notes:

Test Setup:

EUT setup on 1.5m high foam table. transmitting on low, mid and high channel. X, Y, Z axes investigated worst case reported.

Test Environment Conditions:


Temperature: 22.1°C Humidity: 28.4% Pressure: 102.8 kPa

Test Method: ANSI 63.10

Page 27 of 41 Report No.: 110869-2

Medtronic MiniMed WO#: 110869 Sequence#: 2 Date: 1/25/2025 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ReadingsQP Readings

▼ Ambient
 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	1/7/2025	1/7/2027
T2	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T3	ANP05546	Cable	Heliax	5/9/2024	5/9/2026
T4	ANP06515	Cable	Heliax	1/8/2025	1/8/2027
T5	ANP07504	Cable	CLU40-KMKM-02.00F	1/7/2025	1/7/2027
Т6	AN02673	Spectrum Analyzer	E4446A	3/8/2024	3/8/2026
T7	AN02741	Active Horn	AMFW-5F-12001800-	5/26/2023	5/26/2025
		Antenna	20-10P		
Т8	ANP07900	Cable	CLU40-KMKM-10.00F	8/8/2023	8/8/2025
Т9	AN02763-69	Waveguide	Multiple	1/9/2024	1/9/2026
T10	ANP07901	Cable	CLU40-KMKM-10.00F	8/8/2023	8/8/2025
T11	AN02742	Active Horn	AMFW-5F-18002650-	12/2/2024	12/2/2026
		Antenna	20-10P		
T12	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T13	ANP05333	Cable	Heliax	1/8/2025	1/8/2027
T14	ANP05360	Cable	RG214	1/7/2025	1/7/2027
T15	AN02307	Preamp	8447D	8/9/2023	8/9/2025
T16	ANP08205	Cable	CBL-6FT-NMNM+	1/22/2025	1/22/2027
T17	AN00052	Loop Antenna	6502	4/19/2024	4/19/2026

Page 28 of 41 Report No.: 110869-2

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distanc	Distance: 3 Meters				
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar		
			T5	T6	T7	T8							
			T9	T10	T11	T12							
			T13	T14	T15	T16							
			T17										
	MHz	dΒμV	dB	dB	dB	dB		dBµV/m	dBμV/m	dB	Ant		
1	4881.980M	41.6	-34.0	+33.4	+1.6	+3.9	+0.0	47.5	54.0	-6.5	Vert		
			+1.0	+0.0	+0.0	+0.0			X-axes mid	channel			
			+0.0	+0.0	+0.0	+0.0							
			+0.0	+0.0	+0.0	+0.0							
			+0.0										
2		51.3	+0.0	+0.0	+3.0	+6.7	+0.0	47.3	54.0	-6.7	Vert		
	M		+0.0	+0.0	-13.7	+0.0							
			+0.0	+0.0	+0.0	+0.0			z-axes high	channel			
			+0.0	+0.0	+0.0	+0.0							
			+0.0										
3	4802.545M	41.7	-33.9	+33.1	+1.5	+3.8	+0.0	47.3	54.0	-6.7	Vert		
			+1.1	+0.0	+0.0	+0.0			x-axes low	channel			
			+0.0	+0.0	+0.0	+0.0							
			+0.0	+0.0	+0.0	+0.0							
			+0.0										
4		49.7	+0.0	+0.0	+0.0	+0.0	+0.0	47.2	54.0	-6.8	Vert		
	M		+0.0	+0.0	+0.0	+5.5							
			+2.7	+5.6	-16.3	+0.0			x-axes high	channel			
			+0.0	+0.0	+0.0	+0.0							
	12011 200	40.0	+0.0	0.0			0.0	440	7.1.0	^ 2	**		
5	12011.280	48.3	+0.0	+0.0	+3.3	+6.6	+0.0	44.8	54.0	-9.2	Vert		
	M		+0.0	+0.0	-13.4	+0.0			1	1 1			
			+0.0	+0.0	+0.0	+0.0			z-axes low	cnannei			
			+0.0	+0.0	+0.0	+0.0							
-	19841.075	44.2	+0.0	+0.0	+0.0	+0.0	+0.0	44.8	54.0	-9.2	Vert		
6	19841.073 M	44.2	+0.0 +0.0	+0.0 +0.0	$^{+0.0}_{+0.0}$	+0.0 +5.2	+0.0	44.0	34.0	-9.2	vert		
	1 V1		+2.9	+5.2	+0.0 -12.7	+0.0			x-axes high	channal			
			+0.0	+0.0	+0.0	+0.0			x-axes mgn	Chamici			
			+0.0	10.0	10.0	10.0							
7	19214.085	44.0	+0.0	+0.0	+0.0	+0.0	+0.0	44.2	54.0	-9.8	Vert		
,	M		+0.0	+0.0	+0.0	+5.1	. 0.0	. 1.2	5 1.0	7.0	, 010		
	111		+2.9	+5.1	-12.9	+0.0			z-axea low	channel			
			+0.0	+0.0	+0.0	+0.0							
			+0.0										
8	12201.425	47.8	+0.0	+0.0	+3.1	+6.5	+0.0	44.0	54.0	-10.0	Vert		
	M		+0.0	+0.0	-13.4	+0.0							
			+0.0	+0.0	+0.0	+0.0			x-axes mid	channel			
			+0.0	+0.0	+0.0	+0.0							
			+0.0										
9	19518.550	43.0	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	54.0	-10.6	Vert		
	M		+0.0	+0.0	+0.0	+5.2							
			+2.8	+5.1	-12.7	+0.0			x-axes mid	channel			
			+0.0	+0.0	+0.0	+0.0							
1			+0.0										

Page 29 of 41 Report No.: 110869-2

10	9920.000M	41.4	-34.5	+38.2	+2.5	+5.6	+0.0	54.4	66.9 -12.5	Vert
			+1.2	+0.0	+0.0	+0.0			X-axes high	
			+0.0	+0.0	+0.0	+0.0			channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	•••						
11	9758.120M	41.1	-34.6	+38.0	+2.5	+5.5	+0.0	53.8	66.9 -13.1	Vert
			+1.3	+0.0	+0.0	+0.0			Z-axes mid channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
10	0.605.000.6	44.4	+0.0	27.0	2.7		0.0			**
12	9607.330M	41.1	-34.7	+37.9	+2.5	+5.5	+0.0	53.5	66.9 -13.4	Vert
			+1.2	+0.0	+0.0	+0.0			x-axes low channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
1.2	7204.75014	40.7	+0.0	.267	. 2 2	. 5 4	. 0. 0	<i>52.0</i>	((0 120	X 7 4
13	7204.750M	42.7	-35.1	+36.7	+2.2	+5.4	+0.0	53.0	66.9 -13.9	Vert
			+1.1	+0.0	+0.0	+0.0			x-axes low channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
1.4	7441 505M	27.2	+0.0	. 27. 4	+2.4	.5.6	+ O O	20.2	<i>540</i> 150	XI a set
	7441.595M	27.2	-35.5	+37.4	+2.4	+5.6	+0.0	38.2	54.0 -15.8	Vert
F	Ave		$+1.1 \\ +0.0$	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0 +0.0			Z-axes high channel	
			+0.0 +0.0	+0.0 +0.0	+0.0	+0.0 +0.0				
			+0.0 +0.0	+0.0	+0.0	+0.0				
٨	7441.595M	43.0	-35.5	+37.4	+2.4	+5.6	+0.0	54.0	54.0 +0.0	Vert
	7441.393WI	43.0	-33.3 +1.1	+37.4	+2.4	+0.0	+0.0	34.0	Z-axes high channel	vert
			+0.0	+0.0 +0.0	+0.0	+0.0			Z-axes mgn chamier	
			+0.0 +0.0	+0.0 +0.0	+0.0	+0.0				
			+0.0	10.0	10.0	10.0				
16	7318.945M	27.2	-35.3	+37.2	+2.3	+5.5	+0.0	38.0	54.0 -16.0	Vert
	Ave	21.2	+1.1	+0.0	+0.0	+0.0	10.0	30.0	z-axes mid channel	VCIT
1	1110		+0.0	+0.0	+0.0	+0.0			Z daes find chamier	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	10.0	10.0	10.0				
٨	7318.945M	42.9	-35.3	+37.2	+2.3	+5.5	+0.0	53.7	54.0 -0.3	Vert
	, 510.775111	74.7	+1.1	+0.0	+0.0	+0.0	10.0	55.1	Z-axes mid channel	V CI t
			+0.0	+0.0	+0.0	+0.0			2 and mid chamici	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	. 5.0	1 0.0	1 3.0				
18	24801.125	46.9	+0.0	+0.0	+0.0	+0.0	+0.0	49.4	66.9 -17.5	Vert
10	M	10.7	+0.0	+0.0	+0.0	+5.9	10.0	17.7	00.7 17.3	, 011
	111		+2.5	+6.0	-11.9	+0.0			z-axes high channel	
				+0.0	+0.0	+0.0			2 and mgn chamer	
			+()()							
			$+0.0 \\ +0.0$	+0.0	10.0	10.0				
19	21615 960	49 1	+0.0				+0.0	47 4	66.9 -19.5	Vert
19	21615.960 M	49.1	+0.0	+0.0	+0.0	+0.0	+0.0	47.4	66.9 -19.5	Vert
19	21615.960 M	49.1	+0.0 +0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0 +5.4	+0.0	47.4		Vert
19		49.1	+0.0	+0.0	+0.0	+0.0	+0.0	47.4	66.9 -19.5 x-axes low channel	Vert

Page 30 of 41 Report No.: 110869-2

20	24397.650	45.0	+0.0	+0.0	+0.0	+0.0	+0.0	46.5	66.9	-20.4	Vert
20	M	45.0	+0.0	+0.0	+0.0	+5.8	+0.0	40.5	00.9	-20.4	VCIT
	141		+2.5	+5.9	-12.7	+0.0			y-axes mid	channel	
			+0.0	+0.0	+0.0	+0.0			y unes ime	CHAIMEI	
			+0.0	10.0	10.0	10.0					
21	21957.725	48.1	+0.0	+0.0	+0.0	+0.0	+0.0	46.1	66.9	-20.8	Vert
	M		+0.0	+0.0	+0.0	+5.5					
			+2.7	+5.5	-15.7	+0.0			x-axes mid	channel	
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
22	24022.475	45.1	+0.0	+0.0	+0.0	+0.0	+0.0	45.9	66.9	-21.0	Vert
	M		+0.0	+0.0	+0.0	+5.9					
			+2.5	+5.7	-13.3	+0.0			x-axes low	channel	
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
23	17358.615	46.3	+0.0	+0.0	+3.8	+7.7	+0.0	45.7	66.9	-21.2	Vert
	M		+0.0	+0.0	-12.1	+0.0					
			+0.0	+0.0	+0.0	+0.0			x-axes high	n channel	
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
	4959.945M	26.5	-34.0	+33.6	+1.7	+3.9	+0.0	32.6	54.0	-21.4	Vert
	Ave		+0.9	+0.0	+0.0	+0.0			Z-axes high	h channel	
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	4050 045 M	42.0	+0.0	122.6	. 1.7	+2.0	+ O O	49.1	540	4.0	No. at
	4959.945M	43.0	-34.0	+33.6	+1.7	+3.9	+0.0	49.1	54.0	-4.9	Vert
			+0.9	+0.0	+0.0	+0.0			Z-axes high	n channei	
			+0.0 +0.0	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0 +0.0					
			+0.0	+0.0	+0.0	+0.0					
26	17081.980	43.4	+0.0	+0.0	+4.1	+7.9	+0.0	43.0	66.9	-23.9	Vert
20	M	13.1	+0.0	+0.0	-12.4	+0.0	10.0	13.0	00.7	23.7	V 011
	1.2		+0.0	+0.0	+0.0	+0.0			x-axes mid	channel	
			+0.0	+0.0	+0.0	+0.0			4 5	• • • • • • • • • • • • • • • • • • • •	
			+0.0								
27	16815.585	43.1	+0.0	+0.0	+3.9	+8.0	+0.0	42.6	66.9	-24.3	Vert
	M		+0.0	+0.0	-12.4	+0.0					
			+0.0	+0.0	+0.0	+0.0			z-axes low	channel	
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
28	14413.175	46.5	+0.0	+0.0	+3.6	+7.1	+0.0	42.5	66.9	-24.4	Vert
	M		+0.0	+0.0	-14.7	+0.0					
			+0.0	+0.0	+0.0	+0.0			z-axes low	channel	
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
29		45.6	+0.0	+0.0	+3.5	+6.9	+0.0	41.9	66.9	-25.0	Vert
1	M		+0.0	+0.0	-14.1	+0.0					
			1 O O	+0.0	+0.0	+0.0			x-axes high	n channel	
			+0.0						A dates mg	Cildillici	
			+0.0 +0.0 +0.0	+0.0	+0.0	+0.0			x uxes ingi	renamer	

Page 31 of 41 Report No.: 110869-2

30	118.300M	31.0	+0.0	+0.0	+0.0	+0.0	+0.0	18.5	43.5 -25.0	Vert
			+0.0	+0.0	+0.0	+0.0			mid channel	
			+0.0	+0.0	+0.0	+13.4				
			+0.5	+0.6	-27.4	+0.4				
			+0.0							
31	14638.365	44.7	+0.0	+0.0	+3.6	+6.9	+0.0	40.8	66.9 -26.1	Vert
	M		+0.0	+0.0	-14.4	+0.0				
			+0.0	+0.0	+0.0	+0.0			x-axes mid channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0							
32	691.500M	31.7	+0.0	+0.0	+0.0	+0.0	+0.0	37.5	66.9 -29.4	Vert
			+0.0	+0.0	+0.0	+0.0			high channel	
			+0.0	+0.0	+0.0	+29.1				
			+1.2	+2.5	-27.8	+0.8				
			+0.0							
33	538.300M	30.5	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	66.9 -33.4	Vert
			+0.0	+0.0	+0.0	+0.0			mid channel	
			+0.0	+0.0	+0.0	+27.1				
			+1.1	+1.9	-28.0	+0.9				
			+0.0							
34	597.400M	30.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	66.9 -33.4	Vert
			+0.0	+0.0	+0.0	+0.0			low channel	
			+0.0	+0.0	+0.0	+26.8				
			+1.2	+2.2	-27.9	+0.8				
			+0.0							
35	159.000M	31.5	+0.0	+0.0	+0.0	+0.0	+0.0	22.6	66.9 -44.3	Vert
			+0.0	+0.0	+0.0	+0.0			high channel	
			+0.0	+0.0	+0.0	+16.5				
			+0.6	+0.8	-27.2	+0.4				
			+0.0							
36	102.800M	31.3	+0.0	+0.0	+0.0	+0.0	+0.0	19.2	66.9 -47.7	Vert
			+0.0	+0.0	+0.0	+0.0			low channel	
			+0.0	+0.0	+0.0	+14.0				
			+0.5	+0.6	-27.5	+0.3				
			+0.0							
37	3.314M	23.1	+0.0	+0.0	+0.0	+0.1	-40.0	-7.5	66.9 -74.4	perp
			+0.0	+0.0	+0.0	+0.0			high channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+9.3							
38	7.284M	18.6	+0.0	+0.0	+0.1	+0.1	-40.0	-11.6	66.9 -78.5	perp
			+0.0	+0.0	+0.0	+0.0			low channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+9.6							
39	11.971M	16.8	+0.0	+0.0	+0.1	+0.2	-40.0	-13.2	66.9 -80.1	paral
			+0.0	+0.0	+0.0	+0.0			low channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+9.7							
	· · · · · · · · · · · · · · · · · · ·									

Page 32 of 41 Report No.: 110869-2

40	18.090M	16.5	+0.0	+0.0	+0.1	+0.2	-40.0	-14.6	66.9 -81.5	paral
			+0.0	+0.0	+0.0	+0.0			high channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+8.6							
41	20.836M	15.6	+0.0	+0.0	+0.1	+0.2	-40.0	-15.9	66.9 -82.8	perp
			+0.0	+0.0	+0.0	+0.0			mid channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+8.2							
42	12.243k	47.2	+0.0	+0.0	+0.0	+0.0	-80.0	-16.8	66.9 -83.7	paral
			+0.0	+0.0	+0.0	+0.0			high channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+16.0							
43	28.806M	16.4	+0.0	+0.0	+0.1	+0.3	-40.0	-16.8	66.9 -83.7	paral
			+0.0	+0.0	+0.0	+0.0			mid channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+6.4							
44	32.124k	42.2	+0.0	+0.0	+0.0	+0.0	-80.0	-26.6	66.9 -93.5	perp
			+0.0	+0.0	+0.0	+0.0			low channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+11.2							
45	67.233k	41.2	+0.0	+0.0	+0.0	+0.0	-80.0	-29.0	66.9 -95.9	paral
			+0.0	+0.0	+0.0	+0.0			mid channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+9.8							
46	59.760k	40.1	+0.0	+0.0	+0.0	+0.0	-80.0	-29.9	66.9 -96.8	paral
			+0.0	+0.0	+0.0	+0.0			low channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+10.0				0.5 -			
47	79.923k	38.7	+0.0	+0.0	+0.0	+0.0	-80.0	-31.6	66.9 -98.5	perp
			+0.0	+0.0	+0.0	+0.0			mid channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+9.7				0.5 -			
48	117.993k	35.6	+0.0	+0.0	+0.0	+0.0	-80.0	-34.7	66.9 -101.6	perp
			+0.0	+0.0	+0.0	+0.0			high channel	
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			+9.7							

Page 33 of 41 Report No.: 110869-2

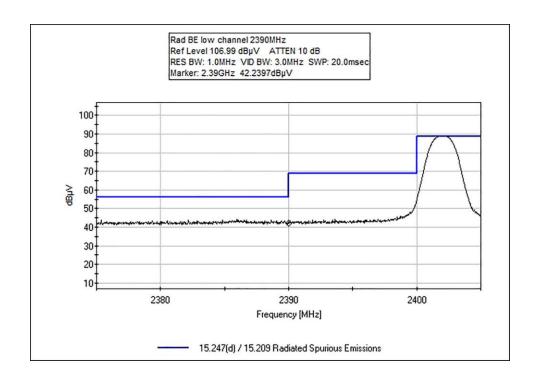
Band Edge

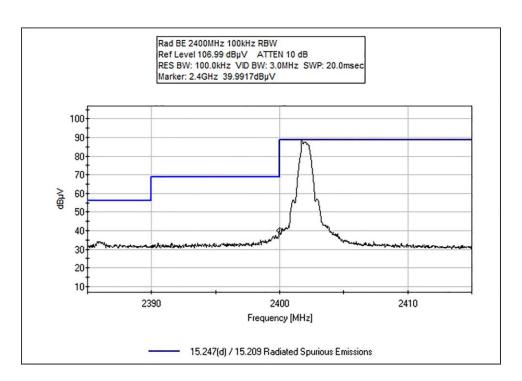
Band Edge Summary

Limit applied at restricted bands: 15.209

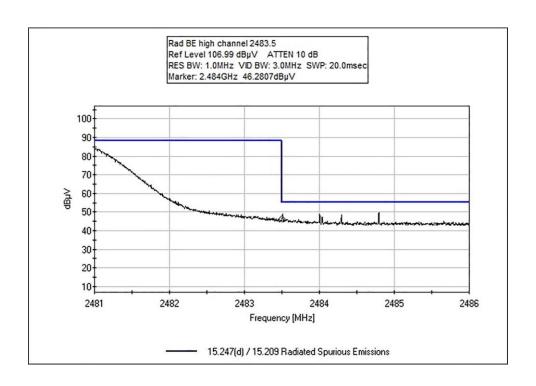
Limit applied for other than restricted bands: Max Power/100kHz - 20dB.

Frequency	Modulation	Ant. Type / Gain	Average (dBuV/m @3m)		Peak (dBuV/m @3m)		Results
(MHz)		(dBi)	Measured	Limit	Measured	Limit	
2390.0	GFSK	-4.6	NA1	≤54	40.2	≤74	Pass
2400.0	GFSK	-4.6	NA2	NA2	38.1	≤66.9	Pass
2483.5	GFSK	-4.6	NA1	≤54	45	≤74	Pass


NA1 = Peak measurement meets average limit.


NA2 = Average limit not applicable when applying 20dBc limit.

Page 34 of 41 Report No.: 110869-2


Band Edge Plots

Page 35 of 41 Report No.: 110869-2

Page 36 of 41 Report No.: 110869-2

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 110869 Date: 1/24/2025
Test Type: Radiated Scan Time: 10:01:59
Tested By: C. Plumadore Sequence#: 3

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1 & 2			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1 & 2			

Test Conditions / Notes:

Test Setup:

EUT setup on 1.5m high foam table. transmitting on low, mid and high channel. X, Y, Z axes investigated worst case reported.

Test Environment Conditions:

Temperature: 20.6°C Humidity: 30.6% Pressure: 102.8 kPa

Test Method: ANSI 63.10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	1/7/2025	1/7/2027
T2	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T3	ANP05546	Cable	Heliax	5/9/2024	5/9/2026
T4	ANP06515	Cable	Heliax	1/8/2025	1/8/2027
T5	ANP07504	Cable	CLU40-KMKM-	1/7/2025	1/7/2027
			02.00F		
T6	AN02673	Spectrum Analyzer	E4446A	3/8/2024	3/8/2026

Measurement Data:		Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters			
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		_		T5	T6					_	_	
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	2483.500M	46.3	-34.6	+29.0	+1.1	+2.6	+0.0	45.0	54.0	-9.0	Vert
				+0.6	+0.0							
	2	2390.000M	42.2	-34.7	+28.5	+1.1	+2.5	+0.0	40.2	54.0	-13.8	Vert
				+0.6	+0.0							
	3	2400.000M	40.0	-34.7	+28.6	+1.1	+2.5	+0.0	38.1	66.9	-28.8	Vert
				+0.6	+0.0							

Page 37 of 41 Report No.: 110869-2

Test Setup Photo(s)

Below 1GHz

Above 1GHz, 1.5m

Appendix A: Manufacturer Declaration

The following models have been tested by CKC Laboratories:

Device: Synergy Enhanced **Model**: RF ID: 033686

RF ID: 033686 represents the hardware of our disposable all-in-one serter, sensor and transmitter medical device for Continuous Glucose Monitoring (CGM). The Glucose Sensor Transmitter (GST) platform includes a variety of different brand names and model numbers supporting different use cases.

The manufacturer declares that the following models are identical electrically or any differences between them do not affect their RF and EMC characteristics, and therefore meets the level of testing equivalent to the tested model.

Glucose Sensor Transmitter (GST)	Brand name	Configuration
RF ID: 033686	Disposable Sensor 5	MMT-5100CLX
	Simplera™	MMT-5100J
	Simplera Sync™	MMT-5120

Note: The products identified in the table above have the same hardware but different software and firmware to function as components in different CGM systems. The GST models are used in a clinical (*MMT-5100LX*), standalone (*MMT-5100J*), or integrated CGM insulin pump (*MMT-5120*) system.

All models above communicate with a compatible network device via Bluetooth Low Energy to provide glucose information for diabetes management. The software and firmware do not affect product radio or electromagnetic compatibility performance or compliance. Hardware documentation such as schematics, block diagram, printed circuit board and component layouts are identical between these models.

Additional configuration identifiers (e.g., A, B, 1, 2...) may be added to the base configuration number for inventory management/distribution purposes and pertain to different regions (US vs. OUS), packages (1-pack vs. 5-pack), and user guide language bundles.

Page 39 of 41 Report No.: 110869-2

Supplemental Information

Measurement Uncertainty

Uncertainty Value	Parameter
5.77 dB	Radiated Emissions
0.673 dB	RF Conducted Measurements
5.77 x 10 ⁻¹⁰	Frequency Deviation
0.00005 s	Time Deviation
3.18 dB	Mains Conducted Emissions

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS					
	Meter reading (dBμV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

Page 40 of 41 Report No.: 110869-2

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

End of Report

Page 41 of 41 Report No.: 110869-2