Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Certificate No: D3900V2-1062_Nov20

Client PC Test

CALIBRATION C	ERTIFICATE		/
Object	D3900V2 - SN:10)62	VATA
Calibration procedure(s)	QA CAL-22.v5 Calibration Proce	dure for SAR Validation Sources	e between 3-10 GHz 1/30/み
			🗸 KT 01/25/22
Calibration date:	November 13, 20	20	VW 01/25/23
The measurements and the unce	rtaintles with confidence p	onal standards, which realize the physical ur robability are given on the following pages ar y facility: environment temperature (22 ± 3)°	nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217- 0 3100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22

Certificate No: D3900V2-1062_Nov20

SN: MY41092317

SN: US41080477

Claudio Leubler

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

SN: 100972

Name

Power sensor HP 8481A

Calibrated by:

Approved by:

RF generator R&S SMT-06

Network Analyzer Agilent E8358A

07-Oct-15 (in house check Oct-20)

15-Jun-15 (in house check Oct-20)

31-Mar-14 (in house check Oct-20)

Function

Laboratory Technician

Technical Manager

Issued: November 13, 2020

In house check: Oct-22

In house check: Oct-22

In house check: Oct-21

Signature

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Fiat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3900 MHz ± 1 MHz 4100 MHz ± 1 MHz	

Head TSL parameters at 3900 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	3.25 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3900 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 4100 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.2	3.53 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	3.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4100 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

.

Body TSL parameters at 3900 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	50.8	3.78 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.4 ± 6 %	3.71 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 3900 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	66.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	······
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 4100 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	50.5	4.01 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.1 ± 6 %	3.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 4100 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	64.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3900 MHz

Impedance, transformed to feed point	47.8 Ω - 6.8 jΩ		
Return Loss	- 22.7 dB		

Antenna Parameters with Head TSL at 4100 MHz

Impedance, transformed to feed point	60.2 Ω - 2.2 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL at 3900 MHz

Impedance, transformed to feed point	47.6 Ω - 4.9 jΩ		
Return Loss	- 25.0 dB		

Antenna Parameters with Body TSL at 4100 MHz

Impedance, transformed to feed point	61.1 Ω + 0.4 jΩ			
Return Loss	- 20.0 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.103 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

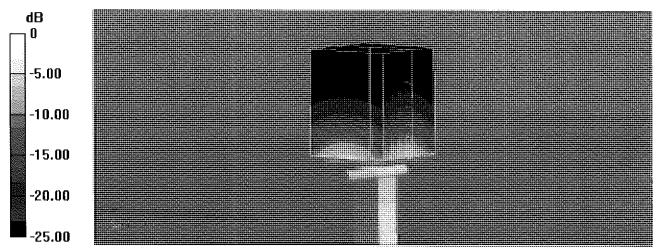
Manufactured by	SPEAG
individual by	

DASY5 Validation Report for Head TSL

Date: 13.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1062


Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.25 S/m; ε_r = 36.3; ρ = 1000 kg/m³, Medium parameters used: f = 4100 MHz; σ = 3.42 S/m; ε_r = 36; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.02 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 6.88 W/kg; SAR(10 g) = 2.4 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.3 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.83 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.7% Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.3 W/kg = 11.24 dBW/kg

,

Impedance Measurement Plot for Head TSL

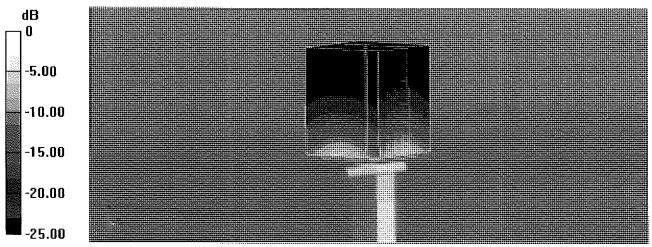
<u>File View</u>	<u>C</u> hannel Sw <u>e</u> ep Cu	alibration <u>Trace S</u> cale M	i <u>a</u> rker S <u>y</u> stem <u>W</u> indow <u>H</u> elp	
			1: 3.900000 G 5.9691 4.100000 G 17.881 3.900000 G	pF -6.8381 Ω Hz 60.216 Ω pF -2.1709 Ω
Ch1: Si	Ch 1 Awg = 20 tart 3.70000 GHz	·····		Stop 4.30009 GHz
10,00 5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00	HE S11		> 1: 3.900000 G 2: 4.100000 G	Hz -20.469 dB
Ch1: S	tart 3.70000 GHz			Stop 4.30000 GHz
Status	CH 1: S11	C* 1-Port	Avg=20 Delay	LCL

DASY5 Validation Report for Body TSL

Date: 11.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1062


Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.71 S/m; ε_r = 49.4; ρ = 1000 kg/m³, Medium parameters used: f = 4100 MHz; σ = 3.95 S/m; ε_r = 49.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.18, 7.18, 7.18) @ 3900 MHz, ConvF(6.88, 6.88, 6.88) @ 4100 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.53 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 6.65 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.7% Maximum value of SAR (measured) = 13.1 W/kg

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.68 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 6.51 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.5% Maximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iew	Channel	Sw <u>e</u> ep	Calibration	<u>I</u> race <u>S</u> cale	M <u>a</u> rker	System	<u>W</u> indow	<u>H</u> elp			
				A				3.900000 G 8.2512 4.100000 G 14.232 3.900000 G	! pF 과Hz pH	-4.9 61 386.1 56.4	.567 Ω 3490 Ω .085 Ω 81 mΩ 50 mU 13.27 °
Ch1: S	Ch 1 Avg = tart 3.70000 (·····		1997 - Standard Barrison, and a standard Barrison and a standard Barrison and a standard Barrison and a standard			Stop 4,	30000 GHz
10.00 5.00 0.00 -5.00 -10.00	dB \$11							3.900000 C 4. 00000 C		- the second second	970 dB 013 dB
-15.00 -20.00 -25.00 -30.00 -35.00 -40.00	Ch 1 Avg =										
Status		311	_	C* 1-Port		Avg=20	Delay				30000 GHz .CL

Certification of Calibration

Object

D3900V2 - SN:1062

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

November 13, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 3900 MHz.

Calibration Equipment used:

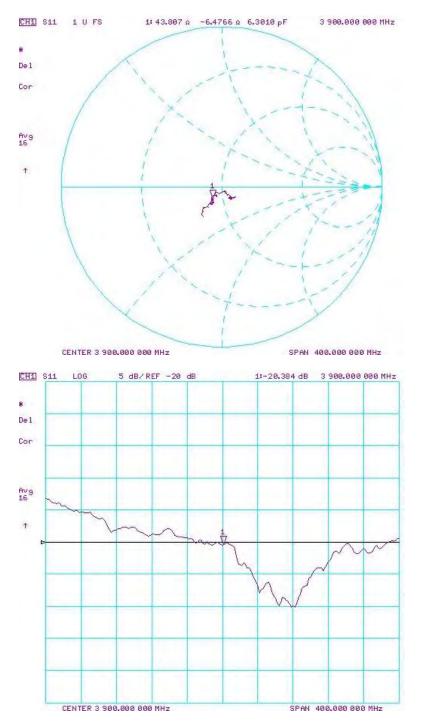
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	2/2/2021	Annual	2/2/2022	US39170122
Agilent	E4438C	ESG Vector Signal Generator	10/17/2021	Annual	10/17/2022	MY45093852
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	1/18/2021	Annual	1/18/2022	0941001
Anritsu	MA2411B	Pulse Power Sensor	2/5/2021	Annual	2/5/2022	0846215
Anritsu	MA2411B	Pulse Power Sensor	8/10/2021	Annual	8/10/2022	1207364
Control Company	4040	Therm./ Clock/ Humidity Monitor	2/23/2021	Annual	2/23/2022	160574418
Control Company	4353	Long Stem Thermometer	2/28/2020	Biennial	2/28/2022	170330160
Agilent	85033E	3.5mm Standard Calibration Kit	7/7/2021	Annual	7/7/2022	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	772D	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2021	Annual	5/12/2022	1070
SPEAG	EX3DV4	SAR Probe	7/21/2021	Annual	7/21/2022	7546
SPEAG	EX3DV4	SAR Probe	9/6/2021	Annual	9/6/2022	7674
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/14/2021	Annual	7/14/2022	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/6/2021	Annual	8/6/2022	1683

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	ROK

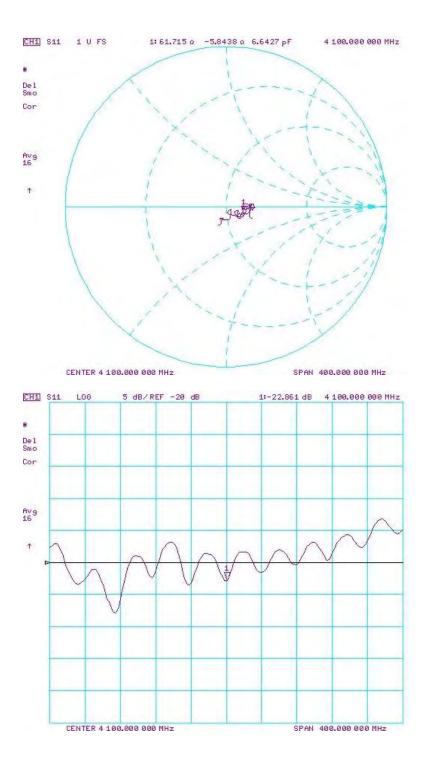
Object:	Date Issued:	Page 1 of 6
D3900V2 – SN:1062	11/13/2021	Fage 1010

DIPOLE CALIBRATION EXTENSION

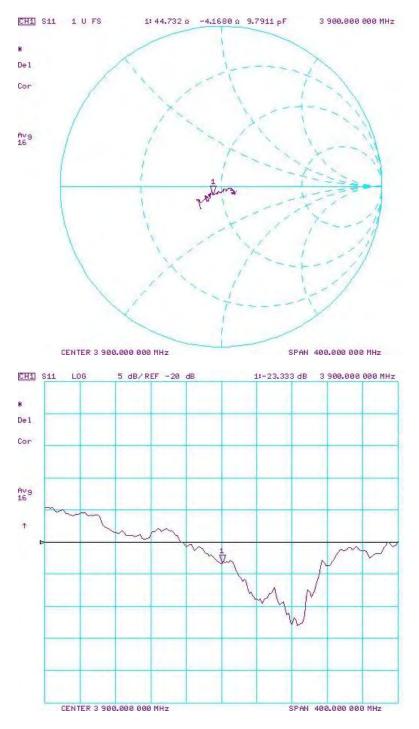

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

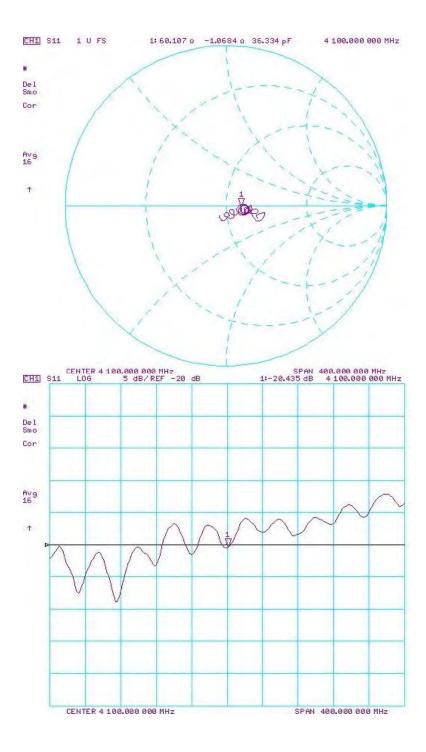

Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Retum Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
3900	11/13/2020	11/13/2021	1.103	6.86	7.28	6.12%	2.38	2.56	7.56%	47.8	43.8	4.0	-6.8	-6.5	0.3	-22.7	-20.4	10.20%	PASS
4100	11/13/2020	11/13/2021	1.103	6.65	6.89	3.61%	2.31	2.45	6.06%	60.2	61.7	1.5	-2.2	-5.8	3.6	-20.5	-22.9	-11.50%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
3900	11/13/2020	11/13/2021	1.103	6.63	6.77	2.11%	2.31	2.31	0.00%	47.6	44.7	2.9	-4.9	-4.2	0.7	-25.0	-23.3	-2.80%	PASS
4100	11/13/2020	11/13/2021	1.103	6.48	6.66	2.78%	2.26	2.32	2.65%	61.1	60.1	1.0	0.4	-1.1	1.5	-20.0	-20.4	-2.20%	PASS

Object:	Date Issued:	Page 2 of 6
D3900V2 - SN:1062	11/13/2021	Page 2 of 6



Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 6
D3900V2 - SN:1062	11/13/2021	Page 3 of 6



Object:	Date Issued:	Page 4 of 6
D3900V2 - SN:1062	11/13/2021	1 age 4 01 0

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 5 of 6
D3900V2 – SN:1062	11/13/2021	Page 5 of 6

Object:	Date Issued:	Page 6 of 6
D3900V2 - SN:1062	11/13/2021	1 age 0 01 0

Element Materials Technology Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.381.1520 http://www.element.com

Certification of Calibration

Object

D3900V2 - SN: 1062

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

November 13, 2022

Description:

SAR Validation Dipole at 3900 MHz.

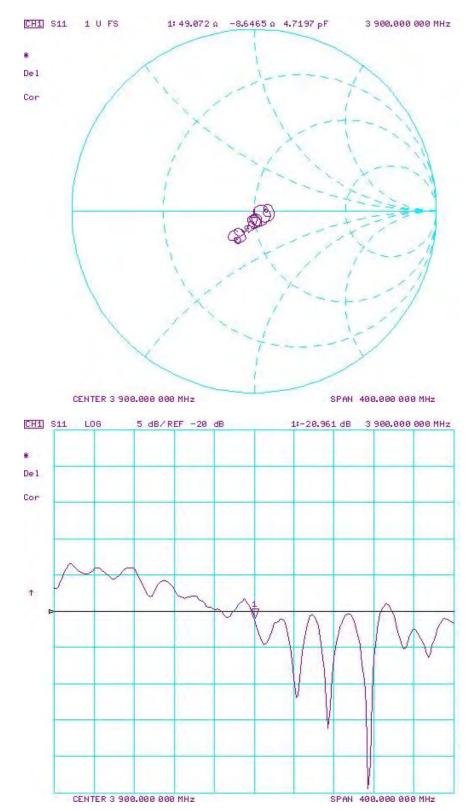
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	12/17/2021	Annual	12/17/2022	MY40000670
Agilent	E4438C	ESG Vector Signal Generator	3/24/2022	Annual	3/24/2023	MY45093678
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	3/17/2022	Annual	3/17/2023	0941001
Anritsu	MA2411B	Pulse Power Sensor	3/2/2022	Annual	3/2/2023	1126066
Anritsu	MA2411B	Pulse Power Sensor	3/28/2022	Annual	3/28/2023	1339007
Traceable	4040 90080-06	Therm./ Clock/ Humidity Monitor	5/11/2022	Biennial	5/11/2024	221514974
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774678
Agilent	85033E	3.5mm Standard Calibration Kit	6/21/2022	Annual	6/21/2023	MY53402352
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mini-Circuits	ZHDC-16-63-S+	50-6000MHz Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	3/19/2022	Annual	3/19/2023	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/16/2022	Annual	5/16/2023	1070
SPEAG	EX3DV4	SAR Probe	1/19/2022	Annual	1/19/2023	3837
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2022	Annual	1/13/2023	793

Measurement Uncertainty = $\pm 23\%$ (k=2)

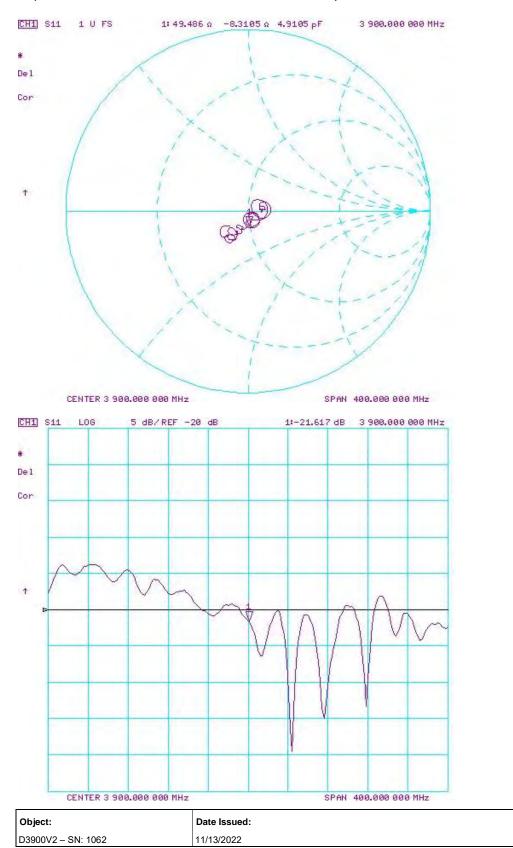
	Name	Function	Signature
Calibrated By:	Arturo Oliveros	Associate Compliance Engineer	AG
Approved By:	Kaitlin O'Keefe	Managing Director	XOK

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


(MHz)	Date	Extension Date	(ns)	Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	(Ohm) Real	Head (Ohm) Real	Difference (Ohm)	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Loss Head (dB)	Deviation (%)	PASS/FAIL
3900	11/13/2020	11/13/2022	1.103	6.86	7.27	5.98%	2.38	2.55	7.14%	47.8	49.1	1.3	-6.8	-8.6	1.8	-22.7	-21	7.70%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm)	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
3900	11/13/2020	11/13/2022	1.103	6.63	6.77	2.11%	2.31	2.35	1.73%	47.6	49.5	1.9	-4.9	-8.3	3.4	-25	-21.6	13.50%	PASS

Object:	Date Issued:	Page 2 of 4
D3900V2 – SN: 1062	11/13/2022	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D3900V2 – SN: 1062	11/13/2022	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of

Element

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1191_Jan23

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	191	landijelar (A.B. Sana) sela
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Source	s between 3-10 GHz
Calibration date:	January 18, 2023		8N 1/30/2023
The measurements and the uncerta	ainties with confidence pr	onal standards, which realize the physical up obability are given on the following pages a	nd are part of the certificate.
Calibrations have been conducte		y facility: environment temperature (22 \pm 3)	"G and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 3503	08-Mar-22 (No. EX3-3503_Mar22)	Mar-23
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	to la
Approved by:	Sven Kühn	Technical Manager	Ś. z.
This calibration certificate shall not	he reproduced except in	full without written approval of the laborato	lssued: January 19, 2023
This calibration certificate shall flot	se reproduced except in	ion mation matter approval of the aborato	י <u>י</u> י

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.5 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	,
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.23 W/kg

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5. 77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body ⊺SL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.24 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.6 Ω - 9.9 jΩ
Return Loss	- 20.1 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.4 Ω - 6.7 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω - 7.7 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	54.3 Ω - 1.9 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	50.9 Ω - 2.1 jΩ
Return Loss	- 32.8 dB

Antenna Parameters with Body TSL at 5200 MHz

Γ.

r

Γ.

Г

	Impedance, transformed to feed point	48.8 Ω - 9.4 jΩ
	Return Loss	10/0 80 0.7 j32
I		- 20.4 dB

Antenna Parameters with Body TSL at 5250 MHz

	50.2 Ω - 5.1 ίΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	
	55.6 Ω - 3.2 ίΩ
Return Loss	
	- 24.3 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance	e, transformed to feed point	59.0.0 + 2.0.10
Return Los	S	59.0 Ω + 3.0 jΩ
		- 21.3 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	
	56:4 Ω + 2,7 ϳΩ
Return Loss	
	- 23.7 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1 000	
4		1.202 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

۴

Manufactured by	
	SPEAG

DASY5 Validation Report for Head TSL

Date: 09.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.56$ S/m; $\varepsilon_r = 36.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\varepsilon_r = 36.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.98$ S/m; $\varepsilon_r = 35.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.14$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³

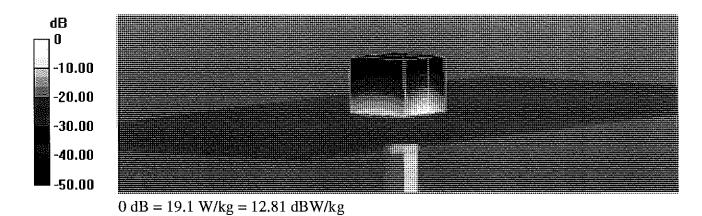
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.37 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 70.1% Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.89 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 71% Maximum value of SAR (measured) = 17.9 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.82 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 68% Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.59 V/m; Power Drift = -0.04 dBPeak SAR (extrapolated) = 30.1 W/kgSAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.23 W/kgSmallest distance from peaks to all points 3 dB below = 7.5 mmRatio of SAR at M2 to SAR at M1 = 66.4%Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.58 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 18.9 W/kg

Impedance Measurement Plot for Head TSL

<u>F</u> ile	⊻lew	⊆hannel	Sw <u>e</u> ep C	alibration	<u>T</u> race <u>S</u> cale	e M <u>a</u> rker	S <u>y</u> stem <u>V</u>	<u>V</u> indow <u>H</u> el	p			
					~	/···)	> 1:	5.200800 GHz 3.0839 pF	50.648 Ω -9.9245 Ω	
							77		2:	5.250000 GHz	52.407 Ω	
						\sim	\sum		3:	4.5449 pF 5.600000 GHz	-6.670‡Ω 53.867Ω	
						\sim	\checkmark		4;	3.6872 p F 5.750000 GHz	-7.7079 Ω 54.346 Ω	
								X7	4.	4.469 p F	-1.3130 Ω	
								74	5:	5,800000 GHz 12,864 pF	50.859 Ω -2.1331 Ω	Constantine in the
					1-1		\sim			FUTCOLLD1.	-c.1504 M	
						$\searrow \land$	$\sqrt{-+}$	A				
					· · · · · · · · · · · · · · · · · · ·	$\langle -$	\sum	S C				
2	SI. 4. 01	Ch 1 Avg =				******	<u> </u>					
	UNI: St	art 5.08000 (Stop	6.00000 GHz	
10.0		dB 811				<u></u>			⇒ <u>†</u> :	5.200000 GHz	-20,145 dB	
5.0			1						- <u>2:</u> 3:		-23-211-dB -21.640-dB	
0.0									4:	5 50000 GHz 5 50000 GHz	-26,888 dB -32,844 dB	
-5.0			1		-							
-10	Í									·····		
-15 -20	· · ·			1								
	Pe.			<u>></u>				······································				ай
-25			1	2			······································					
	.00		-			r						
	.00 .00	Ch 1 Avg =	20									
		art 5,000001				·····	I		L	IStop	6.00000 GHz	
	atus	CH 1;	511	1	C* 1-Port		Avg=20 D				LCL	_

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Conditions (f=5200 MHz)

Phantom		
Filantom	SAM Head Phantom	
	University of the add Finantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

E.

r

F

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	82.4 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	86.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	82.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 20.3 % (k=2)
SAP overend and the Auto		

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR for nominal Head TSL parameters	normalized to 1W	17.8 W/kg ± 19.9 % (k=2)	

¹ Additional assessments outside the current scope of SCS 0108

Appendix: Transfer Calibration at Four Validation Locations on SAM Head²

Evaluation Conditions (f=5800 MHz)

Dhomton		
Phantom	SAM Head Phantom	
	SAW Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

г

•

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	82.1 W/kg ± 20.3 % (k=2)
SAD and the state of the		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	88.7 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
- in a conget over to chir (to g) of Head TSL	condition	

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	56.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 19.9 % (k=2)	

² Additional assessments outside the current scope of SCS 0108

Date: 18.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

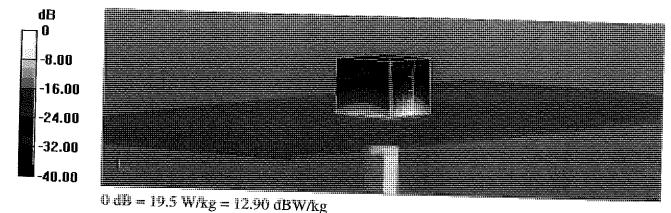
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\varepsilon_r = 49.0$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5250 MHz; $\sigma = 5.51$ S/m; $\varepsilon_r = 49.0$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 6.00$ S/m; $\varepsilon_r = 48.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 6.18$ S/m; $\varepsilon_r = 48.3$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.91 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 7.23 W/kg; SAR(10 g) = 2.02 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.4% Maximum value of SAR (measured) = 17.3 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.43 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.35 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.1% Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 62.17 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.4% Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.89 V/m; Power Drift = -0.02 dBPeak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 7.21 W/kg; SAR(10 g) = 2.00 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 18.2 W/kg

Impedance Measurement Plot for Body TSL

ile <u>V</u> iew <u>C</u> hannel Swi	eep Calibration	<u>Trace</u> <u>S</u> cale	Marker 5	ystem <u>W</u> indov	v <u>H</u> elp		
		~			1:	5.200000 GHz	48.787
			$X \downarrow$		2:	3.2526 р.F 5.250000 GHz	-9.4098 50.184
		- KI	(\times)	1	3:	5.9365.pF 5.600000 GHz	-5.1066 55.647
		17	-4-7-		4:	8.9456 p F	-3.1770
						5.750000 GHz 81.804 pH	58.964 2.9554
					>5:	5.800000 GHz 74.034pH	56,437
		1-1	\times	K T M	,	turoowbH	2.6980
		\sim	$\times \rightarrow$	-T-1			
Ch 1 Awg = 20		\sim	<u> </u>				
Ch1: Start 5,00000 GHz	Juni Seesilaan						
0.00						Stop	6.00000 GH
					21:	5. 1 00000 GHz	-20,390 d
5.00					> 1: 2: 3:	5.200000 GHz 5.300000 GHz 5.300000 GHz	-20.390 di -25.859 di
i.00						5.200000 GHz 5.500000 GHz 5.800000 GHz 5.300000 GHz	-20.390 di -25.859 di -24.250 di -21.251 di
5.00						5.200000 GHz 5.300000 GHz 5.300000 GHz	-20.390 di -25.859 di -24.250 di -21.251 di
5.00 0.00 5.00 5.00 5.00						5.200000 GHz 5.500000 GHz 5.800000 GHz 5.300000 GHz	-20.390 di -25.859 di -24.250 di -21.251 di
.00						5.200000 GHz 5.500000 GHz 5.800000 GHz 5.300000 GHz	-20.390 di -25.859 di -24.250 di -21.251 di
5.00 5.00 0.00 5.00 0.00 0.00					2: 3: 4: 5:	5.200000 GHz 5.500000 GHz 5.800000 GHz 5.300000 GHz	-20.390 di -25.859 di -24.250 di -21.251 di
5.00					2: 3: 4: 5:	5.200000 GHz 5.500000 GHz 5.800000 GHz 5.300000 GHz	-20.390 di -25.859 di -24.250 di -21.251 di
i.00					2: 3: 4: 5:	5.200000 GHz 5.500000 GHz 5.800000 GHz 5.300000 GHz	6.00000 GH -20.390 dF -25.859 dF -24.250 dF -21.251 dF -23.868.dF
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 Ch 1 Avg = 20					2: 3: 4: 5:	5.200000 GHz 5.500000 GHz 5.800000 GHz 5.300000 GHz	-20,390 d -25,859 d -24,250 d -21,251 d
i.00					2: 3: 4: 5:	5.200000 GHz 5.50000 GHz 5.400000 GHz 5.50000 GHz 5.50000 GHz 5.30000 GHz 5.30000 GHz 5.30000 GHz 5.300000 GHz 5.300000 GHz 5.300000 GHz 5.300000 GHz 5.400000 GHz 5.40000 GHz 5.4000 GHz 5.40000 GHz 5.40000 GHz 5.40000 GHz 5.40000 GHz 5.40000 GHz 5.40000 GHz 5.400000 GHz 5.400000 GHz 5.40000 GHz 5.40000 GHz 5.400000 GHz 5.40000 GHz 5.400000 GHz 5.400000 GHz 5.40000 GHz 5.400000 GHz 5.400000 GHz 5.40000 GHz 5.400000 GHZ 5.4000000 GHZ 5.4000000000 GHZ 5.4000000000000000000000000000000000000	-20.390 df -25.859 df -24.250 df -21.251 df

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

		2.20		1997 - B
Client	EI	en	ne	nt

Certificate No: D5GHzV2-1057_Jan22

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1057	
Calibration procedure(s)	QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-1	10 GHz BN ^V 2-10-2022
Calibration date:	January 10, 2022	PN✓ 1-25-2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	31-Dec-21 (No. EX3-3503_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	A. Letter
Approved by:	Sven Kühn	Deputy Manager	C G
This colliburation contificate shall not		full without written approval of the laboraton	Issued: January 20, 2022

Certificate No: D5GHzV2-1057_Jan22

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	·
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.41 W/kg

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	5.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.32 W/kg

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.8 ± 6 %	5.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Itr'	
The second	condition	
SAR measured	100 mW input power	2.06 W/kg

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	5.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.70 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.0 ± 6 %	6.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

100 mW input power	7.49 W/kg
normalized to 1W	74.9 W/kg ± 19.9 % (k=2)
	100 mW input power normalized to 1W

	Condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.4 Ω - 6.3 jΩ
Return Loss	- 24.0 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.3 Ω - 3.4 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.1 Ω - 1.6 jΩ
Return Loss	- 31.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	50.2 Ω - 3.0 jΩ
Return Loss	- 30.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.2 Ω - 4.2 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.1 Ω - 1.8 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.0 Ω - 0.4 jΩ
Return Loss	- 30.5 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	51.4 Ω - 1.7 jΩ
Return Loss	- 33.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.001
Lectrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Date: 10.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

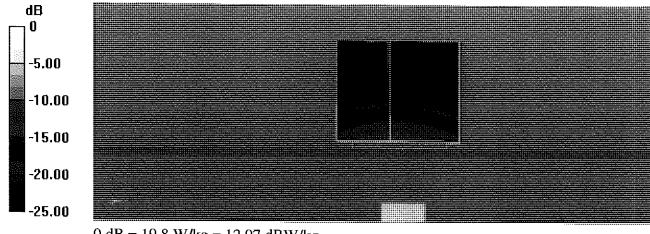
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 4.52 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.87 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.02 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.07 S/m; ϵ_r = 34.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.74 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.5% Maximum value of SAR (measured) = 18.3 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.79 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.0 W/kg SAR(1 g) = 8.49 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.27 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.3%Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.73 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Impedance Measurement Plot for Head TSL

Eile	View	<u>C</u> hannel	Sweep	Calibration	<u>Irace S</u> cale	M <u>a</u> rker Sys	tem <u>W</u> indo	w <u>H</u> elp		
					and the second			1:	5.250000 GHz 4.8222 pF	49,424 Q -6,2868 Q
					$ \land$		7	2:	5,600000 GHz	54.338 Ω
						\sim	~ - }~	3:	8,3354pF 5,750000 GHz	-3.4096 Ω 52.i22 Ω
					+	-1	\mathbf{X}	4:	17,657 ρF 5,800000 GHz	-1.5676 Ω 50,162 Ω
									9.1746 pF	-2.9909 Ω
						1-1-	774	$\gamma \gg R$:	5.500000 GHz	68,689 mU -102,97 *
					- t	\rightarrow		Ą.		
						$\times \rightarrow$	51	9		
					\sim					
	Ch1: Sta	- Ch 1 Awg = art: 5,00000 i		wheet					Stor	6.00000 GHz
									eroh.	
10.) 5.0		6B 811						1:	5.250000 GHz 5.200000 GHz	-23.962 dB -25.538 dB
0.0								3:	5. † 50000 GHz	-31.757 d8
5.0								~ 4:	5,800000 GHz	-30,489.68
-10	.00									
-15	.00									
-20	.00 🙀			<u>~</u>						
-25	.00 -			1						
-30	.00						2	The second secon		
-35	- 00.								[wmr #]	
	.00 Ch1: St	<u>Ch 1 Awg ≃</u> art 5.00000	 GHz]	6.00000 GHz
									2006	0.00000 0132
0.00000	atus	CH 1:	S11		C* 1-Port	the total for the second second second				

DASY5 Validation Report for Body TSL

Date: 10.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

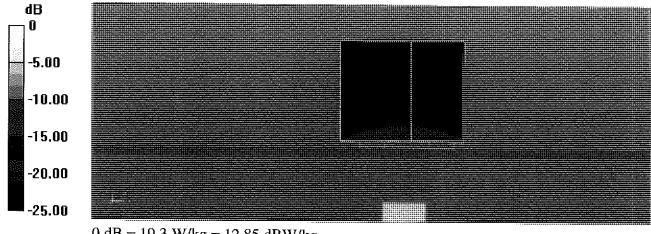
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 5.47 S/m; ε_r = 48.8; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.95 S/m; ε_r = 48.2; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.16 S/m; ε_r = 48.0; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.23 S/m; ε_r = 47.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.90 V/m; Power Drift = -0.06 dBPeak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.06 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 17.6 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.38 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.70 W/kg; SAR(10 g) = 2.12 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 64.4% Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.08 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.49 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 62.8%Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.44 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 63.9% Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 19.3 W/kg = 12.85 dBW/kg

Impedance Measurement Plot for Body TSL

<u>-</u> ile <u>V</u> i	ew <u>C</u> hannel	Sw <u>e</u> ep (alibration	<u>Trace S</u> cale	Marker System	Window He	elp		
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1:	5.250000 GHz	48.213 Q
				$-\Delta$		$\mathcal{X}$	2:	7.2089 pF 5.600000 GHz	-4.2053 Ω 55.111 Ω
				- / /		4-71	3:	16.056 pF 5.750000 GHz	-1.7701 Ω
				+	$- \wedge \wedge$	1	₩.	64.503 p.F	53.041 Ω -429.07 mΩ
1					7		4:	5.800000 GHz 16.425 pF	51.445 Ω -1.6706 Ω
							> R:	5.500000 GHz	46.689 mU
				- Longhow	て、そく	$\mathcal{A}$			-102.02 *
				- [	$\prec$ $\sim$	//			
				$\sim \sqrt{2}$	$\sim$ $-$	¥7/			
	Ch 1 Avg =	: 20		Υ.	~				
1 ~									
l ru	1: Start 5.00000	<u>оп</u> 2		AND A 1993 THE CONTRACTOR				Stop	6.00000 GHz
j Ch 10.00			T			<u> </u>			
, ,	1: Start 5.00000						1:	Stop 5.250000 GHz 5.400000-GHz	6.00000 GHz -26.654 d8 -25.772 d8
, 10.00							- <u>2;</u> 3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
, 10.00 5.00							<u>2;</u>	5.250000 GHz 5.200000 GHz	-26.654 d8 -25.772 d8
10.00 5.00 0.00							- <u>2;</u> 3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
10.00 5.00 0.00 -5.00							- <u>2;</u> 3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
10.00 5.00 0.00 -5.00 -10.00							- <u>2;</u> 3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
10.00 5.00 0.00 -5.00 -10.00 -15.00 -20.00							- <u>2;</u> 3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
10.00 5.00 -5.00 -5.00 -10.00 -15.00 -20.00 -25.00							- <u>2;</u> 3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00							- <u>2;</u> 3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
10.00 5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00	######################################	20					3:	5.150000 GHz 5.400000-GHz 5.150000 GHz	-26.654 d8 -25.772 d8 -30.515 d8
10.00 5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00		20					3:	5.350000 GHz 5.00000 GHz 5.750000 GHz 5.300000 GHz	-26.654 d8 -25.772 d8 -30.515 d8

### Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

#### Evaluation Condition (f=5250 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

### SAR result with SAM Head (Top $\cong$ C0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	86.9 W/kg ± 20.3% (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

#### SAR result with SAM Head (Mouth $\cong$ F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	86.1 W/kg ± 20.3% (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters		

#### SAR result with SAM Head (Neck $\cong$ H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	84.2 W/kg ± 20.3% (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

#### SAR result with SAM Head (Ear $\cong$ D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	54.5 W/kg ± 20.3% (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	18.3 W/kg ± 19.9 % (k=2)

¹ Additional assessments outside the current scope of SCS 0108

## Appendix: Transfer Calibration at Four Validation Locations on SAM Head²

### Evaluation Condition (f=5800 MHz)

ſ

Dhautau		
Phantom	SAM Head Phantom	
		For usage with cSAR3DV2-R/L
		J J J J J J J J J J J J J J J J J J J

### SAR result with SAM Head (Top $\cong$ C0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	and an
SAR for nominal Head TSL parameters	normalized to 1W	85.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

### SAR result with SAM Head (Mouth $\cong$ F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	92.2 W/kg ± 20.3% (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

### SAR result with SAM Head (Neck $\cong$ H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	82.3 W/kg ± 20.3% (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
or in averaged over to citie (to g) of nead ISL	condition	

### SAR result with SAM Head (Ear $\cong$ D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	58.6 W/kg ± 20.3% (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

² Additional assessments outside the current scope of SCS 0108



**ELEMENT MATERIALS TECHNOLOGY** 

(formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com



# **Certification of Calibration**

Object

D5GHzV2 – SN: 1057

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/9/2023

Description:

SAR Validation Dipole at 5250,5600,5750,5800 MHz.

#### Calibration Equipment used:

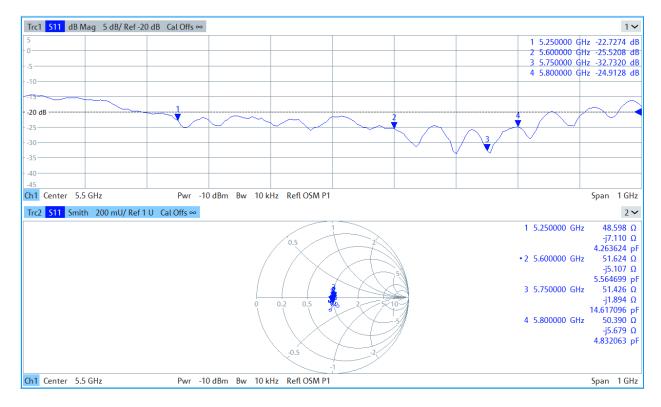
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N5182A	MXG Vector Signal Generator	1/12/2022	Annual	1/12/2023	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MA2411B	Pulse Power Sensor	3/28/2022	Annual	3/28/2023	1339007
Anritsu	MA2411B	Pulse Power Sensor	3/2/2022	Annual	3/2/2023	1126066
Anritsu	ML2496A	Power Meter	3/31/2022	Annual	3/31/2023	1138001
Anritsu	ML2496A	Power Meter	3/17/2022	Annual	3/17/2023	941001
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202100
Control Company	4352	Ultra Long Stem Thermometer	1/21/2022	Annual	1/21/2023	160508097
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774678
MiniCircuits	cuits VLF-6000+ Low Pass Filter				CBT	N/A
Mini-Circuits	BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator		CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack PE5011-1		Torque Wrench	12/21/2021	Biennial	12/21/2023	82475
Mini-Circuits ZHDC-16-63-S+		Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/21/2022	Annual	10/21/2023	101307
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2022	Annual	5/12/2023	1070
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/21/2022	Annual	6/21/2023	MY53402352
SPEAG	EX3DV4	SAR Probe	3/21/2022	Annual	3/21/2023	7527
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/16/2022	Annual	3/16/2023	1272
SPEAG	EX3DV4	SAR Probe	4/20/2022	Annual	4/20/2023	7659
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/13/2022	Annual	4/13/2023	1407

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Tho Tong	Test Engineer	Tho Tong
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

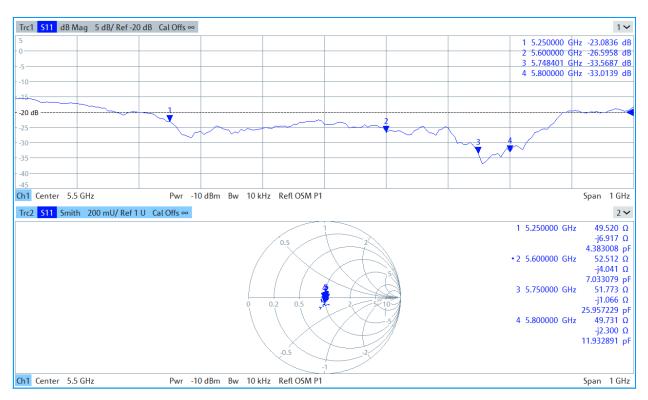
Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1057	1/9/2023	Fage 1014

### **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	1/10/2022	1/9/2023	1.201	4.06	3.69	-9.11%	1.16	1.05	-9.48%	49.4	48.6	0.8	-6.3	-7.1	0.8	-24	-22.7	5.30%	PASS
5600	1/10/2022	1/9/2023	1.201	4.21	3.92	-6.89%	1.20	1.10	-7.95%	54.3	51.6	2.7	-3.4	-5.1	1.7	-25.5	-25.5	-0.10%	PASS
5750	1/10/2022	1/9/2023	1.201	4.04	3.73	-7.67%	1.15	1.06	-7.42%	52.1	51.4	0.7	-1.6	-1.9	0.3	-31.8	-32.7	-2.90%	PASS
5800	1/10/2022	1/9/2023	1.201	4.11	3.72	-9.38%	1.15	1.05	-8.70%	50.2	50.4	0.2	-3	-5.7	2.7	-30.5	-24.9	18.30%	PASS
Frequenc <u>i</u> (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	1/10/2022	1/9/2023	1.201	3.71	3.66	-1.35%	1.03	1.04	0.97%	48.2	49.5	1.3	-4.2	-6.9	2.7	-26.7	-23.1	13.50%	PASS
5600	1/10/2022	1/9/2023	1.201	3.85	3.89	1.04%	1.06	1.09	2.83%	55.1	52.5	2.6	-1.8	-4	2.2	-25.8	-26.6	-3.10%	PASS
5750	1/10/2022	1/9/2023	1.201	3.75	3.53	-5.74%	1.04	0.99	-4.54%	53	51.8	1.2	-0.4	-1.1	0.7	-30.5	-33.6	-10.10%	PASS
5800	1/10/2022	1/9/2023	1.201	3.74	3.53	-5.61%	1.03	0.99	-3.51%	51.4	49.7	1.7	-1.7	-2.3	0.6	-33.2	-33	0.60%	PASS

Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1057	1/9/2023	Faye 2 01 4

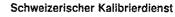


#### Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1057	1/9/2023	Fage 5 01 4



#### Impedance & Return-Loss Measurement Plot for Body TSL


Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1057	1/9/2023	Page 4 of 4

#### **Calibration Laboratory of** Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

**ac-MRA** 



- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
  - Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Element

**Certificate No** 

EX-7547_Oct22/2

Object	EX3DV4 (SN:7547)	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA QA CAL-25.v7 QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	CAL-23.v5,
Calibration date	October 19, 2022	자 기술책임자

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-21 (OCP-DAK3.5-1249_Oct21)	Oct-22
OCP DAK-12	SN: 1016	20-Oct-21 (OCP-DAK12-1016_Oct21)	Oct-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technicia	n d h
Approved by	Sven Kühn	Technical Manager	S, E
This calibration certificate sha	all not be reproduced except i	n full without written approval of	Issued: November 3, 2022 the laboratory.

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

Service suísse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $\varphi$	arphi rotation around probe axis
Polarization $\vartheta$	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization  $\vartheta = 0$  ( $f \le 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- · DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc ( <i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.60	0.63	0.62	±10.1%
DCP (mV) ^B	99.0	99.5	101.0	±4.7%

#### **Calibration Results for Modulation Response**

UID	Communication System Name		Α	В	С	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	Unc ^E
									k = 2
0	CW	X	0.00	0.00	1.00	0.00	142.1	±2.5%	±4.7%
		Y	0.00	0.00	1.00	-	134.5		
		Z	0.00	0.00	1.00		144.3		
10352	Pulse Waveform (200Hz, 10%)	X	20.00	91.30	21.41	10.00	60.0	±3.8%	±9.6%
		Y	20.00	92.86	21.90	1	60.0		
		Z	20.00	90.90	21.11	1	60.0		ļ
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.43	20.60	6.99	80.0	±1.9%	±9.6%
		Y	20.00	93.31	21.12		80.0		5
		Z	20.00	90.82	20.20	1	80.0		
10354	Pulse Waveform (200Hz, 40%)	Х	20.00	94.10	20.72	3.98	95.0	±1.0%	±9.6%
		Y	20.00	95.32	20.73		95.0		
		Z	20.00	92.93	20.04		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	99.16	21.91	2.22	120.0	±1.1%	±9.6%
		Y	20.00	97.09	20.20		120.0		
		Z	20.00	96.61	20.58		120.0		
10387	QPSK Waveform, 1 MHz	X	1.80	66.63	15.59	1.00	150.0	±2.6%	±9.6%
		Y	1.53	64.18	13.82		150.0		
		Z	1.74	66.09	15.15		150.0		
10388	QPSK Waveform, 10 MHz	X	2.43	69.11	16.34	0.00	150.0	±0.9%	±9.6%
		Y	2.18	67.28	15.07		150.0		
		Z	2.33	68.42	15.87		150.0		
10396	64-QAM Waveform, 100 kHz	Х	3.29	71.93	19.64	3.01	150.0	±0.9%	±9.6%
		Y	2.57	67.35	17.22		150.0		
		Z	3.22	71.72	19.38		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.63	67.57	16.08	0.00	150.0	±1.9%	±9.6%
		Y	3.52	66.99	15.55		150.0		
		Z	3.59	67.36	15.88	1	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	5.01	65.89	15.73	0.00	150.0	±3.8%	±9.6%
		Y	4.75	65.03	15.12		150.0		
		Z	4.98	65.83	15.62		150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 to 7).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 msV ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	53.2	398.95	35.86	27.82	0.21	5.10	0.95	0.37	1.01
У	49.5	371.56	35.76	19.80	0.30	5.10	0.00	0.48	1.01
Z	52.4	390.68	35.42	27.34	0.19	5.10	1.13	0.32	1.01

#### Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	150.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

#### Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.81	9.81	9.81	0.46	0.84	±12.0%
835	41.5	0.90	9.53	9.53	9.53	0.47	0.80	±12.0%
1750	40.1	1.37	8.16	8.16	8.16	0.38	0.86	±12.0%
1900	40.0	1.40	7.81	7.81	7.81	0.37	0.86	±12.0%
2300	39.5	1.67	7.56	7.56	7.56	0.30	0.90	±12.0%
2450	39.2	1.80	7.16	7.16	7.16	0.35	0.90	±12.0%
2600	39.0	1.96	6.92	6.92	6.92	0.39	0.90	±12.0%
5250	35.9	4.71	5.29	5.29	5.29	0.40	1.80	±14.0%
5600	35.5	5.07	4.76	4.76	4.76	0.40	1.80	±14.0%
5750	35.4	5.22	4.80	4.80	4.80	0.40	1.80	±14.0%
5850	35.2	5.32	4.70	4.70	4.70	0.40	1.80	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm 110$  MHz. ^F At frequencies up to 6 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm 10\%$  if liquid compensation formula is applied to measured SAR

values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

#### Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	55.5	0.96	9.87	9.87	9.87	0.51	0.82	±12.0%
835	55.2	0.97	9.63	9.63	9.63	0.41	0.94	±13.3%
1750	53.4	1.49	7.87	7.87	7.87	0.37	0.86	±12.0%
1900	53.3	1.52	7.56	7.56	7.56	0.36	0.86	±12.0%
2300	52 <i>.</i> 9	1.81	7.49	7.49	7.49	0.41	0.90	±12.0%
2450	52.7	1.95	7.28	7.28	7.28	0.34	0.90	±12.0%
2600	52.5	2.16	7.02	7.02	7.02	0.32	0.90	±12.0%
5250	48.9	5.36	4.59	4.59	4.59	0.50	1.90	±14.0%
5600	48.5	5.77	3.96	3.96	3.96	0.50	1.90	±14.0%
5750	48.3	5.94	4.06	4.06	4.06	0.50	1.90	±14.0%
5850	48.1	6.06	3.98	3.98	3.98	0.50	1.90	±14.0%

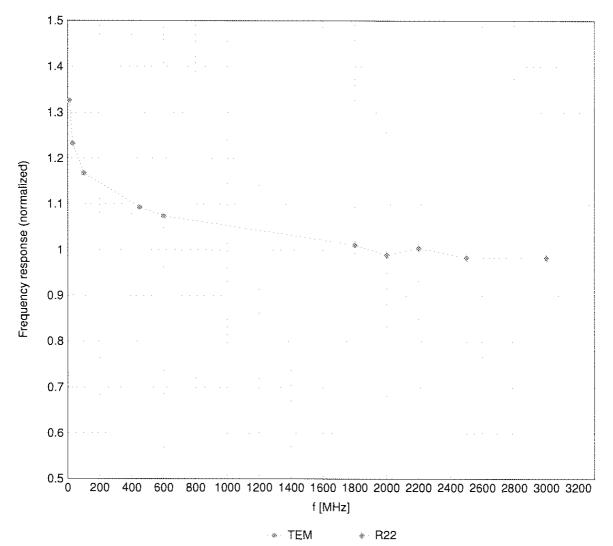
^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm 110$  MHz. F At frequencies up to 6 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm 10\%$  if liquid compensation formula is applied to measured SAR

values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

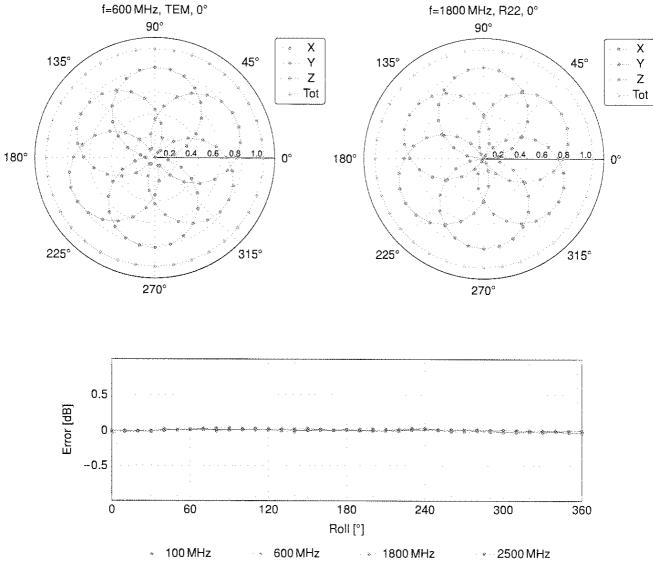
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

#### Calibration Parameter Determined in Head Tissue Simulating Media

f (I	MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	1	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
E	5500	34.5	6.07	5.10	5.10	5.10	0.20	2.50	±18.6%

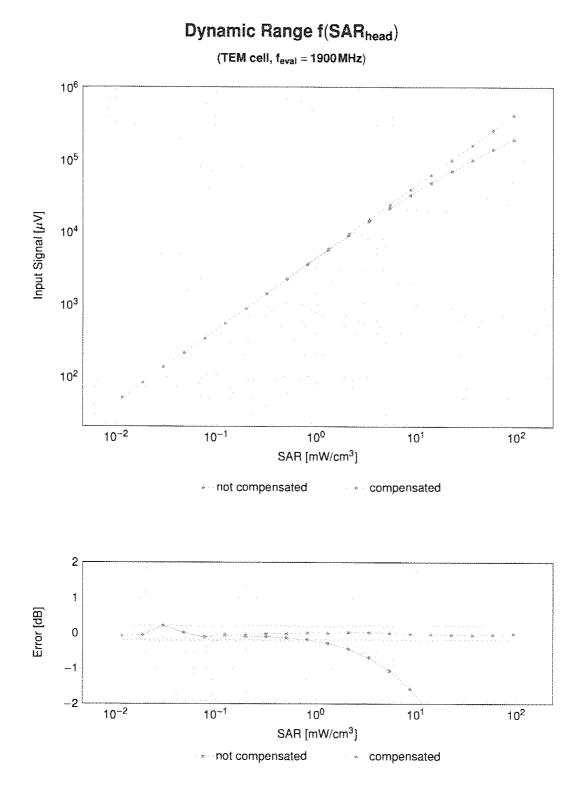

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and  $\pm 700$  MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies 6–10 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm 10\%$  if liquid compensation formula is applied to measured SAR

values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

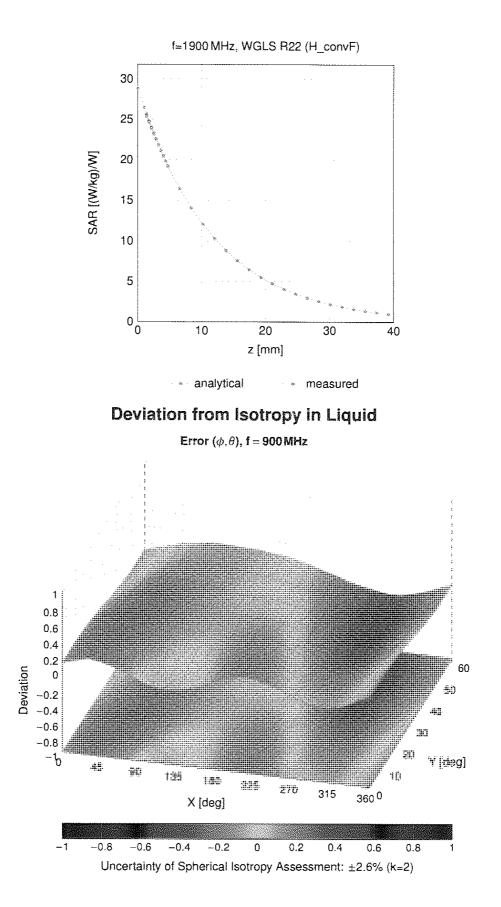
### **Frequency Response of E-Field**

(TEM-Cell:ifi110 EXX, Waveguide:R22)




Uncertainty of Frequency Response of E-field:  $\pm 6.3\%$  (k=2)




### Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)



Uncertainty of Linearity Assessment:  $\pm 0.6\%$  (k=2)





# **Appendix: Modulation Calibration Parameters**

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
0		CW	CW	0.00	±4.7
10010	CAA	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1,87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	<u>+9.6</u>
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.09	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.12	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 46 Mbps)	WLAN	10.24	±9.6
10003	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN		1
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 510005)	WLAN	9.83	±9.6 ±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)		9.62	
10073	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 Mops)	WLAN WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 38 Mbps)	WLAN		±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)		10.94	±9.6
10077	CAB		WLAN CDMA2000	11.00	±9.6
		CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD		
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)		5.73	±9.6
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.50	±9.6
10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15MHz, QPSK)	· · · ·	6.50	±9.6
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QFSK)	LTE-FDD	5.72	±9.6
10182	CAG	LTE-FDD (SC-FDMA, 1 BB, 15 MHz, 18-QAW)	LTE-FDD	6.52	±9.6
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 3MHz, QPSK)	LTE-FDD LTE-FDD	6.50	±9.6
10185	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHZ, QPSK) LTE-FDD (SC-FDMA, 1 RB, 3 MHZ, 16-QAM)		5.73	±9.6
10185	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 18-QAM)	LTE-FDD LTE-FDD	6.51	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	· · · · · · · · · · · · · · · · · · ·	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 10-QAM)	LTE-FDD	5.73	±9.6
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.52	±9.6
10109	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	LTE-FDD	6.50	±9.6
10193	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN WLAN	8.09	±9.6
10194	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)		8.21	±9.6
10196	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN WLAN	8.10	±9.6
10197	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)		8.13	±9.6
10198		IEEE 802.11n (HT Mixed, 55 Mops, 64-QAM)	WLAN	8.27	±9.6
10219	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.03	±9.6
10220	CAC		WLAN	8.13	±9.6
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
		IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223 10224	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
1 11/2/2	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAD	PHS (QPSK)	PHS	11.81	±9.6
10278	CAD	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAG	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10233		LTE-FDD (SC-FDMA, 50% RB. 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10293	CAF	ETET DD (OOT DMAT, OOVATELEONMIZ, QT OTY			
	CAF CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10297					±9.6 ±9.6
10297 10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	
10297 10298 10299	CAF CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD LTE-FDD	5.72 6.39	±9.6
10297 10298 10299 10300	CAF CAF CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD LTE-FDD LTE-FDD	5.72 6.39 6.60	±9.6 ±9.6
10297 10298 10299 10300 10301	CAF CAF CAC CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	LTE-FDD LTE-FDD LTE-FDD WiMAX	5.72 6.39 6.60 12.03	±9.6 ±9.6 ±9.6
10297 10298 10299 10300 10301 10302	CAF CAF CAC CAC CAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)	LTE-FDD LTE-FDD LTE-FDD WIMAX WIMAX	5.72 6.39 6.60 12.03 12.57	$     \pm 9.6   $
10297 10298 10299 10300 10301 10302 10303	CAF CAF CAC CAC CAB CAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL) IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	LTE-FDD LTE-FDD LTE-FDD WIMAX WIMAX WIMAX	5.72 6.39 6.60 12.03 12.57 12.52	$ \begin{array}{r} \pm 9.6 \\ \end{array} $

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10307	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC)	WIMAX	14.49	±9.6
10308	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6
10309	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM,AMC 2x3)	WIMAX	14.58	±9.6
10310	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3	WiMAX	14.57	±9.6
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAD	iDEN 1:3	IDEN	10.51	±9.6
10314	AAD	IDEN 1:6	iden	13.48	±9.6
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	±9.6
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200 Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200 Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200 Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200 Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200 Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAD	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc dc)	WLAN	8.37	±9.6
10401	AAA	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc dc)	WLAN	8.60	±9.6
10402	AAA	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc dc)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WIFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
10417	AAA	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	±9.6
10422	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10447	AAA	LTE-FDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAC	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc dc)	WLAN	8.63	±9.6
10457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM. UL Sub)	LTE-TDD	8.30	±9.6
10463	AAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.5
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10467	AAA	LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
	AAF	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10468	J	the contract of the contract o			±9.6
10468	AAD			1 0.00	13.0
	AAD AAD	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM, UL Sub) LTE-TDD (SC-FDMA, 1 RB, 10MHz, QPSK, UL Sub)	LTE-TDD LTE-TDD	8.56	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10475	AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	±9.6
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	±9.6
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	±9.6
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	±9.6
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	±9.6
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6
10487	AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	±9.6
10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	±9.6
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	±9.6
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	±9.6
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	±9.6
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	±9.6
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	±9.6
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	±9.6
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	±9.6
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TOD	8.45	±9.6
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	±9.6
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	±9.6
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	±9.6
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6
10519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	±9.6
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	±9.6
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	±9.6
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc dc)	WLAN	8.36	±9.6
10526	AAF	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc dc)	WLAN	8.42	±9.6
10527	AAF	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc dc)	WLAN	8.21	±9.6
10528	AAF	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc dc)	WLAN	8.36	±9.6
10529	AAF	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc dc)	WLAN	8.36	±9.6
10531	AAF	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc dc)	WLAN	8.43	±9.6
10532	AAF	IEEE 802.11ac WiFI (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
10533	AAE	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc dc)	WLAN	8.38	±9.6
10534	AAE	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc dc)	WLAN	8.45	±9.6
10535	AAE	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc dc)	WLAN	8.45	±9.6
10536	AAF	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc dc)	WLAN	8.32	±9.6
3			WLAN	8.44	
10537	AAF	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc dc)		0.44	±9.6
3	AAF AAF AAA	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc dc) IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc dc) IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc dc)	WLAN WLAN WLAN	8.54	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10541	AAA	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc dc)	WLAN	8.46	±9.6
10542	AAA	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc dc)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc dc)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc dc)	WLAN	8.47	±9,6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc dc)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc dc)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc dc)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc dc)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc dc)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc dc)	WLAN	8.45	±9.6
10554	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc dc)	WLAN	8.48	±9.6
10555	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc dc)	WLAN	8.47	±9.6
10556	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc dc)	WLAN	8.50	±9.6
10557	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc dc)	WLAN	8.52	±9.6
10558	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc dc)	WLAN	8.61	<u>+9.6</u>
10560	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc dc)	WLAN	8.73	±9.6
10561	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc dc)	WLAN	8.56	±9.6
10562	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc dc)	WLAN	8.69	±9.6
10563	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc dc)	WLAN	8.77	±9.6
10564	AAC	IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	±9.6
10565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	±9.6
10566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	±9.6
10567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	±9.6
10568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	±9.6
10569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	
10570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OF DM, 44 MDps, 99pc dc)	WLAN		<u>+9.6</u>
10571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS-0F DW, 54 Mbps, 55pc 6c)	WLAN	8.30	±9.6
10572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	±9.6
10573	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.99	±9.6
10574	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	±9.6
10575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)		1.98	±9.6
10576	AAC	IEEE 802.11g Wifi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.59	±9.6
10570	AAC		WLAN	8.60	±9.6
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
10580	AAD	IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.59	±9.6
	4		WLAN	8.60	±9.6
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
10587	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
10588	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
10589	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
10590	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
10591	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)	WLAN	8.63	±9.6
10592	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10593	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)	WLAN	8.64	±9.6
10594	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
10595	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)	WLAN	8.74	±9.6
10596 10597	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)	WLAN	8.71	±9.6
	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)	WLAN	8.72	±9.6
		IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)	WLAN	8.50	±9.6
10598	AAA		WLAN	8.79	±9.6
10598 10599	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)			
10598 10599 10600	ААА ААА	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10598 10599 10600 10601	AAA AAA AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)	WLAN WLAN	8.88 8.82	±9.6 ±9.6
10598 10599 10600 10601 10602	AAA           AAA           AAA           AAA           AAA           AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)	WLAN WLAN WLAN	8.88 8.82 8.94	+9.6 +9.6 +9.6
10598 10599 10600 10601 10602 10603	AAA           AAA           AAA           AAA           AAA           AAA           AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)	WLAN WLAN WLAN WLAN	8.88 8.82 8.94 9.03	+9.6 +9.6 +9.6 +9.6
10598 10599 10600 10601 10602 10603 10604	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)           IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)           IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)           IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)           IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)           IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)	WLAN WLAN WLAN WLAN WLAN	8.88 8.82 8.94 9.03 8.76	$\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$
10598 10599 10600 10601 10602 10603 10604 10605	AAA           AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN	8.88 8.82 9.03 8.76 8.97	$ \begin{array}{r} \pm 9.6 \\ \pm 9.6 \end{array} $
10598 10599 10600 10601 10602 10603 10604 10605 10606	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.88 8.82 9.03 8.76 8.97 8.82	$\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$
10598 10599 10600 10601 10602 10603 10604 10605	AAA           AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc) IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN	8.88 8.82 9.03 8.76 8.97	$ \begin{array}{r} \pm 9.6 \\ \pm 9.6 \end{array} $

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc dc)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc dc)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc dc)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc dc)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc dc)	WLAN	8.58	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc dc)	WLAN	8.86	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc dc)	WLAN	8.87	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc dc)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WIFi (40 MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc dc)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WIFI (80 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WIFI (80 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc dc)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc dc)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc dc)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFI (80 MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6
10636	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10637	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10638	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc dc)	WLAN	8.86	±9.6
10639	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10640	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc dc)	WLAN	8.98	±9.6
10641	AAC	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc dc)	WLAN	9.06	±9.6
10642	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc dc)	WLAN	9.06	±9.6
10643	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc dc)	WLAN	8.89	±9.6
10644	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc dc)	WLAN	9.05	±9.6
10645	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc dc)	WLAN	9.11	±9.6
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1. Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAC	Pulse Waveform (200 Hz, 10%)	Test	10.00	±9.6
10659	AAC	Pulse Waveform (200 Hz, 20%)	Test	6.99	±9.6
10660	AAC	Pulse Waveform (200 Hz, 40%)	Test	3.98	±9.6
10661	AAC	Pulse Waveform (200 Hz, 60%)	Test	2.22	±9.6
10662	AAC	Pulse Waveform (200 Hz, 80%)	Test	0.97	±9.6
10670	AAC	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAD	IEEE 802.11ax (20 MHz, MCS0, 90pc dc)	WLAN	9.09	±9.6
10672	AAD	IEEE 802.11ax (20 MHz, MCS1, 90pc dc)	WLAN	8.57	±9.6
10673	AAD	IEEE 802.11ax (20 MHz, MCS2, 90pc dc)	WLAN	8.78	±9.6
10674	AAD	IEEE 802.11ax (20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
10675	AAD	IEEE 802.11ax (20 MHz, MCS4, 90pc dc)	WLAN	8.90	±9.6
10676	AAD	IEEE 802.11ax (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10677	AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)	WLAN	8.73	±9.6
10678	AAD	IEEE 802.11ax (20 MHz, MCS7, 90pc dc)	WLAN	8.78	±9.6
10679	AAD	IEEE 802.11ax (20 MHz, MCS8, 90pc dc)	WLAN	8.89	±9.6
10680	AAD	IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WLAN	8.80	±9.6
10681	AAG	IEEE 802.11ax (20 MHz, MCS10, 90pc dc)	WLAN	8.62	±9.6
10682	AAF	IEEE 802.11ax (20 MHz, MCS11, 90pc dc)	WLAN	8.83	±9.6
10683	AAA	IEEE 802.11ax (20 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc dc)	WLAN	8.26	±9.6
-	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
10685					

10687         AAE           10688         AAE           10688         AAE           10690         AAE           10690         AAE           10691         AAB           10692         AAA           10693         AAA           10694         AAA           10695         AAA           10696         AAA           10697         AAA           10698         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10717         AAC           10718         AAC           10720         AAC           10721 </th <th>IEEE 802.11ax (20 MHz, MCS5, 99pc dc)         IEEE 802.11ax (20 MHz, MCS6, 99pc dc)         IEEE 802.11ax (20 MHz, MCS7, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS1, 99pc dc)         IEEE 802.11ax (20 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         <td< th=""><th>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</th><th>8.45           8.29           8.55           8.29           8.25           8.29           8.25           8.29           8.25           8.29           8.25           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.82           8.73           8.82           8.73           8.82           8.70           8.82           8.55           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.26           8.45           8.30           8.48</th><th>±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6</th></td<></th>	IEEE 802.11ax (20 MHz, MCS5, 99pc dc)         IEEE 802.11ax (20 MHz, MCS6, 99pc dc)         IEEE 802.11ax (20 MHz, MCS7, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS1, 99pc dc)         IEEE 802.11ax (20 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc) <td< th=""><th>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</th><th>8.45           8.29           8.55           8.29           8.25           8.29           8.25           8.29           8.25           8.29           8.25           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.82           8.73           8.82           8.73           8.82           8.70           8.82           8.55           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.26           8.45           8.30           8.48</th><th>±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6</th></td<>	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.45           8.29           8.55           8.29           8.25           8.29           8.25           8.29           8.25           8.29           8.25           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.82           8.73           8.82           8.73           8.82           8.70           8.82           8.55           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.26           8.45           8.30           8.48	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10689         AAD           10690         AAE           10691         AAB           10692         AAA           10692         AAA           10693         AAA           10694         AAA           10695         AAA           10696         AAA           10697         AAA           10698         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10701         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10711         AAC           10712 </td <td>IEEE 802.11ax (20 MHz, MCS6, 99pc dc)         IEEE 802.11ax (20 MHz, MCS7, 99pc dc)         IEEE 802.11ax (20 MHz, MCS8, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         &lt;</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.55           8.29           8.25           8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.82           8.70           8.82           8.70           8.82           8.70           8.82           8.70           8.82           8.33           8.29           8.33           8.29           8.33           8.26           8.45           8.30</td> <td>$\pm 9.6$ $\pm 9.6$ =</td>	IEEE 802.11ax (20 MHz, MCS6, 99pc dc)         IEEE 802.11ax (20 MHz, MCS7, 99pc dc)         IEEE 802.11ax (20 MHz, MCS8, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         <	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.55           8.29           8.25           8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.82           8.70           8.82           8.70           8.82           8.70           8.82           8.70           8.82           8.33           8.29           8.33           8.29           8.33           8.26           8.45           8.30	$\pm 9.6$ $\pm 9.6$ =
10690         AAE           10691         AAB           10692         AAA           10692         AAA           10693         AAA           10694         AAA           10695         AAA           10696         AAA           10697         AAA           10698         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10711         AAC           10712 </td <td>IEEE 802.11ax (20 MHz, MCS7, 99pc dc)         IEEE 802.11ax (20 MHz, MCS8, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         <t< td=""><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.29           8.25           8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td><td>$\pm 9.6$ $\pm 9.6$ =</td></t<></td>	IEEE 802.11ax (20 MHz, MCS7, 99pc dc)         IEEE 802.11ax (20 MHz, MCS8, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc) <t< td=""><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.29           8.25           8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td><td>$\pm 9.6$ $\pm 9.6$ =</td></t<>	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29           8.25           8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\pm 9.6$ $\pm 9.6$ =
10691         AAB           10692         AAA           10692         AAA           10693         AAA           10694         AAA           10695         AAA           10695         AAA           10696         AAA           10697         AAA           10698         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10711         AAC           10712 </td <td>IEEE 802.11ax (20 MHz, MCS8, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         &lt;</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.25           8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6</td>	IEEE 802.11ax (20 MHz, MCS8, 99pc dc)         IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         <	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.25           8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6
10 692         AAA           10 693         AAA           10 693         AAA           10 695         AAA           10 695         AAA           10 695         AAA           10 697         AAA           10 698         AAA           10 699         AAA           10 700         AAA           10 700         AAA           10 701         AAA           10 702         AAA           10 703         AAA           10 704         AAA           10 705         AAA           10 706         AAC           10 707         AAC           10 708         AAC           10 709         AAC           10 701         AAC           10 703         AAC           10 710         AAC           10 711         AAC           10 712         AAC           10 713         AAC           10 714         AAC           10 715         AAC           10 716         AAC           10 717         AAC           10 718         AAC           10 720         AAC </td <td>IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6</td>	IEEE 802.11ax (20 MHz, MCS9, 99pc dc)         IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29           8.25           8.57           8.78           8.91           8.61           8.89           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6         ±9.6
10693         AAA           10694         AAA           10695         AAA           10695         AAA           10695         AAA           10697         AAA           10698         AAA           10699         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714 </td <td>IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.25           8.57           8.78           8.91           8.61           8.89           8.73           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS10, 99pc dc)         IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.25           8.57           8.78           8.91           8.61           8.89           8.73           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10694         AAA           10695         AAA           10695         AAA           10696         AAA           10697         AAA           10698         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725 </td <td>IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.57           8.78           8.91           8.61           8.89           8.73           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (20 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.57           8.78           8.91           8.61           8.89           8.73           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10695         AAA           10696         AAA           10697         AAA           10698         AAA           10699         AAA           10700         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10717         AAC           10718         AAC           10720         AAC           10721         AAC           10722         AAC           10723 </td <td>IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.78           8.91           8.61           8.89           8.73           8.86           8.70           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (40 MHz, MCS0, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.78           8.91           8.61           8.89           8.73           8.86           8.70           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10696         AAA           10697         AAA           10698         AAA           10699         AAA           10700         AAA           10700         AAA           10701         AAA           10702         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725 </td <td>IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.91           8.61           8.89           8.73           8.86           8.70           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.91           8.61           8.89           8.73           8.86           8.70           8.86           8.70           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10697         AAA           10698         AAA           10698         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727 </td <td>IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)   <!--</td--><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.61           8.89           8.82           8.73           8.86           8.70           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.33           8.26           8.45           8.30</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td></td>	IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc) </td <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.61           8.89           8.82           8.73           8.86           8.70           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.33           8.26           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.61           8.89           8.82           8.73           8.86           8.70           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10698         AAA           10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728 </td <td>IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.89           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td>	IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.89           8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10699         AAA           10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10709         AAC           10701         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10730 </td <td>IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.45           8.30</td> <td>+9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6</td>	IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.82           8.73           8.86           8.70           8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.29           8.33           8.45           8.30	+9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6
10700         AAA           10701         AAA           10702         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10709         AAC           10701         AAC           10702         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10730 </td <td>IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.73           8.86           8.70           8.82           8.56           8.69           8.65           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.33           8.29           8.33           8.45           8.30</td> <td>+9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6</td>	IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.73           8.86           8.70           8.82           8.56           8.69           8.65           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.33           8.29           8.33           8.45           8.30	+9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6
10701         AAA           10702         AAA           10703         AAA           10703         AAA           10703         AAA           10703         AAA           10703         AAA           10704         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10730 </td <td>IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.86           8.70           8.82           8.56           8.69           8.55           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td>	IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS3, 90pc dc)         IEEE 802.11ax (40 MHz, MCS4, 90pc dc)         IEEE 802.11ax (40 MHz, MCS5, 90pc dc)         IEEE 802.11ax (40 MHz, MCS6, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.86           8.70           8.82           8.56           8.69           8.55           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10702         AAA           10703         AAA           10703         AAA           10703         AAA           10703         AAA           10704         AAA           10705         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10730         AAC           10731 </td <td>IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS8, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.70           8.82           8.56           8.69           8.65           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6</td>	IEEE 802.11ax (40 MHz, MCS7, 90pc dc)         IEEE 802.11ax (40 MHz, MCS8, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.70           8.82           8.56           8.69           8.65           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10703         AAA           10704         AAA           10705         AAA           10705         AAA           10705         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10727         AAC           10728         AAC           10730         AAC           10731         AAC           10732         AAC           10733 </td <td>IEEE 802.11ax (40 MHz, MCS8, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.33</td> <td>±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6</td>	IEEE 802.11ax (40 MHz, MCS8, 90pc dc)         IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS1, 90pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.82           8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.33	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10704         AAA           10705         AAA           10705         AAA           10706         AAC           10707         AAC           10708         AAC           10709         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc dc)         IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.56           8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.33	+9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6 +9.6
10 705         AAA           10 706         AAC           10 707         AAC           10 708         AAC           10 709         AAC           10 709         AAC           10 709         AAC           10 709         AAC           10 710         AAC           10 711         AAC           10 712         AAC           10 713         AAC           10 714         AAC           10 715         AAC           10 716         AAC           10 717         AAC           10 718         AAC           10 719         AAC           10 720         AAC           10 721         AAC           10 722         AAC           10 723         AAC           10 724         AAC           10 725         AAC           10 726         AAC           10 727         AAC           10 728         AAC           10 730         AAC           10 731         AAC           10 732         AAC           10 733         AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc dc)         IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.69           8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.33	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10706         AAC           10707         AAC           10708         AAC           10709         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10720         AAC           10723         AAC           10724         AAC           10727         AAC           10730         AAC           10731         AAC           10732         AAC           10733 </td <td>IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS8, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)</td> <td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td> <td>8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30</td> <td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td>	IEEE 802.11ax (40 MHz, MCS11, 90pc dc)         IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS8, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.66           8.32           8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10707         AAC           10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc dc)         IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.32 8.55 8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10708         AAC           10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10717         AAC           10718         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc dc)         IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.55           8.33           8.29           8.39           8.67           8.33           8.26           8.45           8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10709         AAC           10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10717         AAC           10718         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc dc)         IEEE 802.11ax (40 MHz, MCS3, 99pc dc)         IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.33 8.29 8.39 8.67 8.33 8.26 8.45 8.45 8.30	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10710         AAC           10711         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10710         AAC           10711         AAC           10712         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc dc)           IEEE 802.11ax (40 MHz, MCS4, 99pc dc)           IEEE 802.11ax (40 MHz, MCS5, 99pc dc)           IEEE 802.11ax (40 MHz, MCS5, 99pc dc)           IEEE 802.11ax (40 MHz, MCS7, 99pc dc)           IEEE 802.11ax (40 MHz, MCS7, 99pc dc)           IEEE 802.11ax (40 MHz, MCS7, 99pc dc)           IEEE 802.11ax (40 MHz, MCS9, 99pc dc)           IEEE 802.11ax (40 MHz, MCS9, 99pc dc)           IEEE 802.11ax (40 MHz, MCS10, 99pc dc)           IEEE 802.11ax (40 MHz, MCS11, 99pc dc)           IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29 8.39 8.67 8.33 8.26 8.45 8.30	$\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$
10711         AAC           10712         AAC           10712         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10721         AAC           10723         AAC           10724         AAC           10725         AAC           10728         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc dc)         IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS8, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.39 8.67 8.33 8.26 8.45 8.30	$\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$ $\pm 9.6$
10712         AAC           10713         AAC           10713         AAC           10714         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc dc)         IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.67 8.33 8.26 8.45 8.30	+9.6 +9.6 +9.6 +9.6 +9.6
10713         AAC           10714         AAC           10714         AAC           10715         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc dc)         IEEE 802.11ax (40 MHz, MCS7, 99pc dc)         IEEE 802.11ax (40 MHz, MCS8, 99pc dc)         IEEE 802.11ax (40 MHz, MCS9, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS10, 99pc dc)         IEEE 802.11ax (40 MHz, MCS11, 99pc dc)         IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN	8.33 8.26 8.45 8.30	±9.6 ±9.6 ±9.6
10714         AAC           10715         AAC           10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10727         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc dc)           IEEE 802.11ax (40 MHz, MCS8, 99pc dc)           IEEE 802.11ax (40 MHz, MCS9, 99pc dc)           IEEE 802.11ax (40 MHz, MCS10, 99pc dc)           IEEE 802.11ax (40 MHz, MCS11, 99pc dc)           IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN WLAN	8.26 8.45 8.30	±9.6 ±9.6
10715         AAC           10716         AAC           10717         AAC           10718         AAC           10719         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc dc)           IEEE 802.11ax (40 MHz, MCS9, 99pc dc)           IEEE 802.11ax (40 MHz, MCS10, 99pc dc)           IEEE 802.11ax (40 MHz, MCS11, 99pc dc)           IEEE 802.11ax (40 MHz, MCS11, 99pc dc)           IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN WLAN	8.45 8.30	±9.6
10716         AAC           10717         AAC           10717         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10733         AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc dc)           IEEE 802.11ax (40 MHz, MCS10, 99pc dc)           IEEE 802.11ax (40 MHz, MCS11, 99pc dc)           IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN WLAN	8.30	
10717         AAC           10718         AAC           10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10733         AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc dc)           IEEE 802.11ax (40 MHz, MCS11, 99pc dc)           IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN WLAN		+9.6
10718         AAC           10719         AAC           10720         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10720         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10730         AAC           10731         AAC           10732         AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc dc) IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN	8.48	
10719         AAC           10720         AAC           10721         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	·····		±9.6
10720         AAC           10721         AAC           10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC			8.24	±9.6
10721         AAC           10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC		WLAN	8.81	±9.6
10722         AAC           10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC		WLAN	8.87	±9.6
10723         AAC           10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC		WLAN	8.76	±9.6
10724         AAC           10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC	· · · · · · · · · · · · · · · · · · ·	WLAN	8.55	±9.6
10725         AAC           10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC		WLAN	8.70	±9.6
10726         AAC           10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC		WLAN	8.90	±9.6
10727         AAC           10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC		WLAN	8.74	±9.6
10728         AAC           10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC		WLAN	8.72	±9.6
10729         AAC           10730         AAC           10731         AAC           10732         AAC           10733         AAC	, , , , , , , , , , , , , , , , , , , ,	WLAN	8.66	±9.6
10730         AAC           10731         AAC           10732         AAC           10733         AAC		WLAN	8.65	±9.6
10731 AAC 10732 AAC 10733 AAC	· · · · · · · · · · · · · · · · · · ·	WLAN	8.64	±9.6
10732 AAC 10733 AAC		WLAN	8.67	±9.6
10733 AAC		WLAN	8.42	±9.6
		WLAN	8.46	±9.6
		WLAN	8.40	±9.6
10734 AAC 10735 AAC		WLAN	8.25	±9.6
		WLAN	8.33	±9.6
		WLAN	8.27	±9.6
		WLAN	8.36	±9.6
10738 AAC		WLAN	8.42	±9.6
10739 AAC		WLAN	8.29	±9.6
10740 AAC		WLAN	8.48	±9.6
10741 AAC 10742 AAC		WLAN MILAN	8.40	±9.6
10742 AAC 10743 AAC		WLAN	8.43	±9.6
10743 AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc dc)	WLAN	8.94	±9.6
10744 AAC 10745 AAC		WLAN	9.16	±9.6
10745 AAC 10746 AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)	WLAN	8.93	±9.6
10746 AAC 10747 AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)           IEEE 802.11ax (160 MHz, MCS2, 90pc dc)	WLAN	9.11	±9.6
10747 AAC 10748 AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)           IEEE 802.11ax (160 MHz, MCS2, 90pc dc)           IEEE 802.11ax (160 MHz, MCS3, 90pc dc)	1426 4 51	9.04	±9.6
	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)           IEEE 802.11ax (160 MHz, MCS2, 90pc dc)           IEEE 802.11ax (160 MHz, MCS3, 90pc dc)           IEEE 802.11ax (160 MHz, MCS4, 90pc dc)	WLAN	8.93	±9.6
10749 AAC 10750 AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)           IEEE 802.11ax (160 MHz, MCS2, 90pc dc)           IEEE 802.11ax (160 MHz, MCS3, 90pc dc)           IEEE 802.11ax (160 MHz, MCS4, 90pc dc)           IEEE 802.11ax (160 MHz, MCS5, 90pc dc)           IEEE 802.11ax (160 MHz, MCS5, 90pc dc)	WLAN	1 0 00	±9.6
10750 AAC 10751 AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)           IEEE 802.11ax (160 MHz, MCS2, 90pc dc)           IEEE 802.11ax (160 MHz, MCS3, 90pc dc)           IEEE 802.11ax (160 MHz, MCS4, 90pc dc)           IEEE 802.11ax (160 MHz, MCS5, 90pc dc)           IEEE 802.11ax (160 MHz, MCS5, 90pc dc)           IEEE 802.11ax (160 MHz, MCS5, 90pc dc)	WLAN WLAN	8.90	
10751 AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)         IEEE 802.11ax (160 MHz, MCS2, 90pc dc)         IEEE 802.11ax (160 MHz, MCS3, 90pc dc)         IEEE 802.11ax (160 MHz, MCS4, 90pc dc)         IEEE 802.11ax (160 MHz, MCS5, 90pc dc)         IEEE 802.11ax (160 MHz, MCS5, 90pc dc)         IEEE 802.11ax (160 MHz, MCS5, 90pc dc)         IEEE 802.11ax (160 MHz, MCS6, 90pc dc)         IEEE 802.11ax (160 MHz, MCS6, 90pc dc)	WLAN	8.90 8.79 8.82	±9.6 ±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc dc)	WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc dc)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc dc)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc dc)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc dc)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc dc)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc dc)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc dc)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc dc)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc dc)	WLAN	8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc dc)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc dc)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc dc)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc dc)	WLAN	8.51	±9.6
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		<u>±9.6</u>
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)		8.23	±9.6
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.03	±9.6
10775	AAC	5G NR (CP-OFDM, T NB, 50 MH2, QPSK, 15 KH2) 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
	AAC		5G NR FR1 TDD	8.31	±9.6
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
		5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6 j
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	<u>+</u> 9.6
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	<u>+</u> 9.6
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6
				l	<u> </u>

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7,71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.40	±9.6
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	8.41	±9.6
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.5 ±9.6
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10909		- Contraction and Contraction (Contraction of the Contraction of the C	1 JUIND FREIDU	J 3.90	±9.6
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	<u>±9.6</u>
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAA AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAA	5G NR (DFT-s-OFDM, T RB, 50 MHZ, QPSK, 15 KHZ) 5G NR (DFT-s-OFDM, 50% RB, 5 MHZ, QPSK, 15 KHZ)	5G NR FR1 FDD 5G NR FR1 FDD	5.51	±9.6
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)		5.90	±9.6
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 KHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.77	±9.6
10939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.90	±9.6
10940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6 ±9.6
10942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAB	SG NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962 10963	AAB AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 KHz) 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.40	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz) 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 KHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	9.29 9.37	±9.6 ±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 KHz)	5G NR FR1 TDD	9.37	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BDR	ULLA	2.23	±9.6
10979	AAA	ULLA HDR4	ULLA	7.02	±9.6
	AAA	ULLA HDR8	ULLA	8.82	±9.6
10980		·····			
10980	AAA	ULLA HDRp4	ULLA	1.50	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA



Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Element

Certificate No

EX-7409_Jun22

## **CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:7409 BN 08-2022-
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date	June 16, 2022
	cuments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	nducted in the closed laboratory facility: environment temperature (22 $\pm$ 3) $^{\circ}$ C and humidity < 70%.
Calibration Equipment used (	M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-21 (OCP-DAK3.5-1249_Oct21)	Oct-22
OCP DAK-12	SN: 1016	20-Oct-21 (OCP-DAK12-1016_Oct21)	Oct-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

-	Name	Function	Signature
Calibrated by	Aldonia Georgiadou	Laboratory Technicia	n NE
Approved by	Sven Kühn	Technical Manager	SL-
This calibration certifi	cate shall not be reproduced except in fu	II without written approval of	Issued: June 23, 2022 the laboratory.

**Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
<b>A</b> , <b>B</b> , <b>C</b> , <b>D</b>	modulation dependent linearization parameters
Polarization $\varphi$	arphi rotation around probe axis
Polarization $\vartheta$	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

## Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization  $\vartheta = 0$  ( $f \le 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800 \text{ MHz}$ ) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50 \text{ MHz}$ .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc ( <i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.38	0.33	0.38	±10.1%
DCP (mV) ^B	103.0	100.0	100.0	±4.7%

#### Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	x	0.00	0.00	1.00	0.00	139.9	±1.7%	±4.7%
ŭ		Y	0.00	0.00	1.00		146.9		
		Z	0.00	0.00	1.00		135.2		
10352	Pulse Waveform (200Hz, 10%)		1.40	60.22	5.93	10.00	60.0	±3.2%	±9.6%
		Y	1.89	63.19	8.68		60.0		
		Z	1.56	61.23	7.11		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	74.00	9.00	6.99	80.0	±2.7%	±9.6%
		Y	1.07	62.30	7.12		80.0		
		Z	0.80	60.00	5.42		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	0.21	146.28	1.04	3.98	95.0	±3.2%	±9.6%
		Y	0.38	60.00	4.77		95.0		
		Z	0.16	130.75	0.03		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	6.89	158.59	13.27	2.22	120.0	±1.7%	±9.6%
	· · ·	Y	9.78	158.66	12.70		120.0	ĺ	
		Z	8.99	158.97	15.12	1	120.0		
10387	QPSK Waveform, 1 MHz	X	1.23	72.26	16.65	1.00	150.0	±3.8%	±9.6%
		Y	1.27	66.10	13.67	1	150.0		
		Z	1.38	66.74	14.38	1	150.0		
10388	QPSK Waveform, 10 MHz	X	1.72	68.54	16.00	0.00	150.0	±0.9%	±9.6%
		Y	1.77	66.10	14.63		150.0	1	
		Z	1.85	66.56	15.04	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	1.60	64.21	16.48	3.01	150.0	±1.7%	±9.6%
		Y	2.04	67.18	17.54		150.0		
		Z	1.86	64.86	16.40		150.0	1	
10399	64-QAM Waveform, 40 MHz	X	3.05	66.93	15.75	0.00	150.0	±3.1%	±9.6%
		Y	3.17	66.18	15.20	]	150.0	1	1
		Z	3.37	67.07	15.73	1	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.26	66.66	15.97	0.00	150.0	±4.7%	±9.6%
		Y	4.41	65.26	15.26	1	150.0	]	
	1	Z	4.61	65.85	15.63		150.0		Į

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

### **Sensor Model Parameters**

	C1 fF	C2 fF	α V ⁻¹	T1 msV ²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ^{−1}	Т6
Х	14.1	103.47	34.67	5.16	0.00	4.90	0.00	0.02	1.00
V	25.4	189.94	35.65	2.94	0.00	5.01	0.99	0.00	1.01
z	27.5	205.81	35.57	4.28	0.00	4.95	0.00	0.16	1.01

#### Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-137.3°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

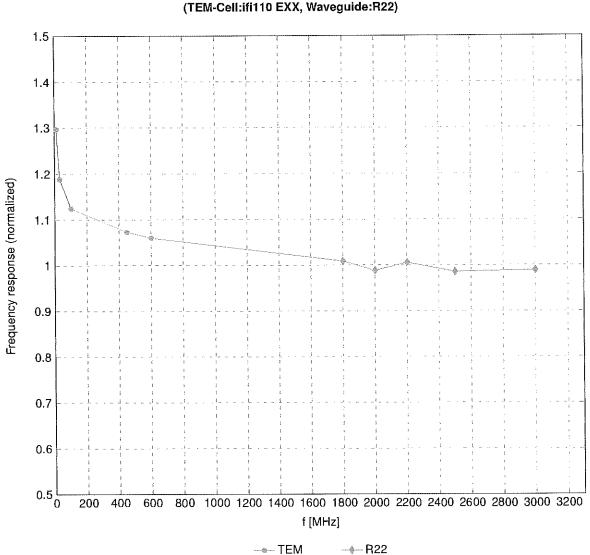
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	18.54	18.54	18.54	0.00	1.00	±13.3%
750	41.9	0.89	9.88	9.88	9.88	0.58	0.84	±12.0%
835	41.5	0.9	9.58	9.58	9.58	0.46	0.91	±12.0%
1750	40.1	1.37	8.33	8.33	8.33	0.36	0.86	±12.0%
1900	40.0	1.4	8.13	8.13	8.13	0.34	0.86	±12.0%
2300	39.5	1.67	7.52	7.52	7.52	0.36	0.90	±12.0%
2450	39.2	1.8	7.21	7.21	7.21	0.38	0.90	±12.0%
2600	39.0	1.96	6.97	6.97	6.97	0.30	0.90	±12.0%

## Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of  $\pm$ 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$ 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$ 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$ 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm 10\%$  if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm 5\%$ . The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

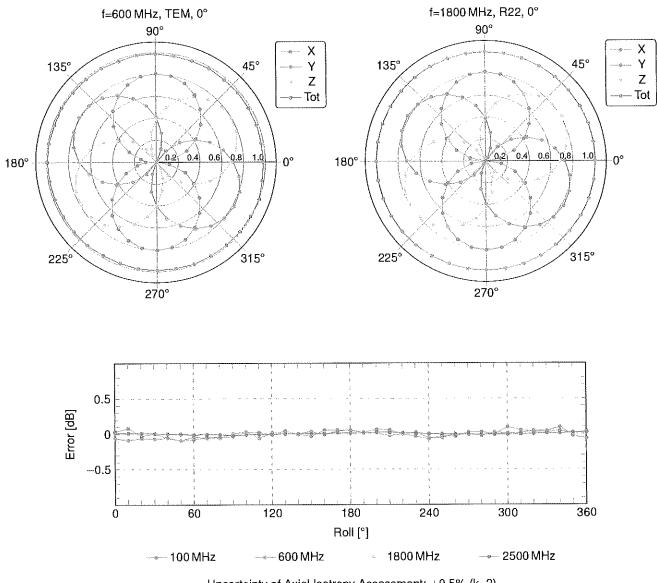
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$ 1% for frequencies below 3 GHz and below  $\pm$ 2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ( <i>k</i> = 2)
750	55.5	0.96	9.86	9.86	9.86	0.57	0.80	±12.0%
835	55.2	0.97	9.69	9.69	9.69	0.50	0.80	±12.0%
1750	53.4	1.49	8.01	8.01	8.01	0.37	0.86	±12.0%
1900	53.3	1.52	7.66	7,66	7.66	0.50	0.86	±12.0%
2300	52.9	1.81	7.47	7.47	7.47	0.36	0.90	±12.0%
2450	52.7	1.95	7.41	7.41	7.41	0.37	0.90	±12.0%
2600	52.5	2.16	7.23	7.23	7.23	0.37	0.90	±12.0%

## Calibration Parameter Determined in Body Tissue Simulating Media

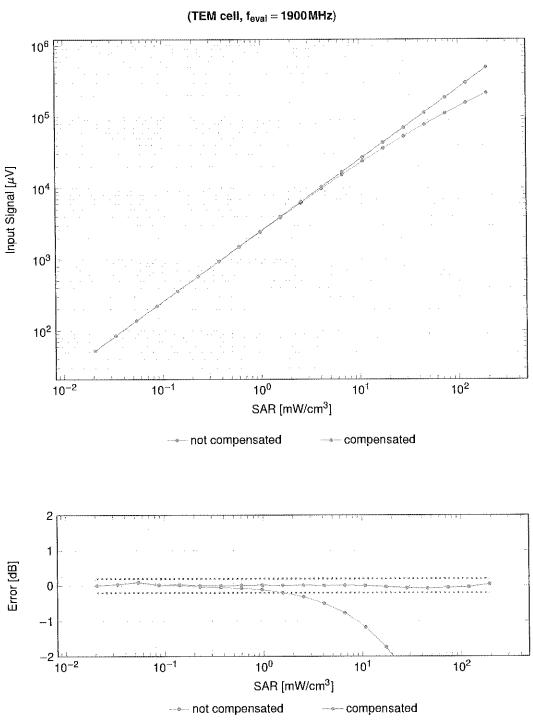
^C Frequency validity above 300 MHz of  $\pm$ 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$ 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$ 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$ 110 MHz.

As sessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$ 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$ 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$ 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz and below  $\pm 2\%$  for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

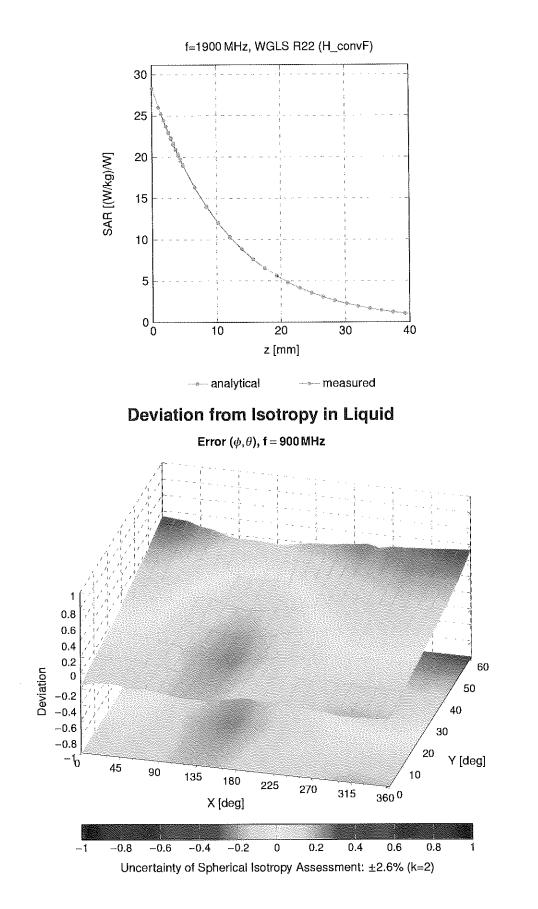


## **Frequency Response of E-Field**


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)




## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)



# Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)



## **Conversion Factor Assessment**

## **Appendix: Modulation Calibration Parameters**

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
0		CW	CW	0.00	±4.7
10010	CAA	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	<u>+</u> 9.6
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6,56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
		IEEE 802.15.1 Bluetooth (PI/4-DQFSK, DH5)	Bluetooth	3.83	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (P//4-DQFSK, DH5)	Bluetooth	8.01	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	4.77	±9.6
10037	CAA			4.10	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth		±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS		
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	<u>+9.6</u>
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3,60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	<u>±</u> 9,6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WIFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WIFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10000	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10073		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	10.30	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Wbps)	WLAN	10.30	±9.6
10075		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 38 Mbps)	WLAN	10.94	±9.6
10076			WLAN	11.00	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	CDMA2000	3.97	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)		4.77	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS		
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097			WCDMA	3.98	±9.6
10098		UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099			GSM	9.55	±9.6
10100			LTE-FDD	5.67	±9.6
10101			LTE-FDD	6.42	±9.6
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108			LTE-FDD	5.80	±9.6
10109			LTE-FDD	6.43	±9.6
1.5.50			LTE-FDD	5.75	±9.6
10110	I CAG			1 0.70	

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	<u>+</u> 9.6
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAG	IEEE 802.11π (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	<u>+</u> 9,6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	<u>+9.6</u>
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9,28	±9.6
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182		LTE-FDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-FDD	6,52	±9.6
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	<u>±9.6</u>
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187			LTE-FDD	5.73	±9.6
10188			LTE-FDD	6.52	±9.6
10189	1	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193		IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194		IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195		IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196		IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197		IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198		IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219		IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220		IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221			WLAN	8.27	±9.6
10222			WLAN	8.06	±9.6
10223			WLAN	8.48	±9.6
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

.

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	<u>+9,6</u>
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	<u>+</u> 9.6
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9,48	±9.6
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9,48	±9.6
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9,96	±9.6
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9,98	±9.6
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	<u>+</u> 9.6
10277	CAD	PHS (QPSK)	PHS	11.81	±9.6
10278	CAD	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAG	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	CAG		CDMA2000	3.46	±9.6
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	CAG		CDMA2000	3.50	±9.6
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	CAC	· · · · · · · · · · · · · · · · · · ·	LTE-FDD	6.60	±9.6
10301	CAC		WIMAX	12.03	±9.6
10302	CAB		WIMAX	12,57	±9.6
10303	CAB		WIMAX	12.52	±9.6
10304			WIMAX	11.86	±9.6
1			WIMAX	15.24	±9.6
10305	CAA				

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10307	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC)	WIMAX	14.49	<u>+</u> 9.6
10308	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6
10309	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM,AMC 2x3)	WIMAX	14.58	±9.6
10310	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3	WiMAX	14.57	±9.6
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAD	IDEN 1:3	IDEN	10.51	±9.6
10314	AAD	IDEN 1:6	IDEN	13.48	±9.6
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	±9.6
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	<u>+</u> 9,6
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200 Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200 Hz, 20%)	Generic	6.99	±9,6
10354	AAA	Pulse Waveform (200 Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200 Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200 Hz, 80%)	Generic	0.97	±9,6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9,6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAD	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc dc)	WLAN	8.37	±9.6
10400	AAA	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc dc)	WLAN	8.60	±9.6
10401	AAA	IEEE 802.11ac WiFI (40 MHz, 64-QAM, 99pc dc)	WLAN	8.53	±9.6
10402	AAA	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
		CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.77	±9.6
10404	AAB		CDMA2000	5.22	±9.6
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate			f
10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WIFI 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
10417	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9,6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	±9.6
10422	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	<u>+</u> 9.6
10431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	<u>+9.6</u>
10432	AAB	LTE-FDD (OFDMA, 15MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10447	AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAA	LTE-FDD (OFDMA, 20MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAC	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc dc)	WLAN	8.63	±9.6
10457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8,25	±9.6
10405	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10460	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9,6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	±9,6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 10-QAM, UL Sub)	LTE-TDD	8.56	±9.6
		LTE-TDD (SC-FDMA, 1 RB, 3MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10464	AAD		LTE-TDD		±9.6
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)		8.32	
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10467	AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10469	AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.6
10470	AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10471	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6

1115	Dav	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
UID 10472	Rev AAC	Communication System Name LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10472	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7,82	±9.6
10473	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10474	AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10475	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)		8.32	±9.6
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10473	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	±9.6
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8,45	±9.6
10401	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	±9.6
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	±9.6
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	±9.6
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	±9.6
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6
10487	AAC	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	±9.6
10487	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	±9.6
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10491 10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15MHz, 0F3R, 0L Sub)	LTE-TDD	8.41	±9.6
		LTE-TDD (SC-FDMA, 50% RB, 15MHz, 16-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10493 10494	AAF AAF	LTE-TDD (SC-FDMA, 50% RB, 15MHz, 64-QAM, 0L Sub)	LTE-TDD	7.74	±9.6
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	±9.6
		LTE-TDD (SC-FDMA, 50% RB, 20MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20Minz, 64-QAM, 0L 500)	LTE-TDD	7.67	±9.6
10497	AAE		LTE-TDD	8.40	±9.6
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)		8.68	±9.0 ±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD		±9.6
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	±9.6
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	±9.6
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	±9.6
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	±9.6
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	±9.6
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	±9.6
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	±9.6
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	±9.6
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6
10519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	±9.6
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	±9.6
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	±9.6
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11 a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc dc)	WLAN	8.36	±9.6
10526	AAF	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc dc)	WLAN	8.42	±9.6
10527	AAF	IEEE 802.11ac WIFI (20 MHz, MCS2, 99pc dc)	WLAN	8.21	±9.6
10528	AAF	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc dc)	WLAN	8,36	±9.6
10529	AAF	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc dc)	WLAN	8.36	±9.6
10531	AAF	IEEE 802.11 ac WiFi (20 MHz, MCS6, 99pc dc)	WLAN	8.43	<u>±9.6</u>
10532	AAF	IEEE 802.11 ac WiFi (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
10533		IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc dc)	WLAN	8.38	±9.6
10534	AAE	IEEE 802.11 ac WiFi (40 MHz, MCS0, 99pc dc)	WLAN	8.45	±9.6
10535	AAE	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc dc)	WLAN	8.45	±9.6
10536	AAF	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc dc)	WLAN	8.32	±9.6
10537	AAF	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc dc)	WLAN	8.44	±9.6
10538	AAF	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc dc)	WLAN	8.54	±9.6
	AAA	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc dc)	WLAN	8.39	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10541	AAA	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc dc)	WLAN	8.46	±9.6
10542	AAA	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc dc)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc dc)	WLAN	8.65	<u>+</u> 9.6
10544	AAC	1EEE 802.11ac WiFI (80 MHz, MCS0, 99pc dc)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc dc)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc dc)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc dc)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc dc)	WLAN	8.38	<u>+</u> 9.6
10551	AAC	IEEE 802.11ac WIFi (80 MHz, MCS7, 99pc dc)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc dc)	WLAN	8.45	±9.6
10554	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc dc)	WLAN	8,48	±9.6
10555	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc dc)	WLAN	8.47	±9.6
10556	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc dc)	WLAN	8.50	±9.6
10557	AAC	IEEE 802.11ac WIFi (160 MHz, MCS3, 99pc dc)	WLAN	8.52	±9.6
10558	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc dc)	WLAN	8.61	<u>±</u> 9.6
10560	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc dc)	WLAN	8.73	±9.6
10561	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc dc)	WLAN	8.56	±9.6
10562	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc dc)	WLAN	8.69	±9.6
10563	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc dc)	WLAN	8.77	±9.6
10564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	±9.6
10565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	±9.6
10566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	±9.6
10567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	±9.6
10568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	±9.6
10569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	±9.6
10570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	±9.6
10571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	±9.6
10572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	±9.6
10573	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	±9.6
10574	AAC	IEEE 802.11b WIFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1,98	±9.6
10575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
10576	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
10577	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
10579	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
10581	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
10584		IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
10587	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
10588	AAA	IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
10589		IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN WLAN	8.35	±9.6
10590	AAA AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)	WLAN	8.67	±9.6 ±9.6
10591 10592		IEEE 802.11n (H1 Mixed, 20 MHz, MCS0, 90pc dc)	WLAN	8.63	±9.6
			WLAN	8.64	±9.0 ±9.6
10593		IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)	WLAN	8.64	±9.6
10594 10595		IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc) IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)	WLAN	8.74	±9.6
10595		IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)	WLAN	8.74	±9.6
10596		IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)	WLAN	8.72	±9.6
10597		IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)	WLAN	8.50	±9.6
10598		IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)	WLAN	8.50	±9.6
10599		IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)	WLAN	8.88	±9.6
10600		IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)	WLAN	8.82	±9.6
10601		IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)	WLAN	8.94	±9.6
10602		IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)	WLAN	9.03	±9.6
10603	1	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)	WLAN	8.76	±9.6
10604		IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)	WLAN	8.97	±9.6
10605		IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)	WLAN	8.82	±9.6
10606		IEEE 802.11n (H1 Mixed, 40 MHz, MCS7, 90pc dc)	WLAN	8.64	±9.6
10607			WLAN	8.77	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc dc)	VVLAN	0.11	1 13.0

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc dc)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc dc)	WLAN	8.78	<u>±9.6</u>
10611	AAC	IEEE 802.11ac WIFi (20 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc dc)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WIFI (20 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc dc)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc dc)	WLAN	8.58	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc dc)	WLAN	8.86	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc dc)	WLAN	8.87	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc dc)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc dc)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11 ac WiFi (80 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WIFI (80 MHz, MCS5, 90pc dc)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc dc)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc dc)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6
10636	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10637	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10638	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc dc)	WLAN	8.86	<u>+</u> 9,6
10639	AAC	IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10640	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc dc)	WLAN	8.98	±9.6
10641	AAC	IEEE 802.11ac WIFI (160 MHz, MCS5, 90pc dc)	WLAN	9.06	±9.6
10642	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc dc)	WLAN	9,06	±9.6
10643	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc dc)	WLAN	8.89	±9.6
10644	AAC	IEEE 802.11 ac WiFi (160 MHz, MCS8, 90pc dc)	WLAN	9.05	±9.6
10645	AAC	EEE 802,11ac WiFi (160 MHz, MCS9, 90pc dc)	WLAN	9.11	±9.6
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	<u>+</u> 9.6
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAC	Pulse Waveform (200 Hz, 10%)	Test	10.00	±9.6
10659	AAC	Pulse Waveform (200 Hz, 20%)	Test	6.99	±9.6
10660	AAC	Pulse Waveform (200 Hz, 40%)	Test	3.98	±9.6
10661	AAC	Pulse Waveform (200 Hz, 60%)	Test	2.22	±9.6
10662	AAC	Pulse Waveform (200 Hz, 80%)	Test	0.97	±9.6
10670	AAC	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAD	IEEE 802.11ax (20 MHz, MCS0, 90pc dc)	WLAN	9.09	±9.6
10672	1	IEEE 802.11ax (20 MHz, MCS1, 90pc dc)	WLAN	8.57	±9.6
10673	AAD	IEEE 802.11ax (20 MHz, MCS2, 90pc dc)	WLAN	8.78	±9.6
1	AAD	IEEE 802.11ax (20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
10674		IEEE 802.11ax (20 MHz, MCS4, 90pc dc)	WLAN	8.90	±9.6
10674	AAD	IEEE 802.11ax (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
10675	AAD	IEEE 802.11ax (20 MHz, MCS3, 80pc dc)	WLAN	8.73	±9.6
10675 10676	AAD AAD		WLAN WLAN	8.73 8.78	±9.6 ±9.6
10675 10676 10677	AAD AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)			
10675 10676 10677 10678	AAD AAD AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc)	WLAN	8.78	±9.6
10675 10676 10677 10678 10679	AAD AAD AAD AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)           IEEE 802.11ax (20 MHz, MCS7, 90pc dc)           IEEE 802.11ax (20 MHz, MCS8, 90pc dc)           IEEE 802.11ax (20 MHz, MCS9, 90pc dc)           IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WLAN WLAN	8.78 8.89	<u>±9.6</u> ±9.6
10675 10676 10677 10678 10679 10680	AAD AAD AAD AAD AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)           IEEE 802.11ax (20 MHz, MCS7, 90pc dc)           IEEE 802.11ax (20 MHz, MCS8, 90pc dc)           IEEE 802.11ax (20 MHz, MCS9, 90pc dc)           IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WLAN WLAN WLAN	8.78 8.89 8.80	+9.6 +9.6 +9.6
10675 10676 10677 10678 10679 10680 10681	AAD AAD AAD AAD AAD AAG AAF	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)         IEEE 802.11ax (20 MHz, MCS7, 90pc dc)         IEEE 802.11ax (20 MHz, MCS8, 90pc dc)         IEEE 802.11ax (20 MHz, MCS9, 90pc dc)         IEEE 802.11ax (20 MHz, MCS9, 90pc dc)         IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WLAN WLAN WLAN WLAN	8.78 8.89 8.80 8.62	$ \begin{array}{r} \pm 9.6 \\ \pm 9.6 \\ \pm 9.6 \\ \pm 9.6 \\ \pm 9.6 \end{array} $
10675 10676 10677 10678 10679 10680 10681 10682	AAD AAD AAD AAD AAD AAG AAF AAA	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)         IEEE 802.11ax (20 MHz, MCS7, 90pc dc)         IEEE 802.11ax (20 MHz, MCS8, 90pc dc)         IEEE 802.11ax (20 MHz, MCS9, 90pc dc)         IEEE 802.11ax (20 MHz, MCS10, 90pc dc)         IEEE 802.11ax (20 MHz, MCS10, 90pc dc)         IEEE 802.11ax (20 MHz, MCS11, 90pc dc)	WLAN WLAN WLAN WLAN WLAN	8.78 8.89 8.80 8.62 8.83	$ \begin{array}{c} \pm 9.6 \\ \end{array} $
10675 10676 10677 10678 10679 10680 10681 10682 10683	AAD AAD AAD AAD AAD AAG AAG AAF AAA AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)         IEEE 802.11ax (20 MHz, MCS7, 90pc dc)         IEEE 802.11ax (20 MHz, MCS8, 90pc dc)         IEEE 802.11ax (20 MHz, MCS9, 90pc dc)         IEEE 802.11ax (20 MHz, MCS10, 90pc dc)         IEEE 802.11ax (20 MHz, MCS11, 90pc dc)         IEEE 802.11ax (20 MHz, MCS11, 90pc dc)         IEEE 802.11ax (20 MHz, MCS11, 90pc dc)         IEEE 802.11ax (20 MHz, MCS1, 90pc dc)         IEEE 802.11ax (20 MHz, MCS1, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN	8.78 8.89 8.80 8.62 8.83 8.42	$ \begin{array}{c} \pm 9.6 \\ \end{array} $

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10687	AAE	IEEE 802.11ax (20 MHz, MCS4, 99pc dc)	WLAN	8.45	±9.6
10688	AAE	IEEE 802.11ax (20 MHz, MCS5, 99pc dc)	WLAN	8.29	±9.6
10689	AAD	IEEE 802.11ax (20 MHz, MCS6, 99pc dc)	WLAN	8.55	±9.6
10690	AAE	IEEE 802.11ax (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
10691	AAB	IEEE 802.11ax (20 MHz, MCS8, 99pc dc)	WLAN	8.25	±9.6
10692	AAA	IEEE 802.11ax (20 MHz, MCS9, 99pc dc)	WLAN	8.29	±9.6
10693	AAA	IEEE 802.11ax (20 MHz, MCS10, 99pc dc)	WLAN	8.25	±9.6
10694	AAA	IEEE 802.11ax (20 MHz, MCS11, 99pc dc)	WLAN	8.57	±9.6
10695	AAA	IEEE 802.11ax (40 MHz, MCS0, 90pc dc)	WLAN	8.78	±9.6
10696	AAA	IEEE 802.11ax (40 MHz, MCS1, 90pc dc)	WLAN	8.91	±9.6
10697	AAA	IEEE 802.11ax (40 MHz, MCS2, 90pc dc)	WLAN	8.61	±9.6
10698	AAA	IEEE 802.11ax (40 MHz, MCS3, 90pc dc)	WLAN	8.89	±9.6
10699	AAA	IEEE 802.11ax (40 MHz, MCS4, 90pc dc)	WLAN	8.82	±9.6
10700	AAA	IEEE 802.11ax (40 MHz, MCS5, 90pc dc)	WLAN	8.73	±9.6
10701	AAA	IEEE 802.11ax (40 MHz, MCS6, 90pc dc)	WLAN	8.86	±9.6
10702	AAA	IEEE 802.11ax (40 MHz, MCS7, 90pc dc)	WLAN	8.70	±9.6
10703	AAA	IEEE 802.11ax (40 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10704	AAA	IEEE 802.11ax (40 MHz, MCS9, 90pc dc)	WLAN	8.56	±9.6
10705	AAA	IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN	8.69	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc dc)	WLAN	8.66	±9.6
10707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc dc)	WLAN	8.32	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc dc)	WLAN	8.29	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc dc)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc dc)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc dc)	WLAN	8.33	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc dc)	WLAN	8.26	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc dc)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc dc)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc dc)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc dc)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc dc)	WLAN	8.87	<u>±9.6</u>
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc dc)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc dc)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc dc)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc dc)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc dc)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc dc)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc dc)	WLAN	8.64	±9.6
10730		IEEE 802.11ax (80 MHz, MCS11, 90pc dc)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10732		IEEE 802.11ax (80 MHz, MCS1, 99pc dc)	WLAN	8.46	±9.6
10733		IEEE 802.11ax (80 MHz, MCS2, 99pc dc)	WLAN	8.40	<u>±9.6</u>
10734		IEEE 802.11ax (80 MHz, MCS3, 99pc dc)	WLAN	8.25	±9.6
10735		IEEE 802.11ax (80 MHz, MCS4, 99pc dc)	WLAN	8.33	±9.6
10736		IEEE 802.11ax (80 MHz, MCS5, 99pc dc)	WLAN	8.27	±9.6
10737		IEEE 802.11ax (80 MHz, MCS6, 99pc dc)	WLAN	8.36	±9.6
10738		IEEE 802.11ax (80 MHz, MCS7, 99pc dc)	WLAN	8.42	±9.6
10739		IEEE 802.11ax (80 MHz, MCS8, 99pc dc)	WLAN	8.29	±9.6
10740		IEEE 802.11ax (80 MHz, MCS9, 99pc dc)	WLAN	8.48	±9.6
10741		IEEE 802.11ax (80 MHz, MCS10, 99pc dc)	WLAN	8.40	±9.6
10742		IEEE 802.11ax (80 MHz, MCS11, 99pc dc)	WLAN	8.43	±9.6
10743		IEEE 802.11ax (160 MHz, MCS0, 90pc dc)	WLAN	8.94	<u>±9.6</u>
10744		IEEE 802.11ax (160 MHz, MCS1, 90pc dc)	WLAN	9.16	±9.6
10745		IEEE 802.11ax (160 MHz, MCS2, 90pc dc)	WLAN	8.93	±9.6
10746		IEEE 802.11ax (160 MHz, MCS3, 90pc dc)	WLAN	9.11	±9.6
10747		IEEE 802.11ax (160 MHz, MCS4, 90pc dc)	WLAN	9.04	±9.6
10748		IEEE 802.11ax (160 MHz, MCS5, 90pc dc)	WLAN	8.93	±9.6
10749		IEEE 802.11ax (160 MHz, MCS6, 90pc dc)	WLAN	8.90	±9.6
10750			WLAN	8.79	±9.6
10751			WLAN	8.82	<u>±9.6</u>
10752	AAC	IEEE 802.11ax (160 MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc dc)	WLAN	9.00	<u>+</u> 9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc dc)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc dc)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc dc)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc dc)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc dc)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc dc)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc dc)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc dc)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc dc)	WLAN	8.49	<u>+</u> 9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc dc)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc dc)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc dc)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc dc)	WLAN	8.51	±9.6
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	<u>+</u> 9.6
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8,44	±9.6
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8,39	±9.6
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	<u>+9.6</u>
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9,6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.34	±9.6 ±9.6
10810		5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817				8.35	±9.6
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.34	±9.6
10819		5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820		5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)			±9.6
		5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.6
10822		5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	
10823		SO ND (OD OEDM 100% DD EOMILE ODSK 20 KL-)	FC ND ED1 700	0 20	1 106
10823 10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.6
10823	AAD AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.41	<u>±9.6</u> <u>±9.6</u> <u>±9.6</u>

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^L $k = 1$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	<u>+9.6</u>
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	<u>+9.6</u>
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,37	±9.6
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	<u>+9.6</u>
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6 ±9.6
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95 8.41	±9.6
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	8.12	±9.6
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10881	AAD	5G NR (DFI-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10882				6.57	±9.6
10883		5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	6.53	±9.6
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 120 KHz)	5G NR FR2 TDD	6.61	±9.6
10885		5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	6.65	±9.6
10886 10887		5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 KHz)	5G NR FR2 TDD	7.78	±9.6
10888		5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10888		5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.02	±9.6
108890		5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.40	±9.6
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 100AMM, 120 KHz)	5G NR FR2 TDD	8.13	±9.6
10891		5G NR (CP-OFDM, 1 R8, 50 MHz, 64 QAM, 120 KHz)	5G NR FR2 TDD	8.41	±9.6
10892		5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±0.0
10898		5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QFSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899		5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899		5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10900		5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902		5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902		5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903		5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904		5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
		5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906	_	5G NR (DFT-s-OFDM, THB, 80 MHZ, QPSK, 30 KHZ) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
		5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10908 10909		5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSN, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
				1 0.00	1 -0.0

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	<u>+9.6</u>
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	<u>+</u> 9.6
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5,52	±9.6
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9,6
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6 ±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87 5.94	±9.6
10948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.94	±9.6
10949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10950	AAB	5G NR (DFI-s-OFDM, 100% RB, 40 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5,92	±9.6
10951		5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 KHz)	5G NR FR1 FDD	8.15	±9.6
10953	AAB AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 KHz)	5G NR FR1 FDD	8.23	±9.6
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 19MHz, 64-QAM, 15 KHz)	5G NR FR1 FDD	8.42	±9.6
10955		5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10956	AAB AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.61	±9.6
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.33	<u>±9.6</u>
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 5MHz, 64-QAM, 30 KHz)	5G NR FR1 TDD	9.32	±9.6
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.36	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.40	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.55	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10908	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10972	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978		ULLA BDR	ULLA	2.23	±9.6
10978	AAA	ULLA HDR4	ULLA	7.02	±9.6
		ULLA HDR8	ULLA	8.82	±9.6
10080				4	
10980 10981	AAA	ULLA HDRp4	ULLA	1.50	<u>+</u> 9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	<u>+</u> 9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

### **Calibration Laboratory of** Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Element Certificate No: EX3-7659_Apr22

## **CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:7659	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	2022
Calibration date:	April 20, 2022	
	nts the traceability to national standards, which realize the physical units of measurements (SI). lainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.) Scheduled Calibration		
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524) Apr-23		
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23	
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23	
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23	
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22	
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22	
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22	

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	e Dalle
			Sel Myn
Approved by:	Sven Kühn	Deputy Manager	£ 1
			).K
			Issued: April 21, 2022
This calibration certificate	shall not be reproduced except in	full without written approval of the labo	pratory.

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura
  - S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.72	0.60	0.60	± 10.1 %
DCP (mV) ^B	102.9	101.1	100.8	

### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^e (k=2)
0	CW	X	0.00	0.00	1.00	0.00	146.8	± 2.2 %	±4.7%
-		Y	0.00	0.00	1.00		160.7		
		Z	0.00	0.00	1.00		156.5		
10352-	Pulse Waveform (200Hz, 10%)	X	1.54	60.64	6.32	10.00	60.0	± 3.4 %	± 9.6 %
AAA		Y	1.54	60.81	6.57		60.0	}	
		Z	1.44	60.19	5.84	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	0.77	60.00	4.74	6.99	80.0	± 2.2 %	± 9.6 %
AAA		Y	0.76	60.00	4.95		80.0		
		Z	0.81	60.00	4.37		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.01	126.93	0.57	3.98	95.0	± 2.2 %	± 9.6 %
AAA		Y	0.14	137.33	0.64		95.0	1	
		Z	4.69	110.83	0.31	1	95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	16.96	150.34	11.03	2.22	120.0	± 1.5 %	±9.6 %
AAA		Y	8.22	159.51	25.32	1	120.0		
		Z	1.01	159.98	1.58		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.78	64.52	12.33	1.00	150.0	± 4.2 %	± 9.6 %
AAA		Y	0.81	65.44	13.19		150.0	]	
		Z	0.78	66.50	13.27		150.0		
10388-	QPSK Waveform, 10 MHz	X	1.47	65.21	13.80	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	1.53	65.88	14.31	]	150.0		
		Z	1.51	66.59	14.51		150.0		
10396-	64-QAM Waveform, 100 kHz	X	1.68	64.12	15.76	3.01	150.0	± 1.5 %	± 9.6 %
AAA		Y	1.72	64.51	17.03	]	150.0	]	
		Z	1.67	64.80	16.47		150.0		
10399-	64-QAM Waveform, 40 MHz	X	2.95	65.93	14.93	0.00	150.0	± 2.1 %	± 9.6 %
AAA		Y	2.98	66.12	15.14		150.0		
		Z	2.97	66.50	15.31		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.05	65.54	15.18	0.00	150.0	± 4.0 %	± 9.6 %
AAA		Y	4.06	65.68	15.33		150.0		
		Z	4.04	65.99	15.47	]	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

### Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V⁻²	T5 V⁻1	Т6
X	13.9	102.74	34.55	0.92	0.00	4.90	0.38	0.00	1.00
Y	13.4	99.16	34.95	0.92	0.00	4.90	0.00	0.00	1.01
Z	12.6	93.77	35.22	1.52	0.00	4.90	0.28	0.00	1.01

### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	168.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.93	10.93	10.93	0.53	0.80	± 12.0 %
835	41.5	0.90	10.65	10.65	10.65	0.54	0.80	± 12.0 %
1750	40.1	1.37	9.43	9.43	9.43	0.26	0.86	± 12.0 %
1900	40.0	1.40	9.18	9.18	9.18	0.29	0.86	± 12.0 %
2300	39.5	1.67	8.81	8.81	8.81	0.31	0.90	± 12.0 %
2450	39.2	1.80	8.74	8.74	8.74	0.32	0.90	± 12.0 %
2600	39.0	1.96	8.41	8.41	8.41	0.35	0.90	± 12.0 %
5250	35.9	4.71	5.84	5.84	5.84	0.40	1.80	± 14.0 %
5600	35.5	5.07	5.26	5.26	5.26	0.40	1.80	± 14.0 %
5750	35.4	5.22	5.36	5.36	5.36	0.40	1.80	± 14.0 %
5850	35.2	5.32	5.15	5.15	5.15	0.40	1.80	± 14.0 %

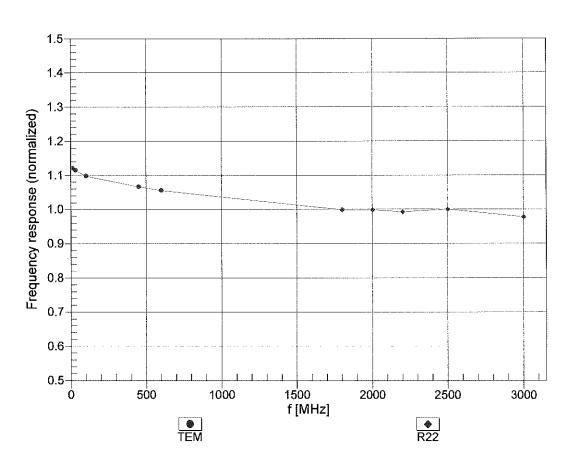
### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies up to 6 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

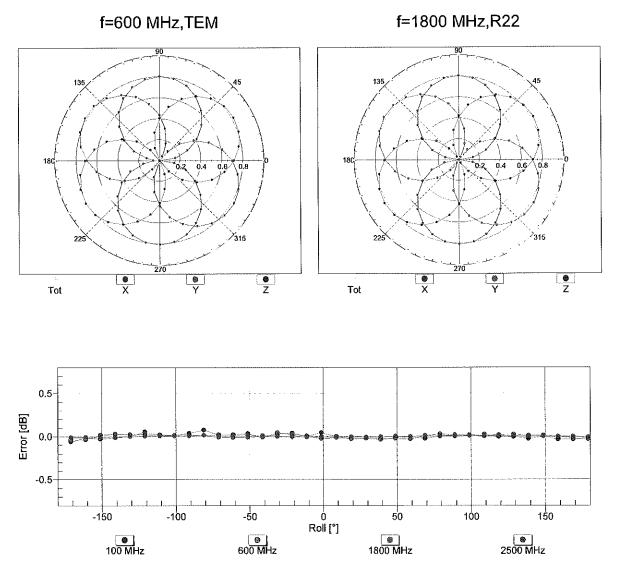
always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.86	10.86	10.86	0.49	0.80	± 12.0 %
835	55.2	0.97	10.62	10.62	10.62	0.40	0.80	± 12.0 %
1750	53.4	1.49	9.55	9.55	9.55	0.36	0.86	± 12.0 %
1900	53.3	1.52	9.14	9.14	9.14	0.32	0.86	± 12.0 %
2300	52.9	1.81	8.91	8.91	8.91	0.45	0.90	± 12.0 %
2450	52.7	1.95	8.81	8.81	8.81	0.36	0.90	± 12.0 %
2600	52.5	2.16	8.42	8.42	8.42	0.35	0.90	± 12.0 %
5250	48.9	5.36	5.21	5.21	5.21	0.50	1.90	± 14.0 %
5600	48.5	5.77	4.60	4.60	4.60	0.50	1.90	± 14.0 %
5750	48.3	5.94	4.67	4.67	4.67	0.50	1.90	± 14.0 %
5850	48.1	6.06	4.49	4.49	4.49	0.50	1.90	± 14.0 %


### Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

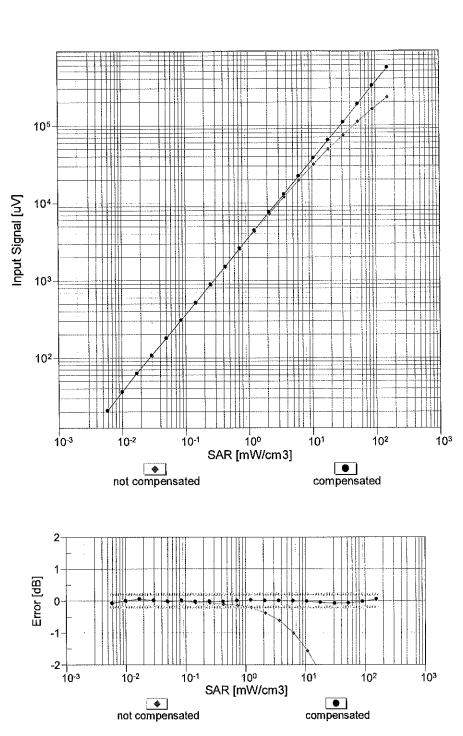
^F At frequencies up to 6 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

April 20, 2022

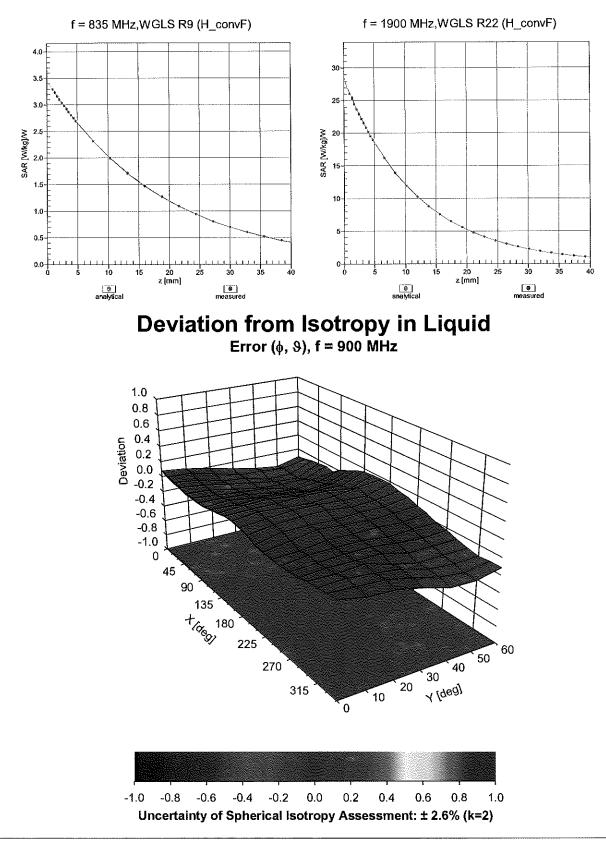


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

April 20, 2022



## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



# **Conversion Factor Assessment**

### **Appendix: Modulation Calibration Parameters**

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0	-	CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802,15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10033	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10042	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10044	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10040	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10049	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10055	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6 %
10060	CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps)	WLAN	3,60	± 9.6 %
10001	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6%
10065		IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 MDps)	WLAN	9.00	± 9.6 %
	1	IEEE 802.11a/h WiFi 5 GHz (OFDM, 16 Mips)	WLAN	9.38	± 9.6 %
10066		IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	10.12	± 9.6 %
10067			WLAN	10.12	± 9.6 %
10068		IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	9.83	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.62	± 9.6 %
10072		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.94	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10074	CAB				± 9.6 %
10075		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN		
10077		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fulirate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %

			<b></b>		
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10105	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6%
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6%
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9,48	± 9.6 %
10117.5	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10173			LTE-FDD	5.72	± 9.6 %
10174	+				/0
10174 10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)			
10174 10175 10176	CAG CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10174 10175 10176 10177	CAG CAG CAI	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD LTE-FDD	6.52 5.73	± 9.6 % ± 9.6 %
10174 10175 10176 10177 10178	CAG CAG CAI CAI	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD LTE-FDD LTE-FDD	6.52 5.73 6.52	± 9.6 % ± 9.6 % ± 9.6 %
10174 10175 10176 10177	CAG CAG CAI CAG CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD LTE-FDD	6.52 5.73	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %

10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6,50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6%
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	CAD	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %
10220	CAD	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAD	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10222	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10223	CAD	IEEE 802.11n (HT Mixed, 30 Mbps, 10-024M)	WLAN	8.08	±9.6%
10224		UMTS-FDD (HSPA+)	WEAN	5.97	± 9.6 %
10225	CAB CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 %
		LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 10-QAM)		10.26	± 9.6 %
10227	CAB	· · · · · · · · · · · · · · · · · · ·	LTE-TDD		± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6%
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±96%
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9,20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9,96	± 9.6 %
10250	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QFSR)		9.34	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %

10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9,23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6%
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6 %
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9,6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10290	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 41 Gry)	LTE-FDD	6.39	± 9.6 %
10299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	±9.6%
10301		IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.57	± 9.6 %
10302	AAA	IEEE 802.168 WIMAX (29.18, 5ms, 10MHz, GPSK, POSC, 3011C)	WIMAX	12.57	± 9.6 %
10303	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	$\pm 9.6\%$
10304	AAA		WIMAX	15.24	± 9.6 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	14.67	± 9.6 %
10306		IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	14.49	± 9.6 %
10307		IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WIMAX	14.49	± 9.6 %
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)		14.40	± 9.6 %
10309		IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX		± 9.6 %
10310		IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3		14.57	
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 % ± 9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	
10314			IDEN	13.48	± 9.6 %
10315		IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
1 10	1~~~	C4 OAM Manafarma 40 Mile	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz			
10399 10400	AAA	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	± 9.6 %
	AAA				± 9.6 % ± 9.6 %
10400	AAA AAE AAE	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	
10400 10401	AAA AAE AAE AAE	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN WLAN	8.37 8.60	± 9.6 %
10400 10401 10402	AAA AAE AAE AAE AAB	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)           IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)           IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN WLAN WLAN	8.37 8.60 8.53	± 9.6 % ± 9.6 %
10400 10401 10402 10403	AAA AAE AAE AAE AAB AAB	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)         IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)         IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)         CDMA2000 (1xEV-DO, Rev. 0)	WLAN WLAN WLAN CDMA2000	8.37 8.60 8.53 3.76	± 9.6 %       ± 9.6 %       ± 9.6 %

			Concris	9 5 4	± 9.6 %
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic WLAN	8.54 1.54	$\pm 9.6\%$
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)			± 9.6 %
10416		IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23 8.23	± 9.6 %
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)		8.14	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN WLAN	8.14	± 9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)		8.32	± 9.6 %
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.47	± 9.6 %
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)		8.40	± 9.6 %
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN WLAN	8.41	± 9.6 %
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.45	± 9.6 %
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)		8.41	± 9.6 %
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)		8.28	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)		8.38	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD WCDMA	8.60	± 9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	LTE-TDD	7.82	± 9.6 %
10435		LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-FDD	7.56	± 9.6 %
10447		LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.56	± 9.6 %
10448	AAD		LTE-FDD	7.51	± 9.6 %
10449	AAC AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %
10450	AAC	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
	AAA	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10453	AAD	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	± 9.6 %
10456 10457		UMTS-FDD (DC-HSDPA)	WEAN	6.62	± 9.6 %
10457	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10462	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	± 9.6 %
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6%
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8,32	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8,32	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	± 9.6 %
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	± 9.6 %
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	± 9.6 %
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	± 9.6 %
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	± 9.6 %
	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	± 9.6 %
10486				-	
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	± 9.6 %

					1
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	± 9.6 %
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
		LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10506	AAF			8.36	± 9.6 %
10507		LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)		8,55	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD		± 9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	± 9.6 %
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6 %
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	± 9.6 %
10526	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 %
10527	AAC	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	± 9.6 %
10528	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6 %
10529	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAC	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
10532	AAC	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10532	AAC	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
10534	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10534	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10535	AAC	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.32	± 9.6 %
}	+	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)			$\pm 9.6\%$
10537	AAC		WLAN	8.44	
10538		IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10541	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAC	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	±9.6%
10543	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
10544	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10545	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10546	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN	8.35	± 9.6 %

				0.40	100%
10547	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10548	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)	WLAN	8.37	$\pm 9.6\%$
10550	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10551	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10552	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	± 9.6 %
10553	AAC	IEEE 802.11ac WIFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 %
10554	AAD	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	± 9.6 %
10555	AAD	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)	WLAN	8.47	± 9.6 %
10556	AAD	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)	WLAN	8.50	± 9.6 %
10557	AAD	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 %
10558	AAD	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6 %
10560	AAD	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6 %
10561	AAD	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6 %
10562	AAD	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6 %
10563	AAD	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	± 9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	± 9.6 %
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	± 9.6 %
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	± 9.6 %
10569	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	± 9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	± 9.6 %
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10573	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 14 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
		IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	± 9.6 %
10591	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
10592	AAC		WLAN	8.64	± 9.6 %
10593	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc)		8.74	± 9.6 %
10594	AAC			8.74	± 9.6 %
10595	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN WLAN	8.71	± 9.6 %
10596	AAC				
10597	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
10598		IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
10599	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	±9.6%
10600	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10601	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
10602	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	± 9.6 %
10603	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	± 9.6 %
10604	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %

				9.07	± 9.6 %
10605	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
10606	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10607	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
10608	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	
10609	AAC	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAC	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10613	AAC	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
10614	AAC	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
10615	AAC	IEEE 802.11ac WIFI (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10616	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAC	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
10618	AAC	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10619	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10620	AAC	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
10621	AAC	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10622	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10623	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10624	AAC	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6%
10625	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
10626	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10627	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10628	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9.6 %
10629	AAC	IEEE 802.11ac WIFI (80MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10630	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	± 9.6 %
10631	AAC	IEEE 802.11ac WIFI (80MHz, MCS5, 90pc dc)	WLAN	8.81	± 9.6 %
10632	AAC	IEEE 802.11ac WIFI (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
10634	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	8.80	± 9.6 %
10635	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10636	AAD	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10637	AAD	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10638	AAD	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.86	±9.6%
10639	AAD	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10640	AAD	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
10640	AAD	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
		IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	9.06	± 9.6 %
10642		IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.89	± 9.6 %
10643	AAD	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	9.05	± 9.6 %
10644		IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.11	± 9.6 %
10645	AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10646	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, 0L Sub=2,7)	LTE-TDD	11.90	± 9.6 %
10647	AAF		CDMA2000	3.45	± 9.6 %
10648		CDMA2000 (1x Advanced)	LTE-TDD	6.91	± 9.6 %
10652	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)		7.42	± 9.6 %
10653	AAE	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD		
10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 % ± 9.6 %
10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	$\pm 9.6\%$
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670		Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %
10671	AAC	IEEE 802.11ax (20MHz, MCS0, 90pc dc)	WLAN	9.09	±9.6%
10672	AAC	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %

	1		1	T	
10673	AAC	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8,78	± 9.6 %
10674	AAC	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10675	AAC	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	± 9.6 %
10676	AAC	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10677	AAC	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10678	AAC	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10679	AAC	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAC	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAC	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAC	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10683	AAC	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAC	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9,6 %
10685	AAC	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10686	AAC	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10687	AAC	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 %
10688	AAC	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10689	AAC	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10690	AAC	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6 %
10691	AAC	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
10692	AAC	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	± 9.6 %
10693	AAC	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.25	± 9.6 %
10694	AAC	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.57	± 9.6 %
10695	AAC	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.78	± 9.6 %
10696	AAC	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	± 9.6 %
10697	AAC	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAC	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAC	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAC	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10701	AAC	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAC	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAC	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8,82	± 9.6 %
10704	AAC	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAC	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAC	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAC	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
10715	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10716	AAC	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10717	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAC	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10720	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	±9.6 %
10722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10725	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10726	AAC	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
	AAC	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %
10727					

(				0.04	
10729	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10733	AAC	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	± 9.6 %
10734	AAC	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAC	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	±9.6 %
10736	AAC	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10737	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10739	AAC	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	± 9.6 %
10750	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	± 9.6 %
10751	AAC	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
10754	AAC	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %
10755	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10756	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	±9.6%
10757	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	±9.6%
10758	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	± 9.6 %
10759	AAC	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	±9.6%
10760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
10761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	±9.6%
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	±9.6%
10763	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10767	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10772	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
10772	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10773	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10774	AAD	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10776	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10778	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.34	± 9.6 %
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 KHz)		8.42	± 9.6 %
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 TDD		$\pm 9.6\%$
}	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	
10781		5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.38	$\pm 9.6\%$
10782	AAD		5G NR FR1 TDD	8.43	$\pm 9.6\%$
10783		5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	$\pm 9.6\%$
10784	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %

10785	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6 %
10786	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6 %
10788	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10789	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10790	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10791	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10793	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10797	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10798	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10801	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10802	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6 %
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6%
10817	AAE	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10823	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10823	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10823	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10828	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QF 5K, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10829		5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	± 9.6 %
	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	7.73	± 9.6 %
10831	AAD				± 9.6 %
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.70	± 9.6 %
10834	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10835	AAD AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSN, 60 KHz)	5G NR FR1 TDD	7.66	± 9.6 %
10836		5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	7.68	$\pm 9.6\%$
10837	AAD	······································	<u>{</u>		$\pm 9.6\%$
10839		5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	± 9.6 % ± 9.6 %
10841		5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.71	± 9.6 %
10843		5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)		8.49	4
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10855		5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	$\pm 9.6\%$
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %

April 20, 2022

10863         A           10864         A           10865         A           10866         A           10868         A           10868         A           10869         A           10870         A           10871         A	AAD AAD AAD AAD AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)           5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)           5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.40 8.41	± 9.6 % ± 9.6 %
10864         A           10865         A           10866         A           10868         A           10869         A           10870         A           10871         A	AAD AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)			
10865         A           10866         A           10868         A           10869         A           10870         A           10871         A	AAD		5G NR FR1 TDD		
10866       A         10868       A         10869       A         10870       A         10871       A			+	8.37	± 9.6 %
10868     A       10869     A       10870     A       10871     A	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10869 / 10870 / 10871 /		5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10870 / 10871 /	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
····	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872 /	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
· · · · · · · · · · · · · · · · · · ·	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6%
	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
<u> </u>	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
} <b> </b>	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
<b>⊢</b> −−−+	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
1	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
<b>├</b>	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAB	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
}	AAB	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
·	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
}	AAB	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
j	AAB	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6%
	AAB	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
}	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
H	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
}	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
)	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
1 10340 F	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
	~~D	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %

April 20, 2022

			I		
10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6%
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6 %
10926	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6 %
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6 %
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 %
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6%
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 %
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	± 9.6 %
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6 %
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	± 9.6 %
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	± 9.6 %
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6 %
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	± 9.6 %
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6 %
10972	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %
10973	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6 %
10974	AAA	ULLA BDR	ULLA	2.23	± 9.6 %
10978	AAA	ULLA HDR4	ULLA	7.02	± 9.6 %
10979	AAA	ULLA HDR4	ULLA	8.82	± 9.6 %
10980	AAA	ULLA HDRp4	ULLA	1.50	± 9.6 %
10981	AAA	ULLA HDRp8	ULLA	1.50	± 9.0 %
10982	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)		9.31	± 9.6 %
			5G NR FR1 TDD	1	
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	± 9.6 %

10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	± 9.6 %
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	± 9.6 %
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	± 9.6 %
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	± 9.6 %
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	± 9.6 %
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Calibration Laboratory of

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Element

Certificate No

EX-7491 Jun22

# **CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:7491
Calibration procedure(s)	GA CAL-01-79, OA CAL-12-79, OA CAL-14-55, OA CAL-23-75, OA CAL-25-77 Calibration procedure for designatic E-field probes
Calibration date	June 29, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-21 (OCP-DAK3.5-1249_Oct21)	Oct-22
OCP DAK-12	SN: 1016	20-Oct-21 (OCP-DAK12-1016_Oct21)	Oct-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by	Aldonia Georgiadou	Laboratory Technician	1 Aleg
Approved by	Sven Kühn	Technical Manager	Sh
This calibration certificate	shall not be reproduced except in full	without written approval of	lssued: June 30, 2022 the laboratory.

### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kallbrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $\varphi$	arphi rotation around probe axis
Polarization $\vartheta$	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### Parameters of Probe: EX3DV4 - SN:7491

### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)^A$	0.55	0.54	0.53	±10.1%
DCP (mV) ^B	108.1	105.8	106.2	±4.7%

### **Calibration Results for Modulation Response**

UID	Communication System Name		A	B	С	D	VR	Max	Max
			dB	dBõV		dB	m٧	dev.	Unc ^E
					<u> </u>				k = 2
0	CW	X	0.00	0.00	1.00	0.00	177.0	±2.5%	±4.7%
		Y	0.00	0.00	1.00		156.5	_	
		Z	0.00	0.00	1.00		168.4		
10352	Pulse Waveform (200Hz, 10%)	X	1.43	60.18	5.78	10.00	60.0	±2.9%	±9.6%
		Y	1.38	60.00	5.76		60.0		
		Z	1.54	60.95	6.77		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	18.00	74.00	9.00	6.99	80.0	±2.7%	±9.6%
		Y	52.00	76.00	9.00		80.0		
		Z	0.81	60.00	5.15		80.0		
10354	Pulse Waveform (200Hz, 40%)	Х	0.09	137.54	0.06	3.98	95.0	±2.8%	±9.6%
		Y	0.45	60.00	3.35		95.0		
		Z	0.13	138.71	0.31	]	95.0		
10355	Pulse Waveform (200Hz, 60%)	X	4.25	158.30	19.94	2.22	120.0	±1.6%	±9.6%
		Y	0.02	157.25	17.15		120.0		
		Z	0.00	149.28	48.75		120.0		
10387	QPSK Waveform, 1 MHz	Х	0.44	63.67	12.22	1.00	150.0	±4.4%	±9.6%
		Y	0.95	73.00	17.16	ļ	150.0		
		Z	0.63	66.73	13.68		150.0		
10388	QPSK Waveform, 10 MHz	Х	1.24	66.40	13.72	0.00	150.0	±1.1%	±9.6%
		Y	1.68	69.92	16.21		150.0		
		Z	1.44	67.43	14.89		150.0	-	
10396	64-QAM Waveform, 100 kHz	X	1.74	65.57	16.52	3.01	150.0	±1.3%	±9.6%
		Y	1.80	66.34	17.26	1	150.0		
		Z	1.62	64.42	16.26		150.0		
10399	64-QAM Waveform, 40 MHz	Х	2.72	66.49	15.16	0.00	150.0	±2.6%	±9.6%
		Y	2.98	67.47	15.92	1	150.0		
		Z	2.85	66.58	15.39	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.78	66.82	15.57	0.00	150.0	±4.2%	±9.6%
		Y	3.95	66.73	15.84	1	150.0	ł	
		Z	3.98	66.61	15.73	1	150.0	4	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## Parameters of Probe: EX3DV4 - SN:7491

### Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 msV⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	8.0	58.51	33.85	4.27	0.00	4.91	0.58	0.00	1.00
у	10.0	72.88	33.98	4.31	0.00	4.90	0.48	0.00	1.00
Z	10.7	78.44	34.39	4.29	0.00	4.98	0.00	0.06	1.00

### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle	-92.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 m m
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ( <i>k</i> = 2)
750	41.9	0.89	10.11	10.11	10.11	0.50	0.81	±12.0%
835	41.5	0.90	9.85	9.85	9.85	0.38	0.97	±12.0%
1750	40.1	1.37	8.73	8.73	8.73	0.29	0.86	±12.0%
1900	40.0	1.40	8.32	8.32	8.32	0.29	0.86	±12.0%
2300	39.5	1.67	8.26	8.26	8.26	0.29	0.90	±12.0%
2450	39.2	1.80	7.88	7.88	7.88	0.32	0.90	±12.0%
2600	39.0	1.96	7.72	7.72	7.72	0.38	0.90	±12.0%

### Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of  $\pm 100$  MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm 50$  MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm 10.25$ , 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm 110$  MHz.

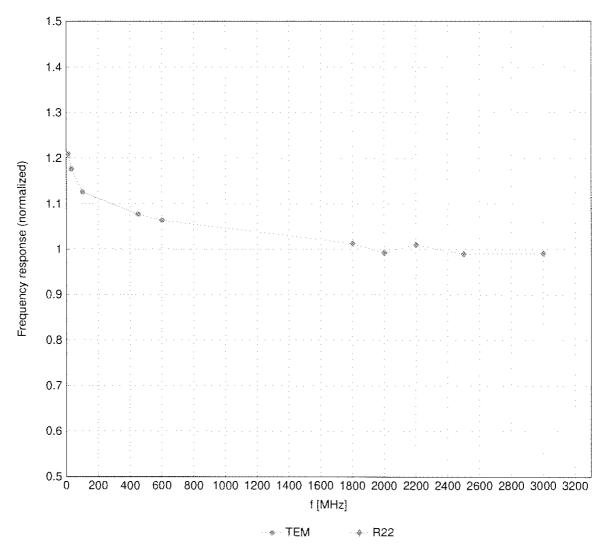
^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm 10\%$  if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm 5\%$ . The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz and below  $\pm 2\%$  for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

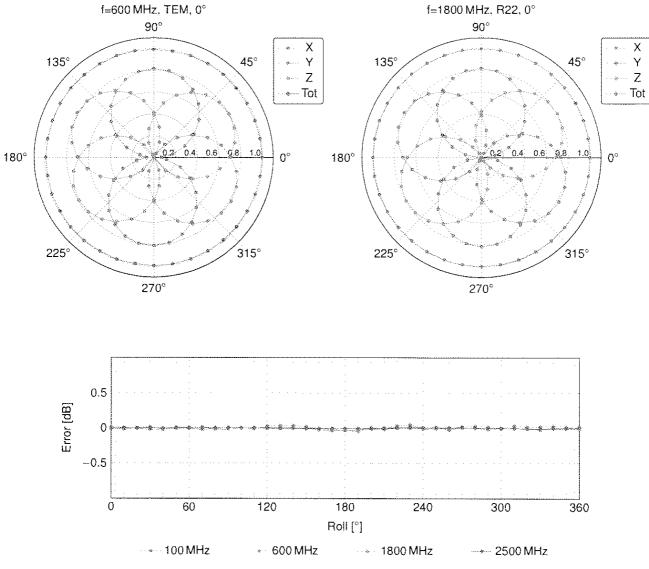
### Parameters of Probe: EX3DV4 - SN:7491

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ( <i>k</i> = 2)
750	55.5	0.96	10.74	10.74	10.74	0.42	0.87	±12.0%
835	55.2	0.97	10.44	10.44	10.44	0.45	0.80	±12.0%
1750	53.4	1.49	8.63	8.63	8.63	0.37	0.86	±12.0%
1900	53.3	1.52	8.27	8.27	8.27	0.31	0.86	±12.0%
2300	52.9	1.81	8.04	8.04	8.04	0.40	0.90	±12.0%
2450	52.7	1.95	7.99	7.99	7.99	0.35	0.90	±12.0%
2600	52.5	2.16	7.75	7.75	7.75	0.31	0.90	±12.0%

### Calibration Parameter Determined in Body Tissue Simulating Media

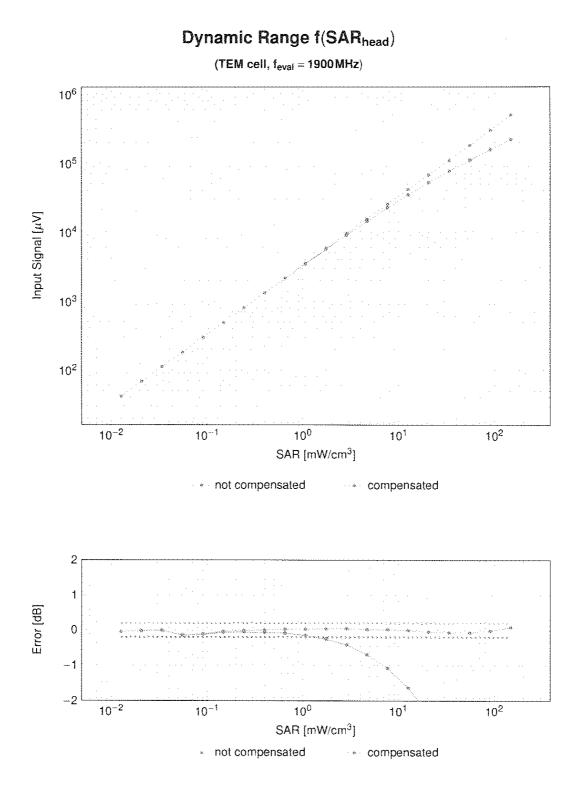

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

The probability of the validity of the validi


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

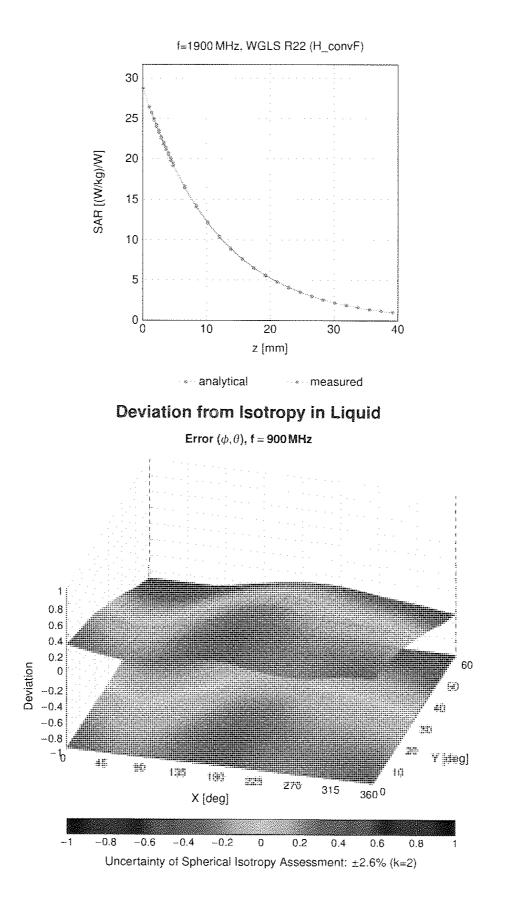
## Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)




Uncertainty of Frequency Response of E-field: ±6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)



Uncertainty of Linearity Assessment: ±0.6% (k=2)

### **Conversion Factor Assessment**



# Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
0		CW	CW	0.00	±4.7
10010	CAA	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	÷9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)			
10020	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	3.55	±9.6
	h		GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	<u>+</u> 9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1,28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN		±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)		8.63	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
			WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	<u>±9.6</u>
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM. 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	<b>3</b> (	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DOPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	·	±9.6
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)		6.60	±9.6
10103	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 0PSR)	LTE-TDD	9.29	±9.6
			LTE-TDD	9.97	±9.6
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	<u>+</u> 9.6
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10112	CAG	LTE-FDD (SC-FDMA, 100% RB. 10 MHz, 64-QAM)	LTE-FDD	6.59	+9.6
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAG	IEEE 802.11n (HT Mixed. 13.5 Mbps. BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9,6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAE	LTE-FDD (SC-FDMA. 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20MHz, 16-QAM)	LTE-FDD	6.52	<u>+</u> 9.6
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	<u>+</u> 9.6
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAL	LTE-FDD (SC-FDMA, 1 RB, 3MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186 10187	CAG CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	6.50	±9.6
	+		LTE-FDD	5.73	±9.6
10188	CAG CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189 10193	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	LTE-FDD	6.50	±9.6
10193	AAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.09	±9.6
10194	CAE	IEEE 802,11n (HT Greenfield, 39 Mbps, 16-QAM) IEEE 802,11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.10	±9.6
10197	CAF	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10190	CAF	IEEE 802.111 (HT Mixed, 7.2 Mbps, 64-QAM)	WLAN WLAN	8.27	±9.6
10213	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	· · · · · · · · · · · · · · · · · · ·	8.03	±9.6
10220	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN WLAN	8.13	±9.6
10221	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.27	±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 10 Mbps, 16-QAM)	WLAN	8.06	±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	· · · · · · · · · · · · · · · · · · ·	8.48	±9.6
10224	LOVO	CELLOUZ. TH RTH WIXED, TOUWDPS, 04-QAWI)	WLAN	8.08	±9.6

During         PAR. DURING         WOERAM         PAR. DURING           13286         CAD         LEF TOD (SC PEMA, 1 RB, 1 dAME, 16 CAM)         LIF-LINE         0.28         2.5           13287         CAD         LEF TOD (SC PEMA, 1 RB, 1 dAME, 16 CAM)         LIF-LINE         0.28         2.5           13287         CAD         LEF TOD (SC PEMA, 1 RB, 1 dAME, 16 CAM)         LIF-LINE         0.28         2.5           13281         CAD         LEF TOD (SC PEMA, 1 RB, 1 dAME, 16 CAM)         LIF-TOD         0.28         4.5           13281         CAD         LEF TOD (SC PEMA, 1 RB, 1 dAME, 16 CAM)         LIF-TOD         1.28         4.5           13282         CAD         LEF TOD (SC PEMA, 1 RB, 5 MHE, 6 CAM)         LIF-TOD         1.28         4.5           13284         CAD         LEF TOD SC PEMA, 1 RB, 5 MHE, 6 CAM)         LIF-TOD         9.48         4.5           13285         CAD         LEF TOD SC PEMA, 1 RB, 1 MHE, 2 GAMI         LIF-TOD         9.21         4.5           13286         CAD         LEF TOD SC PEMA, 1 RB, 1 MHE, 2 GAMI         LIF-TOD         9.21         4.5           13281         CAD         LEF TOD SC PEMA, 1 RB, 1 MHE, 2 GAMI         LIF TOD         9.21         4.5           13282         CAD <th>UID</th> <th>Rev</th> <th>Communication System Name</th> <th>Group</th> <th>PAR (dB)</th> <th>$Unc^E k = 2$</th>	UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
17225         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.48         9.95           17226         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.22         9.6           17228         DAC         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.22         9.6           17228         DAC         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.24         9.9           17237         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.3         9.9           17238         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.3         9.9           17238         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.4         9.8           17238         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.2         9.8           17238         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.2         9.8           17238         CAB         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.2         9.8           17248         CAD         LTE-TDD (SC-FDMA : HB 1 AMHz, GPSO)         LTE-TDD         9.2         9.8           17249	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · ·	in the second	1
1022         CAD         LTE-TDD (SC-FDMA : HB 1.4MHz, 64-OAM)         LTE-TDD         9.96           1022         DAC         LTE-TDD (SC-FDMA : HB 2.MHz, 16-OAM)         LTE-TDD         9.48           1023         CAC         LTE-TDD (SC-FDMA : HB 2.MHz, 16-OAM)         LTE-TDD         9.18           1023         CAC         LTE-TDD (SC-FDMA : HB 2.MHz, 16-OAM)         LTE-TDD         9.18           1023         CAD         LTE-TDD (SC-FDMA : HB 2.MHz, 6-OAM)         LTE-TDD         9.24           1023         CAD         LTE-TDD (SC-FDMA : HB 2.MHz, 6-OAM)         LTE-TDD         9.24         -9.86           1023         CAD         LTE-TDD (SC-FDMA : HB 2.MHz, 6-OAM)         LTE-TDD         9.24         -9.86           1023         CAD         LTE-TDD (SC-FDMA : HB 3.MHz, 6-OAM)         LTE-TDD         9.24         -9.86           1023         CAD         LTE-TDD (SC-FDMA : HB 3.MHz, 6-OAM)         LTE-TDD         9.21         -9.86           1024         CAD         LTE-TDD (SC-FDMA : HB 3.MHz, 6-OAM)         LTE-TDD         9.21         -9.66           10242         CAD         LTE-TDD (SC-FDMA : HB 3.MHz, 6-OAM)         LTE-TDD         9.21         -9.66           10242         CAD         LTE-TDD (SC-FDMA : SNR B, 3.MHz, 1.6-OAM)		J				
TOZE         CAD         LTE-TDD         SOLZ         96           TOZE         DAC         LTE-TDD         SOLZ         96           TOZE         DAC         LTE-TDD         SOLZ         96           TOZE         CAC         LTE-TDD         SOLZ         1025           TOZE         CAC         LTE-TDD         SOLZ         1025         96           TOZE         CAD         LTE-TDD         SOLZ         1025         96           TOZE         CAD         LTE-TDD         SOLZ         945         96           TOZE         CAD         LTE-TDD         SOLZ         96         926           TOZ		<u> </u>				
Internet         Interne         Internet         Internet		····				
10220         CAC         LTE-TDD (SC-FDMA, 1FB, 3MHz, 4E-0AM)         LTE-TDD         9.6           10221         CAD         LTE-TDD (SC-FDMA, 1FB, 3MHz, 16-0AM)         LTE-TDD         9.48         9.6           10232         CAD         LTE-TDD (SC-FDMA, 1FB, 5MHz, 16-0AM)         LTE-TDD         9.24         9.96           10234         CAD         LTE-TDD (SC-FDMA, 1FB, 5MHz, 6-0AM)         LTE-TDD         9.24         9.96           10236         CAD         LTE-TDD (SC-FDMA, 1FB, 10MHz, 6-0AM)         LTE-TDD         9.25         9.96           10237         CAD         LTE-TDD (SC-FDMA, 1FB, 10MHz, 6-0AM)         LTE-TDD         9.48         9.96           10238         CAB         LTE-TDD (SC-FDMA, 1FB, 15MHz, 6-0AM)         LTE-TDD         9.48         9.96           10242         CAD         LTE-TDD (SC-FDMA, 1FB, 15MHz, 6-0AM)         LTE-TDD         9.88         9.96           10242         CAD         LTE-TDD (SC-FDMA, 50% RB, 14MHz, 16-0AM)         LTE-TDD         9.88         9.96           10242         CAD         LTE-TDD (SC-FDMA, 50% RB, 3MHz, 46-0AM)         LTE-TDD         9.88         9.96           10242         CAD         LTE-TDD (SC-FDMA, 50% RB, 3MHz, 46-0AM)         LTE-TDD         9.96         9.96         19.96		1				
10221         CAC         LTE-TDD (SC-FDMA, TB, SMHz, OPSK)         LTE TDD         9.49         49.6           10222         CAD         LTE-TDD (SC-FDMA, TB, SMHz, 64-OAM)         LTE-TDD         10.25         49.6           10234         CAD         LTE-TDD (SC-FDMA, TB, SMHz, 64-OAM)         LTE-TDD         9.25         49.6           10235         CAD         LTE-TDD (SC-FDMA, TB, SMHz, 64-OAM)         LTE-TDD         9.25         49.6           10236         CAD         LTE-TDD (SC-FDMA, TB, SMHz, 64-OAM)         LTE-TDD         9.45         49.6           10237         CAD         LTE-TDD (SC-FDMA, TB, SMHz, 64-OAM)         LTE-TDD         9.46         49.6           10238         CAB         LTE-TDD (SC-FDMA, TB, SMHz, 64-OAM)         LTE-TDD         9.24         49.6           10242         CAD         LTE-TDD (SC-FDMA, SWR, 81, 41.4Hz, 46-OAM)         LTE-TDD         9.24         49.6           10242         CAD         LTE-TDD (SC-FDMA, SWR, 81, 41.4Hz, 46-OAM)         LTE-TDD         9.48         49.6           10242         CAD         LTE-TDD (SC-FDMA, SWR, 81, 44.4GAM)         LTE-TDD         9.6         19.6           10244         CAD         LTE-TDD (SC-FDMA, SWR, 81, 44.4GAM)         LTE-TDD         9.06         19.6					<u>{</u>	
19222         CAD         LTE-TDD (SC-FDMA.1 RB, SMH2, 46-CAM)         LTE-TDD         9-96           19233         CAD         LTE-TDD (SC-FDMA.1 RB, SMH2, 64-CAM)         LTE-TDD         9-96           19234         CAD         LTE-TDD (SC-FDMA.1 RB, SMH2, 60-CAM)         LTE-TDD         9-96           19235         CAD         LTE-TDD (SC-FDMA.1 RB, SMH2, 60-CAM)         LTE-TDD         9-25           19235         CAD         LTE-TDD (SC-FDMA.1 RB, SMH2, 60-CAM)         LTE-TDD         9-25           19236         CAD         LTE-TDD (SC-FDMA.1 RB, SMH2, 60-CAM)         LTE-TDD         9-25           19236         CAB         LTE-TDD (SC-FDMA.1 RB, SMH2, 60-CAM)         LTE-TDD         9-24         9-96           19247         CAB         LTE-TDD (SC-FDMA.1 RB, SMH2, GPSK)         LTE-TDD         9-28         9-96           19242         CAD         LTE-TDD (SC-FDMA.50% RB, 14MH2, 16-CAM)         LTE-TDD         9-86         9-96           19242         CAD         LTE-TDD (SC-FDMA.50% RB, 3MH2, 46-CAM)         LTE-TDD         9-08         9-96           19242         CAD         LTE-TDD (SC-FDMA.50% RB, 3MH2, 46-CAM)         LTE-TDD         9-96         9-96           19242         CAD         LTE-TDD (SC-FDMA.50% RB, 3MH2, 46-CAM)         LTE-		1		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
1923         CAD         LTE-TDD (SC-FDMA, 1 RB, SMH2, 6FGAM)         LTE-TDD         9.21         .9.6           1923         CAD         LTE-TDD (SC-FDMA, 1 RB, 10MH2, 16-CAMH)         LTE-TDD         9.41         .9.6           1923         CAD         LTE-TDD (SC-FDMA, 1 RB, 10MH2, 16-CAMH)         LTE-TDD         9.21         .9.6           1923         CAD         LTE-TDD (SC-FDMA, 1 RB, 10MH2, 16-CAM)         LTE-TDD         9.4         .9.6           1923         CAD         LTE-TDD (SC-FDMA, 1 RB, 10-KH2, 16-CAM)         LTE-TDD         9.4         .9.6           1924         CAB         LTE-TDD (SC-FDMA, 1 RB, 10-KH2, 16-CAM)         LTE-TDD         9.28         .9.6           1924         CAB         LTE-TDD (SC-FDMA, 1 RB, 10-KH2, 10-SM)         LTE-TDD         .9.82         .9.6           1924         CAD         LTE-TDD (SC-FDMA, 50-KB, 81, 41-M12, 40-CAM)         LTE-TDD         .9.6         .9.6           1924         CAD         LTE-TDD (SC-FDMA, 50-KB, 81, 41-K12, 40-CAM)         LTE-TDD         .9.6         .9.6           1924         CAD         LTE-TDD (SC-FDMA, 50-KB, 81, 41-K12, 40-CAM)         LTE-TDD         .9.6         .9.6           1924         CAD         LTE-TDD (SC-FDMA, 50-KB, 81, MH2, 40-CAM)         LTE-TDD         .9.6 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1	
1028         CAD         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-OAM)         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-OAM)         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-OAM)           1028         CAD         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-OAM)         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-OAM)         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-OAM)           1028         CAB         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-OAM)         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 0PSK)         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 0PSK)           10240         CAB         LTE-TDD (SC-FDMA, 1 RB, 10MHz, 0PSK)         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)           10241         CAB         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)           10242         CAD         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)           10244         CAG         LTE-TDD (SC-FDMA, 50%, RB, 14 MHz, 0PSK)         LTE-TDD (SC-FDMA, 50%, RB, 15 MHz, 16 CAM)         LTE-TDD (SC-FDMA, 50%, RB, 15 MHz, 16 CAM)         LTE-TDD (SC-FDMA, 50%, RB, 15 MHz, 16 CAM)					f	
International         CAD         LTE-TDD (SC-FDMA, 198, 10MHz, 64-OAM)         LTE-TDD (SC-FDMA, 198, 10MHz, 64-OAM)         LTE-TDD (SC-FDMA, 198, 10MHz, 64-OAM)           Interactional         LTE-TDD (SC-FDMA, 198, 10MHz, 64-OAM)         LTE-TDD (SC-FDMA, 198, 15MHz, 16-OAM)         LTE-TDD (SC-FDMA, 198, 15MHz, 16-OAM)         LTE-TDD (SC-FDMA, 198, 15MHz, 16-OAM)           LTE-TDD (SC-FDMA, 198, 15MHz, 16-OAM)         LTE-TDD (SC-FDMA, 198, 15MHz, 64-OAM)         LTE-TDD (SC-FDMA, 198, 15MHz, 64-OAM)         LTE-TDD (SC-FDMA, 598, 18, 14MHz, 64-OAM)         LTE-TDD (SC-FDMA, 598, 18, 15MHz, 64-OAM)						
1028         CAD         L'E-TDD         COL         925         196           10287         CAD         L'E-TDD         CDMAN         TBR         15044         OPE         98         196           10280         CAB         L'E-TDD         ISC-FDMA, TBR         15044         OPE         94         196           10240         CAB         L'E-TDD (SC-FDMA, TBR, 15MHz, 0F-SK)         L'E-TDD         9.82         196           10241         CAB         L'E-TDD (SC-FDMA, SNR, R. 14MHz, 0F-SK)         L'E-TDD         9.86         196           10242         CAD         L'E-TDD (SC-FDMA, SNR, R. 14MHz, 0F-SK)         L'TE-TDD         9.46         196           10242         CAD         L'E-TDD (SC-FDMA, SNR, R. 14MHz, 0F-SK)         L'TE-TDD         10.06         196           10245         CAG         L'E-TDD (SC-FDMA, SNR, R. 14MHz, 0F-SK)         L'TE-TDD         10.06         196           10246         CAG         L'E-TDD (SC-FDMA, SNR, R. 15MHz, 0F-SK)         L'TE-TDD         9.01         196           10246         CAG         L'E-TDD (SC-FDMA, SNR, R. 15MHz, 0F-SK)         L'TE-TDD         9.24         9.6           10246         CAG         L'E-TDD (SC-FDMA, SNR, R. 15MHz, 0F-SK)         L'TE-TDD         9.24<					\$	
10227         CAD         LTE-TDD         SCI         948         1946           10238         CAB         LTE-TDD (SC-FDMA, 1 RB, 15MH2, 16-CAM)         LTE-TDD         9.42         196           10249         CAB         LTE-TDD (SC-FDMA, 1 RB, 15MH2, 64-CAM)         LTE-TDD         9.21         496           10240         CAB         LTE-TDD (SC-FDMA, 1 RB, 15MH2, 64-CAM)         LTE-TDD         9.82         196           10241         CAB         LTE-TDD (SC-FDMA, 50%, RB, 14MH2, 64-CAM)         LTE-TDD         9.48         496           10242         CAD         LTE-TDD (SC-FDMA, 50%, RB, 14MH2, 64-CAM)         LTE-TDD         9.46         498           10244         CAD         LTE-TDD (SC-FDMA, 50%, RB, 3MH2, 64-CAM)         LTE-TDD         9.30         196           10245         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5MH2, 64-CAM)         LTE-TDD         9.30         196           10246         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5MH2, 64-CAM)         LTE-TDD         9.30         196           10247         CAG         LTE-TDD (SC-FDMA, 50%, RB, 15MH2, 0FSK)         LTE-TDD         9.31         496           10248         CAG         LTE-TDD (SC-FDMA, 50%, RB, 15MH2, 0FSK)         LTE-TDD         9.41         496						
1228         CAB         LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-OAM)         LTE-TDD         10.25         :96           10230         CAB         LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-OAM)         LTE-TDD         9.21         :96           10241         CAB         LTE-TDD (SC-FDMA, 50%, RB, 14MHz, 14-CAM)         LTE-TDD         9.82         :96           10242         CAD         LTE-TDD (SC-FDMA, 50%, RB, 14MHz, 14-CAM)         LTE-TDD         9.86         :96           10242         CAD         LTE-TDD (SC-FDMA, 50%, RB, 14MHz, 14-CAM)         LTE-TDD         10.06         :96           10244         CAD         LTE-TDD (SC-FDMA, 50%, RB, 34Hz, 16-OAM)         LTE-TDD         9.38         :98           10245         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5MHz, 0FSK)         LTE-TDD         9.38         :96           10246         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5MHz, 0FSK)         LTE-TDD         9.38         :96           10247         CAG         LTE-TDD (SC-FDMA, 50%, RB, 15MHz, 16-CAM)         LTE-TDD         9.38         :96           10246         CAG         LTE-TDD (SC-FDMA, 50%, RB, 15MHz, 16-CAM)         LTE-TDD         9.38         :96           10251         CAF         LTE-TDD (SC-FDMA, 50%, RB, 15MHz, 16-CAM)         LTE-TDD         9.24 <td>~ ~ ~ ~ ~</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>-</td> <td></td>	~ ~ ~ ~ ~		· · · · · · · · · · · · · · · · · · ·		-	
1228         CAB         LTE-TDD (SC-FDMA, 1 B), 15 MHz, GPSK)         LTE-TDD         12.25         1.96           12040         CAB         LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-CAM)         LTE-TDD         9.82         1.96           12024         CAD         LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-CAM)         LTE-TDD         9.86         4.96           12024         CAD         LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 46-CAM)         LTE-TDD         9.46         4.96           12024         CAD         LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 46-CAM)         LTE-TDD         10.06         1.96           12024         CAD         LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 46-CAM)         LTE-TDD         9.30         4.96           12024         CAG         LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 6FCAM)         LTE-TDD         9.30         4.96           12024         CAG         LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 0PSK)         LTE-TDD         9.19         9.6           12024         CAG         LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 0FSK)         LTE-TDD         9.0         4.96           12025         CAF         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 0FSK)         LTE-TDD         9.0         4.96           12025         CAF         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 0FSK)         LTE-TDD         9.2			· · · · · · · · · · · · · · · · · · ·			Ļ
19240         CAB         LTE-TDD (SC-FDMA, 198, 15 MHz, GPSk)         LTE-TDD         9.21         9.96           10241         CAD         LTE-TDD (SC-FDMA, 50%, RB, 1.4 MHz, 64-CAM)         LTE-TDD         9.86         49.6           10242         CAD         LTE-TDD (SC-FDMA, 50%, RB, 1.4 MHz, C4-CAM)         LTE-TDD         9.46         49.6           10244         CAD         LTE-TDD (SC-FDMA, 50%, RB, 3 MHz, 16-CAM)         LTE-TDD         10.06         49.6           10245         CAG         LTE-TDD (SC-FDMA, 50%, RB, 3 MHz, 64-CAM)         LTE-TDD         9.04         49.6           10246         CAG         LTE-TDD (SC-FDMA, 50%, RB, 3 MHz, 64-CAM)         LTE-TDD         9.91         49.6           10246         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5 MHz, 16-CAM)         LTE-TDD         9.19         49.6           10247         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5 MHz, CAPSK)         LTE-TDD         9.24         49.6           10250         CAF         LTE-TDD (SC-FDMA, 50%, RB, 10 MHz, 6-CAM)         LTE-TDD         9.24         49.6           10252         CAF         LTE-TDD (SC-FDMA, 50%, RB, 15 MHz, OPSK)         LTE-TDD         9.24         49.6           10252         CAF         LTE-TDD (SC-FDMA, 100%, RB, 15 MHz, 6-CAM)         LTE-TDD <td></td> <td>1</td> <td></td> <td></td> <td>· · · ·</td> <td></td>		1			· · · ·	
19241         CAB         LTE-TDD         (SC-FDMA, S0%, RB, 1.4MHz, SC-OAM)         LTE-TDD         9.82         19.6           19242         CAD         LTE-TDD         (SC-FDMA, S0%, RB, 1.4MHz, GC-OAM)         LTE-TDD         9.46         19.6           19243         CAD         LTE-TDD         (SC-FDMA, S0%, RB, 3.4MHz, GC-OAM)         LTE-TDD         10.06         19.6           19245         CAG         LTE-TDD (SC-FDMA, S0%, RB, 3.4MHz, GC-OAM)         LTE-TDD         10.06         19.6           19246         CAG         LTE-TDD (SC-FDMA, S0%, RB, 3.4MHz, GC-OAM)         LTE-TDD         9.30         19.6           10247         CAG         LTE-TDD (SC-FDMA, S0%, RB, 5.MHz, GC-OAM)         LTE-TDD         9.30         19.6           10248         CAG         LTE-TDD (SC-FDMA, S0%, RB, 5.MHz, GC-OAM)         LTE-TDD         9.29         19.6           10250         CAG         LTE-TDD (SC-FDMA, S0%, RB, 10.MHz, GC-OAM)         LTE-TDD         9.24         19.6           10251         CAF         LTE-TDD (SC-FDMA, S0%, RB, 15.MHz, 16-CAM)         LTE-TDD         9.24         19.6           10252         CAF         LTE-TDD (SC-FDMA, 100%, RB, 10.MHz, 0FSK)         LTE-TDD         9.4         9.6           10252         CAB         LTE-TDD (SC		<u> </u>				
19242         CAD         LTE-TDD (SC-FDMA, 59% RB, 1 AMHz, 04-OAM)         LTE-TDD         9.86         9.96           10244         CAD         LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-TDD         10.06         4.96           10245         CAG         LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-TDD         10.06         4.96           10246         CAG         LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-TDD         9.31         4.96           10247         CAG         LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)         LTE-TDD         9.91         4.96           10248         CAG         LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)         LTE-TDD         9.91         4.96           10248         CAG         LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)         LTE-TDD         9.24         4.96           10251         CAF         LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 0-QAM)         LTE-TDD         9.24         4.96           10252         CAF         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)         LTE-TDD         9.24         4.96           10254         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0-PSK)         LTE-TDD         9.24         4.96           10255         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0-CAM)         LTE-TDD						
10242         CAD         LTE-TDD (SC-FDMA, 50%, RB, 3 MHz, 16-CAM)         LTE-TDD         9.46         +9.6           10244         CAD         LTE-TDD (SC-FDMA, 50%, RB, 3 MHz, 16-CAM)         LTE-TDD         10.06         +9.6           10245         CAG         LTE-TDD (SC-FDMA, 50%, RB, 3 MHz, 16-CAM)         LTE-TDD         9.30         +9.6           10246         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5 MHz, 16-CAM)         LTE-TDD         9.31         +9.6           10247         CAG         LTE-TDD (SC-FDMA, 50%, RB, 5 MHz, 26+CAM)         LTE-TDD         9.29         ±9.6           10250         CAG         LTE-TDD (SC-FDMA, 50%, RB, 10 MHz, 16-CAM)         LTE-TDD         9.24         ±96           10252         CAF         LTE-TDD (SC-FDMA, 50%, RB, 10 MHz, 16-CAM)         LTE-TDD         9.24         ±96           10252         CAF         LTE-TDD (SC-FDMA, 50%, RB, 15 MHz, 46-CAM)         LTE-TDD         9.24         ±96           10254         CAB         LTE-TDD (SC-FDMA, 50%, RB, 15 MHz, 46-CAM)         LTE-TDD         9.24         ±96           10255         CAB         LTE-TDD (SC-FDMA, 100%, RB, 14 MHz, 46-CAM)         LTE-TDD         9.24         ±96           10256         CAB         LTE-TDD (SC-FDMA, 100%, RB, 3 MHz, 64-CAM)         LTE-TDD	····					
10244         CAD         LTE-TDD (SC-FDMA, 50% RB, 3MHz, 64-QAM)         LTE-TDD         10.06         19.6           10246         CAG         LTE-TDD (SC-FDMA, 50% RB, 3MHz, 64-QAM)         LTE-TDD         9.30         19.6           10246         CAG         LTE-TDD (SC-FDMA, 50% RB, 5MHz, 16-QAM)         LTE-TDD         9.91         19.6           10247         CAG         LTE-TDD (SC-FDMA, 50% RB, 5MHz, 40-QAM)         LTE-TDD         10.06         19.6           10248         CAG         LTE-TDD (SC-FDMA, 50% RB, 5MHz, 40-QAM)         LTE-TDD         10.17         19.6           10251         CAF         LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 6-QAM)         LTE-TDD         9.24         19.6           10252         CAF         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)         LTE-TDD         9.24         19.6           10253         CAF         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 6-QAM)         LTE-TDD         9.24         19.6           10254         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 6-QAM)         LTE-TDD         9.24         19.6           10255         CAB         LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 0-QAM)         LTE-TDD         9.24         19.6           10256         CAB         LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 0-QAM)         LTE-TDD		· · ·			<i>}</i>	
19245         CAG         LTE-TDD (SC-FDMA, 50% RB, 3MH2, GPSK)         LTE-TDD         9.30         ±9.6           10247         CAG         LTE-TDD (SC-FDMA, 50% RB, 3MH2, 6A-OAM)         LTE-TDD         9.31         ±9.6           10248         CAG         LTE-TDD (SC-FDMA, 50% RB, 5MH2, 6A-OAM)         LTE-TDD         9.29         ±9.6           10249         CAG         LTE-TDD (SC-FDMA, 50% RB, 5MH2, 6A-OAM)         LTE-TDD         9.29         ±9.6           10250         CAG         LTE-TDD (SC-FDMA, 50% RB, 10MH2, 16-OAM)         LTE-TDD         9.24         ±9.6           10251         CAF         LTE-TDD (SC-FDMA, 50% RB, 10MH2, 16-OAM)         LTE-TDD         9.24         ±9.6           10252         CAF         LTE-TDD (SC-FDMA, 50% RB, 15MH2, 64-OAM)         LTE-TDD         9.20         ±9.6           10255         CAB         LTE-TDD (SC-FDMA, 100% RB, 14MH2, 16-OAM)         LTE-TDD         9.02         ±9.6           10256         CAB         LTE-TDD (SC-FDMA, 100% RB, 14MH2, 16-OAM)         LTE-TDD         10.08         ±9.6           10257         CAD         LTE-TDD (SC-FDMA, 100% RB, 14MH2, 64-OAM)         LTE-TDD         10.08         ±9.6           10256         CAB         LTE-TDD (SC-FDMA, 100% RB, 15MH2, 64-OAM)         LTE-TDD					2	
10240         CAG         LTE-TDD (SC-FDMA, 50%, RB, SMH2, CPSK)         LTE-TDD         9.30         ±9.6           10247         CAG         LTE-TDD (SC-FDMA, 50%, RB, SMH2, 64-CAM)         LTE-TDD         10.09         ±9.6           10248         CAG         LTE-TDD (SC-FDMA, 50%, RB, SMH2, 64-CAM)         LTE-TDD         9.29         ±9.6           10250         CAG         LTE-TDD (SC-FDMA, 50%, RB, 10MH2, 64-CAM)         LTE-TDD         9.24         ±9.6           10251         CAF         LTE-TDD (SC-FDMA, 50%, RB, 10MH2, 64-CAM)         LTE-TDD         9.24         ±9.6           10252         CAF         LTE-TDD (SC-FDMA, 50%, RB, 15 MH2, 64-CAM)         LTE-TDD         9.24         ±9.6           10254         CAB         LTE-TDD (SC-FDMA, 50%, RB, 15 MH2, 64-CAM)         LTE-TDD         9.24         ±9.6           10255         CAB         LTE-TDD (SC-FDMA, 100%, RB, 1.4 MH2, 64-CAM)         LTE-TDD         9.24         ±9.6           10256         CAB         LTE-TDD (SC-FDMA, 100%, RB, 1.4 MH2, 64-CAM)         LTE-TDD         9.34         ±9.6           10257         CAD         LTE-TDD (SC-FDMA, 100%, RB, 1.4 MH2, 64-CAM)         LTE-TDD         9.34         ±9.6           10258         CAD         LTE-TDD (SC-FDMA, 100%, RB, 3.4 MH2, CPSK)         LT		1			<b>.</b>	
10247         CAG         LITE-TDD         9.91         19.6           10248         CAG         LITE-TDD (SC-FDMA, 50%, RB, SMHz, 64-QAM)         LITE-TDD         10.09         49.6           10249         CAG         LITE-TDD (SC-FDMA, 50%, RB, SMHz, 0FQK)         LITE-TDD         9.29         49.6           10250         CAG         LITE-TDD (SC-FDMA, 50%, RB, 10MHz, 0FQK)         LITE-TDD         9.81         49.6           10251         CAF         LITE-TDD (SC-FDMA, 50%, RB, 10MHz, 0FQK)         LITE-TDD         9.24         49.6           10252         CAF         LITE-TDD (SC-FDMA, 50%, RB, 15MHz, 0FQK)         LITE-TDD         9.90         49.6           10254         CAB         LITE-TDD (SC-FDMA, 100%, RB, 14MHz, 0FQK)         LITE-TDD         9.20         49.6           10255         CAB         LITE-TDD (SC-FDMA, 100%, RB, 14MHz, 0FSK)         LITE-TDD         9.24         49.6           10256         CAB         LITE-TDD (SC-FDMA, 100%, RB, 3MHz, 0FSK)         LITE-TDD         9.94         49.6           10256         CAD         LITE-TDD (SC-FDMA, 100%, RB, 3MHz, 0FSK)         LITE-TDD         9.34         49.6           10260         CAG         LITE-TDD (SC-FDMA, 100%, RB, 3MHz, 0FSK)         LITE-TDD         9.34         49.6 <td></td> <td></td> <td>······································</td> <td></td> <td>1</td> <td></td>			······································		1	
10248         CAG         LITE-TDD (SC-FDMA, 50%, RB, 5MH-z, QPSK)         LITE-TDD         9.29         49.6           10240         CAG         LITE-TDD (SC-FDMA, 50%, RB, 10MH-z, (F-GAM)         LITE-TDD         9.28         49.6           10250         CAG         LITE-TDD (SC-FDMA, 50%, RB, 10MH-z, (F-GAM)         LITE-TDD         9.21         49.6           10251         CAF         LITE-TDD (SC-FDMA, 50%, RB, 15 MH-z, (F-GAM)         LITE-TDD         9.24         49.6           10252         CAF         LITE-TDD (SC-FDMA, 50%, RB, 15 MH-z, (F-GAM)         LITE-TDD         9.24         49.6           10254         CAB         LITE-TDD (SC-FDMA, 50%, RB, 15 MH-z, (F-GAM)         LITE-TDD         9.20         49.6           10255         CAB         LITE-TDD (SC-FDMA, 100%, RB, 14 MH-z, (F-GAM)         LITE-TDD         9.96         49.6           10256         CAB         LITE-TDD (SC-FDMA, 100%, RB, 3MH-z, (G-SAM)         LITE-TDD         9.34         49.6           10259         CAD         LITE-TDD (SC-FDMA, 100%, RB, 3MH-z, (G-SAM)         LITE-TDD         9.98         49.6           10262         CAG         LITE-TDD (SC-FDMA, 100%, RB, 3MH-z, (G-SAM)         LITE-TDD         9.34         49.6           10263         CAG         LITE-TDD (SC-FDMA, 100%, RB, 3MH-z, (	<b>.</b>	h				ļ
10249       CAG       LTE-TDD (SC-FDMA, 50% RB, 5MHz, OPSK)       LTE-TDD       9.29       19.6         10251       CAF       LTE-TDD (SC-FDMA, 50% RB, 10MHz, 16-CAM)       LTE-TDD       10.17       19.6         10251       CAF       LTE-TDD (SC-FDMA, 50% RB, 10MHz, 0FSK)       LTE-TDD       9.24       19.6         10252       CAF       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-CAM)       LTE-TDD       9.24       19.6         10252       CAF       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-CAM)       LTE-TDD       9.20       19.6         10255       CAB       LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-CAM)       LTE-TDD       9.20       19.6         10256       CAB       LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 16-CAM)       LTE-TDD       9.24       49.6         10256       CAD       LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 0PSK)       LTE-TDD       9.34       49.6         10250       CAD       LTE-TDD (SC-FDMA, 100% RB, 3MHz, 0PSK)       LTE-TDD       9.84       49.6         10260       CAG       LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-CAM)       LTE-TDD       9.84       49.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-CAM)       LTE-TDD       9.83       49.6         102626       CAG       LTE-TDD (SC-FDMA		L				£
10250         CAG         LTE-TDD         9.81         1.96           10251         CAF         LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)         LTE-TDD         10.17         49.6           10252         CAF         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)         LTE-TDD         9.90         49.6           10252         CAF         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)         LTE-TDD         9.90         49.6           10255         CAB         LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 0PSK)         LTE-TDD         9.90         49.6           10256         CAB         LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)         LTE-TDD         9.96         49.6           10256         CAD         LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)         LTE-TDD         9.34         49.6           10256         CAD         LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 46-QAM)         LTE-TDD         9.34         49.6           10260         CAG         LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)         LTE-TDD         9.84         49.6           10261         CAG         LTE-TDD (SC-FDMA, 100% RB, 5 MHz, GPSK)         LTE-TDD         9.83         49.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5 MHz, GPSK)         LTE-TDD         9.83         49.6      <	<u> </u>	1				
10251       CAF       LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)       LTE-TDD       9.24       49.6         10252       CAF       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)       LTE-TDD       9.90       49.6         10253       CAF       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)       LTE-TDD       9.00       49.6         10255       CAB       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 0PSK)       LTE-TDD       9.20       49.6         10255       CAB       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)       LTE-TDD       9.04       49.6         10256       CAD       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)       LTE-TDD       9.34       49.6         10256       CAD       LTE-TDD (SC-FDMA, 100% RB, 3.14L, 16-QAM)       LTE-TDD       9.34       49.6         10250       CAD       LTE-TDD (SC-FDMA, 100% RB, 3.MHz, 16-QAM)       LTE-TDD       9.34       49.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.MHz, 16-QAM)       LTE-TDD       9.34       49.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.MHz, 16-QAM)       LTE-TDD       9.32       49.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)       LTE-TDD       10.16       49.6         10266       CAF       LTE-TD			····· · · · · · · · · · · · · · · · ·			
10252       CAF       LTE-TDD       9.24       19.6         10253       CAF       LTE-TDD       (SC-FDMA, 50% RB, 15 MHz, 16-QAM)       LTE-TDD       9.90       49.6         10254       CAB       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)       LTE-TDD       9.20       49.6         10255       CAB       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)       LTE-TDD       9.20       49.6         10255       CAD       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)       LTE-TDD       9.96       49.6         10257       CAD       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)       LTE-TDD       9.34       49.6         10250       CAD       LTE-TDD (SC-FDMA, 100% RB, 3.MHz, 64-QAM)       LTE-TDD       9.84       49.6         10260       CAG       LTE-TDD (SC-FDMA, 100% RB, 3.MHz, 64-QAM)       LTE-TDD       9.84       49.6         10261       CAG       LTE-TDD (SC-FDMA, 100% RB, 3.MHz, 64-QAM)       LTE-TDD       9.84       49.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.MHz, 64-QAM)       LTE-TDD       9.24       49.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.MHz, 64-QAM)       LTE-TDD       9.23       49.6         10263       CAG       LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	<u> </u>					+
10253       CAF       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)       LTE-TDD       10.14       ±9.6         10255       CAB       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)       LTE-TDD       9.00       ±9.6         10256       CAB       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)       LTE-TDD       9.06       ±9.6         10256       CAB       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)       LTE-TDD       9.96       ±9.6         10258       CAD       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)       LTE-TDD       9.38       ±9.6         10259       CAD       LTE-TDD (SC-FDMA, 100% RB, 3.0 Hz, 26-QAM)       LTE-TDD       9.97       ±9.6         10261       CAG       LTE-TDD (SC-FDMA, 100% RB, 3.0 Hz, 26-QAM)       LTE-TDD       9.97       ±9.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.0 Hz, 26-QAM)       LTE-TDD       9.83       ±9.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.0 Hz, 26-QAM)       LTE-TDD       9.23       ±9.6         10264       CAG       LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)       LTE-TDD       9.2       ±9.6         10265       CAG       LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 0PSK)       LTE-TDD       10.07       ±9.6         10266       CAF       LTE		1				
10254       CAB       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-CAM)       LTE-TDD       10.14       ±9.6         10255       CAB       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, OPSK)       LTE-TDD       9.20       ±9.6         10256       CAB       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-CAM)       LTE-TDD       9.34       ±9.6         10257       CAD       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-CAM)       LTE-TDD       9.34       ±9.6         10258       CAD       LTE-TDD (SC-FDMA, 100% RB, 3.0 MHz, 16-CAM)       LTE-TDD       9.98       ±9.6         10260       CAG       LTE-TDD (SC-FDMA, 100% RB, 3.0 MHz, 16-CAM)       LTE-TDD       9.92       ±9.6         10261       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.0 MHz, 16-CAM)       LTE-TDD       9.83       ±9.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.0 MHz, 64-CAM)       LTE-TDD       9.83       ±9.6         10263       CAG       LTE-TDD (SC-FDMA, 100% RB, 5.0 MHz, 64-CAM)       LTE-TDD       9.23       ±9.6         10264       CAG       LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-CAM)       LTE-TDD       9.02       ±9.6         10266       CAF       LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-CAM)       LTE-TDD       10.06       ±9.6         10267       CAF		<u>.                                    </u>				
10255       CAB       LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 0PSK)       LTE-TDD       9.20       ±9.6         10256       CAB       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)       LTE-TDD       9.96       ±9.5         10257       CAD       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, GPSK)       LTE-TDD       9.34       ±9.6         10258       CAD       LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, GPSK)       LTE-TDD       9.34       ±9.6         10260       CAG       LTE-TDD (SC-FDMA, 100% RB, 3MHz, GPSK)       LTE-TDD       9.98       ±9.6         10260       CAG       LTE-TDD (SC-FDMA, 100% RB, 3MHz, GPSK)       LTE-TDD       9.24       ±9.6         10261       CAG       LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)       LTE-TDD       9.83       ±9.6         10262       CAG       LTE-TDD (SC-FDMA, 100% RB, 5MHz, 2ASAM)       LTE-TDD       10.16       ±9.6         10263       CAG       LTE-TDD (SC-FDMA, 100% RB, 10MHz, 64-QAM)       LTE-TDD       9.23       ±9.6         10266       CAF       LTE-TDD (SC-FDMA, 100% RB, 10MHz, 64-QAM)       LTE-TDD       9.02       ±9.6         10267       CAF       LTE-TDD (SC-FDMA, 100% RB, 10MHz, 64-QAM)       LTE-TDD       10.07       ±9.6         10268       CAF       LTE-TDD (SC-F					<u> </u>	<b></b>
10256         CAB         LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 16-QAM)         LTE-TDD         9.96         ±9.6           10257         CAD         LTE-TDD (SC-FDMA, 100% RB, 14 MHz, QE-QAM)         LTE-TDD         9.34         ±9.6           10258         CAD         LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)         LTE-TDD         9.34         ±9.6           10259         CAD         LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)         LTE-TDD         9.97         ±9.6           10261         CAG         LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 40-QAM)         LTE-TDD         9.83         ±9.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)         LTE-TDD         9.83         ±9.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 26-QAM)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)         LTE-TDD         9.22         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)         LTE-TDD         9.23         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         9.30         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-		<b></b>			4	
10257         CAD         LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)         LTE-TDD         10.08         ±9.6           10258         CAD         LTE-TDD (SC-FDMA, 100% RB, 3.4 MHz, 64-QAM)         LTE-TDD         9.34         ±9.6           10259         CAD         LTE-TDD (SC-FDMA, 100% RB, 3.4 MHz, 64-QAM)         LTE-TDD         9.97         ±9.6           10261         CAG         LTE-TDD (SC-FDMA, 100% RB, 3.4 MHz, QPSK)         LTE-TDD         9.24         ±9.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5.4 MHz, GA-QAM)         LTE-TDD         9.23         ±9.6           10263         CAG         LTE-TDD (SC-FDMA, 100% RB, 5.4 MHz, 64-QAM)         LTE-TDD         9.23         ±9.6           10264         CAG         LTE-TDD (SC-FDMA, 100% RB, 5.4 MHz, 64-QAM)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 5.0 MHz, OPSK)         LTE-TDD         9.23         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 5.0 MHz, 04-QAM)         LTE-TDD         9.02         ±9.6           10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 15.0 MHz, 04-QAM)         LTE-TDD         9.03         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15.0 MHz, 04-QAM)						
10258         CAD         LTE-TDD         9.34         ±9.6           10259         CAD         LTE-TDD (SC-FDMA, 100% RB, 3MHz, 16-QAM)         LTE-TDD         9.98         ±9.6           10260         CAG         LTE-TDD (SC-FDMA, 100% RB, 3MHz, 04-QAM)         LTE-TDD         9.97         ±9.6           10261         CAG         LTE-TDD (SC-FDMA, 100% RB, 3MHz, 04-QAM)         LTE-TDD         9.24         ±9.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 04-QAM)         LTE-TDD         9.83         ±9.6           10263         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 04-QAM)         LTE-TDD         9.23         ±9.6           10264         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 04-QAM)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10MHz, 04-QAM)         LTE-TDD         9.02         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM)         LTE-TDD         10.06         ±9.6           10268         CAB         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 0-QAM)         LTE-TDD         10.06         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 0-QSK)         LTE-TDD         10.13         ±9.6 <tr< td=""><td>§</td><td></td><td></td><td></td><td>1</td><td></td></tr<>	§				1	
10259         CAD         LTE-TDD         SC-FDMA, 100% RB, 3MHz, 16-OAM)         LTE-TDD         9.98         ±9.6           10260         CAG         LTE-TDD (SC-FDMA, 100% RB, 3MHz, 04-OAM)         LTE-TDD         9.94         ±9.6           10261         CAG         LTE-TDD (SC-FDMA, 100% RB, 3MHz, 0-QPSK)         LTE-TDD         9.24         ±9.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-OAM)         LTE-TDD         9.83         ±9.6           10263         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 06-OAM)         LTE-TDD         9.22         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-OAM)         LTE-TDD         9.92         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-OAM)         LTE-TDD         10.07         ±9.6           10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-OAM)         LTE-TDD         10.07         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-OAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 0PSK)         LTE-TDD         10.13         ±9.6           10274         CAB         UMTS-FDD (HSUPA, Sublest 5, 3GPP Rel8.10)         <	1				- · · · · · · · · · · · · · · · · · · ·	
10260         CAG         LTE-TDD (SC-FDMA, 100% RB, 3MHz, 64-QAM)         LTE-TDD         9.97         ±9.6           10261         CAG         LTE-TDD (SC-FDMA, 100% RB, 3MHz, QPSK)         LTE-TDD         9.83         ±9.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)         LTE-TDD         9.83         ±9.6           10263         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 04-QAM)         LTE-TDD         9.23         ±9.6           10264         CAG         LTE-TDD (SC-FDMA, 100% RB, 10MHz, 04-QAM)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10MHz, 04-QAM)         LTE-TDD         9.92         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10MHz, 04-QAM)         LTE-TDD         10.07         ±9.6           10267         CAG         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM)         LTE-TDD         10.13         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 04-QAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15MHz, 04-QAM)         LTE-TDD         9.58         ±9.6           10277         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA	·				·	
10261         CAG         LTE-TDD (SC-FDMA, 100% RB, 3MHz, QPSK)         LTE-TDD         9.24         ±9.6           10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)         LTE-TDD         10.16         ±9.6           10263         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)         LTE-TDD         10.16         ±9.6           10264         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)         LTE-TDD         9.92         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)         LTE-TDD         10.07         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)         LTE-TDD         10.07         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         10.07         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         9.58         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         9.58         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE						
10262         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)         LTE-TDD         9.83         ±9.6           10263         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 0PSK)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 0PSK)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 0F-QAM)         LTE-TDD         9.92         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 0F-QAM)         LTE-TDD         10.07         ±9.6           10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 0F-QAM)         LTE-TDD         10.06         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0F-QAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0F-QAM)         LTE-TDD         10.13         ±9.6           10272         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)         WCDMA         3.96         ±9.6           10277         CAB         PHS (QPSK, BW 884 MHz, Rolloff 0.5)         PHS <t< td=""><td><u></u></td><td></td><td></td><td></td><td></td><td></td></t<>	<u></u>					
10263         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)         LTE-TDD         10.16         ±9.6           10264         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, OPSK)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)         LTE-TDD         9.92         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)         LTE-TDD         9.30         ±9.6           10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)         LTE-TDD         9.30         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)         LTE-TDD         10.13         ±9.6           10269         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 04-QAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)         LTE-TDD         9.58         ±9.6           10277         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         PHS (QPSK)         PHS         11.81         ±9.6           10277         CAD         PHS (QPSK, BW 884 MHz, Rolioff 0.5)         PHS         11.81         ±9.6 <td>L</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	L				-	
10264         CAG         LTE-TDD (SC-FDMA, 100% RB, 5MHz, OPSK)         LTE-TDD         9.23         ±9.6           10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)         LTE-TDD         9.92         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)         LTE-TDD         10.07         ±9.6           10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)         LTE-TDD         9.30         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)         LTE-TDD         10.06         ±9.6           10269         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)         LTE-TDD         9.58         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)         WCDMA         3.96         ±9.6           10277         CAB         PHS (OPSK)         PHS         11.81         ±9.6           10279         CAG         CDMA2000, RC3, SO55, Full Rate         CDMA2000         3.91         ±9.6	1	k				
10265         CAG         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)         LTE-TDD         9.92         ±9.6           10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)         LTE-TDD         10.07         ±9.6           10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)         LTE-TDD         9.30         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)         LTE-TDD         10.06         ±9.6           10269         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)         LTE-TDD         9.58         ±9.6           10271         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)         WCDMA         3.96         ±9.6           10277         CAD         PHS (OPSK)         W184MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10278         CAD         PHS (OPSK, BW 884 MHz, Rolloff 0.38)         PHS         12.18         ±9.6           10291         CAG         CDMA2000, RC1, SO55, Fuil Rate         CDMA2000 <t< td=""><td>f</td><td>i</td><td></td><td></td><td></td><td></td></t<>	f	i				
10266         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-OAM)         LTE-TDD         10.07         ±9.6           10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-OAM)         LTE-TDD         9.30         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-OAM)         LTE-TDD         10.06         ±9.6           10269         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-OAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)         LTE-TDD         9.58         ±9.6           10270         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         3.96         ±9.6           10277         CAD         PHS (QPSK)         PHS         11.81         ±9.6           10270         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.50         ±9.6		f				
10267         CAF         LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)         LTE-TDD         9.30         ±9.6           10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)         LTE-TDD         10.06         ±9.6           10269         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)         LTE-TDD         9.58         ±9.6           10274         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)         WCDMA         3.96         ±9.6           10277         CAD         PHS (OPSK)         PHS         11.81         ±9.6           10276         CAD         PHS (OPSK)         PHS         11.81         ±9.6           10278         CAD         PHS (OPSK, BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.50         ±9.6           10292         <	<u>}</u>				1	
10268         CAF         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-OAM)         LTE-TDD         10.06         ±9.6           10269         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-OAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)         LTE-TDD         9.58         ±9.6           10274         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         3.96         ±9.6           10277         CAD         PHS (QPSK)         W18.84 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.38)         PHS         11.81         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.91         ±9.6           10292         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.91         ±9.6           10292         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         12.49         ±9.6 </td <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>+</td> <td></td>			· · · · · · · · · · · · · · · · · · ·		+	
10269         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-OAM)         LTE-TDD         10.13         ±9.6           10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)         LTE-TDD         9.58         ±9.6           10274         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)         WCDMA         3.96         ±9.6           10277         CAD         PHS (QPSK)         PHs (QPSK)         PHS         11.81         ±9.6           10278         CAD         PHS (QPSK, BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.38)         PHS         12.18         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6     <	· · · · · · · · · · · · · · · · · · ·					
10270         CAB         LTE-TDD (SC-FDMA, 100% RB, 15MHz, QPSK)         LTE-TDD         9.58         ±9.6           10274         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         3.96         ±9.6           10275         CAD         PHS (QPSK)         PHS         11.81         ±9.6           10278         CAD         PHS (QPSK, BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.38)         PHS         12.18         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10292         CAG         CDMA2000, RC1, SO3, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC1, SO3, Hall Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, OPSK)         LTE-FDD         5.72         ±9.6           10298	J					
10274         CAB         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)         WCDMA         4.87         ±9.6           10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)         WCDMA         3.96         ±9.6           10277         CAD         PHS (QPSK)         PHS         11.81         ±9.6           10278         CAD         PHS (QPSK)         PHS         11.81         ±9.6           10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10279         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO35, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC1, SO3, Full Rate         CDMA2000         3.50         ±9.6           10295         CAG         CDMA2000, RC1, SO3, Full Rate         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20HZ, QPSK)         LTE-FDD         5.81         ±9.6           10292         CAG         CDMA2000, RC1,	j	· · · ·				
10275         CAD         UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)         WCDMA         3.96         ±9.6           10277         CAD         PHS (QPSK)         PHS         11.81         ±9.6           10278         CAD         PHS (QPSK), BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.38)         PHS         12.18         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO55, Full Rate         CDMA2000         3.91         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         12.49         ±9.6           10295         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 3MHz, QPSK)         LTE-FDD         5.72         ±9.6           10298         CAF	1	<u> </u>				
10277         CAD         PHS (QPSK)         PHS         11.81         ±9.6           10278         CAD         PHS (QPSK, BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.38)         PHS         12.18         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO55, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC1, SO3, Hate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC1, SO3, Hate         CDMA2000         12.49         ±9.6           10295         CAG         CDMA2000, RC1, SO3, Hate         CDS         ±9.6         1029         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         L	}					+ ··· ·· ··· ····
10278         CAD         PHS (QPSK, BW 884 MHz, Rolloff 0.5)         PHS         11.81         ±9.6           10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.38)         PHS         12.18         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO55, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         5.72         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6						· · ·
10279         CAG         PHS (QPSK, BW 884 MHz, Rolloff 0.38)         PHS         12.18         ±9.6           10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO55, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         5.72         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 0PSK, PUSC)         WiMAX         12.03         ±9.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10290         CAG         CDMA2000, RC1, SO55, Full Rate         CDMA2000         3.91         ±9.6           10291         CAG         CDMA2000, RC3, SO55, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.50         ±9.6           10295         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, G4-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, G4-QAM)         LTE-FDD         6.60         ±9.6	-	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
10291         CAG         CDMA2000, RC3, SO55, Full Rate         CDMA2000         3.46         ±9.6           10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.50         ±9.6           10295         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, OPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, OPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 0PSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 0PSK, PUSC, 3CTRL)         WiMAX         12.57						
10292         CAG         CDMA2000, RC3, SO32, Full Rate         CDMA2000         3.39         ±9.6           10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.50         ±9.6           10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.50         ±9.6           10295         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, OPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, OPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 0PSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 0PSK, PUSC, 3CTRL)         WiMAX         12.57 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td>		1				-
10293         CAG         CDMA2000, RC3, SO3, Full Rate         CDMA2000         3.50         ±9.6           10295         CAG         CDMA2000, RC1, SO3, 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, OPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, OPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, OPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	· · · ·					
10295         CAG         CDMA2000, RC1, SO3. 1/8th Rate 25 fr.         CDMA2000         12.49         ±9.6           10297         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)         LTE-FDD         5.72         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 m	<u></u>					
10297         CAF         LTE-FDD (SC-FDMA, 50% RB. 20 MHz, QPSK)         LTE-FDD         5.81         ±9.6           10298         CAF         LTE-FDD (SC-FDMA, 50% RB. 3 MHz, QPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.60         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz	2				1	
10298         CAF         LTE-FDD (SC-FDMA, 50% RB. 3 MHz, QPSK)         LTE-FDD         5.72         ±9.6           10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.60         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         15.24         ±9.6						
10299         CAF         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)         LTE-FDD         6.39         ±9.6           10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10304         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         15.24         ±9.6	\$					
10300         CAC         LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)         LTE-FDD         6.60         ±9.6           10301         CAC         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, GAQAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10304         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         15.24         ±9.6						Fre
10301         CAC         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)         WiMAX         12.03         ±9.6           10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10304         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         15.24         ±9.6	\$	<b>F</b>				
10302         CAB         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)         WiMAX         12.57         ±9.6           10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         15.24         ±9.6	<u></u>	1				
10303         CAB         IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         12.52         ±9.6           10304         CAA         IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         15.24         ±9.6	}	· · · ·				
10304         CAA         IEEE 802.16e WiMAX (29:18.5 ms, 10 MHz, 64QAM, PUSC)         WiMAX         11.86         ±9.6           10305         CAA         IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)         WiMAX         15.24         ±9.6	1	§				
10305 CAA IEEE 802.16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC) WIMAX 15.24 ±9.6						
	+				+	
10306 UAA   IEEE 802.166 WIMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC) WIMAX 14.67 ±9.6						- [
	10306	CAA	LEE 802.166 WIMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC)	WIMAX	14.67	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10307	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC)	WiMAX	14.49	±9.6
10308	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM,AMC 2x3)	WiMAX	14.58	±9.6
10310	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3	WiMAX	14.57	±9.6
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAD	IDEN 1:3	IDEN	10.51	±9.6
10314	AAD	iDEN 1:6	IDEN	13.48	<u>±</u> 9.6
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	±9.6
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200 Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200 Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200 Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200 Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200 Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	<u>±</u> 9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAD	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc dc)	WLAN	8.37	±9.6
10401	AAA	IEEE 802.11ac WIFi (40 MHz, 64-QAM, 99pc dc)	WLAN	8.60	±9.6
10402	AAA	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc dc)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	<u>+</u> 9.6
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2.3.4.7.8.9)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF. 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
10417	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	<u></u> ±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	±9.6
10422	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAB	LTE-FDD (OFDMA, 5MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAB	LTE-FDD (OFDMA, 15 MHz. E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10447	AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)		7.59	±9.6
10453	AAC	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc dc)	WLAN	8.63	±9.6
10457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	±9.6
10463	AAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TOD	8.57	±9.6
10467	AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10469	AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.6
10470	AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10471	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10475	AAD	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	<u>+9.6</u>
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	<u>+</u> 9.6
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	±9.6
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	±9.6
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	±9.6
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	±9.6
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	±9.6
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6
10487	AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	±9.6
10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	±9.6
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7,74	±9.6
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	±9.6
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	±9.6
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3MHz. 16-OAM, UL Sub)	LTE-TDD	8.44	±9.6
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	±9.6
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	±9.6
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	<u>+</u> 9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	±9.6
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	±9.6
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	±9.6
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	±9.6
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	±9.6
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6
10519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	±9.6
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	±9.6
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	±9.6
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc dc)	WLAN	8.36	±9.6
10526	AAF	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc dc)	WLAN	8.42	±9.6
10527	AAF	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc dc)	WLAN	8.21	±9.6
10528	AAF	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc dc)	WLAN	8.36	<u>±9.6</u>
10529	AAF	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc dc)	WLAN	8.36	±9.6
10531	AAF	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc dc)	WLAN	8.43	±9.6
10532	AAF	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
10533	AAE	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc dc)	WLAN	8.38	±9.6
10534	AAE	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc dc)	WLAN	8.45	±9.6
10535	AAE	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc dc)	WLAN	8.45	±9.6
10536	AAF	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc dc)	WLAN	8.32	±9.6
10537	AAF	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc dc)	WLAN	8.44	±9.6
10538 10540	AAF	IEEE 802.11 ac WiFi (40 MHz, MCS4, 99pc dc)	WLAN	8.54	±9.6
	AAA	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc dc)	WLAN	8.39	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10541	AAA	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc dc)	WLAN	8.46	±9.6
10542	AAA	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc dc)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc dc)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc dc)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1. 99pc dc)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc dc)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc dc)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc dc)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6. 99pc dc)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc dc)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc dc)	WLAN	8.45	±9.6
10554	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc dc)	WLAN	8.48	±9.6
10555	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc dc)	WLAN	8.47	±9.6
10556	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc dc)	WLAN	8.50	±9.6
10557	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc dc)	WLAN	8.52	±9.6
10558	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc dc)	WLAN	8.61	±9.6
10560	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc dc)	WLAN	8.73	±9.6
10561	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc dc)	WLAN	8.56	±9.6
10562	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc dc)	WLAN	8.69	±9.6
10563	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc dc)	WLAN	8.77	±9.6
10564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	±9.6
10565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	±9.6
10566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	±9.6
10567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	±9.6
10568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps. 99pc dc)	WLAN	8.37	±9.6
10569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	±9.6
10570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	±9.6
10571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	±9.6
10572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	±9.6
10573	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	±9.6
10574	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	±9.6
10575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
10576	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
10577	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	<u>+</u> 9.6
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
10579	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
10581	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
10584	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
10587	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
10588	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps. 90pc dc)	WLAN	8.76	±9.6
10589	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
10590	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
10591	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)	WLAN	8.63	±9.6
10592	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10593	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)	WLAN	8.64	±9.6
10594	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
10595	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)	WLAN	8.74	±9.6
10596	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)	WLAN	8.71	<u>+</u> 9.6
10597	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)	WLAN	8.72	±9.6
10598	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)	WLAN	8.50	<u>+</u> 9.6
10599	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)	WLAN	8.79	<u>±</u> 9.6
10600	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10601	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)	WLAN	8.82	±9.6
10602	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)	WLAN	8.94	±9.6
10603	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)	WLAN	9.03	±9.6
10604	AAA	JEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)	WLAN	8.76	±9.6
10605	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)	WLAN	8.97	±9.6
10606	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
10607	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)	WLAN	8.64	±9.6
10608	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc dc)	WLAN	8.77	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc dc)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc dc)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc dc)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc dc)	WLAN	8.82	<u>+</u> 9.6
10616	AAC	IEEE 802.11ac WIFi (40 MHz, MCS0, 90pc dc)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc dc)	WLAN	8.58	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc dc)	WLAN	8.86	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc dc)	WLAN	8.87	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc dc)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc dc)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc dc)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc dc)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc dc)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc dc)	WLAN	8.81	<u>+</u> 9.6
10636	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10637	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10638	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc dc)	WLAN	8.86	±9.6
10639	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10640	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc dc)	WLAN	8.98	±9.6
10641	AAC	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc dc)	WLAN	9.06	±9.6
10642	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc dc)	WLAN	9.06	±9.6
10643	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc dc)	WLAN	8.89	±9.6
10644	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc dc)	WLAN	9.05	±9.6
10645	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc dc)	WLAN	9.11	±9.6
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2.7)	LTE-TDD	11.96	±9.6
10648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAC	Pulse Waveform (200 Hz, 10%)	Test	10.00	±9.6
10659	AAC	Pulse Waveform (200 Hz, 20%)	Test	6.99	±9.6
10660	AAC	Pulse Waveform (200 Hz, 40%)	Test	3.98	±9,6
10661	AAC	Pulse Waveform (200 Hz, 60%)	Test	2.22	±9.6
10662	AAC	Pulse Waveform (200 Hz, 80%)	Test	0.97	±9.6
10670	AAC	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAD	IEEE 802.11ax (20 MHz, MCS0, 90pc dc)	WLAN	9.09	±9.6
10672	AAD	IEEE 802.11ax (20 MHz, MCS1, 90pc dc)	WLAN	8.57	±9.6
10673	AAD	IEEE 802.11ax (20 MHz, MCS2, 90pc dc)	WLAN	8.78	±9.6
	AAD AAD	IEEE 802.11ax (20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
10674		IEEE 802.11ax (20 MHz, MCS4, 90pc dc) IEEE 802.11ax (20 MHz, MCS5, 90pc dc)	WLAN WLAN	8.90	±9.6
10675	+		I WATER M		±9.6
10675 10676	AAD			8.77	
10675 10676 10677	AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)	WLAN	8.73	<u>±9.6</u>
10675 10676 10677 10678	AAD AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc)	WLAN WLAN	8.73 8.78	±9.6 ±9.6
10675 10676 10677 10678 10679	AAD AAD AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc) IEEE 802.11ax (20 MHz, MCS8, 90pc dc)	WLAN WLAN WLAN	8.73 8.78 8.89	±9.6 ±9.6 ±9.6
10675 10676 10677 10678 10679 10680	AAD AAD AAD AAD AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc) IEEE 802.11ax (20 MHz, MCS8, 90pc dc) IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WLAN WLAN WLAN WLAN	8.73 8.78 8.89 8.80	
10675 10676 10677 10678 10679 10680 10681	AAD AAD AAD AAD AAD AAG	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc) IEEE 802.11ax (20 MHz, MCS8, 90pc dc) IEEE 802.11ax (20 MHz, MCS9, 90pc dc) IEEE 802.11ax (20 MHz, MCS10, 90pc dc)	WLAN WLAN WLAN WLAN WLAN	8.73 8.78 8.89 8.80 8.62	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10675 10676 10677 10678 10679 10680 10681 10682	AAD AAD AAD AAD AAD AAG AAF	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc) IEEE 802.11ax (20 MHz, MCS8, 90pc dc) IEEE 802.11ax (20 MHz, MCS9, 90pc dc) IEEE 802.11ax (20 MHz, MCS10, 90pc dc) IEEE 802.11ax (20 MHz, MCS11, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN	8.73 8.78 8.89 8.80 8.62 8.83	
10675 10676 10677 10678 10679 10680 10681 10682 10683	AAD AAD AAD AAD AAD AAG AAF AAA	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc) IEEE 802.11ax (20 MHz, MCS9, 90pc dc) IEEE 802.11ax (20 MHz, MCS10, 90pc dc) IEEE 802.11ax (20 MHz, MCS11, 90pc dc) IEEE 802.11ax (20 MHz, MCS0, 99pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.73 8.78 8.89 8.80 8.62 8.83 8.42	$ \begin{array}{r} \pm 9.6 \\ \pm 9.6 \end{array} $
10675 10676 10677 10678 10679 10680 10681 10682	AAD AAD AAD AAD AAD AAG AAF	IEEE 802.11ax (20 MHz, MCS6, 90pc dc) IEEE 802.11ax (20 MHz, MCS7, 90pc dc) IEEE 802.11ax (20 MHz, MCS8, 90pc dc) IEEE 802.11ax (20 MHz, MCS9, 90pc dc) IEEE 802.11ax (20 MHz, MCS10, 90pc dc) IEEE 802.11ax (20 MHz, MCS11, 90pc dc)	WLAN WLAN WLAN WLAN WLAN WLAN	8.73 8.78 8.89 8.80 8.62 8.83	

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10687	AAE	IEEE 802.11ax (20 MHz, MCS4, 99pc dc)	WLAN	8.45	±9.6
10688	AAE	IEEE 802.11ax (20 MHz, MCS5. 99pc dc)	WLAN	8.29	±9.6
10689	AAD	IEEE 802.11ax (20 MHz, MCS6, 99pc dc)	WLAN	8.55	±9.6
10690	AAE	IEEE 802.11ax (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
10691	AAB	IEEE 802.11ax (20 MHz, MCS8, 99pc dc)	WLAN	8.25	±9.6
10692	AAA	IEEE 802.11ax (20 MHz, MCS9, 99pc dc)	WLAN	8.29	±9.6
10693	AAA	IEEE 802.11ax (20 MHz, MCS10, 99pc dc)	WLAN	8.25	<u>±</u> 9.6
10694	AAA	IEEE 802.11ax (20 MHz, MCS11, 99pc dc)	WLAN	8.57	±9.6
10695	AAA	IEEE 802.11ax (40 MHz, MCS0, 90pc dc)	WLAN	8.78	±9.6
10696	AAA	IEEE 802.11ax (40 MHz, MCS1, 90pc dc)	WLAN	8.91	±9.6
10697	AAA	IEEE 802.11ax (40 MHz, MCS2, 90pc dc)	WLAN	8.61	±9.6
10698	AAA	IEEE 802.11ax (40 MHz, MCS3, 90pc dc)	WLAN	8.89	<u>+</u> 9.6
10699	AAA	IEEE 802.11ax (40 MHz, MCS4, 90pc dc)	WLAN	8.82	±9.6
10700	AAA	IEEE 802.11ax (40 MHz, MCS5, 90pc dc)	WLAN	8.73	<u>±9.6</u>
10701	AAA	IEEE 802.11ax (40 MHz, MCS6, 90pc dc)	WLAN	8.86	<u>±9.6</u>
10702	AAA	IEEE 802.11ax (40 MHz, MCS7, 90pc dc)	WLAN	8.70	±9.6
10703	AAA	IEEE 802.11ax (40 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10704	AAA	IEEE 802.11ax (40 MHz, MCS9, 90pc dc)	WLAN	8.56	<u>+</u> 9.6
10705	AAA	IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN	8.69	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc dc)	WLAN	8.66	±9.6
10707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc dc)	WLAN	8.32	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc dc)	WLAN	8.29	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc dc)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc dc)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc dc)	WLAN	8.33	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc dc)	WLAN	8.26	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc dc)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc dc)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc dc)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc dc)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc dc)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc dc)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc dc)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc dc)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc dc)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc dc)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc dc)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc dc)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc dc)	WLAN	8.67	<u>±9.6</u>
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc dc)	WLAN	8.46	<u>+</u> 9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc dc)	WLAN	8.40	±9.6
10734 10735	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc dc)	WLAN	8.25	±9.6
	AAC AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc dc)	WLAN	8.33	±9.6
10736 10737	1.	IEEE 802.11ax (80 MHz, MCS5, 99pc dc)	WLAN	8.27	±9.6
	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc dc)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc dc)	WLAN	8.42	±9.6
10739	AAC	JEEE 802.11ax (80 MHz, MCS8, 99pc dc)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc dc)	WLAN	8.48	±9.6
10741 10742	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc dc)	WLAN	8.40	<u>+9.6</u>
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc dc)	WLAN	8.43	±9.6
10743	AAC AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc dc)	WLAN	8.94	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)	WLAN	9.16	±9.6
		IEEE 802.11ax (160 MHz, MCS2, 90pc dc)	WLAN	8.93	±9.6
10746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc dc)	WLAN	9.11	±9.6
10747	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc dc)	WLAN	9.04	±9.6
10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc dc)	WLAN	8.93	±9.6
10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc dc)	WLAN	8.90	±9.6
10750	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc dc)	WLAN	8.79	±9.6
10751 10752	AAC AAC	IEEE 802.11ax (160 MHz, MCS8, 90pc dc) IEEE 802.11ax (160 MHz, MCS9, 90pc dc)	WLAN	8.82	±9.6
			WLAN	8.81	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc dc)	WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc dc)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc dc)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc dc)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc dc)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc dc)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc dc)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc dc)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc dc)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc dc)	WLAN	8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz. MCS8, 99pc dc)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc dc)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc dc)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc dc)	WLAN	8.51	±9.6
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	<u>+</u> 9.6
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	<u>+</u> 9.6
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK. 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAC	5G NR (CP-OFDM. 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, OPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	+9.6
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803		5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	<u>+</u> 9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM. 1 RB. 15MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7,74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAD	5G NR (CP-OFDM. 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, OPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAD	5G NR (CP-OFDM. 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	 ±9.6
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAD	5G NR (CP-OFDM, 100% RB. 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAD	5G NR (DFT-s-OFDM. 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	+9.6
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10000	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	<u>+9.6</u>
10898	4 · · ·	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10898	AAD			0.07	
	AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10899	Ļ				±9.6 ±9.6
10899 10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	
10899 10900 10901	AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68	±9.6
10899 10900 10901 10902	AAD AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68 5.68	±9.6 ±9.6
10899 10900 10901 10902 10903	AAD AAD AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68 5.68 5.68	+9.6 +9.6 +9.6
10899 10900 10901 10902 10903 10904	AAD AAD AAD AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)           5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)           5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)           5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)           5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)           5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68 5.68 5.68 5.68 5.68	
10899 10900 10901 10902 10903 10904 10905	AAD AAD AAD AAD AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68 5.68 5.68 5.68 5.68 5.68	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10899 10900 10901 10902 10903 10904 10905 10906	AAD AAD AAD AAD AAD AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68	
10899 10900 10901 10902 10903 10904 10905 10906 10907	AAD AAD AAD AAD AAD AAD AAD AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)         5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9,6
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10928	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QFSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
	2	1 A set a		5.52	
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD		±9.6
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, OPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, OPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1. 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BDR	ULLA	2.23	±9.6
10979	AAA	ULLA HDR4	ULLA	7.02	±9.6
10980	AAA	ULLA HDR8	ULLA	8.82	±9.6
	1	ULLA HDRp4	ULLA	1.50	±9.6
10981	AAA	OLEA NOTION	1 0101	1.00	1 0.0.0

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM. 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura

S

S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Element

**Certificate No** 

EX-7406 Jul22

# **CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:7406 BN 07-22-22
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date	July 18, 2022
This calibration certificate do	ocuments the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-21 (OCP-DAK3.5-1249_Oct21)	Oct-22
OCP DAK-12	SN: 1016	20-Oct-21 (OCP-DAK12-1016_Oct21)	Oct-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Şİpnature	1
Calibrated by	Jeffrey Katzman	Laboratory Technician	1. H. HA	5
Approved by	Niels Kuster	Quality Manager	K.H	
This calibration certifica	te shall not be reproduced except in fu	ull without written approval of th	Issued: July he laboratory.	20, 2022

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $\varphi$	$\varphi$ rotation around probe axis
Polarization $\vartheta$	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization  $\vartheta = 0$  ( $f \le 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800 \text{ MHz}$ ) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50 \text{ MHz}$ .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc ( <i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.42	0.46	±10.1%
DCP (mV) ^B	100.0	100.9	100.0	±4.7%

### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	159.6	±2.2%	±4.7%
		Y	0.00	0.00	1.00		151.6		
1		Z	0.00	0.00	1.00		150.9		
10352	Pulse Waveform (200Hz, 10%)	X	20.00	90.81	20.45	10.00	60.0	±2.7%	±9.6%
		Y	5.51	72.87	13.15		60.0		
		Z	20.00	89.45	19.55		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	92.85	20.23	6.99	80.0	±1.7%	±9.6%
		Y	20.00	85.00	15.77		80.0		
		Z	20.00	91.44	19.24	1	80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	96.51	20.46	3.98	95.0	±1.1%	±9.6%
		Y	20.00	85.89	14.93		95.0	1	
		Z	20.00	92.30	18.09		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	97.81	19.61	2.22	120.0	±1.0%	±9.6%
		Y	20.00	84.41	13.12		120.0		
		Z	20.00	90.39	15.85		120.0		
10387	QPSK Waveform, 1 MHz	X	1.47	64.23	13.68	1.00	150.0	±3.3%	±9.6%
		Y	2.85	80.67	19.99		150.0	ĺ	
		Z	1.54	65.57	14.29		150.0	1	
10388	QPSK Waveform, 10 MHz	X	1.94	65.86	14.44	0.00	150.0	±0.8%	±9.6%
		Y	2.18	71.17	17.59		150.0	1	
		Z	2.08	67.21	15.15		150.0	1	
10396	64-QAM Waveform, 100 kHz	X	2.40	66.82	17.00	3.01	150.0	±0.9%	±9.6%
		Y	1.96	66.60	17.36		150.0		
		Z	2.58	68.72	17.91	1	150.0	1	
10399	64-QAM Waveform, 40 MHz	X	3.47	66.88	15.50	0.00	150.0	±2.3%	±9.6%
		Y	3.36	67.94	16.46	1	150.0	1	
		Z	3.42	66.78	15.52	]	150.0	]	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.68	64.96	15.10	0.00	150.0	±3.9%	±9.6%
		Y	4.48	66.34	16.08	1	150.0	]	
		Z	4.80	65.56	15.47	]	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

- ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Linearization parameter uncertainty for maximum specified field strength.

### Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ²	T2 ms V ⁻¹	T3 ms	T4 V ^{−2}	T5 V ⁻¹	T6
х	44.8	336.66	35.84	11.00	0.18	5.09	0.00	0.41	1.01
у	21.1	159.56	36.45	12.89	0.00	5.06	0.00	0.19	1.00
z	42.4	320.58	36.28	9.32	0.16	5.08	0.51	0.32	1.01

### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle	142.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

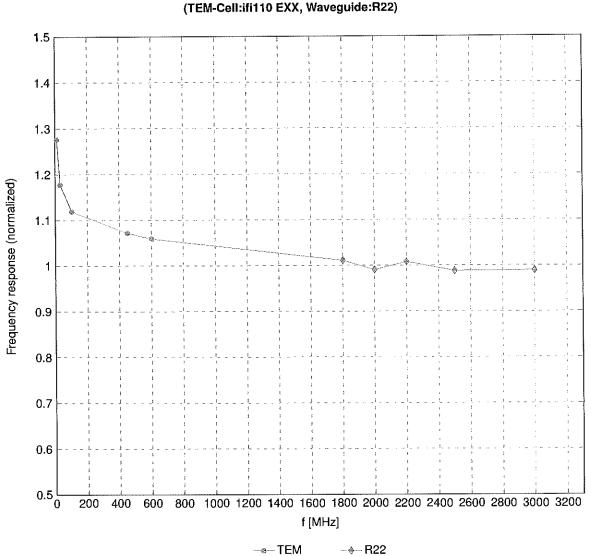
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	СопуЕ Ү	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ( <i>k</i> = 2)
750	41.9	0.89	10.13	10.13	10.13	0.37	1.05	±12.0%
835	41.5	0.90	9.86	9.86	9.86	0.25	1.22	±12.0%
1750	40.1	1.37	8.37	8.37	8.37	0.32	0.86	±12.0%
1900	40.0	1.40	8.03	8.03	8.03	0.35	0.86	±12.0%
2300	39.5	1.67	7.86	7.86	7.86	0.31	0.90	±12.0%
2450	39.2	1.80	7.72	7.72	7.72	0.33	0.90	±12.0%
2600	39.0	1.96	7.49	7.49	7.49	0.39	0.90	±12.0%
3500	37.9	2.91	7.06	7.06	7.06	0.35	1.35	±14.0%
3700	37.7	3.12	7.02	7.02	7.02	0.35	1.35	±14.0%
3900	37.5	3.32	6.74	6.74	6.74	0.40	1.60	±14.0%

### Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of  $\pm$ 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$ 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$ 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz.

¹ As frequencies up to 6 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ±100 MHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz and below  $\pm 2\%$  for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	55.5	0.96	9.78	9.78	9.78	0.39	0.80	±12.0%
835	55.2	0.97	9.48	9.48	9.48	0.42	0.80	±12.0%
1750	53.4	1.49	8.06	8.06	8.06	0.31	0.86	±12.0%
1900	53.3	1.52	7.73	7.73	7.73	0.37	0.86	±12.0%
2300	52.9	1.81	7.63	7.63	7.63	0.46	0.90	±12.0%
2450	52.7	1.95	7.57	7.57	7.57	0.41	0.90	±12.0%
2600	52.5	2.16	7.54	7.54	7.54	0.35	0.90	±12.0%
3500	51.3	3.31	6.74	6.74	6.74	0.40	1.35	±14.0%
3700	51.0	3.55	6.45	6.45	6.45	0.40	1.35	±14.0%
3900	50.8	3.78	6.38	6.38	6.38	0.40	1.70	±14.0%

### Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9, 19 MHz. Above 5 GHz frequency validity are be extended to ±10 MHz.

assessed at 13MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$ 110MHz. ^F At frequencies up to 6 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$ 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz and below  $\pm 2\%$  for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.



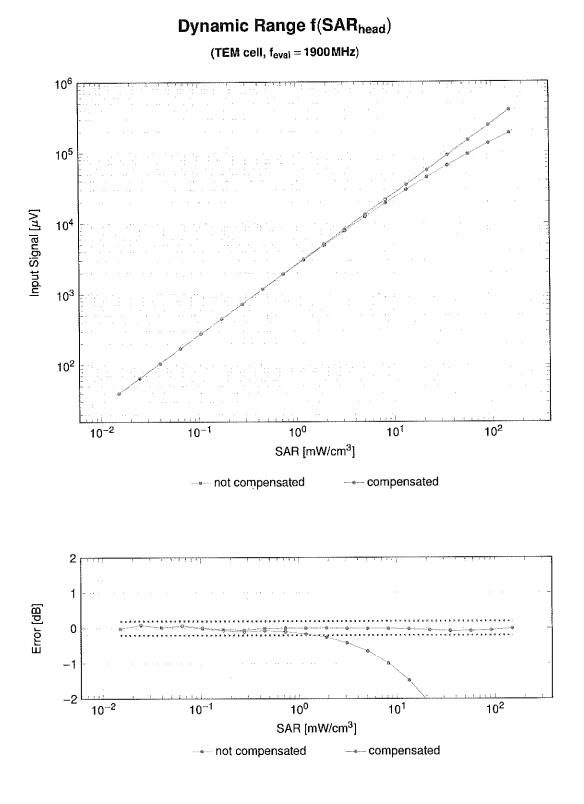
# **Frequency Response of E-Field**

(TEM-Cell:ifi110 EXX, Waveguide:R22)

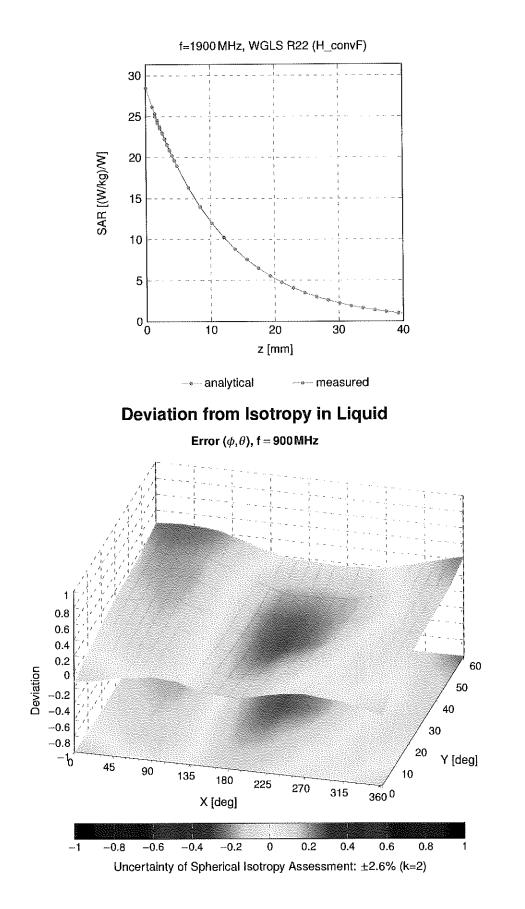
Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

f=1800 MHz, R22, 0° f=600 MHz, TEM, 0° 90° 90° X Y Х 135° 45° Y 45° 135° Ζ Ζ – Tot Tot 1.0 0° 0.4 0.6 0.4 ),8 0.2 180° ٥, 180° ์315° 315° 225 225° 270° 270° 0.5 Error [dB] 0 -0.5 240 300 360 120 180 0 60 Roll [°]

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

----- 600 MHz


1800 MHz

----- 2500 MHz

----- 100 MHz



Uncertainty of Linearity Assessment: ±0.6% (k=2)



## **Conversion Factor Assessment**

# **Appendix: Modulation Calibration Parameters**

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
0	nev	CW	CW	0.00	±4.7
10010	CAA	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10012	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10013	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10021	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10024	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10020	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10020	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10029	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5,30	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
		IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7,74	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10034	CAA		Bluetooth	3.83	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	8.01	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)		4.77	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth Bluetooth	4.17	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)		4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	7.78	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS		
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6 ±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	· · · · · · · · · · · · · · · · · · ·
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2,12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WIFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	<u>±9.6</u>
10076		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	CAC		GSM	9.55	±9.6
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TOD	9.29	±9.6
10104		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105			LTE-TDD	10.01	±9.6
10108			LTE-FDD	5.80	±9.6
	- <b>f</b>	· · · · · · · · · · · · · · · · · · ·	LTE-FDD	6.43	±9.6
10109	1 0/10				
10109		LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9,6
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8,59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6,49	±9.6
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAG		LTE-FDD	5.72	±9.6
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG		LTE-FDD	6.52	±9.6
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10000	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10222					
10222		IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10253	CAB	LTE-TDD (SC-FDMA, 50% RB, 15MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10255	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
L	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 3MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
		LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10-QAM)	LTE-TDD	10.16	±9.6
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 10MHz, 4F3R)	LTE-TDD	9.92	±9.6
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 10-QAM)	LTE-TDD	10.07	±9.6
L		LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10267	CAF		LTE-TDD	10.06	±9.6
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.00	±9.6
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)		9.58	±9.6
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD WCDMA	4.87	±9.6
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	3.96	±9.6
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	PHS	11.81	±9.6
10277	CAD	PHS (QPSK)	PHS	11.81	±9.6
10278	CAD	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	12.18	±9.6
10279	CAG	PHS (QPSK, BW 884 MHz, Rolloff 0.38)			
10290	CAG		CDMA2000	3.91	±9.6
10291	CAG		CDMA2000	3.46	±9.6
10292	CAG		CDMA2000	3.39	±9.6
10293	CAG		CDMA2000	3.50	±9.6
10295	CAG		CDMA2000	12.49	±9.6
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	CAC	•	LTE-FDD	6.60	±9.6
10301	CAC		WIMAX	12.03	±9.6
10302	_		WIMAX	12.57	±9.6
10303	CAB		WIMAX	12.52	±9.6
10304			WIMAX	11.86	±9.6
	CAA	IEEE 802.16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)	WIMAX	15.24	±9.6
10305		IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC)	WIMAX	14,67	±9.6

	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
UID 10307	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC)	WIMAX	14.49	±9.6
10307	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM,AMC 2x3)	WIMAX	14.58	±9.6
10310	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3	WIMAX	14.57	±9.6
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAD	IDEN 1:3	iDEN	10.51	±9.6
10314	AAD	IDEN 1:6	IDEN	13.48	±9.6
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	±9.6
10316	AAD	IEEE 802.11g WiFI 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200 Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200 Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200 Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200 Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200 Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	<u>+</u> 9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAD	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc dc)	WLAN	8.37	±9.6
10401	AAA	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc dc)	WLAN	8.60	±9.6
10402	AAA	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc dc)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	<u>±9.6</u>
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	<u>+9.6</u>
10417	AAA	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	±9.6
10422	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	<u>+9.6</u>
10431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10447	AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAC	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc dc)	WLAN	8.63	±9.6
10457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	±9.6
10463	AAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
	AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10467		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10468	AAF			8.56	±9.6
		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD LTE-TDD		

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10475	AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	±9.6
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	±9.6
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	±9.6
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	±9.6
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	±9.6
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6
10487	AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	±9.6
10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	±9.6
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	±9.6
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	±9.6
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	±9.6
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	±9.6
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	±9.6
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7,99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	±9.6
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	±9.6
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	±9.6
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	±9.6
10517	AAF	IEEE 802.11b WiFI 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	±9.6
10517	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6
10510	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	±9.6
10513	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	±9.6
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	7.97	±9.6
10521	AAB	IEEE 802.11a/n Will 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc dc)	WLAN	8.36	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10526	AAF	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc dc)	WLAN	8.21	±9.6
10527	AAF	IEEE 802.11ac WiFi (20 MHz, MCS2, 950c dc)	WLAN	8.36	±9.6
10528	AAF	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc dc)	WLAN	8.36	±9.6
10529	AAF	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc dc)	WLAN	8.43	±9.6
		IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
10532	AAF	IEEE 802.11ac WIFI (20 MHz, MCS7, 99pc dc)	WLAN	8.38	±9.6
10533	AAE		WLAN		±9.6
10534	AAE	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc dc)		8.45	±9.0 ±9.6
10535	AAE	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc dc)	WLAN	8.45	
10536	AAF	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc dc)	WLAN	8.32	±9.6
10537	AAF	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc dc)	WLAN	8.44	±9.6
10538	AAF AAA	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc dc)           IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc dc)	WLAN	8.54	±9.6
10540		LIEFE 802 11pc Willi (ADMUZ MCS6 99pc dc)	WLAN	8.39	±9.6

DD         MAX         LEEE 80.21 THE VITY ROMENT, MCST, 980e d0)         VLAN         A.46         9.9.9           10542         AAX         TEEE 80.21 THE VITY (400 MLH, MCSD, 890e d0)         VLAN         6.65         9.9.6           10544         AAC         TEEE 80.21 THE VITY (400 MLH, MCSD, 890e d0)         VLAN         6.65         9.9.6           10544         AAC         TEEE 80.21 THE VITY (400 MLH, MCSD, 890e d0)         VLAN         6.65         9.9.6           10547         AAC         TEEE 80.21 THE VITY (400 MLH, MCSD, 890e d0)         VLAN         6.85         9.9.6           10547         AAC         TEEE 80.21 THE VITY (400 MLH, MCSD, 890e d0)         VLAN         6.89         9.9.6           10546         AAC         TEEE 80.21 THE VITY (400 MLH, MCSD, 890e d0)         VLAN         6.84         9.6           10556         AAC         TEEE 80.21 THE VITY (400 MLH, MCSD, 890e d0)         VLAN         6.46         9.6           10557         AAC         TEEE 80.21 THE VITY (100 MLH, MCSD, 890e d0)         VLAN         6.46         9.6           10558         AAC         TEEE 80.21 THE VITY (100 MLH, MCSD, 890e d0)         VLAN         6.66         9.6           10558         AAC         TEEE 80.21 THE VITY (100 MLH, MCSD, 890e d0)         VLAN		Dave	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
NAT         DEED 00.1 Tise VMT (20.042, MCSR, Sept. 6.0)         VLAN         B.65         94.96           10541         AAC         IEEE 802.1 Tise VMT (40.042, MCSR, Sept. 6.0)         VLAN         B.75         94.96           10544         AAC         IEEE 802.1 Tise VMT (40.044, MCSR, Sept. 6.1)         VLAN         B.75         94.96           10545         AAC         IEEE 802.1 Tise VMT (80.044, MCSR, Sept. 6.1)         VLAN         B.85         95.6           10546         AAC         IEEE 802.1 Tise VMT (80.044, MCSR, Sept. 6.1)         VLAN         B.63         95.6         95.6           10567         AAC         IEEE 802.1 Tise VMT (80.044, MCSR, Sept. 6.1)         VLAN         B.63         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6         95.6		Rev				
10565         ACC         LEEE 802.11 tax VMF1 (20MHz, MCSS, 90pc d0)         WLAN         4.05         49.0           10564         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.55         49.0           10564         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.45         49.0           10564         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.49         49.0           10564         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.49         49.0           10564         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.49         49.0           10565         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.46         49.0           10565         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.47         49.0           10566         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.47         49.0           10567         ACC         LEEE 802.11 tax VMF1 (80MHz, MCSS, 90pc d0)         WLAN         8.47         29.0           10568         ACC         LEEE 802.11 tax VMF1 (160MHz, MCSS, 90pc d0)         WLAN						
1664         AAC         LEEE BOS TI IN WIFE (BO MHZ, MCSS) Selps do)         WI AN         8.47         19.9           10646         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS) Selps do)         WI AN         8.35         19.9           10547         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.45         19.6           10547         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.49         19.6           10558         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.49         19.6           10551         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.49         49.6           10553         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.49         49.6           10554         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.49         49.6           10555         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.47         49.6           10565         AAC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do)         WI AN         8.57         49.6           10567         ACC         IEEE BOS TI IN WIFE (BO MHZ, MCSS, Selps do) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
TORGE         AAC         LEEE BO2 11ac WIFF (80 MHz, MCSS, 99p. dG)         WLAN         8.25         ±9.6           10546         AAC         LEEE BO2 11ac WIFF (80 MHz, MCSS, 99p. dG)         WLAN         8.35         ±9.6           10546         AAC         LEEE BO2 11ac WIFF (80 MHz, MCSS, 99p. dG)         WLAN         8.35         ±9.6           10557         AAC         LEEE BO2 11ac WIFF (80 MHz, MCSS, 99p. dG)         WLAN         8.58         ±9.6           10558         AAC         LEEE BO2 11ac WIFF (80 MHz, MCSS, 99p. dG)         WLAN         8.42         ±9.8           10552         AAC         LEEE BO2 11ac WIFF (80 MHz, MCSS, 98p. dG)         WLAN         8.42         ±9.8           10554         AAC         LEEE BO2 11ac WIFF (80 MHz, MCSS, 98p. dG)         WLAN         8.44         ±9.8           10554         AAC         LEEE BO2 11ac WIFF (160 MHz, MCSS, 98p. dG)         WLAN         8.44         ±9.6           10554         AAC         LEEE BO2 11ac WIFF (160 MHz, MCSS, 98p. dG)         WLAN         8.47         ±9.6           10555         AAC         LEEE BO2 11ac WIFF (160 MHz, MCSS, 98p. dG)         WLAN         8.67         ±9.6           10556         AAC         LEEE BO2 11ac WIFF (160 MHz, MCSS, 98p. dG)         WLAN         8.6						±9.6
10566         AAC         LEEE BOX TIAE WEIF (80 MEX, MCSS, 980ps do)         WLAN         8.455         4.96           10567         AAC         LEEE BOX TIAE WEIF (80 MEX, MCSS, 980ps do)         WLAN         8.47         4.95           10567         AAC         LEEE BOX TIAE WEIF (80 MEX, MCSS, 980ps do)         WLAN         8.37         4.96           10556         AAC         LEEE BOX TIAE WEIF (80 MEX, MCSS, 980ps do)         WLAN         8.42         4.96           10556         AAC         LEEE BOX TIAE WEIF (80 MEX, MCSS, 980ps do)         WLAN         8.46         4.96           10556         AAC         LEEE BOX TIAE WEIF (80 MEX, MCSS, 980ps do)         WLAN         8.46         4.96           10556         AAC         LEEE BOX TIAE WEIF (160 MEX, MCSS, 980ps do)         WLAN         8.47         4.95           10556         AAC         LEEE BOX TIAE WEIF (160 MEX, MCSS, 980ps do)         WLAN         8.47         4.95           10567         AAC         LEEE BOX TIAE WEIF (160 MEX, MCSS, 980ps do)         WLAN         8.52         4.95           10558         AAC         LEEE BOX TIAE WEIF (160 MEX, MCSS, 980ps do)         WLAN         8.52         4.95           10567         AAC         LEEE BOX TIAE WEIF (160 MEX, MCSS, 980ps do)         WLAN						
10547         AAC         IEEE 802.11 av WIF (60 MHz, MCSS, 98pc.do)         WLAN         8.37         4.96           10560         AAC         IEEE 802.11 av WIF (60 MHz, MCSS, 98pc.do)         WLAN         8.38         4.98           10561         AAC         IEEE 802.11 av WIF (60 MHz, MCSS, 98pc.do)         WLAN         8.49         4.90           10562         AAC         IEEE 802.11 av WIF (160 MHz, MCSS, 98pc.do)         WLAN         8.46         4.90           10563         AAC         IEEE 802.11 av WIF (160 MHz, MCSS, 98pc.do)         WLAN         8.46         4.96           10564         AAC         IEEE 802.11 av WIF (160 MHz, MCS2, 98pc.do)         WLAN         8.47         4.95           10565         AAC         IEEE 802.11 av WIF (160 MHz, MCS2, 98pc.do)         WLAN         8.47         4.95           10567         AAC         IEEE 802.11 av WIF (160 MHz, MCS2, 98pc.do)         WLAN         8.67         4.96           10568         AAC         IEEE 802.11 av WIF (160 MHz, MCS2, 98pc.do)         WLAN         8.67         4.96           10568         AAC         IEEE 802.11 av WIF (160 MHz, MCS3, 88pc.do)         WLAN         8.67         4.96           10568         AAC         IEEE 802.11 av WIF (160 MHz, MCS3, 88pc.do)         WLAN <td< td=""><td></td><td></td><td></td><td></td><td></td><td>±9.6</td></td<>						±9.6
10560 10560         AAC         IEEE 802 11 ac WIF (00 MHz, MCSK, 99pc do)         WI AN         8.37         ±9.96           10560         AAC         IEEE 802 11 ac WIF (00 MHz, MCSK, 99pc do)         WI, AN         8.38         ±9.96           10561         AAC         IEEE 802 11 ac WIF (00 MHz, MCSK, 99pc do)         WI, AN         8.42         ±9.8           10563         AAC         IEEE 802 11 ac WIF (00 MHz, MCSK, 99pc do)         WI, AN         8.42         ±9.8           10563         AAC         IEEE 802 11 ac WIF (00 MHz, MCSK, 99pc do)         WI, AN         8.46         ±9.8           10554         AAC         IEEE 802 11 ac WIF (100 MHz, MCSK, 99pc do)         WI, AN         8.45         ±9.6           10555         AAC         IEEE 802 11 ac WIF (100 MHz, MCSK, 99pc do)         WI, AN         8.52         ±9.6           10567         AAC         IEEE 802 11 ac WIF (100 MHz, MCSK, 99pc do)         WI, AN         8.61         ±9.6           10568         AAC         IEEE 802 11 ac WIF (100 MHz, MCSK, 99pc do)         WI, AN         8.62         ±9.6           10569         AAC         IEEE 802 11 ac WIF (100 MHz, MCSK, 99pc do)         WI, AN         8.73         ±9.6           10569         AAC         IEEE 802 11 ac WIF (100 MHz, MCSK, 99pc do)						±9.6
1950 10657         AAC         IEEE 802 11ac WHT (300HHz, MCSR, 30pc dc)         WLAN         8.55         149.6           10657         AAC         IEEE 802 11ac WHT (300HHz, MCSR, 30pc dc)         WLAN         8.52         449.6           10658         AAC         IEEE 802 11ac WHT (300HHz, MCSR, 30pc dc)         WLAN         8.42         49.6           10554         AAC         IEEE 802 11ac WHT (300HHz, MCSR, 30pc dc)         WLAN         8.44         49.6           10555         AAC         IEEE 802 11ac WHT (300HHz, MCSR, 30pc dc)         WLAN         8.47         48.6           10558         AAC         IEEE 802 11ac WHT (100 Hz, MCSR, 30pc dc)         WLAN         8.52         49.6           10558         AAC         IEEE 802 11ac WHT (100 Hz, MCSR, 30pc dc)         WLAN         8.55         49.6           10568         AAC         IEEE 802 11ac WHT (100 Hz, MCSR, 30pc dc)         WLAN         8.77         49.6           10564         AAC         IEEE 802 11ac WHT (100 Hz, MCSR, 30pc dc)         WLAN         8.77         49.6           10564         AAC         IEEE 802 11ac WHT (20 Hz, ICSSS -CPLM, 18 Mbp, 80pc dc)         WLAN         8.45         4.96           10564         AAC         IEEE 802 11g WHT 2 4 GHz (DSSS -CPLM, 18 Mbp, 80pc dc)         WLAN </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
1985         AC         IEEE 802.1 Iso: WHI (2014Hz, MCS7, S9pp da)         WLAN         8.40         #9.0           10552         AC         IEEE 802.1 Iso: WHI (3014Hz, MCS3, S9pp da)         WLAN         8.45         #9.0           10553         AC         IEEE 802.1 Iso: WHI (3014Hz, MCS3, S9pp da)         WLAN         8.45         #9.0           10554         AC         IEEE 802.1 Iso: WHI (3014Hz, MCS3, S9pp da)         WLAN         8.45         #9.0           10555         AC         IEEE 802.1 Iso: WHI (16014Hz, MCS3, S9pp da)         WLAN         8.52         #9.0           10567         AC         IEEE 802.1 Iso: WHI (16014Hz, MCS3, S9pp da)         WLAN         8.51         #9.6           10568         AC         IEEE 802.1 Iso: WHI (16014Hz, MCS9, S9pp da)         WLAN         8.73         #9.6           10564         AC         IEEE 802.1 Iso: WHI (16014Hz, MCS9, S9pp da)         WLAN         8.73         #9.6           10564         AC         IEEE 802.1 Iso: WHI (16014Hz, MCS9, S9pp da)         WLAN         8.73         #9.6           10564         AC         IEEE 802.1 Ig WHI (2.44Hz (DSSS-OFDM, 48Mps, 99p da)         WLAN         8.72         #9.6           10564         AC         IEEE 802.1 Ig WHI 2.44Hz (DSSS-OFDM, 48Mps, 99pc da)         WLAN <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1952 1952         AAC         IEEE 802:1 isc WHI (S0MHz, MCS8, 98pc.dc)         WLAN         8.42         49.9           10564         AAC         IEEE 802:1 isc WHI (S0MHz, MCS9, 98pc.dc)         WLAN         8.45         +9.9           10554         AAC         IEEE 802:1 isc WHI (S0MHz, MCS9, 98pc.dc)         WLAN         8.47         +9.6           10554         AAC         IEEE 802:1 isc WHI (S0MHz, MCS9, 98pc.dc)         WLAN         8.50         +9.6           10554         AAC         IEEE 802:1 isc WHI (S0MHz, MCS9, 98pc.dc)         WLAN         8.51         +9.6           10558         AAC         IEEE 802:1 isc WHI (S0MHz, MCS9, 98pc.dc)         WLAN         8.73         +9.6           10561         AAC         IEEE 802:1 isc WHI (S0MHz, MCS9, 98pc.dc)         WLAN         8.73         +9.6           10562         AAC         IEEE 802:1 is WHI (S0MHz, MCS9, 99pc.dc)         WLAN         8.79         +9.6           10564         AAC         IEEE 802:1 is WHI (S0MHz, MCS9, 99pc.dc)         WLAN         8.79         +9.6           10564         AAC         IEEE 802:1 is WHI (S0MHz, MCS9, 99pc.dc)         WLAN         8.79         +9.6           10564         AAC         IEEE 802:1 is WHI (S0Hz, COSS-OFDM, 18 Mpps, 99pc.dc)         WLAN         8.13<						
10553         AAC         IEEE 802: Inc. WIFI (80MHz, MCS9, 80p.dc)         WLAN         8.46         9.96           10554         AAC         IEEE 802: Inc. WIFI (180 MHz, MCS9, 180p.dc)         WLAN         8.47         1.9.8           10555         AAC         IEEE 802: Inc. WIFI (180 MHz, MCS9, 180p.dc)         WLAN         8.57         4.9.8           10556         AAC         IEEE 802: Inc. WIFI (180 MHz, MCS9, 190p.dc)         WLAN         8.52         4.9.8           10557         AAC         IEEE 802: Inc. WIFI (180 MHz, MCS9, 190p.dc)         WLAN         8.52         4.9.6           10564         AAC         IEEE 802: Inc. WIFI (180 MHz, MCS9, 190p.dc)         WLAN         8.56         4.9.6           10564         AAC         IEEE 802: Inc. WIFI (180 MHz, MCS9, 190p.dc)         WLAN         8.56         4.9.6           10582         AAC         IEEE 802: Inc. WIFI (24 MHz, MCS9, 190p.dc)         WLAN         8.45         4.9.6           10582         AAC         IEEE 802: Inc. WIFI (24 GHz, ICSSS-CPEM, 18Mps, 190p.dc)         WLAN         8.45         4.9.8           10582         AAC         IEEE 802: INWIFI 2.4 GHz (DSSS-CPEM, 18Mps, 190p.dc)         WLAN         8.45         4.9.8           10564         AAC         IEEE 802: INWIFI 2.4 GHz (DSSS-CPEM, 18Mps,					ł	
10567         A.C.         IEEE 802.11ac WIFI (160 MHz, MCSN, 99p-dc)         WLAN         8.47         ±9.6           10556         A.C.         IEEE 80.211ac WIFI (160 MHz, MCSN, 99p-dc)         WLAN         8.57         ±9.6           10557         A.C.         IEEE 80.211ac WIFI (160 MHz, MCSN, 99p-dc)         WLAN         8.52         ±9.6           10558         A.C.         IEEE 80.211ac WIFI (160 MHz, MCSN, 99p-dc)         WLAN         8.73         ±9.6           10561         A.C.         IEEE 80.211ac WIFI (160 MHz, MCSN, 99p-dc)         WLAN         8.73         ±9.6           10561         A.C.         IEEE 80.211ac WIFI (180 MHz, MCSN, 99p-dc)         WLAN         8.77         ±9.6           10564         A.C.         IEEE 80.211ac WIFI (24 MHz, MCSN, 99p-dc)         WLAN         8.43         ±9.6           10564         A.C.         IEEE 80.211g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99p-dc)         WLAN         8.43         ±9.6           10566         A.C.         IEEE 80.211g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99p-dc)         WLAN         8.43         ±9.6           10567         A.C.         IEEE 80.211g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99p-dc)         WLAN         8.03         ±9.6           10570         A.C.         IEEE 80.211g WIFI 2.4 GHz (DSSS-OFDM, 48 Mb						
10555         AAC         LEEE 802.11ac WFF1 (190 MHz, MCS2, 98pc dc)         WLAN         8.47         19.8           10566         AAC         IEEE 802.11ac WFF1 (190 MHz, MCS2, 98pc dc)         WLAN         8.50         19.6           10567         AAC         IEEE 802.11ac WFF1 (190 MHz, MCS2, 98pc dc)         WLAN         8.51         1.8.5           10568         AAC         IEEE 802.11ac WFF1 (100 MHz, MCS3, 98pc dc)         WLAN         8.73         4.9.6           10561         AAC         IEEE 802.11ac WFF1 (100 MHz, MCS3, 98pc dc)         WLAN         8.73         4.9.6           10562         AAC         IEEE 802.11ac WFF1 (100 MHz, MCS9, 98pc dc)         WLAN         8.77         4.9.6           10564         AAC         IEEE 802.11ac WFF1 (24 GHz (DSSS-OFDM, 19 Mbps, 98pc dc)         WLAN         8.72         4.9.6           10566         AAC         IEEE 802.11g WFF1 24 GHz (DSSS-OFDM, 19 Mbps, 98pc dc)         WLAN         8.13         4.9.6           10567         AAC         IEEE 802.11g WFF1 24 GHz (DSSS-OFDM, 48 Mbps, 98pc dc)         WLAN         8.13         4.9.6           10567         AAC         IEEE 802.11g WFF1 24 GHz (DSSS-OFDM, 48 Mbps, 98pc dc)         WLAN         8.10         1.9.6           10567         AAC         IEEE 802.11g WFF1 24 GHz						
10556         AAC         LEEE 802.11ac WFF (160 MHz, MCS2, 96pc dc)         WUAN         8.50         +9.6           10557         AAC         IEEE 802.11ac WFF (160 MHz, MCS3, 96pc dc)         WUAN         8.52         ±9.6           10568         AAC         IEEE 802.11ac WFF (160 MHz, MCS3, 96pc dc)         WUAN         8.61         ±9.8           10561         AAC         IEEE 802.11ac WFF (160 MHz, MCS3, 96pc dc)         WUAN         8.57         ±9.6           10563         AAC         IEEE 802.11ac WFF (160 MHz, MCS3, 96pc dc)         WUAN         8.73         ±9.6           10564         AAC         IEEE 802.11ac WFF (160 MHz, MCS3, 96pc dc)         WUAN         8.77         ±9.6           10564         AAC         IEEE 802.11g WFF 2.4 GHz (DSSS-OFDM, 91Mps, 95pc dc)         WUAN         8.45         ±9.6           10566         AAC         IEEE 802.11g WFF 2.4 GHz (DSSS-OFDM, 41Mps, 95pc dc)         WUAN         8.45         ±9.6           10567         AAC         IEEE 802.11g WFF 2.4 GHz (DSSS-OFDM, 41Mps, 95pc dc)         WUAN         8.47         ±9.6           10574         AAC         IEEE 802.11g WFF 2.4 GHz (DSSS - OFDM, 41Mps, 95pc dc)         WUAN         8.30         ±9.6           10574         AAC         IEEE 802.11g WFF 2.4 GHz (DSSS - OFDM, 41Mps, 9					1	
10897         AAC         IEEE 802.11ac WiF1 (160 MHz, MCS3, 98pc dc)         WUAN         8.52         4.9.6           10588         AAC         IEEE 802.11ac WiF1 (160 MHz, MCS3, 98pc dc)         WUAN         8.61         1.9.8           10561         AAC         IEEE 802.11ac WiF1 (160 MHz, MCS6, 98pc dc)         WUAN         8.73         4.9.6           10561         AAC         IEEE 802.11ac WiF1 (160 MHz, MCS8, 98pc dc)         WUAN         8.69         4.9.6           10564         AAC         IEEE 802.11ac WiF1 (160 MHz, MCS8, 98pc dc)         WUAN         8.45         ±9.6           10564         AAC         IEEE 802.11ac WiF1 (160 MHz, MCS9, 98pc dc)         WUAN         8.45         ±9.6           10566         AAC         IEEE 802.11g WiF1 2.4 GHz (DSSS-OFDM, 14 Mbps, 98pc dc)         WUAN         8.45         ±9.6           10567         AAC         IEEE 802.11g WiF1 2.4 GHz (DSSS-OFDM, 44 Mbps, 98pc dc)         WUAN         8.00         ±9.6           10568         AAC         IEEE 802.11g WiF1 2.4 GHz (DSSS-OFDM, 44 Mbps, 99pc dc)         WUAN         8.10         ±9.6           10570         AAC         IEEE 802.11g WiF1 2.4 GHz (DSSS-OFDM, 44 Mbps, 99pc dc)         WUAN         8.10         ±9.6           10577 <aac< td="">         IEEE 802.11g WIF1 2.4 GHz (DSSS-OFDM, 44 Mbp</aac<>					8.50	±9.6
10588         AAC         LEEE 802.11ac WFF1 (160 MHz, MCS6, 98pc dc)         WLAN         8.61         19.8           10560         AAC         IEEE 802.11ac WFF1 (160 MHz, MCS7, 98pc dc)         WLAN         8.65         19.8           10561         AAC         IEEE 802.11ac WFF1 (160 MHz, MCS7, 98pc dc)         WLAN         8.66         19.6           10563         AAC         IEEE 802.11ac WFF1 (160 MHz, MCS9, 98pc dc)         WLAN         8.77         19.6           10564         AAC         IEEE 802.11a WFF1 (24 GHz (DSSS-OFDM, 9Mbps, 98pc dc)         WLAN         8.45         ±9.6           10566         AAC         IEEE 802.11g WFF1 24 GHz (DSSS-OFDM, 3Mbps, 98pc dc)         WLAN         8.13         ±9.6           10567         AAC         IEEE 802.11g WFF1 24 GHz (DSSS-OFDM, 34 Mbps, 98pc dc)         WLAN         8.30         ±9.6           10568         AAC         IEEE 802.11g WFF1 24 GHz (DSSS-OFDM, 34 Mbps, 99pc dc)         WLAN         8.30         ±9.6           10570         AAC         IEEE 802.11g WFF1 24 GHz (DSSS, 5.1Mbps, 90pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.11g WFF1 24 GHz (DSSS, 5.1Mbps, 90pc dc)         WLAN         1.89         ±9.6           10574         AAC         IEEE 802.11g WFF1 24 GHz (						
10560         AAC         IEEE 802.11ac WIF (160 MHz, MCSG, 98pc.dc)         WLAN         8.73         19.6           10561         AAC         IEEE 802.11ac WIF (160 MHz, MCSG, 98pc.dc)         WLAN         8.69         19.66           10562         AAC         IEEE 802.11ac WIF (160 MHz, MCSB, 98pc.dc)         WLAN         8.77         19.6           10564         AAC         IEEE 802.11g WIF 12.4 GHz (DSSS-OFDM, 12 Mbps, 99pc.dc)         WLAN         8.45         19.6           10564         AAC         IEEE 802.11g WIF 12.4 GHz (DSSS-OFDM, 12 Mbps, 99pc.dc)         WLAN         8.45         19.6           10567         AAC         IEEE 802.11g WIF 12.4 GHz (DSSS-OFDM, 42 Mbps, 99pc.dc)         WLAN         8.13         19.6           10567         AAC         IEEE 802.11g WIF 12.4 GHz (DSSS-OFDM, 48 Mbps, 99pc.dc)         WLAN         8.10         19.6           10568         AAC         IEEE 802.11g WIF 12.4 GHz (DSSS. OFDM, 54 Mbps, 90pc.dc)         WLAN         8.30         19.6           10571         AAC         IEEE 802.11g WIF 12.4 GHz (DSSS. 15 Mbps, 90pc.dc)         WLAN         8.30         19.6           10572         AAC         IEEE 802.11g WIF 12.4 GHz (DSSS. 15 Mbps, 90pc.dc)         WLAN         8.39         19.6           10574         AAC         IEEE 8	[					±9.6
10561         AAC         IEEE 802.11ac WIF1(160 MHz, MCS7, 93po.dc)         WLAN         8.56         19.6           10562         AAC         IEEE 802.11ac WIF1(160 MHz, MCS8, 93po.dc)         WLAN         8.77         4.8.6           10564         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS-OFDM, 9 Mbps, 99po.dc)         WLAN         8.47         4.8.6           10564         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS-OFDM, 19 Mbps, 99po.dc)         WLAN         8.45         4.9.6           10566         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS-OFDM, 49 Mbps, 99pc.dc)         WLAN         8.13         4.9.0           10567         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS-OFDM, 48 Mbps, 99pc.dc)         WLAN         8.30         4.9.6           10570         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS-OFDM, 48 Mbps, 99pc.dc)         WLAN         8.30         4.9.6           10571         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS, 5.5 Mbps, 90pc.dc)         WLAN         8.30         4.9.6           10572         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS, 5.5 Mbps, 90pc.dc)         WLAN         1.98         4.9.6           10574         AAC         IEEE 802.11g WIF1.2 4GHz (DSSS-OFDM, 40 Mbps, 90pc.dc)         WLAN         1.98         4.9.6           10576         AAC					L	±9,6
10562         AAC         IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc dc)         WLAN         8.77         19.6           10563         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)         WLAN         8.25         ±9.8           10564         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)         WLAN         8.45         ±9.6           10566         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)         WLAN         8.13         ±9.6           10566         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 44 Mbps, 99pc dc)         WLAN         8.37         ±9.6           10569         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 44 Mbps, 99pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS, OFDM, 54 Mbps, 99pc dc)         WLAN         8.30         ±9.6           10572         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS, 51 Mbps, 90pc dc)         WLAN         1.98         ±9.6           10574         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS, 51 Mbps, 90pc dc)         WLAN         1.98         ±9.6           10576         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 64 Mbps, 90pc dc)         WLAN         8.70         ±9.8           10576         AAC					1	±9.6
10583         AAC         IEEE 802.11ac WIFI (160MHz, MCS9, 99pc.dc)         WLAN         8.77         ±9.6           10564         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18Mbps, 99pc.dc)         WLAN         8.45         ±9.6           10565         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18Mbps, 99pc.dc)         WLAN         8.13         ±9.6           10566         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18Mbps, 99pc.dc)         WLAN         8.00         ±9.6           10566         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48Mbps, 99pc.dc)         WLAN         8.37         ±9.6           10570         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48Mbps, 99pc.dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS, 15Mbps, 90pc.dc)         WLAN         1.99         ±9.6           10574         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc.dc)         WLAN         1.98         ±9.6           10575         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48Mbps, 90pc.dc)         WLAN         8.59         ±9.6           10576         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48Mbps, 90pc.dc)         WLAN         8.60         ±9.6           10576         AAC					l	
NAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 9Mbps, 99pc dc)         WLAN         8.25         19.6           10566         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 12 Mbps, 99pc dc)         WLAN         8.45         49.6           10566         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 24 Mbps, 99pc dc)         WLAN         8.13         19.6           10567         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 24 Mbps, 99pc dc)         WLAN         8.10         49.6           10568         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 54 Mbps, 99pc dc)         WLAN         8.10         49.6           10571         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS, OFDM, 54 Mbps, 99pc dc)         WLAN         8.30         49.6           10572         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS, 54 Mbps, 90pc dc)         WLAN         1.99         49.6           10574         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS, OFDM, 64 Mbps, 90pc dc)         WLAN         1.98         49.6           10574         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.59         49.6           10576         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.49         49.6           10576         AAC         <	3					
10566         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 12 Mbps, 98pc dc)         WLAN         8.46         ±9.6           10566         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 18 Mbps, 98pc dc)         WLAN         8.13         ±9.6           10567         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 36 Mbps, 98pc dc)         WLAN         8.37         ±9.6           10570         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 36 Mbps, 98pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.11g WIFI 2.4GHz (DSSS-OFDM, 54 Mbps, 98pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS, 51 Mbps, 90pc dc)         WLAN         1.99         ±9.6           10572         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS, 51 Mbps, 90pc dc)         WLAN         1.98         ±9.6           10575         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS-OFDM, 18 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10576         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS-OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10577         AAC         IEEE 802.119 WIFI 2.4GHz (DSSS-OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10576					<u>.</u>	
10566         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)         WLAN         8.13         ±9.6           10567         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)         WLAN         8.00         +9.6           10568         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)         WLAN         8.10         +9.6           10570         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS, OFDM, 48 Mbps, 99pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 2Mbps, 90pc dc)         WLAN         1.99         ±9.6           10572         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 5Mbps, 90pc dc)         WLAN         1.98         ±9.6           10574         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6Mbps, 90pc dc)         WLAN         1.98         ±9.6           10576         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10577         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10577         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10577		1				±9.6
NAX         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)         WLAN         8.00         ±9.6           10568         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 38 Mbps, 99pc dc)         WLAN         8.37         ±9.6           10569         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)         WLAN         8.30         ±9.6           10570         AAC         IEEE 802.119 WIFI 2.4 GHz (DSSS, 1Mbps, 90pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.119 WIFI 2.4 GHz (DSSS, 1Mbps, 90pc dc)         WLAN         1.99         ±9.6           10572         AAC         IEEE 802.119 WIFI 2.4 GHz (DSSS, 5.Mbps, 90pc dc)         WLAN         1.98         ±9.6           10573         AAC         IEEE 802.119 WIFI 2.4 GHz (DSSS, 5.Mbps, 90pc dc)         WLAN         8.59         ±9.6           10574         AAC         IEEE 802.119 WIFI 2.4 GHz (DSSS-OFDM, 9Mbps, 90pc dc)         WLAN         8.60         ±9.6           10575         AAC         IEEE 802.119 WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10574         AAD         IEEE 802.119 WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10577         AAD         IEEE 802.1						
10568         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)         WLAN         8.37         19.6           10569         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 46 Mbps, 99pc dc)         WLAN         8.10         49.6           10571         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.30         49.6           10571         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 51 Mbps, 90pc dc)         WLAN         1.99         49.6           10572         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 50 Mbps, 90pc dc)         WLAN         1.99         49.6           10574         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS, OFDM, 90 Mbps, 90pc dc)         WLAN         8.59         49.6           10576         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.79         49.6           10577         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.79         49.6           10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.49         49.6           10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.36         49.6           10584	1		-			
No.8         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)         WLAN         8.10         ±9.6           10570         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS, 21Mbps, 90pc dc)         WLAN         1.99         ±9.6           10572         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 21Mbps, 90pc dc)         WLAN         1.99         ±9.6           10573         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 51Mbps, 90pc dc)         WLAN         1.98         ±9.6           10574         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9Mbps, 90pc dc)         WLAN         8.59         ±9.6           10575         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12Mbps, 90pc dc)         WLAN         8.79         ±9.6           10576         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12Mbps, 90pc dc)         WLAN         8.79         ±9.6           10577         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10580         AAD					1	
10570         AAC         IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 64 Mips, 99pc dc)         WLAN         8.30         ±9.6           10571         AAC         IEEE 802.11b WiFl 2.4 GHz (DSSS, 1Mbps, 90pc dc)         WLAN         1.99         ±9.6           10572         AAC         IEEE 802.11b WiFl 2.4 GHz (DSSS, 5.5Mbps, 90pc dc)         WLAN         1.99         ±9.6           10573         AAC         IEEE 802.11b WiFl 2.4 GHz (DSSS, 5.5Mbps, 90pc dc)         WLAN         1.98         ±9.6           10576         AAC         IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 90pc dc)         WLAN         8.50         ±9.6           10576         AAC         IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 1Mbps, 90pc dc)         WLAN         8.70         ±9.6           10576         AAC         IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10577         AAC         IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10578         AAD         IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10584         AAD         IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10584         AAD						
10571         AAC         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)         WLAN         1.99         ±9.6           10572         AAC         IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)         WLAN         1.99         ±9.6           10573         AAC         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5 Mbps, 90pc dc)         WLAN         1.98         ±9.6           10574         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10576         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10577         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10577         AAC         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10578         AAD         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10580         AAD         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10581         AAD         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.69         ±9.6           10582         AAD						
10572         AAC         IEEE 802.11b WiFI 2.4 GHz (DSSS, 2 Mbps, 90pc dc)         WLAN         1.99         ±9.6           10573         AAC         IEEE 802.11b WiFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)         WLAN         1.98         ±9.6           10574         AAC         IEEE 802.11g WiFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10576         AAC         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)         WLAN         8.50         ±9.6           10577         AAC         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.40         ±9.6           10577         AAC         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10579         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10580         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 44 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10584         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 44 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10584         AAD         IEEE 802.11g WiFI 2.4 GHz (DSS-OFDM, 44 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10584						
10573         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)         WLAN         1.98         ±9.6           10574         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10575         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10577         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10580         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10581         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.37         ±9.6           10582         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10584         AAD         IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10585		1				
10674         AAC         IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc dc)         WLAN         1.98         ±9.6           10575         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10576         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10577         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10580         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10581         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10582         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10584         AAD         IEEE 802.11g WIFI 5 GHz (OFDM, 64 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10585         AAD         IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10586 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
10575         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10576         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10577         AAC         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10579         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 42 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10581         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10582         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10584         AAD         IEEE 802.11a/t WIFI 5.GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.69         ±9.6           10585         AAD         IEEE 802.11a/t WIFI 5.GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.69         ±9.6           10586         AAD         IEEE 802.11a/t WIFI 5.GHz (OFDM, 36 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10587         <	L		· · · · · · · · · · · · · · · · · · ·			
10576         AAC         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10577         AAC         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10578         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10579         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10580         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10581         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10582         AAD         IEEE 802.11g MiFI 5 GHz (OFDM, 6 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10584         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10585         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 18 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10587         AAA<	1					
10577         AAC         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10578         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10579         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10580         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10581         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10582         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 9 Mbps, 90pc dc)         WLAN         8.69         ±9.6           10583         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10586         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10587         AAA         IEEE 802.11a/h WiFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10588         AAA         IEEE 802.11a/h WiFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10589         AAA <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td>	L					
10578         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10579         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10580         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10581         AAD         IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10582         AAD         IEEE 802.11a/h WIFI 5 GHz (OFDM, 6Mbps, 90pc dc)         WLAN         8.67         ±9.6           10583         AAD         IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10584         AAD         IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10586         AAD         IEEE 802.11a/h WIFI 5 GHz (OFDM, 34 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10588         AAA         IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.74         ±9.6           10589         AAA						
10579         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 34 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10580         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10581         AAD         IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10582         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 6 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10584         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 9 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10584         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/h WiFI 5 GHz (OFDM, 18 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAA         IEEE 802.11a/h WiFI 5 GHz (OFDM, 34 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10587         AAA         IEEE 802.11a/h WiFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10588         AAA         IEEE 802.11a/h WiFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.63         ±9.6           10589         AAA	· · · · · · · · · · · · · · · · · · ·					
10580         AAD         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10581         AAD         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10582         AAD         IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10583         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10584         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10587         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10588         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10589         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10589         AAA		1 · · ·				
10581       AAD       IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)       WLAN       8.35       ±9.6         10582       AAD       IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)       WLAN       8.67       ±9.6         10583       AAD       IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 90pc dc)       WLAN       8.69       ±9.6         10584       AAD       IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc dc)       WLAN       8.60       ±9.6         10585       AAD       IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc)       WLAN       8.70       ±9.6         10586       AAD       IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps, 90pc dc)       WLAN       8.49       ±9.6         10587       AAA       IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc)       WLAN       8.35       ±9.6         10588       AAA       IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc)       WLAN       8.35       ±9.6         10589       AAA       IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 90pc dc)       WLAN       8.67       ±9.6         10590       AAA       IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 90pc dc)       WLAN       8.63       ±9.6         10591       AAA       IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)       WLAN       8.64       ±9.6	L					
10582       AAD       IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)       WLAN       8.67       ±9.6         10583       AAD       IEEE 802.11a/h WiFi 5 GHz (OFDM, 6Mbps, 90pc dc)       WLAN       8.69       ±9.6         10584       AAD       IEEE 802.11a/h WiFi 5 GHz (OFDM, 9Mbps, 90pc dc)       WLAN       8.60       ±9.6         10585       AAD       IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)       WLAN       8.49       ±9.6         10586       AAD       IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)       WLAN       8.49       ±9.6         10587       AAA       IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)       WLAN       8.36       ±9.6         10588       AAA       IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)       WLAN       8.35       ±9.6         10589       AAA       IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)       WLAN       8.67       ±9.6         10591       AAA       IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)       WLAN       8.63       ±9.6         10592       AAA       IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)       WLAN       8.63       ±9.6         10593       AAA       IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)       WLAN       8.74       ±9.6 <t< td=""><td>·</td><td></td><td></td><td></td><td></td><td></td></t<>	·					
10583         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)         WLAN         8.59         ±9.6           10584         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)         WLAN         8.60         ±9.6           10586         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10587         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10588         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10589         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10590         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10591         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.74         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed,						±9.6
10584         AAD         IEEE 802.11a/n         WIFI 5 GHz (OFDM, 9 Mpps, 90pc dc)         WLAN         8.60         ±9.6           10585         AAD         IEEE 802.11a/n         WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/n         WIFI 5 GHz (OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10587         AAA         IEEE 802.11a/n         WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10588         AAA         IEEE 802.11a/n         WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10589         AAA         IEEE 802.11a/n         WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10590         AAA         IEEE 802.11a/n         WIFI 5 GHz (OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10591         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74						±9.6
10585         AAD         IEEE 802.11a/n WiFI 5 GH2 (OFDM, 12 Mbps, 90pc dc)         WLAN         8.70         ±9.6           10586         AAD         IEEE 802.11a/n WiFI 5 GH2 (OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10587         AAA         IEEE 802.11a/n WiFI 5 GH2 (OFDM, 24 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10588         AAA         IEEE 802.11a/n WiFI 5 GH2 (OFDM, 36 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10589         AAA         IEEE 802.11a/n WiFI 5 GH2 (OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10590         AAA         IEEE 802.11a/n WiFI 5 GH2 (OFDM, 48 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10591         AAA         IEEE 802.11n (HT Mixed, 20 MH2, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MH2, MCS0, 90pc dc)         WLAN         8.64         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MH2, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MH2, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 2		1		WLAN		±9.6
10586         AAD         IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)         WLAN         8.49         ±9.6           10587         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10588         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10589         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10590         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10591         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.74         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MH						
10587         AAA         IEEE 802.11a/h         WIF 5 GHz (OFDM, 24 Mbps, 90pc dc)         WLAN         8.36         ±9.6           10588         AAA         IEEE 802.11a/h         WIF 5 GHz (OFDM, 36 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10589         AAA         IEEE 802.11a/h         WIF 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10590         AAA         IEEE 802.11a/h         WIF 5 GHz (OFDM, 54 Mbps, 90pc dc)         WLAN         8.63         ±9.6           10591         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.64         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10597						
10588         AAA         IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc)         WLAN         8.76         ±9.6           10589         AAA         IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10590         AAA         IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10591         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.64         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.64         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6,	<b></b>					
10589         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)         WLAN         8.35         ±9.6           10590         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10591         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.79         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0,						
10590         AAA         IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)         WLAN         8.67         ±9.6           10591         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.79         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.64         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc						
10591         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)         WLAN         8.63         ±9.6           10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.79         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.64         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.64         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10592         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)         WLAN         8.79         ±9.6           10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.64         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc) <td></td> <td></td> <td></td> <td></td> <td>[</td> <td></td>					[	
10593         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)         WLAN         8.64         ±9.6           10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10594         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74         ±9.6           10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.74         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.72         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10595         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)         WLAN         8.74         ±9.6           10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.82         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         8.76         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc) <td>t</td> <td></td> <td></td> <td></td> <td></td> <td></td>	t					
10596         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)         WLAN         8.71         ±9.6           10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.82         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         8.76         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc) <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td>ł</td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·			ł		
10597         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)         WLAN         8.72         ±9.6           10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc) <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1					
10598         AAA         IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)         WLAN         8.50         ±9.6           10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.89         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         8.94         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.76         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10599         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)         WLAN         8.79         ±9.6           10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         8.94         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.97         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)						
10600         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)         WLAN         8.88         ±9.6           10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         9.03         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.76         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6						
10601         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)         WLAN         8.82         ±9.6           10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         9.03         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.97         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6		-}	· · · · · · · · · · · · · · · · · · ·			
10602         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         8.94         ±9.6           10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)         WLAN         9.03         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         9.03         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.97         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6						
10603         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)         WLAN         9.03         ±9.6           10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.97         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6						
10604         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.76         ±9.6           10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)         WLAN         8.97         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.97         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6		_				
10605         AAA         IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)         WLAN         8.97         ±9.6           10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6	1					
10606         AAC         IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)         WLAN         8.82         ±9.6           10607         AAC         IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)         WLAN         8.64         ±9.6	L					
10607 AAC IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc) WLAN 8.64 ±9.6						
			· · · · · · · · · · · · · · · · · · ·			
	10608	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc dc)	WLAN	8.77	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
	AAC	1EEE 802.11ac WiFi (20 MHz, MCS2, 90pc dc)	WLAN	8.57	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc dc)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc dc)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFI (40 MHz, MCS0, 90pc dc)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc dc)	WLAN	8.58	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc dc)	WLAN	8.86	±9.6
10620	AAC	IEEE 802.11ac WiFI (40 MHz, MCS4, 90pc dc)	WLAN	8.87	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WIFi (40 MHz, MCS6, 90pc dc)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc dc)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10628	AAC	IEEE 802,11ac WiFi (80 MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10630	AAC	IEEE 802,11ac WiFi (80 MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc dc)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc dc)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc dc)	WLAN	8.80	±9.6
10635	AAC	[EEE 802.11ac WiFi (80 MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6
10636	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10637	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10638	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc dc)	WLAN	8.86	±9.6
10639	AAC	IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10640	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc dc)	WLAN	8.98	±9.6
10641	AAC	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc dc)	WLAN	9.06	±9.6
10642	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc dc)	WLAN	9.06	±9.6
10643	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 300c dc)	WLAN	8.89	±9.6
10643	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc dc)	WLAN	9.05	±9.6
10645	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc dc)	WLAN	9.11	±9.6
10645	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10640	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10647	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10648	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10653			LTE-TDD	6.96	
10654	AAC	LTE-TDD (OFDMA, 15MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6 ±9.6
10655	AAC			10.00	±9.6
10658	AAC	Pulse Waveform (200 Hz, 10%)	Test		
10659	AAC	Pulse Waveform (200 Hz, 20%)	Test Test	6.99	±9.6
10660	AAC	Pulse Waveform (200 Hz, 40%)		2,22	±9.6
10661	AAC	Pulse Waveform (200 Hz, 60%)	Test	0.97	±9.6
10662	AAC	Pulse Waveform (200 Hz, 80%)	Bluetooth	2.19	±9.6
10670	AAC	Bluetooth Low Energy	WLAN	9.09	±9.6
10671	AAD	IEEE 802.11ax (20 MHz, MCS0, 90pc dc)			±9.6
10672	AAD	IEEE 802.11ax (20 MHz, MCS1, 90pc dc)	WLAN WLAN	8.57	±9.6
10673	AAD	IEEE 802.11ax (20 MHz, MCS2, 90pc dc)		8.78	±9.6
10674	AAD	IEEE 802.11ax (20 MHz, MCS3, 90pc dc)	WLAN WLAN	8.74	
10675	AAD	IEEE 802.11ax (20 MHz, MCS4, 90pc dc)		8.90	±9.6 ±9.6
10676	AAD	IEEE 802.11ax (20 MHz, MCS5, 90pc dc)	WLAN	8.77	
10677	AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)	WLAN WLAN	8.73	±9.6 ±9.6
10678	AAD	IEEE 802.11ax (20 MHz, MCS7, 90pc dc)		8.78	
10679	AAD	IEEE 802.11ax (20 MHz, MCS8, 90pc dc)	WLAN	8.89	±9.6 ±9.6
10680	AAD	IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WLAN	8.80	
10681	AAG	IEEE 802.11ax (20 MHz, MCS10, 90pc dc)	WLAN	8.62	±9.6
10682	AAF	IEEE 802.11ax (20 MHz, MCS11, 90pc dc)	WLAN	8.83	±9.6
10683	AAA	IEEE 802.11ax (20 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc dc)	WLAN	8.26	±9.6
10685	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
10686	AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc dc)	WLAN	8.28	±9.6

					Unc ^E $k = 2$
UID	Rev	Communication System Name	Group	PAR (dB) 8.45	$\frac{\text{Unc}-\kappa=2}{\pm 9.6}$
10687	AAE	IEEE 802.11ax (20 MHz, MCS4, 99pc dc)	WLAN WLAN	8.29	±9.6
10688	AAE	IEEE 802.11ax (20 MHz, MCS5, 99pc dc)	WLAN	8.55	±9.6
10689	AAD	IEEE 802.11ax (20 MHz, MCS6, 99pc dc)	WLAN	8.29	±9.6
10690	AAE AAB	IEEE 802.11ax (20 MHz, MCS7, 99pc dc)	WLAN	8.25	±9.6
10691	<u> </u>	IEEE 802.11ax (20 MHz, MCS8, 99pc dc)	WLAN	8.29	±9.6
10692	AAA	IEEE 802.11ax (20 MHz, MCS9, 99pc dc)	WLAN	8.25	±9.6
10693	AAA	IEEE 802.11ax (20 MHz, MCS10, 99pc dc)	WLAN	8.57	±9.6
10694	AAA	IEEE 802.11ax (20 MHz, MCS11, 99pc dc)	WLAN	8.57	±9.6
10695	AAA	IEEE 802.11ax (40 MHz, MCS0, 90pc dc)	WLAN	8.91	±9.6
10696	AAA	IEEE 802.11ax (40 MHz, MCS1, 90pc dc)	WLAN	8.61	±9.6
10697	AAA	IEEE 802.11ax (40 MHz, MCS2, 90pc dc)	WLAN	8.89	±9.6
10698 10699	AAA AAA	IEEE 802.11ax (40 MHz, MCS3, 90pc dc)	WLAN	8.82	±9.6
10700		IEEE 802.11ax (40 MHz, MCS4, 90pc dc) IEEE 802.11ax (40 MHz, MCS5, 90pc dc)	WLAN	8.73	±9.6
10700	AAA		WLAN	8.86	±9.6
10701	AAA AAA	IEEE 802.11ax (40 MHz, MCS6, 90pc dc) IEEE 802.11ax (40 MHz, MCS7, 90pc dc)	WLAN	8.70	±9.6
			WLAN	8.82	±9.6
10703	AAA	IEEE 802.11ax (40 MHz, MCS8, 90pc dc) IEEE 802.11ax (40 MHz, MCS9, 90pc dc)	WLAN	8.56	±9.6
10704	AAA		WLAN	8.69	±9.6
10705	AAA	IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN		±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc dc)	WLAN	8.66	±9.6
10707 10708	AAC AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc dc) IEEE 802.11ax (40 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc dc)	WLAN	8.33	±9.6
10709 10710	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc dc)	WLAN	8.29	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc dc)	WLAN	8.39	±9.6
	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc dc)	WLAN	8.67	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc dc)	WLAN	8.33	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc dc)	WLAN	8.26	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc dc)	WLAN	8.45	<u>+9.6</u>
10715	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc dc)	WLAN	8.30	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc dc)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc dc)	WLAN	8.24	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS17, 9900 dc)	WLAN	8.81	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN	8.87	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc dc)	WLAN	8.76	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc dc)	WLAN	8.55	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 800c dc)	WLAN	8.70	<u>±9.6</u>
10723	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc dc)	WLAN	8.90	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc dc)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc dc)	WLAN	8.72	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc dc)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc dc)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc dc)	WLAN	8.64	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 50pc dc)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc dc)	WLAN	8.46	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc dc)	WLAN	8.40	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc dc)	WLAN	8.25	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc dc)	WLAN	8.33	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc dc)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc dc)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc dc)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc dc)	WLAN	8.29	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc dc)	WLAN	8.48	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc dc)	WLAN	8.40	±9.6
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc dc)	WLAN	8.43	±9.6
10742	AAC	IEEE 802.11ax (160 MHz, MCS11, 950c dc)	WLAN	8.94	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)	WLAN	9.16	±9.6
1	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc dc)	WLAN	8.93	±9.6
10745	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc dc)	WLAN	9.11	±9.6
10745		IEEE 802.11ax (160 MHz, MCS4, 90pc dc)	WLAN	9.04	±9.6
10746			E ALEMAN	1 0.07	
10746 10747	AAC		WIAN	8 93	+9.6
10746 10747 10748	AAC AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc dc)	WLAN WLAN	8.93 8.90	±9.6 +9.6
10746 10747 10748 10749	AAC AAC AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc dc) IEEE 802.11ax (160 MHz, MCS6, 90pc dc)	WLAN	8.90	±9.6
10746 10747 10748	AAC AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc dc)			

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc dc)	WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc dc)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc dc)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc dc)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc dc)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc dc)	WLAN	8.69	<u>+</u> 9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc dc)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc dc)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc dc)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc dc)	WLAN	8.49	<u>+</u> 9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc dc)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc dc)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc dc)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc dc)	WLAN	8.51	±9.6
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9,6
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	<u>+9.6</u>
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8,43	±9.6
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.95	±9.6
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)		7.82	±9.6
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	<u>+9.6</u>
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.89	±9.6 ±9.6
10799	AAC AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10802	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10805	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10808	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10809	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±3.0 ±9.6
10810	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10820	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.41	±9.6
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10824					
10824		5G NR (CP-OEDM, 100% RB, 60 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9,6
10824 10825 10827	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.41	±9.6 ±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	<u>±9.6</u>
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAD AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.37 8.35	±9.6 ±9.6
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, GPSK, 60 KHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	<u>±9.6</u>
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAD AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	8.39 7.95	±9.6 ±9.6
10878	AAD	5G NR (CP-OFDM, 14B, 100MHz, 16QAW, 120 KHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8,12	±9.6
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
10891	AAD AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
10892	AAD	5G NR (DFT-s-OFDM, 100% RB, 50MHz, 04QAM, 120 KHz)	5G NR FR2 TDD 5G NR FR1 TDD	8.41 5.66	±9.6 ±9.6
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9,6
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6

UID         Rev         Communication System Name         Group         PAR (dB)           10911         AAD         5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.93           10912         AAD         5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10913         AAD         5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10913         AAD         5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10914         AAD         5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.85           10915         AAD         5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.83           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G N	Unc ^E k = 2 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10912         AAD         5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10913         AAD         5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10913         AAD         5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10914         AAD         5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.85           10915         AAD         5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.83           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.94           10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10913         AAD         5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10914         AAD         5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.85           10914         AAD         5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.85           10915         AAD         5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.83           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.94           10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10914         AAD         5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.85           10915         AAD         5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.83           10915         AAD         5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.83           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.84           10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10915         AAD         5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.83           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.94           10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87	$ \begin{array}{r} \pm 9.6 \\ \end{array} $
10916         AAD         5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87           10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.94           10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87	±9.6 ±9.6 ±9.6 ±9.6
10917         AAD         5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.94           10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87	±9.6 ±9.6 ±9.6
10918         AAD         5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86	±9.6 ±9.6
10919         AAD         5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.86           10920         AAD         5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)         5G NR FR1 TDD         5.87	±9.6
10920 AAD 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.87	
	±9.6
10922 AAD 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.82	±9.6
10923 AAD 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84	±9.6
10924 AAD 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84	±9.6
10925 AAD 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.95	
10926 AAD 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.84	±9.6
10927 AAD 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.94	±9.6
10928 AAD 5G NR (DFT-s-OFDM, 1 RB, 5MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52	±9.6
10929 AAD 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52	±9.6
10930 AAD 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.52	±9.6
10931 AAD 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51	±9.6
10932 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51	±9.6
10933 AAA 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51	±9.6
10934 AAA 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51	±9.6
10935 AAA 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.51	±9.6
10936 AAC 5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90	±9.6
10937 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.77	±9.6
10938 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.90	±9.6
10939 AAB 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.82	±9.6
10940 AAB 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.89	±9.6
10941 AAB 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83	±9.6
10942 AAB 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85	±9.6
10943 AAB 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.95	±9.6
10944 AAB 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.81	±9.6
10945 AAB 5G NR (DFTs-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.85	±9.6
10946 AAC 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.83	<u>+</u> 9.6
10947 AAB 5G NR (DFTs-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87	<u>±9.6</u>
10948 AAB 5G NR (DFT:s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94	±9.6
10949 AAB 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.87	±9.6
10950 AAB 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.94	±9.6
10951 AAB 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 FDD 5.92	±9.6
10952 AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.25	±9.6
10953 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.15	±9.6
10954 AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.23	<u>±9.6</u>
10955 AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.42	±9.6
10956 AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.14	±9.6
10957 AAC 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.31	±9.6
10958 AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.61	±9.6
10959         AAB         5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)         5G NR FR1 FDD         8.33	±9.6
10960         AAB         5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)         5G NR FR1 TDD         9.32	±9.6
10961 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.36	±9.6
10962 AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.40	±9.6
10963         AAB         5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)         5G NR FR1 TDD         9.55	±9.6
10964         AAB         5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)         5G NR FR1 TDD         9.29	±9.6
10965 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.37	±9.6
10966 AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.55	±9.6
10967         AAB         SG NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)         5G NR FR1 TDD         9.42	±9.6
10968         AAB         SG NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)         5G NR FR1 TDD         9.49           10978         140         50 NR CD (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)         5G NR FR1 TDD         9.49	±9.6
10972         AAB         5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)         5G NR FR1 TDD         11.59	±9.6
10973 AAB 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 9.06	±9.6
10974 AAB 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) 5G NR FR1 TDD 10.28	±9.6
10978 AAA ULLA BDR ULLA 2.23	±9.6
10979 AAA ULLA HDR4 ULLA 7.02	±9.6
10980 AAA ULLA HDR8 ULLA 8.82	±9.6
10981 AAA ULLA HDRp4 ULLA 1.50	±9.6
10982 AAA ULLA HDRp8 ULLA 1.44	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9,6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Schmid & Partner Engineering AG





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Element

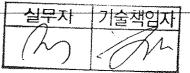
Certificate No

EX-7402_Jun22

# **CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:7402
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date	June 09, 2022
This calibration certificate do	cuments the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.


All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-21 (OCP-DAK3.5-1249_Oct21)	Oct-22
OCP DAK-12	SN: 1016	20-Oct-21 (OCP-DAK12-1016_Oct21)	Oct-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013 Dec21)	Dec-22

Secondary Standards		Grieck Date (in nouse)	Scheduled Greak
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by	Jeffrey Katzman	Laboratory Technician	d. kt=
Approved by	Sven Kühn	Technical Manager	SĂ
This calibration certificate sha	Il not be reproduced except in full wit	hout written approval of the laborat	issued: June 14, 2022 tory.



Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kallbrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $\varphi$	arphi rotation around probe axis
Polarization $\vartheta$	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

### Calibration is Performed According to the Following Standards:

- a) IEC/IEE 62209-1528, "Measurement Procedure for the Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-Held and Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation and Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc ( <i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.40	0.55	±10.1%
DCP (mV) ^B	101.7	82.0	105.9	±4.7%

### **Calibration Results for Modulation Response**

UID	Communication System Name		Α	В	С	D	VR	Мах	Max
			dB	dBõV		dB	m٧	dev.	Unc ^E
									k = 2
0	CW	X	0.00	0.00	1.00	0.00	141.5	±3.5%	±4.7%
		Y	0.00	0.00	1.00		144.9		
		Z	0.00	0.00	1.00		128.7		
10352	Pulse Waveform (200Hz, 10%)	X	1.55	60.80	6.28	10.00	60.0	±2.9%	±9.6%
		Y	1.67	62.64	8.23		60.0		
		Z	1.47	60.52	6.42		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.79	60.00	4.67	6.99	80.0	±2.2%	±9.6%
		Y	0.88	60.88	6.42		80.0	1	
		Z	0.84	60.00	5.08		80.0		
10354	Pulse Waveform (200Hz, 40%)	Х	0.04	125.89	0.93	3.98	95.0	±2.4%	±9.6%
		Y	0.43	60.00	4.98		95.0		
		Z	2.00	64.00	5.00		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	0.20	159.99	0.90	2.22	120.0	±1.5%	±9.6%
		Y	0.34	60.00	3.79	1	120.0	1	
		Z	7.83	159.75	9.22		120.0		
10387	QPSK Waveform, 1 MHz	X	0.57	64.66	12.72	1.00	150.0	±5.1%	±9.6%
		Y	20.00	130.08	37.02	1	150.0		
		Z	0.47	63.21	11.76	1	150.0		
10388	QPSK Waveform, 10 MHz	Х	1.37	66.33	14.29	0.00	150.0	±1.4%	±9.6%
		Y	3.07	80.24	21.23	1	150.0		
		Z	1.26	65.75	13.60	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	1.60	63.86	15.90	3.01	150.0	±2.4%	±9.6%
		Y	1.99	68.11	21.06	1	150.0	-	
		Z	1.81	65.86	16.44		150.0		
10399	64-QAM Waveform, 40 MHz	X	2.80	66.16	15.15	0.00	150.0	±2.4%	±9.6%
		Y	3.18	68.27	17.22	1	150.0	]	
		Z	2.73	66.19	14.97	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	Х	3.96	66.42	15.61	0.00	150.0	±4.1%	±9.6%
		Y	4.25	67.84	17.13	1	150.0	1	
		Z	3.85	66.58	15.47	1	150.0	-	ļ

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

- ^B Linearization parameter uncertainty for maximum specified field strength. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

### **Sensor Model Parameters**

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
x	10.5	77.67	34.76	2.81	0.00	4.92	0.00	0.05	1.00
у	9.4	81.10	45.90	7.35	0.00	4.99	0.00	0.00	1.02
z	9.1	65.72	33.07	5.26	0.00	4.95	0.78	0.00	1.00

### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle	159.2°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

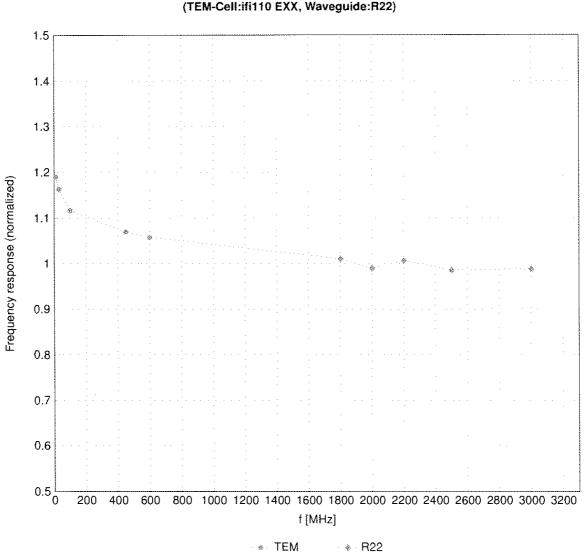
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	10.57	10.57	10.57	0.47	0.80	±12.0%
835	41.5	0.90	10.22	10.22	10.22	0.53	0.81	±12.0%
1750	40.1	1.37	8.87	8.87	8.87	0.34	0.86	±12.0%
1900	40.0	1.40	8.45	8.45	8.45	0.34	0.86	±12.0%
2300	39.5	1.67	8.40	8.40	8.40	0.33	0.90	±12.0%
2450	39.2	1.80	8.06	8.06	8.06	0.38	0.90	±12.0%
2600	39.0	1.96	7.76	7.76	7.76	0.37	0.90	±12.0%

### Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$ 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$ 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$ 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

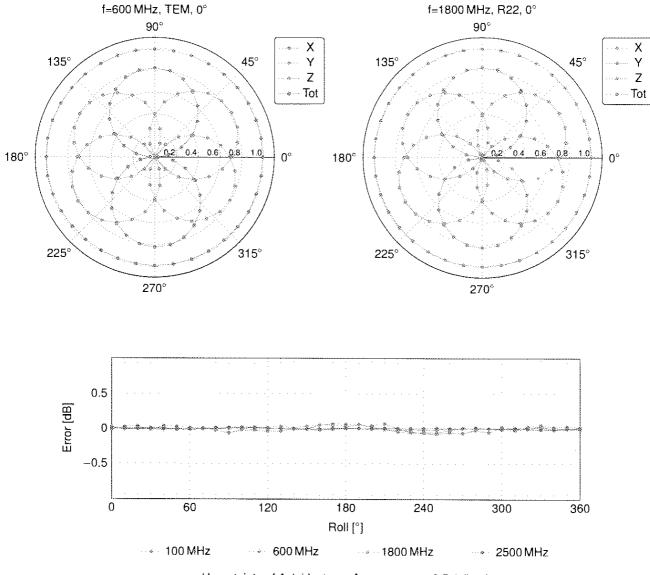
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ( <i>k</i> = 2)
750	55.5	0.96	10.76	10.76	10.76	0.49	0.80	±12.0%
835	55.2	0.97	10.51	10.51	10.51	0.42	0.80	±12.0%
1750	53.4	1.49	8.63	8.63	8.63	0.37	0.86	±12.0%
1900	53.3	1.52	8.24	8.24	8.24	0.38	0.86	±12.0%
2300	52.9	1.81	8.21	8.21	8.21	0.47	0.90	±12.0%
2450	52.7	1.95	8.15	8.15	8.15	0.40	0.90	±12.0%
2600	52.5	2.16	7.88	7.88	7.88	0.25	0.90	±12.0%

### Calibration Parameter Determined in Body Tissue Simulating Media

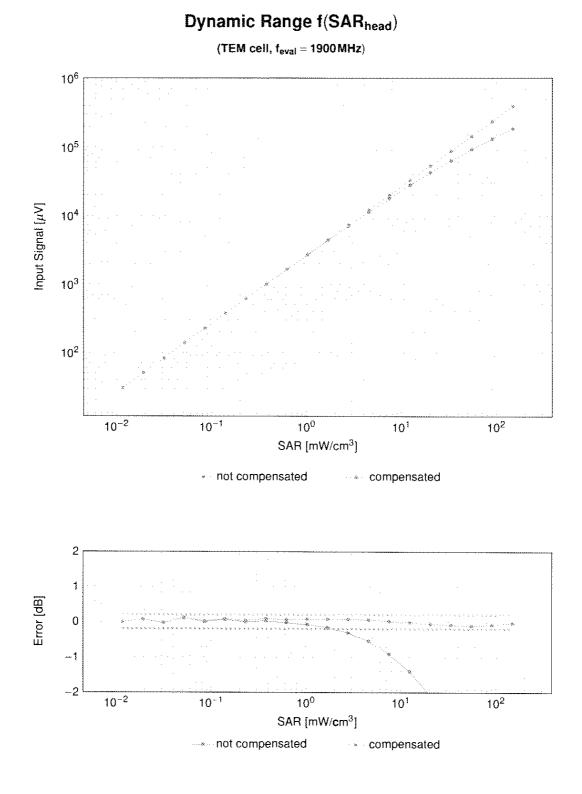
^C Frequency validity above 300 MHz of  $\pm$ 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$ 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$ 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$ 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm 10\%$  if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm 5\%$ . The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

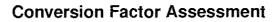

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz and below  $\pm 2\%$  for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

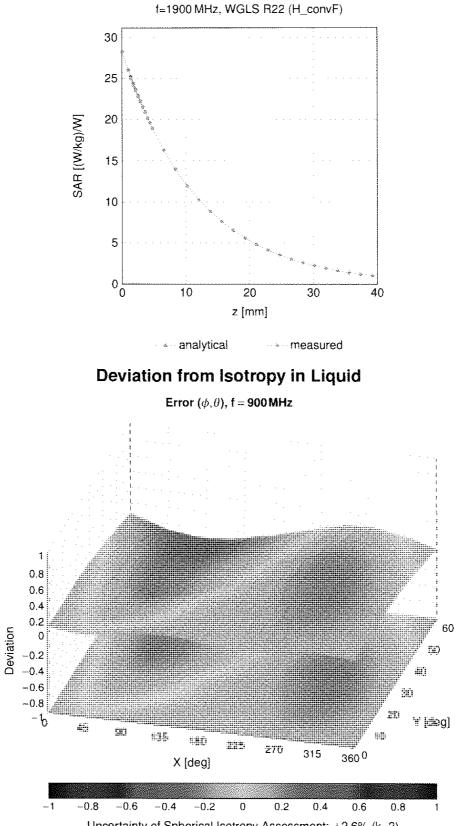


## Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)





## **Receiving Pattern (** $\phi$ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)



Uncertainty of Linearity Assessment:  $\pm 0.6\%$  (k=2)





Uncertainty of Spherical Isotropy Assessment: ±2.6% (k=2)

## Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
0		CW	CW	0.00	±4.7
10010	CAA	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	<u>±9.6</u>
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	<u>+</u> 9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CA8	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	<u>±</u> 9.6
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	<u>+</u> 9.6
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, OPSK)	LTE-FDD	5.75	±9.6
· · ·		LTE-FDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)	LTE-FDD	6.44	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAG	IEEE 802,11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	+9.6
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1,4 MHz, 16-QAM)	LTE-FDD	6.41	+9.6
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	+9.6
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	<u>±9.6</u>
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	+9.6
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	<u>+</u> 9.6
10197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAD	LTE-TDD (SC-FDMA, 1 R8, 5MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15MHz. 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAB	LTE-TDD (SC-FDMA, 1 RB. 15MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	<u>+9.6</u>
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDÐ	10.16	±9.6
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TOD	9.92	±9.6
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAD	PHS (QPSK)	PHS	11.81	±9.6
10278	CAD	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAG	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	CAC	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WIMAX	12.03	±9.6
10302	CAB	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.57	±9.6
10303	CAB	IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6
10304	CAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6
		IEEE 802.16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)	UELAN	15.04	(0.0
10305	CAA	TEEE 802. THE WINNAX (31.13, 10 MS, 10 WHZ, 640AM, POSC)	WiMAX	15.24	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	
10307	AAB AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC)	WiMAX	14.49	±9.6
10308	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6
10309 10310	AAB	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM,AMC 2x3) IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3	WiMAX WiMAX	14.58	±9.6
10310	AAB	LTE-FDD (SC-FDMA, 100% RB, 15MHz, QPSK)	LTE-FDD	14.57	±9.6 ±9.6
10313	AAD	IDEN 1:3		6.06	
10313	AAD	IDEN 1.5	IDEN	10.51	±9.6
10314	AAD		IDEN WLAN	13.48	±9.6
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)		1.71	±9.6
10317	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)		8.36	±9.6
10352	AAA	Pulse Waveform (200 Hz, 10%)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200 Hz, 10%)	Generic	10.00	±9.6
10354	AAA	Pulse Waveform (200 Hz, 20%)	Generic	6.99	±9.6
10355	AAA	Pulse Waveform (200 Hz, 60%)	Generic	3.98	±9.6
10355	AAA	Puise Waveform (200 Hz, 80%)	Generic	2.22	±9.6
10355	AAA	QPSK Waveform, 1 MHz	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 10 MHz	Generic	5.10	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	5.22	±9.6
10390	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAD		Generic	6.27	±9.6
10400	AAD	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc dc)	WLAN	8.37	±9.6
10401	AAA	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc dc)	WLAN	8.60	±9.6
10402	AAA	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	8.53	±9.6
10404	AAB	CDMA2000 (1XEV-DO, Rev. 0)		3.76	±9.6
10406	AAD	CDMA2000 (TAE + DO, Rev. A) CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000 CDMA2000	3.77	±9.6
10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)			±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	LTE-TDD	7.82	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	Generic WLAN	8.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	1.54	±9.6
10417	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.23	±9.6
10419	AAA	IEEE 802.11g WIF 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6
10422	AAA	IEEE 802.11g Wil 12.4 Griz (DSSS-OFDW, 8Mbps, 99pc, Short)	WLAN	8.19	±9.6
10423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.32	±9.6
10424	AAE	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 18-QAM)	WLAN	8.47	±9.6
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, 84-0AM)	WLAN	8.40	±9.6
10426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.41	±9.6
10427	AAB	IEEE 802.11n (HT Greenfield, 50 Mbps, 16-QAM)	WLAN	8.45	±9.6
10430	AAB	LTE-FDD (OFDMA, 5MHz, E-TM 3.1)	LTE-FDD	8.41	±9.6
0431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10432	AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
0433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
0434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA		±9.6
0435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)		8.60	±9.6
0435	AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD LTE-FDD	7.82	±9.6
0448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)		7.56	±9.6
0449	AAC	LTE-FDD (OFDMA, 15MHz, E-TM 3.1, Clippin 44%)	LTE-FDD LTE-FDD	7.53	±9.6
10450	AAA	LTE-FDD (OFDMA, 10MHz, E-TM 3.1, Clipping 44%)	LTE-FDD		±9.6
0451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.48	±9.6
0453	AAC	Validation (Square, 10 ms, 1 ms)	Test	7.59	±9.6
0456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc dc)	WLAN	10.00	±9.6
0457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	8.63	±9.6
0458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.62	±9.6
0459	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 camers)	CDMA2000	6.55 8.25	±9.6
0460	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	<u>+9.6</u>
0461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
0462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	±9.6 ±9.6
0463	AAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	
0464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD		±9.6
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, 0L SUD)	LTE-TDD	7.82	±9.6
0466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.32	±9.6
0467	AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	8.57	±9.6
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	7.82	<u>±9.6</u>
	AAD	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM, UL Sub)		8.32	±9.6
11454	,,,,,,		LTE-TDD	8.56	±9.6
0469	AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, OPSK, UL Sub)	LTE-TDD	7.82	±9.6
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10475	AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	±9.6
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	±9.6
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	±9.6
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	±9.6
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5MHz, QPSK, UL Sub)	LTE-TDD	7.59	±9.6
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6
10487	AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	+9.6
10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	±9.6
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	 ±9.6
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7,74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	±9.6
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	<u>+9.6</u>
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	±9.6
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3MHz, QPSK, UL Sub)	LTE-TDD	7.67	
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3MHz, GFSR, 0E Sub)	LTE-TDD		±9.6
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3MHz, 64-QAM, UL Sub)		8.44	±9.6
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 04-0AW, 6E 306)	LTE-TDD	8.52	±9.6
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM, UL Sub)	LTE-TDD		±9.6
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	8.54	±9.6
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 0F3K, 0L Sub)	LTE-TDD	7.74	±9.6
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.36	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 Minz, 04-QAW, 02 S00)	LTE-TDD	8.55	±9.6
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 0F3K, 0L Sub)	LTE-TDD	7.99	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, 02 Sub)	LTE-TDD	8.49	±9.6
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	8.51	±9.6
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)		7,74	±9.6
10513	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, 6L Sub)	LTE-TDD LTE-TDD	8.42	±9.6
10514	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)		8.45	±9.6
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Wibbs, 99pc dc)	WLAN	1.58	±9.6
10517	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)		1.57	±9.6
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mpps, 99pc dc) IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mpps, 99pc dc)	WLAN	1.58	±9.6
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mops, 99pc dc)	WLAN	8.23	±9.6
10519	AAF	IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN MILANI	8.39	±9.6
10520	AAB		WLAN	8.12	±9.6
	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	±9.6
10522	1	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc dc)	WLAN	8.36	±9.6
10526	AAF	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc dc)	WLAN	8.42	±9.6
10527	AAF	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc dc)	WLAN	8.21	±9.6
10528	AAF	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc dc)	WLAN	8.36	±9.6
10529	AAF	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc dc)	WLAN	8.36	±9.6
10531	AAF	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc dc)	WLAN	8.43	±9.6
10532	AAF	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
10533	AAE	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc dc)	WLAN	8.38	±9.6
10534	AAE	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc dc)	WLAN	8.45	±9.6
10535	AAE	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc dc)	WLAN	8.45	±9.6
10536	AAF	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc dc)	WLAN	8.32	±9.6
10537	AAF	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc dc)	WLAN	8.44	±9.6
10538	AAF	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc dc)	WLAN	8.54	±9.6
10540	AAA	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc dc)	WLAN	8.39	<u>+</u> 9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10541	AAA	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc dc)	WLAN	8.46	±9.6
10542	AAA	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc dc)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc dc)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc dc)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc dc)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc dc)	WLAN	8.49	+9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc dc)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc dc)	WLAN	8.38	+9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc dc)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc dc)	WLAN	8.45	±9.6
10554	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 950c dc)	WLAN	8.48	±9.6
10554	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 95pc dc)	WLAN	8.47	±9.6
	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 950c dc)	WLAN	8.50	±9.6
10556			WLAN	8.50	±9.6
10557	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc dc)	WLAN		±9.6
10558	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc dc)		8.61	
10560	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc dc)	WLAN	8.73	±9.6
10561	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc dc)	WLAN	8.56	±9.6
10562	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc dc)	WLAN	8.69	±9.6
10563	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc dc)	WLAN	8.77	±9.6
10564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	±9.6
10565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	±9.6
10566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	±9.6
10567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	±9.6
10568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	<u>+</u> 9.6
10569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	±9.6
10570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	±9.6
10571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	±9.6
10572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	±9.6
10573	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	±9.6
10574	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	±9.6
10575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
10576	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
10577	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
10579	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM. 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
10581	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
10584	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	
10587	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN		±9.6
				8.36	±9.6
10588	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
10589	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.35	±9.6
10590	AAA		WLAN	8.67	±9.6
10591	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc dc)	WLAN	8.63	±9.6
10592	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10593	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)	WLAN	8.64	±9.6
10594	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
10595	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)	WLAN	8.74	±9.6
10596	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc dc)	WLAN	8.71	±9.6
10597	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc dc)	WLAN	8.72	±9.6
10598	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc dc)	WLAN	8.50	±9.6
10599	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc dc)	WLAN	8.79	±9.6
10600	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10601	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc dc)	WLAN	8.82	±9.6
10602	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)	WLAN	8.94	±9.6
10603	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)	WLAN	9.03	±9.6
10604	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)	WLAN	8.76	±9.6
10605	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc dc)	WLAN	8.97	±9.6
10606	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
10607	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)	WLAN	8.64	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc dc)	WLAN	8.77	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc dc)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc dc)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc dc)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc dc)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 30pc dc)	WLAN	8.58	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, sope dc)	WLAN	8.86	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, sope dc)	WLAN	8.87	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 500c dc)	WLAN	8.77	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 50pc dc)	WLAN	8.68	±9.6
10622	1	IEEE 802.11ac WiFi (40 MHz, MCS0, sope dc)	WLAN	8.82	±9.6
10623	AAC		WLAN	8.96	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc dc)	WLAN	8.83	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc dc)	WLAN	8.88	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc dc)			
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc dc)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz. MCS7, 90pc dc)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc dc)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6
10636	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10637	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
10638	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc dc)	WLAN	8.86	±9.6
10639	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10640	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc dc)	WLAN	8.98	±9.6
10641	AAC	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc dc)	WLAN	9.06	±9.6
10642	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc dc)	WLAN	9.06	±9.6
10643	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc dc)	WLAN	8.89	<u>±9.6</u>
10644	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc dc)	WLAN	9.05	±9.6
10645	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc dc)	WLAN	9.11	±9.6
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	±9.6
10648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAC	Pulse Waveform (200 Hz, 10%)	Test	10.00	±9.6
10659	AAC	Pulse Waveform (200 Hz, 20%)	Test	6.99	±9.6
10660	AAC	Pulse Waveform (200 Hz, 40%)	Test	3.98	±9.6
10661	AAC	Pulse Waveform (200 Hz, 60%)	Test	2.22	±9.6
10662	AAC	Pulse Waveform (200 Hz, 80%)	Test	0.97	±9.6
10670	AAC	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671		IEEE 802.11ax (20 MHz, MCS0, 90pc dc)	WLAN	9.09	±9.6
10672		IEEE 802.11ax (20 MHz, MCS1, 90pc dc)	WLAN	8.57	±9.6
10673		IEEE 802.11ax (20 MHz, MCS2, 90pc dc)	WLAN	8.78	±9.6
10674		IEEE 802.11ax (20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
10675		IEEE 802.11ax (20 MHz, MCS4, 90pc dc)	WLAN	8.90	±9.6
10676		IEEE 802.11ax (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10677		IEEE 802.11ax (20 MHz, MCS6, 90pc dc)	WLAN	8.73	±9.6
10678		IEEE 802.11ax (20 MHz, MCS7, 90pc dc)	WLAN	8.78	±9.6
10679		IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	±9.6
10680		IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WLAN	8.80	±9.6
10681		IEEE 802.11ax (20 MHz, MCS10, 90pc dc)	WLAN	8.62	±9.6
10682		IEEE 802.11ax (20 MHz, MCS11, 90pc dc)	WLAN	8.83	±9.6
10683		IEEE 802.11ax (20 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10684		IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	±9.6
·		IEEE 802.11ax (20 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
10685	AAU				

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10687	AAE	IEEE 802.11ax (20 MHz, MCS4, 99pc dc)	WLAN	8.45	±9.6
10688	AAE	IEEE 802.11ax (20 MHz, MCS5, 99pc dc)	WLAN	8.29	±9.6
0689	AAD	IEEE 802.11ax (20 MHz, MCS6, 99pc dc)	WLAN	8.55	±9.6
0690	AAE	IEEE 802.11ax (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
0691	AAB	IEEE 802.11ax (20 MHz, MCS8, 99pc dc)	WLAN	8.25	±9.6
0692	AAA	IEEE 802.11ax (20 MHz, MCS9, 99pc dc)	WLAN	8.29	<u>+</u> 9.6
0693	AAA	IEEE 802.11ax (20 MHz, MCS10, 99pc dc)	WLAN	8.25	±9.6
0694	AAA	IEEE 802.11ax (20 MHz, MCS11, 99pc dc)	WLAN	8.57	±9.6
0695	AAA	IEEE 802.11ax (40 MHz, MCS0, 90pc dc)	WLAN	8.78	<u>+</u> 9.6
0696	AAA	IEEE 802.11ax (40 MHz, MCS1, 90pc dc)	WLAN	8.91	±9.6
0697	AAA	IEEE 802.11ax (40 MHz, MCS2, 90pc dc)	WLAN	8.61	±9.6
0698	AAA	IEEE 802.11ax (40 MHz, MCS3, 90pc dc)	WLAN	8.89	±9.6
0699	AAA	IEEE 802.11ax (40 MHz, MCS4, 90pc dc)	WLAN	8.82	±9.6
0700	AAA	IEEE 802.11ax (40 MHz, MCS5, 90pc dc)	WLAN	8.73	±9.6
0701	AAA	IEEE 802.11ax (40 MHz, MCS6, 90pc dc)	WLAN	8.86	±9.6
0702	AAA	IEEE 802.11ax (40 MHz, MCS7, 90pc dc)	WLAN	8.70	±9.6
0703	AAA	IEEE 802.11ax (40 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
0704	AAA	IEEE 802.11ax (40 MHz, MCS9, 90pc dc)	WLAN	8.56	±9.6
0705	AAA	IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN	8.69	±9.6
0706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc dc)	WLAN	8.66	±9.6
0707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc dc)	WLAN	8.32	±9.6
0708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
0709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
0710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc dc)	WLAN	8.29	±9.6
0711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc dc)	WLAN	8.39	±9.6
0712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc dc)	WLAN	8.67	±9.6
0713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc dc)	WLAN	8.33	±9.6
0714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc dc)	WLAN	8.26	±9.6
0715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc dc)	WLAN	8.45	±9.6
0716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc dc)	WLAN	8.30	±9.6
0717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc dc)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc dc)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc dc)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc dc)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc dc)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc dc)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc dc)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc dc)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc dc)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc dc)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc dc)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc dc)	WLAN	8.46	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc dc)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc dc)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc dc)	WLAN	8.33	±9.6
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc dc)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc dc)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc dc)	WLAN	8.42	±9.6
0739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc dc)	WLAN	8.29	±9.6
0740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc dc)	WLAN	8.48	±9.6
0741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc dc)	WLAN	8.40	±9.6
0742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc dc)	WLAN	8.43	±9.6
0743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc dc)	WLAN	8.94	±9.6
0744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)	WLAN	9.16	±9.6
0745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc dc)	WLAN	8.93	±9.6
0746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc dc)	WLAN	9.11	±9.6
10747	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc dc)	WLAN	9.04	±9.6
10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc dc)	WLAN	8.93	±9.6
10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc dc)	WLAN	8.90	±9.6
10750	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc dc)	WLAN	8.79	±9.6
10751	AAC	IEEE 802.11ax (160 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10752	AAC	IEEE 802.11ax (160 MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6