

		1	- Chain I		-11 a 1111	<u> </u>								
Frequency	AM May 14, 2015 RACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	TR. T	ALIGN AUTO ype: RMS	#Avş]	GHz PNO: Fast 😱 IFGain:Low	AC	nalyzer - Sw F 50 Ω 5.53000		KI RL			
Auto Tun	26 7 GHz 3.31 dBm	r1 5.52 -3	Mk				Ref Offset 1.5 dB 10 dB/div Ref 21.50 dBm							
Center Fre 5.530000000 GH											. og 11.5			
Start Fre 5.480000000 GH				· ········		● ¹	and the second s				1.50 3.50			
Stop Fre 5.58000000 GH										ار	18.5 28.5			
CF Ste 10.000000 MH <u>Auto</u> Ma											18.5 18.5			
Freq Offse 0 ⊦											8.5			
	100.0 MHz	Span								er 5.530				
	s (1001 pts)		Sweep 1		Z	3.0 MHz	#vBW		I∀IHZ	8W 1.0				

Channel 106 – Chain A

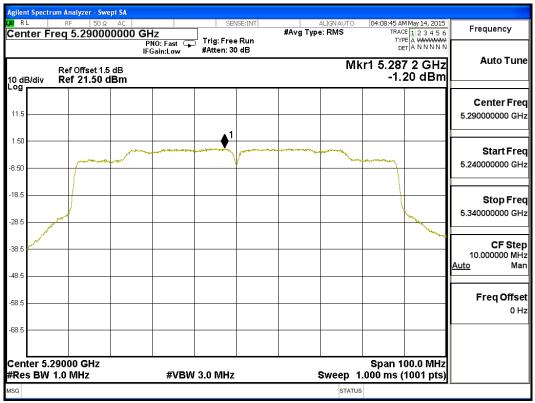
Channel 122 – Chain A

gilent Spect	rum Analyzer - Sw RF 50 ຜ			SEN	ISE:INT		ALIGN AUTO	06:21:32 PM	4 May 11, 2015	
	req 5.6100	00000 GH	- Z NO: Fast ⊂ ⊾ Gain:Low	7	Run	#Avg Typ		TRAC	Е <u>1</u> 2 3 4 5 6 РЕА МИМИМИ ТА N N N N N	Frequency
0 dB/div	Ref Offset 1. Ref 21.50						Mł		5 1 GHz 40 dBm	Auto Tun
11.5			↓ ¹							Center Fre 5.61000000 GF
3.50										Start Fre 5.56000000 GH
28.5									and a second and a s	Stop Fr 5.660000000 G
8.5										CF Sto 10.000000 M <u>Auto</u> M
8.5										Freq Offs 0
8.5										
	61000 GHz 1.0 MHz		#VBW	/ 3.0 MHz		:	Sweep 1		00.0 MHz 1001 pts)	
G							STATUS	5		

Channel	138 (Band3) – Chain A	

	rum Analyzer - Sv							
KN RL Center F	RF 50 : 50 : 50 : 50 : 50 : 50 : 50 : 50 :	Ω AC	SENSE:IN	Avg Type		TRAC	M May 15, 2015 E 1 2 3 4 5 6	Frequency
		PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB			Di		Auto Tune
10 dB/div	Ref Offset 1 Ref 21.50						51 dBm	
11.5 1.50			2 			1		Center Freq 5.69000000 GHz
-8.50								Start Freq 5.640000000 GHz
-38.5 -48.5 -58.5 -68.5								Stop Freq 5.74000000 GHz
#Res BW			BW 3.0 MHz*		Sweep 1	.000 ms (CF Step 10.000000 MHz <u>Auto</u> Man
MKR MODE T 1 N 2 N 3 4 5 6	RE 509	× 5.725 000 GHz 5.684 9 GHz	-2.485 dBm 2.645 dBm	FUNCTION FUN	NCTION WIDTH			Freq Offset
6 7 8 9 10 11								
MSG					STATUS	5	>	

Channel 138 (Band4) – Chain A


			alyzer - Swe	ept SA											
Cen		RF req :		AC 0000 GH	lz		NSE:INT	Γ		ALIGN A pe: RMS Id: 100/1	5	TRA	M May 15, 2015 CE 1 2 3 4 5 (PE A \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6	Frequency
		Dof	Offset 8.4	IFO	NO: Fast Gain:Low	#Atten: 3			Avgino	10. 100/1		r2 5.72	et A NNNN 6 2 GHz		Auto Tune
	B/div		f 28.48 c									-4.2	47 dBm	l	
Log 18.5 8.48												/12			Center Freq 5.69000000 GHz
-1.52			preserver and	and the second	ling and the second	where the set of the s		itstatel _e ite	, and a second second	an a	ALL MARINE	ehatenseikulente			
-11.5 -21.5 -31.5	Made and a state of the state o	Marthe P					*					Ļ	aritesta a fasta da f		Start Freq 5.640000000 GHz
-41.5 -51.5															Stop Freq 5.74000000 GHz
-61.5		_													5.74000000 GH2
#Re	s BW	100			#VB	W 300 kHz	*					2.40 ms (00.0 MHz (1001 pts))	CF Step 10.000000 MHz Auto Man
MKB 1	MODE TR	ic sci f		× 5.725 00	GHz	ĭ -4.386 di	Bm	FUNC	tion f	UNCTION	WIDTH	FUNCTI	DN VALUE		inter interio
2 3 4 5 6	N 1	f		5.726		-4.247 d									Freq Offset 0 Hz
7 8 9 10															
11													~		
MSG											STATUS			L	

				Channel					
						m Analyzer - Swept SA			
Frequency	04:02:58 AM May 14, 2015 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	ALIGN AUTO e: RMS	#Avg Ty	SENSE:INT		RF 50 Ω AC eq 5.210000000	enter F		
Auto Tur		Ref Offset 1.5 dB Mkr1 5.205 3 GHz							
	-0.00 uBiii)	Ref 21.50 dBm) dB/div ⁹		
Center Fre 5.210000000 GH							1.5		
Start Fre 5.160000000 GH	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						50		
Stop Fr 5.26000000 Gi						, and the second	.5		
CF Ste 10.000000 Mi <u>Auto</u> Mi							.5		
Freq Offs							.5		
							.5		
	Span 100.0 MHz 00 ms (1001 pts)	Sweep 1.		3.0 MHz	#VBV	1000 GHz .0 MHz	enter 5.2 Res BW		
		STATUS					G		

Channel 42 – Chain B

Channel 58 – Chain B

	J	- Chain I	annei 10	U									
							m Analyzer - Sv						
Frequency	04:16:13 AM May 14, 2015 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	ALIGN AUTO Type: RMS	#A un				X RL RF 50 Ω AC Center Freq 5.53000000						
Auto Tune	r1 5.522 3 GHz -3.58 dBm	Mk					Ref Offset 1.5 dB 10 dB/div Ref 21.50 dBm						
Center Free 5.530000000 GH								11.5					
Start Free 5.480000000 GH		and the second sec		1				8.50					
Stop Fre 5.58000000 GH								28.5					
CF Stej 10.000000 MH <u>Auto</u> Mai								38.5					
Freq Offse 0 H	I							58.5					
								68.5					
	Span 100.0 MHz 000 ms (1001 pts)	Sweep 1.		3.0 MHz	#VBW		3000 GHz I.0 MHz	Center 5.: Res BW					
		STATUS						ISG					

Channel 106 – Chain B

Channel 122 – Chain B

	um Analyzer - Swept S								
Center F	RF 50 Ω AC req 5.6100000		SENSE:INT	ALIGNAUTO #Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency			
10 dB/div	IFGain:Low #Atten: 30 dB DET/R NINNIN Ref Offset 1.5 dB Mkr1 5.594 0 GHz dB/div Ref 21.50 dBm 3.10 dBm								
11.5		1				Center Fre 5.610000000 GH			
-8.50						Start Fre 5.560000000 GH			
-18.5						Stop Fre 5.66000000 G⊢			
38.5						CF Ste 10.000000 MH <u>Auto</u> Ma			
58.5						Freq Offs			
68.5									
Center 5. #Res BW	61000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)				
ISG				STAT	US				

	rum Analyzer - Sv						
Center F	RF 50 G req 5.6900	00000 GHz PNO: Fast	SENSE:INT	Avg Ty	ALIGN AUTO /pe: RMS ild:>100/100	03:15:56 AM May 15, 2015 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N	Frequency
10 dB/div	Ref Offset 1 Ref 21.50		#Atten: 30 dB		Mł	(r2 5.673 7 GHz 2.194 dBm	Auto Tune
.og 11.5 1.50 8.50		2				1	Center Freq 5.69000000 GHz
18.5 28.5 38.5							Start Freq 5.640000000 GHz
18.5 18.5 18.5							Stop Fred 5.740000000 GHz
	69000 GHz 1.0 MHz	#VE	SW 3.0 MHz*		Sweep 1	Span 100.0 MHz .000 ms (1001 pts)	10.000000 MH
KR MODE TI 1 N 1 2 N 1 3 - - 4 - - 5 - - 6 - - 7 - - 8 - -	RC SCL f f 	X 5.725 000 GHz 5.673 7 GHz	Y -2.478 dBm 2.227 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Freq Offse
9 10 11 sg					STATU	×	

Channel 138 (Band3) - Chain B

Channel 138 (Band4) – Chain B

		ctrur		alyzer - Sw	ept SA										
ιx∥ ℝ Cer		Fre	RF eq (50 Q	00000 G			SEN			Туре	ALIGN AUTO : RMS 100/100	TRA	M May 15, 2015 CE 1 2 3 4 5 6 PE A WWWWW	Frequency
	B/div			Offset 8.	18 dB	PNO: Fast FGain:Lov	v	#Atten: 30		1810			r2 5.72	7 5 GHz 00 dBm	Auto Tune
Log 18.6 8.46	; ;				Redest		and all and	e see Lee se				and also fi		*	Center Freq 5.69000000 GHz
-11.52 -11.5 -21.5 -31.5	prefer	n _n fer hør	hasa da	production of the second	wije Angele and a second s							hinan si ya ka	artent and a substitute	al an a she we do that in f	Start Freq 5.640000000 GHz
-41.5 -51.5 -61.5	-														Stop Freq 5.740000000 GHz
#Re		W 1	00		X	#V	/BW :	300 kHz	F	INCTION		Sweep 1	2.40 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11 <	N		f		5.725 0	00 GHz 7 5 GHz		-3.654 dE -4.00 dE	3m				FUNCT		Freq Offset 0 Hz
MSG												STATUS	6		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	Duty Factor (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
26	5100	А	7.940	0.09	11.040	17	Pass
36	5180	В	7.260	0.09	10.360	17	Pass
	5000	А	7.630	0.09	10.730	17	Pass
44	5220	В	6.730	0.09	9.830	17	Pass
40	52.40	А	7.530	0.09	10.630	17	Pass
48	5240	В	6.890	0.09	9.990	17	Pass
<i>c</i> 2	52(0	А	7.560	0.09	10.660	11	Pass
52	5260	В	7.120	0.09	10.220	11	Pass
(0)	5200	А	7.080	0.09	10.180	11	Pass
60	5300	В	6.630	0.09	9.730	11	Pass
	5220	А	7.290	0.09	10.390	11	Pass
64	5320	В	5.680	0.09	8.780	11	Pass
100	5500	А	6.490	0.09	9.590	11	Pass
100	5500	В	6.510	0.09	9.610	11	Pass
116	5580	А	7.190	0.09	10.290	11	Pass
116	5580	В	7.360	0.09	10.460	11	Pass
140	5700	А	7.770	0.09	10.870	11	Pass
140	5700	В	7.190	0.09	10.290	11	Pass

Note:

- The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.
- 2. Total PPSD = PPSD value + Duty Factor + $10*\log 2$

		nain A		i wii ii v	U								
								um Analyzer - Sv					
	05:25:47 AM May 12, 2015	ALIGN AUTO		ENSE:INT	SE	_		RF 50 9		<mark>()</mark> F			
INNN	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNN	#Avg Type: RMS			Trig: Fre #Atten: \$	HZ PNO: Fast Gain:Low	F	q 5.1800	ter Fr	Cer			
Hz Auto Tun Bm	5.181 700 GHz 7.94 dBm	Mkr1					Ref Offset 1.5 dB 0 dB/div Ref 21.50 dBm °g						
Center Fre			.1										
5.180000000 GH	tronge	and the product of the second s		- mener						11.5			
Start Fre										1.50			
5.167500000 GH								-	Manne	8.50			
5.192500000 GH										18.5			
5.192500000 GH										28.5			
CF Ste 2.500000 MH										38.5			
Auto Ma			_							18.5			
Freq Offse										58.5			
								_		8.5			
	Span 25.00 MHz							000 GHz					
pts)	.000 ms (1001 pts)	Sweep 1		z	3.0 MHz	#VBW		0 MHz	s BW 1	Re			
		STATUS								SG			

Channel 36 – Chain A

Channel 44 – Chain A


🍺 Keysight Sp	ectrum Analyzer - Swept SA					
Center F	RF 50 Ω AC	0 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	05:28:36 AM May 12, 2015 TRACE 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 1.5 dB Ref 21.50 dBm	PNO: Fast G	#Atten: 30 dB	Mkr1	TYPE A MONITOR DET A NNNN 1 5.223 400 GHz 7.63 dBm	Auto Tune
11.5		and a second		1		Center Freq 5.220000000 GHz
-8.50						Start Freq 5.207500000 GHz
-18.5						Stop Freq 5.232500000 GHz
-38.5						CF Step 2.500000 MHz <u>Auto</u> Mar
-58.5						Freq Offset
-68.5						
Center 5. #Res BW	22000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 25.00 MHz 1.000 ms (1001 pts)	
MSG				STATU	S	

				Channe			
						ectrum Analyzer - Swept SA	
Frequency	05:31:45 AM May 12, 2015 TRACE 1 2 3 4 5 6	ALIGN AUTO e: RMS	#Avg Ty	SENSE:INT	000 GHz	RF 50 Ω AC	Center F
	TYPE A WWWW DET A NNNNN			Trig: Free Run #Atten: 30 dB	PNO: Fast 🕞 IFGain:Low	•	
Auto Tun	5.243 550 GHz 7.53 dBm	Mkr1				Ref Offset 1.5 dB Ref 21.50 dBm	0 dB/div
Center Fre							^{og}
5.240000000 GH			1	and and a second second	- Martine Browly		11.5
							1.50
Start Fre 5.227500000 GH	$\langle \rangle$						3.50
	A Row of Contraction of the					-	5.50
Stop Fre							18.5
5.252500000 GH							28.5
CF Ste							38.5
2.500000 MH <u>Auto</u> Ma							
							48.5
Freq Offse 0 H							58.5
							68.5
	Span 25.00 MHz 000 ms (1001 pts)	Sweep 1.		B.0 MHz	#VBW	24000 GHz 1.0 MHz	Center 5. Res BW
		STATUS					ISG

Channel 48 – Chain A

Channel 52 – Chain A

				Chann	100 -	- Chain	Л			
	pectrum Analyzer - Sw	ept SA								
XI RL	RF 50 Ω			SEN	ISE:INT		ALIGN AUTO		M May 12, 2015	Frequency
Center F	-req 5.30000			Trig: Free	Dun	#Avg Type	e:RMS	TRAC	DE 1 2 3 4 5 6 PE A WWWW	Frequency
		PN	0: Fast 😱 ain:Low	#Atten: 3				D	ETANNNNN	
							Mkr	1 5.301 2		Auto Tun
	Ref Offset 1.5						IVINI		08 dBm	
10 dB/div _og	Ref 21.50 c	dBm								
										Contor Fro
11.5					▲1					Center Fre
11.5										5.30000000 GH
				and the second second	and the second s		and the second	mannan		
1.50								- <u>`</u>		
								- X		Start Fre
8.50	/							- \		5.287500000 GH
	- All and a second s								h.	
-18.5	APART I								Wednesservers.	
-10.5										Stop Fre
										5.312500000 GH
-28.5										
										05.04-1
38.5										CF Ste 2.500000 MH
										Auto Ma
48.5										<u>/////////////////////////////////////</u>
10.0										
										Freq Offse
-58.5										он
-68.5										
	.30000 GHz						_		5.00 MHz	
#Res BW	/ 1.0 MHz		#VBW	3.0 MHz			Sweep	1.000 ms ((1001 pts)	
ISG							STAT	US		
1										

Channel 60 – Chain A

Channel 64 – Chain A

🇾 Keysight Sp	ectrum Analyzer - Swe	pt SA								
Center F	RF 50 Ω req 5.32000	AC 0000 GH	z	1		#Avg Typ	ALIGN AUTO e: RMS	TRAC	May 12, 2015	Frequency
10 dB/div	Ref Offset 1.5 Ref 21.50 d	dB	IO: Fast 😱 ain:Low	#Atten: 30			Mkr1	5.316 6	50 GHz 29 dBm	Auto Tune
11.5			1-	161 (101)-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	- Andrew - Langer					Center Freq 5.320000000 GHz
-8.50										Start Fred 5.307500000 GHz
-18.5									Maryhow Maryore	Stop Fred 5.332500000 GHz
-38.5										CF Stej 2.500000 MH <u>Auto</u> Ma
58.5										Freq Offse 0 H
-68.5										
Center 5. #Res BW	32000 GHz 1.0 MHz		#VBW	3.0 MHz			Sweep 1	Span 2 .000 ms (5.00 MHz 1001 pts)	
ISG							STATUS	3		

			Channel 100	– Chan A				
	ectrum Analyzer - Swept							
RL	RF 50 Ω	AC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	05:42:02 AM May 12, 2015 TRACE 1 2 3 4 5 6	Frequency		
enter F	req 5.500000	PNO: Fast (IFGain:Low	→ Trig: Free Run #Atten: 30 dB	#Avg Type. Rivis	TYPE A WWWW DET A NNNN			
0 dB/div	Ref Offset 1.5 c Ref 21.50 dE	lB Sm		Mkr1	Mkr1 5.502 050 GHz 6.49 dBm			
°g						Center Fre		
11.5				i — —		5.500000000 GH		
1.50		Uningeneration and and a second	and a sub-	and a second	manana			
					$\langle \rangle$	Start Fre 5.487500000 G⊦		
3.50					1 V			
18.5	- Aller and a second se				Lyber and and a second	Stop Fre		
28.5						5.512500000 GH		
						CF Ste		
8.5						2.500000 MH Auto Ma		
8.5								
8.5						Freq Offs		
8.5								
0.5								
	50000 GHz 1.0 MHz	 #VB	W 3.0 MHz	Sweep 1	Span 25.00 MHz .000 ms (1001 pts)			
SG				STATU				
G				STATU	5			

Channel 100 – Chain A

Channel 116 – Chain A

🎉 Keysight Sp	ectrum Analyzer - Swept S/	Ą				
Center F	RF 50 Ω AV req 5.5800000	00 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	05:44:40 AM May 12, 2015 TRACE 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 1.5 dB Ref 21.50 dBn		#Atten: 30 dB	Mkr	TYPE A WWWW DET A NNNN 1 5.577 425 GHz 7.19 dBm	Auto Tuno
11.5			,1			Center Freq 5.580000000 GHz
-8.50						Start Freq 5.567500000 GHz
-18.5						Stop Freq 5.592500000 GHz
-38.5						CF Step 2.500000 MH Auto Mar
-58.5						Freq Offse 0 H;
-68.5						
Center 5.: #Res BW	58000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 25.00 MHz 1.000 ms (1001 pts)	
MSG				STATU	IS	

			<u>Channel 14</u>	0 – Chain A		
	ectrum Analyzer - Swept SA					
XI RL Center F	RF 50 Ω AC		SENSE:INT	ALIGN AUT #Avg Type: RMS	0 05:49:44 AM May 12, 201 TRACE 1 2 3 4 5	
	1eq 5.7000000	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB		DET A NNNN	V N
10 dB/div	Ref Offset 1.5 dB Ref 21.50 dBm			Mk	r1 5.703 600 GH 7.77 dBn	Z Auto Tune
.og						Center Freq
11.5				1		5.70000000 GHz
11.0			montain and and and and and and and and and an			5.70000000 GH2
1.50		-			Married	_
1.00					$ \rangle \rangle$	Start Freq
8.50	1					5.687500000 GHz
0.00						
18.5	Junited				Marsh and an	
-10.0					- mark	Stop Fred
-28.5						5.712500000 GHz
-20.5						
						CF Step
38.5						2.500000 MHz
						<u>Auto</u> Mar
48.5						-
						Freq Offset
-58.5						0 Hz
-68.5						
Center 5	70000 GHz				Span 25.00 MH:	
	1.0 MHz	#VBW	3.0 MHz	Sweep	1.000 ms (1001 pts	5
ISG					TUS	

Channel 140 – Chain A

			Channe	el 36 – Chain E)	
	rum Analyzer - Swept S					
RL	RF 50Ω A		SENSE:INT	ALIGNAUTO #Avg Type: RMS	04:28:22 AM May 12, 2015 TRACE 1 2 3 4 5 6	Frequency
	1eq 5. 1800000	PNO: Fast 🔾	Trig: Free Run	ang type. tute	TYPE A WAWAAAA DET A N N N N N	
		IFGain:Low	#Atten: 30 dB			
	Ref Offset 1.5 dE			Mkr1	5.178 925 GHz	
0 dB/div	Ref 21.50 dBr	n			7.26 dBm	
- 0						Center Fre
11.5			↓ 1_ _			5.18000000 GH
						0.10000000000
1.50		-			mine	
					λ	Start Fre
8.50						5.167500000 GH
	and the second se				1 mars	
18.5	Verte				C. R. Marken Marken	
						Stop Fre
28.5						5.192500000 GH
38.5						CF Ste
						2.500000 MH
48.5						<u>Auto</u> Ma
58.5						Freq Offse
						0 H
68.5						
	18000 GHz			. .	Span 25.00 MHz	
Res BW	1.0 MHz	#VBV	V 3.0 MHz	Sweep 1	.000 ms (1001 pts)	
SG				STATUS	3	

Channel 36 – Chain B

Channel 44 – Chain B

	rum Analyzer - Swe											
Center F	RF 50 Ω Freq 5.22000	AC 00000 GHz	2]	ISE:INT	#Avg Type	ALIGNAUTO e: RMS	TRAC	M May 12, 2015	Frequency		
10 dB/div												
11.5					•	1				Center Freq 5.220000000 GHz		
1.50 -8.50										Start Freq 5.207500000 GHz		
-18.5										Stop Freq 5.232500000 GHz		
-38.5										CF Step 2.500000 MHz <u>Auto</u> Mar		
-58.5										Freq Offset 0 Hz		
-68.5												
Center 5. #Res BW	22000 GHz 1.0 MHz		#VBW	3.0 MHz		:	Sweep 1	Span 2 .000 ms (5.00 MHz 1001 pts)			
MSG							STATUS	5				

			- Unain	. 10						
									Analyzer - Sw	
Frequency	1:34:17 AM May 12, 2015 TRACE 1 2 3 4 5 6	ТО	ALIGN AUT Type: RMS	#Avg	ISE:INT	1	Hz	AC 00000 G	RF 50 Ω q 5.24000	∟ nter Fr
A	DET A NNNN					Trig: Free #Atten: 30	PNO: Fast 🕞 Gain:Low			
Auto Tun	241 800 GHz 6.89 dBm	(r1 5	Mk						Ref Offset 1.9 Ref 21.50	B/div
Center Fre										
5.240000000 GH				1						
	h-1					and the second		-		
Start Fre									1 Anna	
5.227500000 GH										
Stop Fre	Manager Marine Contraction	_							1	-
5.252500000 GH										
CF Ste 2.500000 MH		-								
<u>Auto</u> Ma		_								
Freq Offs										
0 H										
	pan 25.00 MHz 0 ms (1001 pts)	0 1.0	Sweep			3.0 MHz	#VBW		000 GHz 0 MHz	iter 5.2 s BW 1
		ATUS								

Channel 48 – Chain B

Channel 52 – Chain B

			0			
Agilent Spe	ctrum Analyzer - Swe	pt SA				
X/RL	RF 50 Ω		SENSE:INT	ALIGN AUTO	04:36:37 AM May 12, 2015	Frequency
Center	Freq 5.26000	0000 GHz		#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast	Trig: Free Run #Atten: 30 dB		TYPE A WWWWWW DET A N N N N N	
		IFGain:Low	#Atten: 30 dB		,	Auto Tun
	Ref Offset 1.5	dB		Mkr1	l 5.262 275 GHz	Auto Tun
10 dB/div					7.12 dBm	1
						Center Fre
11.5				1		5.26000000 GH
						5.20000000 GP
	-	- North Contraction		and the second sec	m	
1.50						
					$\langle \rangle$	Start Fre
-8.50	1					5.247500000 GH
10 5 1000	- Martin				marker was	
-18.5						Stop Fre
						5.272500000 GH
-28.5						
38.5						CF Ste
00.0						2.500000 MH
						<u>Auto</u> Ma
-48.5						
-58.5						Freq Offs
						0 H
-68.5						
_ Ļ						
	5.26000 GHz			_	Span 25.00 MHz	
#Res B\	N 1.0 MHz	#VE	SW 3.0 MHz	Sweep	1.000 ms (1001 pts)	
ISG				STATU	s	

gilent Spect	t <mark>rum Analyzer - Swept S</mark> RF 50 Ω AG		SENSE:INT	ALIGN AU	04:39:05 AM May 12, 2015	
	Freq 5.3000000			#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNN	
0 dB/div	Ref Offset 1.5 dB Ref 21.50 dBm	1		Mk	Auto Tun	
11.5		and the state of the		1		Center Fre 5.30000000 G⊦
3.50						Start Fre 5.287500000 G⊦
28.5						Stop Fre 5.312500000 G⊦
18.5						CF Ste 2.500000 MH <u>Auto</u> Ma
i8.5						Freq Offso 0 ⊦
	.30000 GHz 1.0 MHz	#\/P\	W 3.0 MHz		Span 25.00 MHz 1.000 ms (1001 pts)	
SG SG		#¥D1	94 J.V 1911 12	_		

Channel 60 – Chain B

Channel 64 – Chain B

	rum Analyzer - Swe	pt SA								
X/RL	RF 50 Ω	AC	S	ENSE:INT		ALIGN AUTO		M May 12, 2015	Frequency	
Center F	req 5.32000	0000 GHz		_	#Avg Ty	pe: RMS	TRA	E123456	Frequency	
	•	PNO:	Fast 🖵 Trig: Fr				TY	ET A N N N N N		
		IFGain	:Low #Atten:	30 dB					Auto Tun	
	Ref Offset 1.5	dD.				Mkr1 5.322 650 GHz				
10 dB/div	Ref 21.50 d									
	1(0) 21.00 0			-				68 dBm		
									Center Fre	
11.5										
11.5					_ 1				5.320000000 GH	
			mangeneration	- marine						
1.50		and the second sec			_		mont			
									Start Fre	
									5.307500000 GH	
8.50	1								0.001000000 01	
	V.									
18.5	wildow .				_			Transport	01	
and and a second								a second	Stop Fre	
									5.332500000 GH	
-28.5										
38.5				_					CF Ste	
									2.500000 MH	
									<u>Auto</u> Ma	
48.5										
58.5									Freq Offs	
									0 H	
68.5				-	-					
	32000 GHz						Span 2	5.00 MHz		
#Res BW	1.0 MHz		#VBW 3.0 MH	z		Sweep 1	.000 ms (1001 pts)		
ISG						STATUS			U	
						STATUS				

gilent Spect	rum Analyzer - Swept S RF 50 Ω A	SA IC	SENSE:INT	ALIGN AUTO	04:44:35 AM May 12, 2015	
	req 5.5000000		Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	
0 dB/div	Ref Offset 1.5 dE Ref 21.50 dBr			Mkr	1 5.501 375 GHz 6.51 dBm	Auto Tun
11.5				1		Center Fre 5.50000000 G⊦
.50						Start Fre 5.487500000 G⊦
8.5						Stop Fre 5.512500000 GH
8.5						CF Ste 2.500000 MH <u>Auto</u> Ma
3.5						Freq Offs 0 F
	50000 GHz				Span 25.00 MHz	
Res BW	1.0 MHz	#V	BW 3.0 MHz	Sweep	1.000 ms (1001 pts) JS	

Channel 100 – Chain B

Channel 116 – Chain B

	7	SENSE:INT	#Avg Typ		TRAC TY D 5.577 1	MMay 12, 2015 CE 1 2 3 4 5 6 RA WWWW ET A NNNNN 00 GHz 36 dBm	Frequency Auto Tune Center Free 5.58000000 GH;
IFG: Ref Offset 1.5 dB 10 dB/div Ref 21.50 dBm 11.5				Mkr1	5.577 1	00 GHz	Center Free
11.5	↓]		,	an war and a start and a start a	anna		
1.50				and an ender of	- Anna		
-8.50						N	Start Free 5.567500000 GH
-18.5						North Carlos and Carlo	Stop Fre 5.592500000 GH
48.5							CF Ste 2.500000 MH Auto Ma
58.5							Freq Offs 0 F
68.5					Span 2	25.00 MHz	
#Res BW 1.0 MHz	#VBW 3.0 MI	lz		Sweep 1	.000 ms ((1001 pts)	

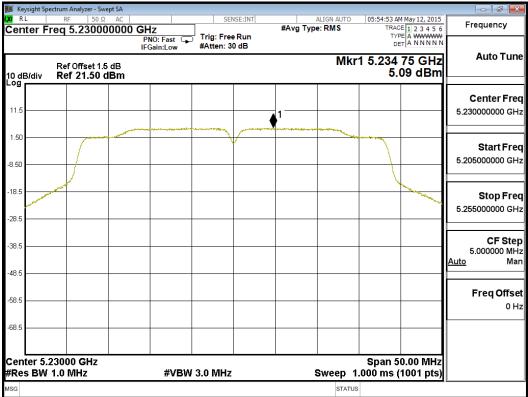
		() – Chain B				
Agilent Spectr	um Analyzer - Swept SA							
Center F	RF 50 Ω AC) GHz	SENSE:INT	ALIGN AUT #Avg Type: RMS	TRACI	May 12, 2015	Frequency	
			#Atten: 30 dB			E A WWWWW T A N N N N N		
10 dB/div	Ref Offset 1.5 dB Mkr1 5.703 050 GHz Ref 21.50 dBm 7.19 dBm							
log							Center Freq	
11.5				↓ ¹			5.700000000 GHz	
1.50	- A and the second seco				and the second s		Start Freq	
-8.50							5.687500000 GHz	
-18.5	and the second sec				\ \	Went was and		
10.3							Stop Fred 5.712500000 GHz	
-28.5								
-38.5							CF Step 2.500000 MH; <u>Auto</u> Mar	
-48.5							Erog Offee	
-58.5							Freq Offse 0 Hi	
-68.5								
Center 5.7 #Res BW	70000 GHz 1.0 MHz	#VBW 3	.0 MHz	Sweep	Span 2: 1.000 ms (*	5.00 MHz 1001 pts)		
MSG				-	TUS		<u>I</u>	

Channel 140 – Chain B

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	Duty Factor (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
20	5100	А	2.190	0.15	5.350	17	Pass
38	5190	В	0.310	0.15	3.470	17	Pass
16	5220	А	5.090	0.15	8.250	17	Pass
46	5230	В	3.380	0.15	6.540	17	Pass
5.4	5250	А	4.958	0.15	8.118	11	Pass
54	5270	В	5.390	0.15	8.550	11	Pass
()	5210	А	-1.356	0.15	1.804	11	Pass
62	5310	В	-2.054	0.15	1.106	11	Pass
100		А	2.430	0.15	5.590	11	Pass
102	5510	В	3.242	0.15	6.402	11	Pass
110		А	4.670	0.15	7.830	11	Pass
110	5550	В	5.034	0.15	8.194	11	Pass
124	5(70)	А	4.210	0.15	7.370	11	Pass
134	5670	В	4.605	0.15	7.765	11	Pass

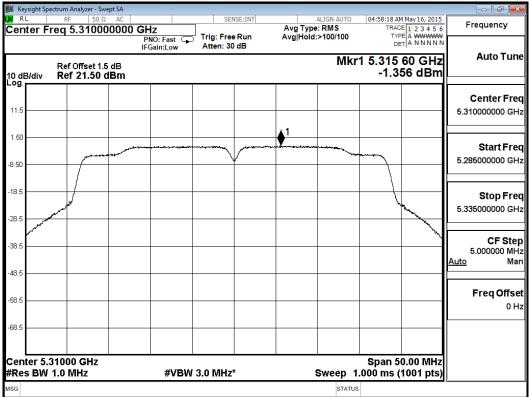
Note:


- The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.
- 2. Total PPSD = PPSD value + Duty Factor + $10*\log 2$

		Chain A	21 38	Chan				
						Analyzer - Swept SA		
Frequency	05:52:12 AM May 12, 2015 TRACE 1 2 3 4 5 6	ALIGN AUTO Type: RMS	4	SENSE:I		50 Ω AC 5.190000000		
	TYPE A WWWW DET A NNNNN	, jpc. naio		Trig: Free Ru #Atten: 30 dB	PNO: Fast IFGain:Low	5.19000000	lei rieq	>en
Auto Tur	1 5.201 25 GHz 2.19 dBm	Mkr1				Offset 1.5 dB f 21.50 dBm		
Center Fre								og
5.190000000 GH								11.5
		♦ ¹						1.50
Start Fre	Server of			γ		Construction of the second sec		
5.165000000 GH								8.50
Stop Fre								18.5
5.215000000 GH							and the second	
	~							28.5
CF Ste 5.000000 M⊦								38.5
<u>Auto</u> Ma								18.5
Freq Offs								
01								58.5
					_			68.5
	Span 50.00 MHz	Swoon 1		3.0 MHz	#\/B\M		ter 5.1900 BW 1.0 P	
	000 ms (1001 pts)	Sweep 1.		5.V IVI M Z	#VBW	¥IELZ		sg
		STATUS						36

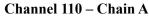
Channel 38 – Chain A

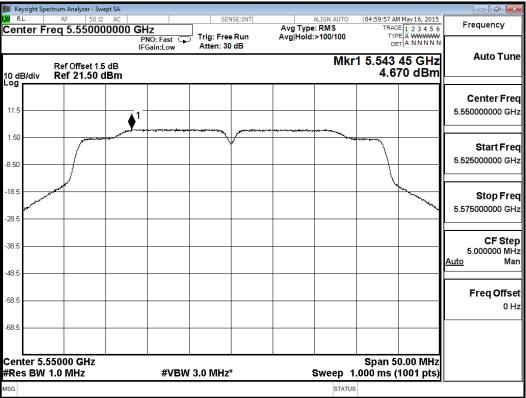
Channel 46 – Chain A



Keysight Spectrum Analyzer - Swept SA Constraint Align AUTO 04:57:05 AM May 16, 2015 Frequency RL RF 50 Ω AC SENSE:INT ALIGN AUTO 04:57:05 AM May 16, 2015 Frequency Inter Freq 5.270000000 GHz Trig: Free Run Avg Type: RMS TRACE [1 2 3 4 5 6 Frequency IFGain:Low Atten: 30 dB Det A NNNNN Det A NNNNN	
Nter Freq 5.270000000 GHz Avg Type: RMS TRACE 1 2 3 4 5 6 Frequency PN0: Fast Trig: Free Run Avg/Hold:>100/100 TYPEIA WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	/
	une
Ref Offset 1.5 dB 4.958 dBm 4.958 dBm	
Center	Freq
5 5.27000000	GHz
0 Start I	From
D 5.24500000	- 1
5 Stop 5 5.29500000	-
5 CF 3 5.000000	Step MHz
5 <u>Auto</u>	Man
5 Freq O	
	0 Hz
5	
nter 5.27000 GHz Span 50.00 MHz es BW 1.0 MHz #VBW 3.0 MHz* Sweep 1.000 ms (1001 pts)	
STATUS	

Channel 54 – Chain A


Channel 62 – Chain A



	ctrum Analyzer - Swept SA							
LXI RL	RF 50 Ω AC		SENSE:INT		ALIGN AUTO		May 16, 2015	Frequency
Center Fr	eq 5.5100000	0 GHz	Trig: Free Run	Avg Type Avg Hold:		TRAC	E123456	riequency
		PNO: Fast IFGain:Low	Atten: 30 dB	Avg Hold:	>100/100	DE	T A NNNNN	
		IFGalli.Low	Atten. oo ab			Auto Tune		
	Ref Offset 1.5 dB				Mkr		30 GHz	Auto Tunc
10 dB/div	Ref 21.50 dBm					2.4	30 dBm	
Log								
								Center Fred
11.5								
11.5		1ھ						5.510000000 GHz
		♦'						
1.50	~	www.com.com.com.com	mornin , morning					
	A second s		\vee		معلمرين	and an a server of		Start Freq
						Ì		5.485000000 GHz
-8.50								0.40000000000
						l l		
-18.5	2					<u> </u>		
.0.0	· · · · · · · · · · · · · · · · · · ·					``	m	Stop Freq
							~~~~	5.535000000 GH
-28.5							~~	
-38.5								CF Step
-38.5								5.000000 MHz
								<u>Auto</u> Man
-48.5								
								Freq Offset
-58.5								0 Hz
								0112
-68.5								
-00.0								
Center 5.5				_		Span 5	0.00 MHz	
#Res BW 1	1.0 MHz	#VBW	3.0 MHz*		Sweep 1	.000 ms (	1001 pts)	
MSG					STATUS			
					511100			

## Channel 102 – Chain A







Keysight Spectrum Analyzer - Swept SA         Content of the system         Align Auto         05:01:29 AM May 16, 2015         Frequence           Center Freq 5.670000000 GHz IFGain:Low         Trig: Free Run Atten: 30 dB         Avg Type: RMS Avg]Hold:>100/100         Trace 1 (2 3 4 5 6 Type [A WWWWW Det [A NNNN N Det [A NNNN N         Frequence           Nef Offset 1.5 dB 10 dB/div         Ref Offset 1.5 dB Ref 21.50 dBm         Mkr1 5.659 05 GHz 4.210 dBm         Auto 1 5.670000000           11.5         Auto         5.6700000000         5.6700000000
Center Freq 5.670000000 GHz         Avg Type: RMS         TRACE [1 2 3 4 5 6 Avg]Hold:>100/100         TRACE [1 2 3 4 5 6 TYPE] A WAWAY DET [A NNNNN DET [A NNNNN DET [A NNNNN DET [A NNNNN DET [A NNNNN DET [A NNNNN           Ref Offset 1.5 dB 10 dB/div         Ref 21.50 dBm         Mkr1 5.659 05 GHz 4.210 dBm         Auto T
Ref Offset 1.5 dB     Mkr1 5.659 05 GHz     Auto 1       10 dB/div     Ref 21.50 dBm     4.210 dBm
10 dB/div Ref 21.50 dBm 4.210 dBm Center
Center
1.50
-8.50 Start 5.64500000
-18.5
-28.6
-38.5 CF 5.00000
-48.5
-58.5 Freq O
-68.5
Center 5.67000 GHz         Span 50.00 MHz           #Res BW 1.0 MHz         #VBW 3.0 MHz*         Sweep 1.000 ms (1001 pts)
MSG STATUS

#### Channel 134 – Chain A

# Channel 38 – Chain B

									m Analyzer - Swe		
Frequency	4 May 12, 2015 E 1 2 3 4 5 6 E A WWWWW	TRAC	ALIGN AUTO E: RMS	#Avg Typ	NSE:INT	1	IZ NO: Fast ⊆	AC	RF   50 Ω eq 5.19000	Center Fr	
Auto Tune	70 GHz 31 dBm	1 5.196	Mkr		Ref Offset 1.5 dB Ref 21.50 dBm						
<b>Center Freq</b> 5.190000000 GHz				▲1						11.5	
<b>Start Freq</b> 5.165000000 GHz			and an and a second				an that an			-8.50	
<b>Stop Freq</b> 5.215000000 GHz	Seal and the second								~	-18.5	
CF Step 5.000000 MHz <u>Auto</u> Man										-38.5	
Freq Offset 0 Hz										-58.5	
	0.00 MHz 1001 pts)	Span 5 000 ms (	Sweep 1			3.0 MHz	#VBW			-68.5 Center 5.1 #Res BW	
	,		STATUS							ISG	



				Channel 40			
						rum Analyzer - Swept SA	
Frequency	D4:57:11 AM May 12, 2015 TRACE 1 2 3 4 5 6		#Avg Ty	SENSE:INT		RF 50 Ω AC	RL
	TYPE A WWWWW DET A NNNNN		#Avg iy	Trig: Free Run #Atten: 30 dB	PNO: Fast IFGain:Low	req 5.230000000	Senter Fi
Auto Tun	5.235 25 GHz 3.38 dBm	Mkr1				Ref Offset 1.5 dB Ref 21.50 dBm	0 dB/div
Center Fre							°9
5.230000000 GH							1.5
		and the second	<b>∮</b> ¹				
Start Fre	anny			Y			1.50
5.205000000 GH							1.50
Oton Ero	have						8.5
Stop Fre 5.255000000 G⊦	a manual and a second						
							8.5
CF Ste							8.5
5.000000 MH							
<u>Auto</u> Ma			-				18.5
Freq Offs							8.5
0 H							0.0
							68.5
	Span 50.00 MHz 00 ms (1001 pts)	Sweep 1.		3.0 MHz	#VBW	23000 GHz 1.0 MHz	
		STATUS					SG

### Channel 46 – Chain B

## Channel 54 – Chain B

	ectrum Analyzer - Swept SA					
Center F	RF 50 Ω AC req 5.27000000	0 GHz	SENSE:INT	ALIGN AUTO Avg Type: RMS Avg Hold:>100/100	05:02:47 AM May 16, 2015 TRACE 1 2 3 4 5 6 TYPE A WWWW	Frequency
10 dB/div	Ref Offset 1.5 dB Ref 21.50 dBm	PNO: Fast 😱 IFGain:Low	Atten: 30 dB	-	1 5.273 70 GHz 5.390 dBm	Auto Tune
11.5				1		Center Freq 5.270000000 GHz
-8.50						Start Freq 5.245000000 GHz
-18.5						<b>Stop Freq</b> 5.295000000 GHz
-38.5						CF Step 5.000000 MHz <u>Auto</u> Man
-58.5						Freq Offset 0 Hz
-68.5						
Center 5.2 #Res BW	27000 GHz 1.0 MHz	#VBW	3.0 MHz*	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	
MSG				STATU	3	



-			Channel 0			
	ectrum Analyzer - Swep					
LXI RL	RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	05:03:27 AM May 16, 2015	Frequency
Center F	req 5.31000	0000 GHz		Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast	Trig: Free Run Atten: 30 dB	Avg Hold:>100/100	TYPE A WWWW DET A N N N N N	
		IFGain:Low	Atten: 30 dB			A
	Ref Offset 1.5	-n		Mkr	1 5.315 30 GHz	Auto Tune
10 dB/div	Ref 21.50 dl				-2.054 dBm	
	Rei 21.50 u					
_						0
						Center Freq
11.5						5.310000000 GHz
1.50			<b>≜</b> `	1		
1.50						Start Freq
		and a second sec				
-8.50		-	¥		<u>```\</u>	5.285000000 GHz
	1				l l	
					\	
-18.5					1	Stop Freq
	A.				۲.	5.335000000 GHz
-28.5	and a second sec				The second se	5.555000000 GH2
-20.0					· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
and the second sec					<u>ار کار ا</u>	05.044
-38.5						CF Step
						5.000000 MHz
						<u>Auto</u> Man
-48.5						
-58.5						Freq Offset
-50.5						0 Hz
-68.5						
Center 5	31000 GHz				Span 50.00 MHz	
#Res BW		#\/ <b>D</b> \/	1 2 0 B/ILI-*	Swoon 4	000 mo (1001 mts)	
#Res BW	T.U IVIPIZ	#VBV	/ 3.0 MHz*	Sweep 1	.000 ms (1001 pts)	
MSG				STATUS		

### Channel 62 – Chain B

## Channel 102 – Chain B

	ectrum Analyzer - Sw				101 102					
Center F	RF 50 Ω req 5.51000	00000 G	iHz	1'_		Avg Type Avg Hold:		TRAC	M May 16, 2015 E 1 2 3 4 5 6 E A WWWW	Frequency
10 dB/div	Ref Offset 1. Ref 21.50	5 dB	PNO: Fast 🕞 FGain:Low	Atten: 30				DE 1 5.504	05 GHz 42 dBm	Auto Tune
11.5			▲ ¹							Center Fred 5.510000000 GH
8.50		and the second second	ne serie and a serie and a series of the ser		/		and the second			Start Free 5.485000000 GH
-18.5	~~~									Stop Free 5.535000000 GH
48.5										CF Ste 5.000000 M⊢ <u>Auto</u> Ma
58.5										Freq Offse 0 ⊦
68.5										
Center 5.: #Res BW	51000 GHz 1.0 MHz		#VBW	3.0 MHz	k		Sweep 1		0.00 MHz 1001 pts)	
MSG							STATUS			



-		trum Analyzer - Sw									
KN R Cen		RF 50Ω eq 5.55000		GHz	1	SE:INT	Avg Type Avg Hold:		TRAC	May 16, 2015 E 1 2 3 4 5 6 E A WWWW	Frequency
		Ref Offset 1.5		PNO: Fast IFGain:Low	Atten: 30		Avginoid.		DE 1 5.543	05 GHz	Auto Tune
10 di Log	3/div	Ref 21.50 c	dBm						5.3	04 dBm	
11.5				1-							Center Freq 5.55000000 GHz
1.50 -8.50						for the second s	****				Start Freq 5.525000000 GHz
-18.5	ungengenden	and a second								the stand and a stand	<b>Stop Freq</b> 5.575000000 GHz
-28.5											
-38.5											<b>CF Step</b> 5.000000 MHz <u>Auto</u> Man
-48.5											
-58.5											Freq Offset 0 Hz
-68.5											
		5000 GHz 1.0 MHz		#VBW	3.0 MHz*			Sweep 1	Span 5 .000 ms (	0.00 MHz 1001 pts)	
MSG								STATUS			

## Channel 110 – Chain B

# Channel 134 – Chain B

	ectrum Analyzer - Swep							
Center F	RF 50 Ω Teq 5.670000	AC DOOD GHz PNO: Fast	SENSE:INT	Avg Type Avg Hold:		TRAC	May 16, 2015 E 1 2 3 4 5 6 E A WWWW	Frequency
10 dB/div	10 GHz 05 dBm	Auto Tune						
11.5				1				Center Freq 5.670000000 GHz
1.50 -8.50								<b>Start Freq</b> 5.645000000 GHz
-18.5							and and a start	<b>Stop Freq</b> 5.695000000 GHz
-38.5								<b>CF Step</b> 5.000000 MHz <u>Auto</u> Man
-58.5								Freq Offset 0 Hz
	67000 GHz						0.00 MHz	
#Res BW	1.0 I¥IHZ <picture.png< td=""><td></td><td>BW 3.0 MHz*</td><td></td><td>SWEED 1</td><td></td><td>1001 pts)</td><td></td></picture.png<>		BW 3.0 MHz*		SWEED 1		1001 pts)	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-20BW-14.4Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Duty Factor (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
144	5720(D 12)	А	7.462		0.09	10.562	<11	Pass
144	5720(Band3)	В	7.883		0.09	10.983	<11	Pass
144	5720(D14)	А	2.790	6.98	0.09	12.870	<30	Pass
144	5720(Band4)	В	5.520	6.98	0.09	15.600	<30	Pass

Note:

- The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.
- 2. Total PPSD = PPSD value + Duty Factor +  $10*\log 2$



									<u> </u>	/				
		ctru		ılyzer - Sv										
l <b>XI</b> R			RF	50 \$				SENSE:INT		ALIGN AUTO		M May 15, 2015		Frequency
Cer	nter	Fre	eq (	5.7200	00000 G	нz				Type: RMS		CE 1 2 3 4 5 6		Frequency
						PNO: Fast		ree Run	Avgļi	Hold:>100/100		PEA WWWWW ETANNNN		
					I	IFGain:Lov	/ #Atten	30 dB			L	Ellis in in in in	1	
										Miler	2 5.718 (		ıL.	Auto Tune
				Offset 1.						IVINI				
	B/div	<i>,</i>	Ref	21.50	dBm						7.4	62 dBm	╟⊢	
Log							<u>^</u> 2			1				
11.5					-		•			()'				Center Freq
4.50														•
1.50				/							- N			5.720000000 GHz
-8.50				\$				_			\	-	IH	
													IF	
-18.5														Start Freq
-28.5								_						•
														5.707500000 GHz
-38.5													╟⊢	
-48.5													IF	
														Stop Freq
-58.5								-	-					•••
-68.5														5.732500000 GHz
-00.5													IH	
<b>.</b>		6 74	200	0.011-							0	5 00 MIL-	lt	
				0 GHz						-		5.00 MHz		CF Step
#Re	s Bl	W 1	.0 P	/IHZ		#V	BW 3.0 MH	IZ*		Sweep	1.000 ms (	(1001 pts)		2.500000 MHz
NKD	MODE	Тор	e en		×		~		UNCTION	FUNCTION WIDT	U CUNCTI	ON VALUE	A	<u>uto</u> Man
1	N	4	f			00 GHz	7.182		onenen	Tonenon wie i			H	
2	N	1	f			00 GH2	8.515							
3		•			0.7100		0.010							Freq Offset
4														0 Hz
5												=		0 112
6													⊩	
7														
8														
9 10														
11														
<	_		-				m			+	-	>		
MSG										STAT	05			

#### Channel 144(Band 3) - Chain A

# Channel 144(Band4) – Chain A

Agilent Sp			yzer - Swe	pt SA									
Cente		RF <b>75.</b>	50 Ω 72000	AC 0000 GH	łz		SENSE:INT			ALIGN AUTO pe: RMS Id: 100/100	TR	AM May 15, 2015 ACE 1 2 3 4 5 6 YPE A WWWWW	Frequency
10 dB/d			offset 8.4 28.48 c	1F1	NO: Fast Gain:Low						2 5.727	475 GHz .79 dBm	Auto Tune
18.5 8.48 -1.52			~~~			~~~~~	ym	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	2		Center Freq 5.720000000 GHz
-11.5 -21.5 -31.5	~~~~	~~	<u>لی</u>									······	<b>Start Freq</b> 5.707500000 GHz
-41.5 — -51.5 — -61.5 —													<b>Stop Freq</b> 5.732500000 GHz
Center #Res E					#VI	300 kH	łz			Sweep		25.00 MHz (1001 pts)	CF Step 2.500000 MHz Auto Man
Nike         MOD           1         N           2         N           3         4           5         6           7         8           9         10           11	1			× 5.725 00 5.727 47		¥ 5.152 2.79	dBm dBm	FUNC		UNCTION WIDT			Freq Offset 0 Hz
MSG										STAT	US		



		trum		lyzer - Sw														
(X) RL Cent		Free	RF q 5	50 Ω .7200		) GH	Z	_	SEr		-	Type:	LIGN AUTO RMS 100/100	03:4	TRAC	4 May 15, 3 E 1 2 3 4 E A WWW	156	Frequency
				Offset 1.			IO: Fast ain:Lov		#Atten: 30						DE 164	75 G	Hz	Auto Tune
10 dE Log 11.5	3/div	F	Ref	21.50	dBm			2					1		7.88	33 dE	sm	Center Freq
1.50 -8.50				/								 				1		5.720000000 GHz
-18.5 -28.5 -38.5																		Start Freq 5.707500000 GHz
-48.5 -58.5 -68.5																		<b>Stop Freq</b> 5.732500000 GHz
#Res	s BV	V 1.	0 N	) GHz 1Hz			#V	вw	3.0 MHz	*			weep ′	1.000	ms (			<b>CF Step</b> 2.500000 MHz Auto Man
	MODE N	1	f f			25 000 6 475	) GHz 5 GHz		6 <u>.825 dl</u> 7.879 dl		FUNC		CTION WIDTH		UNCTIC	IN VALUE		Freq Offset 0 Hz
9 9 10 11 ≪ MSG													STATU	JS			>	

#### Channel 144(Band 3) – Chain B

# Channel 144(Band 4) – Chain B

Agilent Spectrun	n Analyzer - Swept SA			×		
RL Center Fre	RF 50Ω AC		SENSE:INT	ALIGN/ Avg Type: RMS Avg Hold: 100/1	TRACE 1 2 3 4	56 Frequency
	Ref Offset 8.48 dB Ref 28.48 dBm		∫ Trig: Free Run #Atten: 30 dB		Ikr2 5.725 025 GI 5.52 dE	Hz Auto Tune
18.5 8.48 -1.52			mm	2	mm	Center Fre 5.720000000 GH
11.5 21.5 31.5						<b>Start Fre</b> 5.707500000 GH
41.5 51.5 61.5						<b>Stop Fre</b> 5.732500000 GH
enter 5.72 Res BW 1	00 kHz		7 300 kHz		Span 25.00 M ep 3.133 ms (1001 p	
Mode         Tree           1         N         1           2         N         1           3         -         -           4         -         -           5         -         -           6         -         -	f 5.7	25 000 GHz 25 025 GHz	4.854 dBm 5.52 dBm	FUNCTION FUNCTION	WIDTH FUNCTION VALUE	Freq Offs 0 H
7 8 9 10 11						
SG					STATUS	



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-40BW-30Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Duty Factor (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
1.42	5710(D12)	А	5.044		0.15	8.204	<11	Pass
142	5710(Band3)	В	5.167		0.15	8.327	<11	Pass
1.42	5710(Day 14)	А	-0.610	6.98	0.15	9.530	<30	Pass
142	5710(Band4)	В	-0.280	6.98	0.15	9.860	<30	Pass

Note:

- The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.
- 2. Total PPSD = PPSD value + Duty Factor +  $10*\log 2$



Agilent	t Spec	ctrun	n Ana	ılyzer - Sw	ept SA				 			
(XI RL Cent		Fre	RF eq 5	50 Ω 5.71000	00000 GH	<b>-iz</b> NO: Fast C		SE:INT	ALIGN AUTO pe: RMS Id:>100/100	TRA	M May 15, 2015 CE 1 2 3 4 5 6 PE A WWWWA	Frequency
10 dE	3/div			Offset 1.	ıғ 5 dB	Gain:Low	#Atten: 30	dB	 Mkr	2 5.704	00 GHz 44 dBm	Auto Tune
Log 11.5 1.50 -8.50							2		 	1		Center Freq 5.710000000 GHz
-18.5 -28.5 -38.5			~~~~									<b>Start Freq</b> 5.685000000 GHz
-48.5 -58.5 -68.5												<b>Stop Freq</b> 5.735000000 GHz
#Re	s₿V	N 1	.0 N	0 GHz /IHz		#VB	W 3.0 MHz*		-	.000 ms (		
1 2 3 4 5 6 7 8 9 10 11					× 5.725 00 5.704 0		Y 1.156 dE 5.033 dE	3m	UNCTION WIDTH			Freq Offset 0 Hz
< MSG						•		1	 STATU	s		

#### Channel 142(Band3) - Chain A

# Channel 142(Band4) – Chain A

Agilent Spe	ctrum An	alyzer - Swe	pt SA								
ເ¤ _{RL} Center	Freq :		AC   0000 GH			SE:INT		ALIGN AUTO ce: RMS d: 100/100	TRA	M May 15, 2015 CE 1 2 3 4 5 6 PE A WWWWW	Frequency
10 dB/div		f Offset 8.4 f 28.48 d	IFG 8 dB	NO: Fast 🕞 Gain:Low	#Atten: 30				2 5.727	60 GHz 61 dBm	Auto Tune
Log 18.5 8.48			www.www.	ann	annon	punnan	ummum	mmmmm	¹ ∳ ^{2−}		Center Freq 5.710000000 GHz
	nunnu	~~~				1			Muy	wwwwww	Start Freq 5.685000000 GHz
-41.5 -51.5 -61.5											Stop Freq 5.735000000 GHz
Center : #Res B	W 100	kHz	×	#VBV	V 300 kHz			Sweep 6	.200 ms	0.00 MHz (1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 N 2 N 3 4 5 6	1 f 1 f		5.725 000 5.727 60		-1.414 dB -0.61 dB	m					Freq Offset 0 Hz
7 8 9 10 11											
MSG								STATU	s		



							0		112(2	, , , , , , , , , , , , , , , , , , , ,	enum 1	-		
Agilent	Spec	trum	Ana	lyzer - Sw	ept SA									
LXI RL			RF	50 Ω	AC		SE	NSE:INT		ALIGN AUTC	03:23:49 A	M May 15, 2015	_	
Cent	er F	Free	a 5	.71000	00000 G	Hz				Type: RMS	TRA	CE 1 2 3 4 5 6		quency
					I	PNO: Fast	🖵 🔂 Trig: Fre		Avgļt	lold:>100/100		PEA WWWWW ETANNNN		
					IF	Gain:Low	#Atten: 3	0 dB			L	Ellanananan	1	
										Mk	r2 5.705	15 GHz		Auto Tune
				Offset 1.						TALL		67 dBm		
10 dB	3/div	F	Ref	21.50	dBm						ə. I	ол авш		
Log							¥2							
11.5			+				<b>_</b> € ²				1		C	enter Freq
1.50							and the second second						5 7 1 0	000000 GHz
				1				Ϋ́					0.710	000000 0112
-8.50				/							+			
-18.5		~~~~									`			
														Start Freq
-28.5			+										5.685	000000 GHz
-38.5														
-48.5			+											
-58.5														Stop Freq
													5.735	000000 GHz
-68.5			+					-						
<b>I</b> L														
Cent	ter 5	i.71	000	) GHz							Span 5	0.00 MHz		CF Step
#Res	s BM	V 1.	0 N	1Hz		#VE	3W 3.0 MHz	*		Sweep	1.000 ms (	1001 pts)	5	000000 MHz
		_	_										Auto	Man
MKB M		TRC	-		Х		Y		FUNCTION	FUNCTION WIDT	H FUNCTI	DN VALUE	Auto	Man
	N	1	f		5.725.00	DO GHZ	0.822 d							
	Ν	1	f		5.705	15 GHz	5.161 d	Bm						req Offset
3			-										Г Г	· ·
4	-	-	-								-			0 Hz
6											-	=		
6 7														
8														
9														
10			_											
11												<u> </u>		
<														
MSG										STAT	US			

## Channel 142(Band3) - Chain B

# Channel 142(Band4) – Chain B

		ctrum		lyzer - Swe	pt SA								
<mark>⊯</mark> R Cen		Fre	RF q 5	50 Ω 5.71000	AC 0000 GH	lz	<b></b>		Avg Typ Avg Hold		TRA	M May 15, 2015 CE 1 2 3 4 5 6 PE A WWWWW	Frequency
10 d	B/div			Offset 8.4	IFG 8 dB	10: Fast Sain:Low	#Atten: 3				[□] 2 5.727	50 GHz 80 dBm	Auto Tune
Log 18.5 8.48 -1.52				phanhun	manna	www.ww	www.www.ww	procession	wannana	gentration .	1_2-		Center Freq 5.71000000 GHz
-11.5 -21.5 -31.5	ant DELY	www	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				w'				munannan	<b>Start Freq</b> 5.685000000 GHz
-41.5 -51.5 -61.5													<b>Stop Freq</b> 5.735000000 GHz
#Re	s BV	N 10	00 I	0 GHz kHz		#VE	W 300 kHz			<u> </u>	6.200 ms (	0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
MKR 1 2 3 4 5 6 7 8 9 10 11 <			SCL f		× 5.725 000 5.727 50		Y -0.590 di -0.280 di	Bm		NCTION WIDTH			Freq Offset 0 Hz
MSG										STATU	S		



Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Peak Power Spectral Density

Test Site : No.3 OATS

Test Mode : Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Duty Factor (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
42	5210	А	1.220		0.31	4.540	<11	Pass
42	5210	В	-0.310		0.31	3.010	<11	Pass
50	5200	А	-4.240		0.31	-0.920	<11	Pass
58	5290	В	-5.430		0.31	-2.110	<11	Pass
100	5520	А	-0.660		0.31	2.660	<11	Pass
106	5530	В	-0.580		0.31	2.740	<11	Pass
100	5(10	А	2.680		0.31	6.000	<11	Pass
122	5610	В	2.780		0.31	6.100	<11	Pass
120	5 (00 (D 12)	А	2.233		0.31	5.553	<11	Pass
138	5690 (Band3)	В	2.439		0.31	5.759	<11	Pass
120	5(00) (D 14)	А	-3.780	6.98	0.31	6.520	<30	Pass
138	5690 (Band4)	В	-4.191	6.98	0.31	6.109	<30	Pass

Note:

 The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.

2. Total PPSD = PPSD value + Duty Factor +  $10*\log 2$ 



ter Freq 5.21000000 GHz       Trig: Free Run       #Avg Type: RMS       TROE 1 2 3 4 5 6       Frequency         PN0: Fast       Trig: Free Run       WKr1 5.215 3 GHz       Auto Tun         Idiv       Ref Offset 1.5 dB       Mkr1 5.215 3 GHz       Auto Tun         Idiv       Ref 21.50 dBm       1       Center Free         5.210000000 GH       1       5.210000000 GH       Start Free         5.160000000 GH       Start Free       5.16000000 GH       Stop Free         5.26000000 GH       Matter       Matter       Matter       Stop Free         5.26000000 GH       Matter       Matter       Stop Free       Stop Free         5.26000000 GH       Matter       Matter       Matter       Stop Free         5.26000000 GH       Matter       Matter       Matter       Stop Free         5.26000000 GH       Matter       Matter       Matter       Stop Free         5.260000000 GH       Matter       Matter       Matter       Stop Free         5.260000000 GH       Matter       Matter       Matter       Freq Offsee				Channel 4	42 – Chain A		
ter Freq 5.21000000 GHz       Trig: Free Run       #Avg Type: RMS       TRACE 123456       Frequency         PN0: Fast       Trig: Free Run       #Avg Type: RMS       TRACE 123456       Frequency         Wdiv       Ref Offset 1.5 dB       Mkr1 5.215 3 GHz       Auto Tun         Idiv       Ref 21.50 dBm       1.22 dBm       Center Fre         5.210000000 GH       1       5.21000000 GH       Start Fre         5.160000000 GH       Start Fre       5.160000000 GH       Start Fre         5.160000000 GH       Matein and and and and and and and and and an		· · · · ·					
Ref Offset 1.5 dB Ndiv       Mkr1 5.215 3 GHz 1.22 dBm       Auto Tur         Image: Start Free 5.21000000 GH       Image: Start Free 5.26000000 GH       Start Free 5.16000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Start Free 5.26000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH         Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH       Image: Start Free 5.26000000 GH	enter F		0 GHz	1		TRACE 1 2 3 4 5 6	
Ndiv         Ref 01/set 1.5 dB         1.22 dBm           Image: Note of the set of the					Mk		A
5.21000000 GH Start Fre 5.16000000 GH Start Fre 5.16000000 GH Stop Fre 5.26000000 GH CF Ste 10.00000 MH Auto Ma Freq Offse	0 dB/div					1.22 dBm	
5.16000000 GH           Stop Fre           5.26000000 GH           CF Ste           10.000000 MH           Auto           Mat           Freq Offsta	1.5			1			5.210000000 GH
Stop Fre       Stop Fre       5.26000000 GH       CF Step       10.00000 MH       Auto       Freq Offs	.50		the second second		man and a second second second	- marine	Start Fre
5.26000000 GF           CF Ste           10.00000 MF           Auto           Freq Offs	.50						5.160000000 GH
5.26000000 GF CF Ste 10.00000 MF Auto Freq Offs	8.5						Stop Fre
10.00000 MH Auto Ma Freq Offs	8.5	worken of				and the second s	
10.00000 MH Auto Ma Freq Offs							CF Ste
	8.5						10.000000 MH
	3.5						Freg Offs
	8.5						01
	B.5						
er 5.21000 GHz Span 100.0 MHz						Span 100.0 MHz	
BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	Res BW	1.0 MHz	#VBW	3.0 MHz	_		

### Channel 42 – Chain A

## Channel 58 – Chain A

	ght Spectrum Analyzer -									
(X/ RL Cente	sr Freq 5.290	0Ω AC	17	1	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRACE	May 12, 2015	Frequency
	Ref Offset	P IF	NO: Fast 🖵 Gain:Low	Trig: Free #Atten: 3			Mk	r1 5.302		Auto Tune
10 dB/d Log								-4.2	24 dBm	
11.5 —										Center Fred 5.290000000 GHz
1.50 — -8.50 —						1				Start Fred 5.240000000 GH2
-18.5 —									<u>x</u>	Stop Fred 5.340000000 GHz
-38.5									and a second	<b>CF Step</b> 10.000000 MH <u>Auto</u> Mar
-40.5 -										Freq Offse 0 H
-68.5 —										
	r 5.29000 GHz BW 1.0 MHz	2	#VBW	3.0 MHz			Sweep 1	Span 10 000 ms (1	0.0 MHz 001 pts)	
MSG							STATUS	•		



	_	0 = Chann A							
						Analyzer - Swept SA			
Frequency	05:14:52 AM May 12, 2015 TRACE 1 2 3 4 5 6	ALIGN AUTO	ENSE:INT	SEN	CH2	F 50 Ω AC	ter Fred		
	TYPE A WWWW DET A N N N N N		PNO: Fast IFGain:Low #Atten: 30 dB						
Auto Tur	r1 5.524 9 GHz -0.66 dBm	Mk				Ref Offset 1.5 dB 0 dB/div Ref 21.50 dBm			
Center Fre									
5.530000000 GI							i		
Start Fre				1		سور.			
5.480000000 GH	monter		Y						
Stop Fre 5.58000000 Gł						1			
CF Ste 10.000000 Mi Auto Ma	`								
Freq Offs 0 H									
	Span 100.0 MHz 000 ms (1001 pts).	Sweep 1.	z	W 3.0 MHz	#VBW		nter 5.5300 es BW 1.0		
		STATUS							

#### Channel 106 – Chain A

## Channel 122 – Chain A

SENSE:INT         ALIGN AUTO         05:17:49 AM May 12, 201           Hz         #Avg Type: RMS         TRACE [1 2 3 4 5	
PIO: Fast Trig: Free Run Type: New Job Construction Type: A www.www. FGain:Low #Atten: 30 dB DET A NNNN	N
Mkr1 5.595 2 GH 2.68 dBn	
	Center Fre
▲ ¹	5.61000000 GH
	Start Fre
	5.560000000 Gł
	Stop Fr
	5.660000000 G
	CF St 10.000000 M
	Auto M
	Freq Offs
	0
Span 100.0 MH: #VBW 3.0 MHz Sweep 1.000 ms (1001 pts	
#VEW 3.0 MILZ Sweep 1.000 HIS (1001 PLS	<u> </u>



	Channe	el 138(Band3) -	- Chain A		
	SENSE:INT	ALIGN AUTO	03:32:11 AM May 15, 2015	-	
iHz	Taias Face a Dum	Avg Type: RMS	TRACE 1 2 3 4 5 6		
PNO: Fast 🕠	Trig: Free Run	Avg Hold:>100/100	TTPE A VOIVOUV		

		ctrur		alyzer - Swe	ept SA											
Cen		Fre	RF q (	50 Ω 5.69000	AC   00000 G	GHz		SEr	VSE:INT		Туре	ALIGN AUTO : RMS >100/100	TRA	M May 15, 20 CE 1 2 3 4 5 PE A WWWW	56	Frequency
10 d	B/div			Offset 1.5	5 dB	PNO: Fast IFGain:Lov		#Atten: 30		Avgi	-1010.		r2 5.67	ET A N N N N	Z N	Auto Tune
Log 11.5 1.50 -8.50						<b>1</b>	!									Center Freq 5.69000000 GHz
-18.5 -28.5 -38.5		طفى ب													~	<b>Start Freq</b> 5.640000000 GHz
-48.5 -58.5 -68.5			_													<b>Stop Freq</b> 5.740000000 GHz
Cen #Re	s Bl	N 1	.0 1	0 GHz /IHz		#\	/BW	3.0 MHz	*	FUNCTION		<u> </u>	.000 ms (	00.0 MH 1001 pt:	S)	<b>CF Step</b> 10.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9	N N	1	f		5.725 (	28 GHz		-2.613 df 2.266 df								Freq Offset 0 Hz
9 10 11 <								1001				STATUS			~	

# Channel 138(Band4) – Chain A

		ctrun		ılyzer - Sw	vept SA												
w. Cer		Fre	RF q 5	50 s 5.6900	00000 GI			SEN				Туре	ALIGN AUTO : RMS 100/100	TRA	M May 15, 2019 CE 1 2 3 4 5 PE A WAMAA	6	Frequency
			Ref	Offset 8.	IF	'NO: Fast Gain:Lov		#Atten: 30			1810			r2 5.72	et a nn nn 7 5 GHz		Auto Tune
	B/div	/	Ref	28.48	dBm									-3.	78 dBm	IJŀ	
18.6 8.48					lute		105.00.0				n te barrake						Center Freq 5.69000000 GHz
-11.52				<b>New Works</b>	the full the second second			and the second se	1		an ion a faith an	وتطريبهم	and a little day of the little	horadorada		lŀ	
-11.5 -21.5 -31.5	Heart.	at all the second s	6. CTAN					i						ļ,	and a second	~	<b>Start Freq</b> 5.64000000 GHz
-41.5																	
-51.5																1	Stop Freq
-61.5																ł	5.740000000 GHz
Cer #Re				0 GHz kHz		#\	BW :	300 kHz				ę	Sweep 1		00.0 MHz 1001 pts	)	CF Step 10.000000 MHz Auto Man
	MODE		_		×			Y	2	FUNC	TION	FUN	CTION WIDTH	FUNCTI	ON VALUE		<u>Auto</u> Man
1 2 3 4 5	N	1	f		5.725 00 5.727	5 GHz		<u>-3.019 dE</u> -3.78 dE									Freq Offset 0 Hz
6 7 8																ľ	
9 10 11 <															~		
MSG													STATUS	3			



			Cn	annei 4	2 - Cha						
	um Analyzer - Swe										
	RF 50 Ω req 5.21000			ENSE:INT	AL #Avg Type:	IGN AUTO	04:11:18 AM	May 12, 2015	Frequency		
Senter F	red 5.21000	PNO	: Fast 🕞 Trig: Fr in:Low #Atten:		ming type.	Tano 1	TYF	E A WWWWWW T A N N N N N	Auto Tune		
10 dB/div											
- Ug									Center Fred		
11.5									5.210000000 GHz		
1.50		James	man management						Start Fred		
8.50		and the second se		Y			mannen		5.16000000 GHz		
0.00											
18.5									Stop Fred		
28.5	1 miles							and	5.260000000 GH		
20.5											
38.5									CF Step		
									10.000000 MH Auto Mar		
48.5									<u>Adto</u> Mai		
									Freq Offse		
58.5				1					0 H:		
68.5											
Center 5.: Res BW	21000 GHz 1.0 MHz		#VBW 3.0 MH	z	s	weep 1	Span 1 .000 ms (	00.0 MHz 1001 pts)			
MSG						STATUS			l		

### Channel 42 – Chain B

## Channel 58 – Chain B

	um Analyzer - Swept SA					
KRL Center F	RF 50Ω AC req 5.29000000	0 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	04:14:53 AM May 12, 2015 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
10 dB/div	Ref Offset 1.5 dB Ref 21.50 dBm	PNO: Fast 😱 IFGain:Low	#Atten: 30 dB	МІ	kr1 5.306 1 GHz -5.43 dBm	Auto Tune
11.5						Center Fred 5.290000000 GHz
1.50 -8.50		the second and the se	allow the second second			Start Free 5.240000000 GH:
-18.5						<b>Stop Fred</b> 5.340000000 GH:
-38.5						<b>CF Ste</b> j 10.000000 MH <u>Auto</u> Ma
48.5 58.5						Freq Offse 0 H
-68.5						
Center 5.: #Res BW	29000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep 1	Span 100.0 MHz I.000 ms (1001 pts)	
MSG				STATU	S	



	04:17:23 AM May 12, 2015	ALIGN AUTO		SENSE:INT		nalyzer - Swept SA F 50 Ω AC	gilent Spectr
Frequency	TRACE 1 2 3 4 5 6	pe: RMS	#Avg T		GHz	5.530000000	
	TYPE A WWWWW DET A N N N N N			Trig: Free Run #Atten: 30 dB	PNO: Fast 🖵 IFGain:Low		
Auto Tur	r1 5.527 5 GHz -0.58 dBm	Mk				f Offset 1.5 dB ef 21.50 dBm	0 dB/div
Center Fre							og
5.530000000 GH							1.5
				1			50
Start Fre			an a		m garman and a second		
5.480000000 GH							.50
Oton En							8.5
Stop Fre 5.58000000 GH							
	and the second se						3.5
CF Ste 10.000000 MH			_				8.5
Auto Ma							8.5
Freq Offs							
01							8.5
					_		8.5
	Span 100.0 MHz 000 ms (1001 pts)	Sweep 1.		3.0 MHz	#VBW		enter 5.: Res BW
		STATUS					sg

#### Channel 106 – Chain B

## Channel 122 – Chain B

	rum Analyzer - Sw						
RL Center F	RF 50 Ω req 5.61000	00000 GHz	Z D: Fast 😱	SENSE:INT	ALIGNAUTO #Avg Type: RMS	TRACE 123456	Frequency
10 dB/div	Ref Offset 1.9	IFG: 5 dB	ain:Low	#Atten: 30 dB	M	_{Der} ANNNN اkr1 5.586 6 GHz 2.78 dBm	Auto Tune
11.5		<b>▲</b> 1					Center Fre 5.610000000 GH
8.50		www.	and the second second				Start Fre 5.560000000 G⊦
18.5 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						<b>Stop Fre</b> 5.66000000 GH
18.5							CF Ste 10.000000 M <u>Auto</u> M
8.5							Freq Offs 0
8.5							
	61000 GHz 1.0 MHz	1	#VBW	3.0 MHz	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	
ISG					STAT	US	



Agilent Spe	ctrum Ar	halyzer - Sv	wept SA								
LXI RL	RI	= 50 :	Ω AC   100000 G			NSE:INT		ALIGNAUTO Type: RMS	TRA	M May 15, 2015 CE 1 2 3 4 5 6	Frequency
		f Offset 1	.5 dB	PNO: Fast -Gain:Low	Trig: Free #Atten: 3		Avg H	lold:>100/100 MI	r2 5.68	PE A WWWWW ET A N N N N N 3 9 GHz 39 dBm	Auto Tune
10 dB/div Log 11.5	/ Re	ef 21.50	dBm	N.X	¢2		·		2.4		Center Freq 5.69000000 GHz
-18.5 -28.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/								A Barrow any line	Start Freq 5.640000000 GHz
-48.5 -58.5 -68.5											<b>Stop Freq</b> 5.740000000 GHz
Center : #Res B\	W 1.0	MHz		#VB	SW 3.0 MHz			<u> </u>	.000 ms (	00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man
MKE         MODE           1         N           2         N           3         -           4         -           5         -           6         -           7         -           8         -           9         -           10         -           11         -	TRC         SC           1         f           1         f		× 5.725 0 5.683	00 GHz 3 9 GHz	Y -2,330 dl 2.420 dl	Bm		FUNCTION WIDTH			Freq Offset
MSG								STATU	s		

### Channel 138(Band3) - Chain B

## Channel 138(Band4) – Chain B

		trun		alyzer - Swe	ept SA											
Cen		Fre	RF q (	50 Ω 5.69000	AC   10000 G	Hz				Avg Ty Avg Ho	ype:		TRA	M May 15, 2019 CE 1 2 3 4 5 PE A WWWWW	6	Frequency
_					I	PNO: Fast Gain:Low				Avgino			D	T 5 GHz	N	Auto Tune
10 d Log	B/div			Offset 8.4 28.48 c										91 dBm		
18.5 8.48																Center Freq 5.69000000 GHz
-1.52	-		+	pitushaphanipatha	and a feature of the state of the	and the second	nin hangaratan pangangan ku		يا بيا بيا يونيو ال	te naturalistication of	Atuspen	ana salaha katalan kata				
-11.5 -21.5 -31.5	الريايين	an tai	para di					*						^{EXA} BRERING AND		<b>Start Freq</b> 5.640000000 GHz
-41.5 -51.5																<b>Stop Freq</b> 5.74000000 GHz
-61.5	<u> </u>		+								_				╢	5.74000000 GH2
Cen #Re				0 GHz kHz		#V	BW 300 kH	z*			s	weep 1		00.0 MHz 1001 pts	)	CF Step 10.000000 MHz
MKB 1	MODE	TRC 1	SCL f		× 5.725 0	00 GHz	۲ -4.193 د	Bm	FUNC	TION	FUNC	TION WIDTH	FUNCTI	DN VALUE		<u>Auto</u> Man
2 3 4 5	Ň	1	f			5 GHz	-4.191 (									<b>Freq Offset</b> 0 Hz
6 7 8 9																
10 11														~		
MSG												STATUS	•			

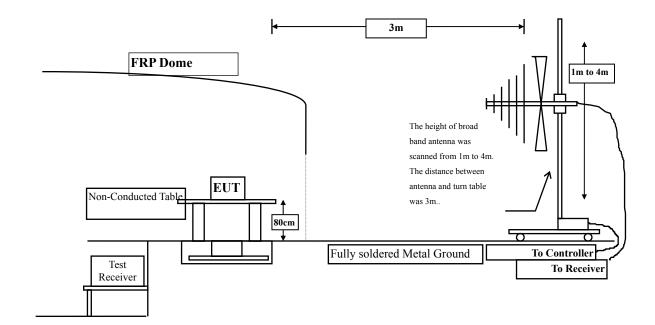
# 5. Radiated Emission

### 5.1. Test Equipment

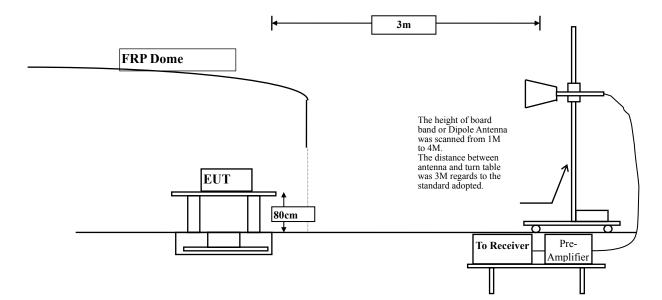
The following test equipments are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep, 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun, 2014
	Х	EMI Test Receiver	R&S	ESCS 30/838251/ 001	Jun, 2014
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2014
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2014

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2015
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2014
	X Pre-Amplifier		EMCI	EMC012630SE/980210	Jan, 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2014


Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.




### 5.2. Test Setup

Radiated Emission Below 1GHz



Radiated Emission Above 1GHz



## 5.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	Field strength	Measurement distance					
11112	(microvolts/meter)	(meter)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					

Remarks: E field strength  $(dB\mu V/m) = 20 \log E$  field strength (uV/m)

## 5.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

### 5.5. Uncertainty

 $\pm$  3.8 dB below 1GHz  $\pm$  3.9 dB above 1GHz

## 5.6. Test Result of Radiated Emission

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10360.000	12.930	36.510	49.440	-24.560	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
10360.000	13.724	36.350	50.074	-23.926	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5220MHz)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10440.000	13.322	36.800	50.122	-23.878	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10440.000	14.245	36.910	51.155	-22.845	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5240MHz)

Frequency	Frequency Correct Factor		Measurement Level	Margin	Limit
MHz	dB	Level dBµV	dBµV/m	dB	dBµV/m
	dB	αΒμν	dDµv/III	цВ	dBμv/III
Horizontal					
Peak Detector:					
10480.000	13.693	37.580	51.274	-22.726	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	37.890	52.511	-21.489	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Intel® Dual Band Wireless-AC 8260
	Harmonic Radiated Emission Data
	No.3 OATS
	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5260MHz)
•	

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10520.000	14.015	35.940	49.955	-24.045	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	36.910	51.728	-22.272	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	35.500	50.049	-23.951	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10600.000	14.881	36.110	50.991	-23.009	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5320MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10640.000	14.690	36.140	50.830	-23.170	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	36.690	51.773	-22.227	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5500MHz)
Test Site	:	No.3 OATS

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11000.000	16.399	36.150	52.549	-21.451	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11000.000	17.132	36.480	53.612	-20.388	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5580MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.656	35.820	52.476	-21.524	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11160.000	17.726	35.980	53.706	-20.294	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	$dB\mu V/m$
Horizontal					
<b>Peak Detector:</b>					
11400.000	16.530	34.480	51.011	-22.989	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11400.000	17.138	35.820	52.958	-21.042	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10360.000	12.930	35.780	48.710	-25.290	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					

# Peak Detector:

reak Delector:					
10360.000	13.724	36.190	49.914	-24.086	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)
	:

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	36.310	49.632	-24.368	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000 <b>Average</b>	*	*	*	*	74.000
Detector:					
*	*	*	*	*	*

## Vertical

### **Peak Detector:**

10440.000	14.245	36.740	50.985	-23.015	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10480.000	13.693	36.170	49.864	-24.136	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	36.530	51.151	-22.849	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5260MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10520.000	14.015	35.910	49.925	-24.075	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	36.210	51.028	-22.972	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5300MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	35.510	50.059	-23.941	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

## Vertical

### **Peak Detector:**

10600.000	14.881	35.980	50.861	-23.139	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10640.000	14.690	36.550	51.240	-22.760	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	36.810	51.893	-22.107	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
11000.000	16.399	35.890	52.289	-21.711	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11000.000	17.132	35.970	53.102	-20.898	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000

* * * *

Note:

Average Detector:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.656	34.720	51.376	-22.624	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					

#### **Peak Detector:**

can Detector.					
11160.000	17.726	36.030	53.756	-20.244	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5700MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	34.870	51.401	-22.599	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	36.830	53.968	-20.032	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10380.000	12.939	35.850	48.789	-25.211	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

## Vertical

### **Peak Detector:**

10380.000	13.796	36.750	50.546	-23.454	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

os) (5230MHz)
)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10460.000	13.508	36.320	49.828	-24.172	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10460.000	14.433	36.740	51.173	-22.827	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000

Note:

26150.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10540.000	14.151	35.920	50.070	-23.930	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10540.000	14.829	36.790	51.618	-22.382	74.000

10540.000	14.829	36.790	51.618	-22.382	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Intel® Dual Band Wireless-AC 8260	
Test Item	Harmonic Radiated Emission Data	
Test Site	No.3 OATS	
Test Mode	Mode 1 SISO A: Transmit (802.11n-40B)	W 15Mbps) (5310MHz)
Test Item Test Site	Harmonic Radiated Emission Data No.3 OATS	W 15Mbps) (5310MH

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10620.000	14.623	36.070	50.693	-23.307	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10620.000	14.970	36.150	51.120	-22.880	74.000

10620.000	14.970	36.150	51.120	-22.880	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

: Intel® Dual Band Wirel	ess-AC 8260
: Harmonic Radiated Emi	ssion Data
: No.3 OATS	
: Mode 1 SISO A: Transm	it (802.11n-40BW 15Mbps) (5510MHz)
: No.3 OATS	

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
11020.000	16.474	35.670	52.143	-21.857	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11020.000	17.224	36.050	53.274	-20.726	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000

Note:

26550.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Intel® Dual Band Wireless-AC 8260
Harmonic Radiated Emission Data
No.3 OATS
Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) (5550MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11100.000	16.681	35.210	51.891	-22.109	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11100.000	17.523	36.140	53.663	-20.337	74.000

11100.000	17.523	36.140	53.663	-20.337	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) (5670MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11340.000	16.408	35.910	52.317	-21.683	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11340.000	17.167	36.290	53.457	-20.543	74.000
15010 000		.4.		.4.	74.000

11340.000	17.107	30.290	33.437	-20.343	/4.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1 SISO A: Transmit (802.11ac-20BW-7.2Mbps) (5720MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11440.000	16.779	36.250	53.029	-20.971	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11440.000	17.519	36.520	54.039	-19.961	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel [®] Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1 SISO A: Transmit (802.11ac-40BW-15Mbps) (5710MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11420.000	16.648	36.430	53.077	-20.923	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11420.000	17.311	36.080	53.390	-20.610	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5210MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level	-				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10420.000	13.135	36.750	49.885	-24.115	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
10420.000	14.057	36.550	50.607	-23.393	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5290MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10580.000	14.423	36.320	50.743	-23.257	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
<b>Detector:</b>								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
10580.000	14.849	36.760	51.609	-22.391	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
<b>Detector:</b>								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel [®] Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5530MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11060.000	16.580	36.610	53.190	-20.810	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11060.000	17.375	36.330	53.705	-20.295	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5610MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11220.000	16.589	36.510	53.100	-20.900	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
<b>Detector:</b>								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11220.000	17.620	36.240	53.860	-20.140	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260									
Test Item	: Harmonic Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5690MHz)									
Frequency	Correct	Correct Reading Measurement Margin Limit								
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
<b>Peak Detector:</b>										
11380.000	16.480	36.250	52.731	-21.269	74.000					
11550.000	*	*	*	*	74.000					
17325.000	*	*	*	*	74.000					
20720.000	*	*	*	*	74.000					
25900.000	*	*	*	*	74.000					
31080.000	*	*	*	*	74.000					
36260.000	*	*	*	*	74.000					
Average										
<b>Detector:</b>										
*	*	*	*	*	*					
Vertical										
Peak Detector:										
11380.000	17.125	36.240	53.366	-20.634	74.000					
11550.000	*	*	*	*	74.000					
17325.000	*	*	*	*	74.000					
20720.000	*	*	*	*	74.000					
25900.000	*	*	*	*	74.000					
31080.000	*	*	*	*	74.000					
36260.000	*	*	*	*	74.000					
Average										
Detector:										
*	*	*	*	*	*					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>Harmonic Radiated Emission Data</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11a-6Mbps) (5180MHz)</li> </ul>									
iest widde	. Widde 2	: Mode 2 SISO B: Transmit (802.11a-6Mbps) (5180MHz)								
Frequency	Correct Reading Measurement Margin Limit									
	Factor	Level	Level							
MHz	dB	dBµV	dBµV/m	dB	dBµV/m					
Horizontal										
Peak Detector:										
10360.000	12.930	36.470	49.400	-24.600	74.000					
15540.000	*	*	*	*	74.000					
20720.000	*	*	*	*	74.000					
25900.000	*	*	*	*	74.000					
31080.000	*	*	*	*	74.000					
36260.000	*	*	*	*	74.000					
Average Detector:										
*	*	*	*	*	*					
Vertical										
Peak Detector:										
10360.000	13.724	36.310	50.034	-23.966	74.000					
15540.000	*	*	*	*	74.000					
20720.000	*	*	*	*	74.000					
25900.000	*	*	*	*	74.000					
31080.000	*	*	*	*	74.000					
36260.000	*	*	*	*	74.000					
Average										
Detector:										
*	*	*	*	*	*					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) (5220MHz)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBμV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10440.000	13.322	36.750	50.072	-23.928	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
10440.000	14.245	36.910	51.155	-22.845	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

z)
2

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	15	
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10480.000	13.693	37.540	51.234	-22.766	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	37.850	52.471	-21.529	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Intel® Dual Band Wireless-AC 8260
Harmonic Radiated Emission Data
No.3 OATS
Mode 2 SISO B: Transmit (802.11a-6Mbps) (5260MHz)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal	uD	dDμ v	dDμ V/III	uD	dDµV/III
Peak Detector:					
	14.015	25.040	40.055	24.045	74.000
10520.000	14.015	35.940	49.955	-24.045	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	36.870	51.688	-22.312	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	35.490	50.039	-23.961	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10600.000	14.881	36.140	51.021	-22.979	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) (5320MHz)

Frequency	Correct	Correct Reading Measurement		Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector:						
10640.000	14.690	36.140	50.830	-23.170	74.000	
15960.000	*	*	*	*	74.000	
21280.000	*	*	*	*	74.000	
26600.000	*	*	*	*	74.000	
Average						
<b>Detector:</b>						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
10640.000	15.083	36.690	51.773	-22.227	74.000	
15960.000	*	*	*	*	74.000	
21280.000	*	*	*	*	74.000	
26600.000	*	*	*	*	74.000	
Average						
<b>Detector:</b>						
*	*	*	*	*	*	

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
11000.000	16.399	36.150	52.549	-21.451	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11000.000	17.132	36.430	53.562	-20.438	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) (5580MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.656	35.820	52.476	-21.524	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11160.000	17.726	35.940	53.666	-20.334	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	34.450	50.981	-23.019	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	35.810	52.948	-21.052	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10360.000	12.930	35.740	48.670	-25.330	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10360.000	13.724	36.250	49.974	-24.026	74.000

10360.000	13.724	36.250	49.974	-24.026	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	36.350	49.672	-24.328	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

# Vertical

### **Peak Detector:**

10440.000	14.245	36.740	50.985	-23.015	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

*

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10480.000	13.693	36.170	49.864	-24.136	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	36.540	51.161	-22.839	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					

Note:

*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5260MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10520.000	14.015	35.870	49.885	-24.115	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	36.160	50.978	-23.022	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5300MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	35.510	50.059	-23.941	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

# Vertical

### **Peak Detector:**

10600.000	14.881	35.940	50.821	-23.179	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

*

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10640.000	14.690	36.510	51.200	-22.800	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	36.750	51.833	-22.167	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					

Note:

*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11000.000	16.399	35.850	52.249	-21.751	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Pools Dotoctor					

#### **Peak Detector:**

cun Detectori					
11000.000	17.132	35.960	53.092	-20.908	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)
	: :

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.656	34.670	51.326	-22.674	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					

#### Peak Detector:

Cak Detector.					
11160.000	17.726	36.020	53.746	-20.254	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	34.820	51.351	-22.649	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	36.840	53.978	-20.022	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5190MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10380.000	12.939	35.840	48.779	-25.221	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

# Vertical

### **Peak Detector:**

10380.000	13.796	36.710	50.506	-23.494	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5230MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10460.000	13.508	36.270	49.778	-24.222	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10460.000	14.433	36.740	51.173	-22.827	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000

Note:

26150.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10540.000	14.151	35.870	50.020	-23.980	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000 Average	*	*	*	*	74.000
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10540.000	14.829	36.750	51.578	-22.422	74.000
15010 000	*	*	*	*	74 000

15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5310MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10620.000	14.623	36.070	50.693	-23.307	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10620.000	14.970	36.150	51.120	-22.880	74.000

10620.000	14.970	36.150	51.120	-22.880	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5510MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11020.000	16.474	35.670	52.143	-21.857	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11000 000	17.004	26.040	52.264	20 52 (	<b>71</b> 000

11020.000	17.224	36.040	53.264	-20.736	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5550MHz)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBμV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11100.000	16.681	35.160	51.841	-22.159	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000 Average	*	*	*	*	74.000
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					

11100.000	17.523	36.140	53.663	-20.337	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5670MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
11340.000	16.408	35.880	52.287	-21.713	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000 Average	*	*	*	*	74.000
Detector: *	*	*	*	*	*
Vertical					
Peak Detector:					
11340.000	17.167	36.290	53.457	-20.543	74.000
17010 000	*	*	*	*	74 000

11340.000	17.107	30.290	33.437	-20.343	/4.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel [®] Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	SISO B: Transmi	t (802.11ac-20BW-7.2	2Mbps) (5720MH	Hz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11440.000	16.779	36.150	52.929	-21.071	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11440.000	17.519	36.280	53.799	-20.201	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® [	Dual Band Wireles	ss-AC 8260				
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Mode 2 SISO B: Transmit (802.11ac-40BW-15Mbps) (5710MHz)					
r.		D 1'		NG .	<b>T</b> · · ·		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11420.000	16.648	36.310	52.957	-21.043	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11420.000	17.311	36.350	53.660	-20.340	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® D	Dual Band Wireles	ss-AC 8260				
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) (5210MHz)					
<b>F</b> actor <b>a</b>	Composi	Daadina	Maanumant	Manain	Limit		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10420.000	13.135	36.540	49.675	-24.325	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		
Vertical							
<b>Peak Detector:</b>							
10420.000	14.057	36.420	50.477	-23.523	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel [®] Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) (5290MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
<b>Peak Detector:</b>							
10580.000	14.423	36.420	50.843	-23.157	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
<b>Peak Detector:</b>							
10580.000	14.849	36.590	51.439	-22.561	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) (5530MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11060.000	16.580	36.420	53.000	-21.000	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11060.000	17.375	36.280	53.655	-20.345	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) (5610MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11220.000	16.589	36.410	53.000	-21.000	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11220.000	17.620	35.490	53.110	-19.890	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) (5690MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
<b>Peak Detector:</b>							
11380.000	16.480	36.420	52.901	-21.099	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
<b>Peak Detector:</b>							
11380.000	17.125	36.340	53.466	-20.534	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10360.000	12.930	35.740	48.670	-25.330	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					

10360.000	13.724	36.190	49.914	-24.086	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	36.310	49.632	-24.368	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

# Vertical

### **Peak Detector:**

cun Detectori					
10440.000	14.245	36.740	50.985	-23.015	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	36.170	49.864	-24.136	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	36.530	51.151	-22.849	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5260MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10520.000	14.015	35.870	49.885	-24.115	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	36.170	50.988	-23.012	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10600.000	14.550	35.470	50.019	-23.981	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

# Vertical

#### **Peak Detector:**

10600.000	14.881	35.950	50.831	-23.169	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10640.000	14.690	36.510	51.200	-22.800	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
10640.000	15.083	36.750	51.833	-22.167	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
11000.000	16.399	35.850	52.249	-21.751	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11000.000	17.132	36.010	53.142	-20.858	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000

* * * * *

Note:

Average Detector:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5800MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
11160.000	16.656	34.660	51.316	-22.684	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					

# Peak Detector:

Tak Dettetor.					
11160.000	17.726	36.030	53.756	-20.244	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	34.830	51.361	-22.639	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	36.830	53.968	-20.032	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10380.000	12.939	35.840	48.779	-25.221	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

# Vertical

### **Peak Detector:**

10380.000	13.796	36.710	50.506	-23.494	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5230MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10460.000	13.508	36.270	49.778	-24.222	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10460.000	14.433	36.740	51.173	-22.827	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000

Note:

26150.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10540.000	14.151	35.880	50.030	-23.970	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000 Average Detector:	*	*	*	*	74.000
*	*	*	*	*	*
Vertical					
Peak Detector:					
10540.000	14.829	36.750	51.578	-22.422	74.000
15810.000	*	*	*	*	74,000

100 10.000	11.02)	20.720	01.070	22.122	/ 1.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5310MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10620.000	14.623	36.040	50.663	-23.337	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10620.000	14.970	36.150	51.120	-22.880	74.000

10620.000	14.970	36.150	51.120	-22.880	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5510MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11020.000	16.474	35.640	52.113	-21.887	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11020.000	17.224	36.010	53.234	-20.766	74.000
15930.000	*	*	*	*	74.000

15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5550MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
11100.000	16.681	35.160	51.841	-22.159	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11100 000	17 500	26,000	52 (12	20.207	74.000

11100.000	17.523	36.090	53.613	-20.387	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intel® Dual Band Wireless-AC 8260
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5670MHz)
	•

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11340.000	16.408	35.870	52.277	-21.723	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11340.000	17.167	36.290	53.457	-20.543	74.000
					74.000

11540.000	17.107	50.270	55.457	-20.5+5	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3 MIMO: Transmit (802.11ac-20BW-14.4Mbps) (5720MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	8			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11440.000	16.779	36.620	53.399	-20.601	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		
Vertical							
<b>Peak Detector:</b>							
11440.000	17.519	35.620	53.139	-19.861	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel [®] Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3 MIMO: Transmit (802.11ac-40BW-30Mbps) (5710MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
110400009	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11420.000	16.648	36.510	53.157	-20.843	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
<b>Detector:</b>								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11420.000	17.311	36.320	53.630	-20.370	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
<b>Detector:</b>								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3	: Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) (5210MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
-1	Factor	Level	Level	- O			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10420.000	13.135	36.620	49.755	-24.245	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10420.000	14.057	36.410	50.467	-23.533	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 3	MIMO: Transmit	(802.11ac-80BW-65	Mbps) (5290MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
<b>Peak Detector:</b>						
10580.000	14.423	36.240	50.663	-23.337	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
10580.000	14.849	36.640	51.489	-22.511	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
<b>Detector:</b>						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel [®] Dual Band Wireless-AC 8260					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 3	MIMO: Transmit	(802.11ac-80BW-65	Mbps) (5530MHz	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11060.000	16.580	36.350	52.930	-21.070	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11060.000	17.375	36.510	53.885	-20.115	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
<b>Detector:</b>						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 3	MIMO: Transmit	(802.11ac-80BW-65)	Mbps) (5610MHz	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11220.000	16.589	36.380	52.970	-21.030	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11220.000	17.620	36.380	54.000	-20.000	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
<b>Detector:</b>						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® I	Dual Band Wireles	ss-AC 8260			
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) (5690MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
<b>Peak Detector:</b>						
11380.000	16.480	36.390	52.871	-21.129	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
<b>Detector:</b>						
*	*	*	*	*	*	
Vertical						
<b>Peak Detector:</b>						
11380.000	17.125	36.410	53.536	-20.464	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
<b>Detector:</b>						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10360.000	12.930	35.740	48.670	-25.330	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					

10360.000	13.724	36.240	49.964	-24.036	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	36.350	49.672	-24.328	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

## Vertical

#### **Peak Detector:**

10440.000	14.245	36.740	50.985	-23.015	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

*

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	36.170	49.864	-24.136	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	36.540	51.161	-22.839	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					

Note:

*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5260MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10520.000	14.015	35.870	49.885	-24.115	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
10520.000	14.818	36.150	50.968	-23.032	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
10600.000	14.550	35.470	50.019	-23.981	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

# Vertical

#### **Peak Detector:**

10600.000	14.881	35.940	50.821	-23.179	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10640.000	14.690	36.510	51.200	-22.800	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	36.750	51.833	-22.167	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11000.000	16.399	35.840	52.239	-21.761	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11000.000	17.132	35.970	53.102	-20.898	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000

Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5580MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.656	34.680	51.336	-22.664	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					

#### **Peak Detector:**

11160.000	17.726	36.020	53.746	-20.254	74.000
16740.000	*	*	*	*	74.000
22320.000	*	*	*	*	74.000
27900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	34.830	51.361	-22.639	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	36.820	53.958	-20.042	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10380.000	12.939	35.850	48.789	-25.211	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					

10380.000	13.796	36.710	50.506	-23.494	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5230MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10460.000	13.508	36.270	49.778	-24.222	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
10460.000	14.433	36.740	51.173	-22.827	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000

Note:

26150.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10540.000	14.151	35.870	50.020	-23.980	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					

10540.000	14.829	36.740	51.568	-22.432	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Quielek

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5310MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10620.000	14.623	36.040	50.663	-23.337	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10620.000	14.970	36.150	51.120	-22.880	74.000

10620.000	14.970	36.150	51.120	-22.880	/4.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5510MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11020.000	16.474	35.640	52.113	-21.887	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11020.000	17.224	35.990	53.214	-20.786	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000

Note:

26550.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5550MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11100.000	16.681	35.150	51.831	-22.169	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11100.000	17.523	36.110	53.633	-20.367	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000

Note:

27950.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5670MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector:</b>					
11340.000	16.408	35.920	52.327	-21.673	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average					
<b>Detector:</b>					
*	*	*	*	*	*
Vertical					
<b>Peak Detector:</b>					
11340.000	17.167	36.310	53.477	-20.523	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000

Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>Harmonic Radiated Emission Data</li> <li>No.3 OATS</li> </ul>						
Test Mode	: Mode 4	Beamforming: Tr	ansmit (802.11ac-20E	3W-14.4Mbps) (3	5720MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	C			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
<b>Peak Detector:</b>							
11440.000	16.779	36.120	52.899	-21.101	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
<b>Peak Detector:</b>							
11440.000	17.519	36.320	53.839	-20.161	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>Harmonic Radiated Emission Data</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-40BW-30Mbps) (5710MHz)</li> </ul>						
Test Widde	: Mode 4	Beannorning. 11	alisiilit (802.11ac-401	<b>5 w-</b> 50wi0ps) (57	1011112)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	-			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11420.000	16.648	36.280	52.927	-21.073	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11420.000	17.311	36.010	53.320	-20.680	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>Harmonic Radiated Emission Data</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) (5210MHz)</li> </ul>						
Test Widde	: Mode 4	Beamforming: 11	ansmit (802.11ac-80f	3w-651v10ps) (52	IUMHZ)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	C			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10420.000	13.135	36.510	49.645	-24.355	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10420.000	14.057	36.340	50.397	-23.603	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4	Beamforming: Tr	ansmit (802.11ac-80E	3W-65Mbps) (52	90MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
Frequency		•		Margin	LIIIII		
	Factor	Level	Level	-			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10580.000	14.423	36.240	50.663	-23.337	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10580.000	14.849	36.460	51.309	-22.691	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 4	Beamforming: Tr	ansmit (802.11ac-80E	3W-65Mbps) (55	30MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11060.000	16.580	36.420	53.000	-21.000	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
<b>Detector:</b>								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11060.000	17.375	36.180	53.555	-20.445	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	<ul> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) (5610MHz)</li> </ul>						
Test Mode	: Mode 4	Beamforming: Tr	ansmit (802.11ac-80E	3W-65Mbps) (56	10MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
requeitey	Factor	Level	Level	Margin	Linit		
MIT				ID			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
<b>Peak Detector:</b>							
11220.000	16.589	36.340	52.930	-21.070	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		
Vertical							
<b>Peak Detector:</b>							
11220.000	17.620	36.110	53.730	-20.270	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4	Beamforming: Tr	ansmit (802.11ac-80E	3W-65Mbps) (56	90MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
Frequency		•		Margin	LIIIIIt		
	Factor	Level	Level	-			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11380.000	16.480	36.140	52.621	-21.379	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11380.000	17.125	36.120	53.246	-20.754	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
<b>Detector:</b>							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11a-6Mbps) (5220MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
194.900	-10.645	37.300	26.655	-16.845	43.500		
291.900	-5.396	33.358	27.962	-18.038	46.000		
441.280	0.310	36.200	36.510	-9.490	46.000		
635.280	1.620	34.132	35.752	-10.248	46.000		
751.680	4.120	30.429	34.549	-11.451	46.000		
916.580	6.215	20.733	26.948	-19.052	46.000		
Vertical							
<b>Peak Detector</b>							
214.300	-6.018	34.467	28.448	-15.052	43.500		
340.400	-1.435	32.898	31.463	-14.537	46.000		
482.020	-3.218	38.623	35.405	-10.595	46.000		
598.420	0.884	35.654	36.538	-9.462	46.000		
736.160	-1.062	38.767	37.705	-8.295	46.000		
910.760	0.310	30.476	30.786	-15.214	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11a-6Mbps) (5300MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
266.680	-5.646	34.163	28.517	-17.483	46.000		
404.420	0.811	30.734	31.545	-14.455	46.000		
544.100	4.180	33.903	38.083	-7.917	46.000		
674.080	2.550	36.770	39.320	-6.680	46.000		
784.660	5.292	32.455	37.747	-8.253	46.000		
920.460	6.542	25.666	32.208	-13.792	46.000		
Vertical							
<b>Peak Detector</b>							
231.760	-6.591	34.372	27.781	-18.219	46.000		
365.620	0.170	30.375	30.545	-15.455	46.000		
526.640	0.960	36.744	37.704	-8.296	46.000		
664.380	-1.134	37.992	36.858	-9.142	46.000		
823.460	2.810	28.896	31.706	-14.294	46.000		
963.140	3.382	28.842	32.224	-21.776	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> </ul>						
Test Site	: No.3 OATS						
Test Mode	: Mode 1	SISO A: Transmit	t (802.11a-6Mbps) (5	580MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$		
Horizontal							
<b>Peak Detector</b>							
210.420	-10.586	36.950	26.365	-17.135	43.500		
353.980	-1.400	30.085	28.685	-17.315	46.000		
489.780	1.326	35.893	37.219	-8.781	46.000		
666.320	1.720	35.874	37.594	-8.406	46.000		
837.040	5.720	31.269	36.989	-9.011	46.000		
990.300	7.017	24.927	31.944	-22.056	54.000		
Vertical							
<b>Peak Detector</b>							
181.320	-2.070	32.160	30.090	-13.410	43.500		
286.080	-5.588	34.847	29.259	-16.741	46.000		
423.820	-7.694	42.704	35.010	-10.990	46.000		
613.940	1.566	35.998	37.564	-8.436	46.000		
782.720	2.524	35.234	37.758	-8.242	46.000		
947.620	3.020	27.301	30.321	-15.679	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> </ul>						
Test Site	: No.3 OATS						
Test Mode	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)						
Test Widde		iso n. nuisiii	(002.1111 2010 11 7.21	(0220000	-)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
216.240	-10.426	39.429	29.003	-16.997	46.000		
365.620	0.270	30.604	30.874	-15.126	46.000		
507.240	2.340	34.035	36.375	-9.625	46.000		
650.800	1.730	34.427	36.157	-9.843	46.000		
829.280	7.091	29.147	36.238	-9.762	46.000		
945.680	6.700	21.337	28.037	-17.963	46.000		
Vertical							
<b>Peak Detector</b>							
208.480	-5.748	33.865	28.117	-15.383	43.500		
346.220	-0.670	32.421	31.750	-14.250	46.000		
462.620	-2.723	38.332	35.609	-10.391	46.000		
641.100	-2.080	40.135	38.055	-7.945	46.000		
821.520	2.765	33.708	36.473	-9.527	46.000		
959.260	2.900	30.118	33.018	-12.982	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5300MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
212.360	-10.540	40.991	30.451	-13.049	43.500		
373.380	0.766	31.214	31.980	-14.020	46.000		
511.120	2.990	34.301	37.291	-8.709	46.000		
660.500	1.733	34.832	36.565	-9.435	46.000		
819.580	6.690	26.210	32.900	-13.100	46.000		
934.040	6.726	22.430	29.156	-16.844	46.000		
Vertical							
Peak Detector							
206.540	-5.676	35.490	29.814	-13.686	43.500		
330.700	-2.408	33.634	31.226	-14.774	46.000		
452.920	-5.006	43.404	38.398	-7.602	46.000		
579.020	-2.511	41.383	38.872	-7.128	46.000		
765.260	1.706	36.079	37.785	-8.215	46.000		
941.800	3.240	27.852	31.092	-14.908	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)</li> </ul>						
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
216.240	-10.426	36.637	26.211	-19.789	46.000		
334.580	-3.684	33.162	29.478	-16.522	46.000		
470.380	3.390	33.970	37.360	-8.640	46.000		
612.000	3.180	35.418	38.598	-7.402	46.000		
776.900	4.940	32.468	37.408	-8.592	46.000		
953.440	6.529	25.727	32.256	-13.744	46.000		
Vertical							
<b>Peak Detector</b>							
227.880	-6.308	36.453	30.146	-15.854	46.000		
346.220	-0.670	32.541	31.870	-14.130	46.000		
520.820	0.886	34.126	35.011	-10.989	46.000		
627.520	-0.518	36.117	35.599	-10.401	46.000		
769.140	2.339	34.334	36.673	-9.327	46.000		
967.020	3.695	27.803	31.498	-22.502	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> </ul>						
Test Mode	: Mode 1	SISO A: Transmit	2 (802.11n-40BW 15N	Abps) (5190MHz			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
231.760	-8.351	37.331	28.980	-17.020	46.000		
350.100	-1.432	33.425	31.993	-14.007	46.000		
491.720	1.350	33.353	34.703	-11.297	46.000		
637.220	1.400	34.725	36.124	-9.876	46.000		
794.360	6.150	28.618	34.768	-11.232	46.000		
928.220	6.990	26.064	33.054	-12.946	46.000		
Vertical							
<b>Peak Detector</b>							
216.240	-6.206	35.642	29.436	-16.564	46.000		
352.040	-1.422	32.965	31.544	-14.456	46.000		
513.060	0.250	34.480	34.730	-11.270	46.000		
668.260	-1.090	35.873	34.783	-11.217	46.000		
773.020	2.182	30.690	32.872	-13.128	46.000		
939.860	3.180	31.955	35.135	-10.865	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) (5270MHz)</li> </ul>						
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
229.820	-8.137	37.147	29.010	-16.990	46.000		
338.460	-3.532	33.447	29.914	-16.086	46.000		
480.080	1.700	35.085	36.785	-9.215	46.000		
658.560	1.736	35.494	37.230	-8.770	46.000		
817.640	6.450	31.633	38.083	-7.917	46.000		
955.380	6.390	26.689	33.079	-12.921	46.000		
Vertical							
<b>Peak Detector</b>							
175.500	-1.990	27.338	25.348	-18.152	43.500		
313.240	-4.286	33.927	29.641	-16.359	46.000		
460.680	-2.080	37.232	35.152	-10.848	46.000		
625.580	0.105	34.975	35.080	-10.920	46.000		
769.140	2.339	32.466	34.805	-11.195	46.000		
945.680	3.090	25.439	28.529	-17.471	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) (5550MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
202.660	-10.358	39.044	28.687	-14.813	43.500		
303.540	-4.280	32.503	28.223	-17.777	46.000		
454.860	1.611	36.300	37.911	-8.089	46.000		
594.540	3.321	32.564	35.885	-10.115	46.000		
738.100	3.134	34.422	37.556	-8.444	46.000		
941.800	6.570	23.317	29.887	-16.113	46.000		
Vertical							
<b>Peak Detector</b>							
220.120	-6.690	35.096	28.406	-17.594	46.000		
340.400	-1.435	35.448	34.013	-11.987	46.000		
509.180	0.616	36.540	37.157	-8.843	46.000		
687.660	2.124	36.860	38.984	-7.016	46.000		
835.100	1.110	36.419	37.529	-8.471	46.000		
951.500	2.873	31.894	34.767	-11.233	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11ac-20BW-7.2Mbps) (5720MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
208.480	-10.648	43.318	32.670	-10.830	43.500		
353.980	-1.400	38.107	36.707	-9.293	46.000		
472.320	2.770	35.608	38.378	-7.622	46.000		
625.580	1.225	37.758	38.983	-7.017	46.000		
784.660	5.292	33.264	38.556	-7.444	46.000		
943.740	6.630	26.761	33.391	-12.609	46.000		
Vertical							
<b>Peak Detector</b>							
208.480	-5.748	39.656	33.908	-9.592	43.500		
388.900	-0.812	37.204	36.392	-9.608	46.000		
532.460	1.012	37.691	38.703	-7.297	46.000		
672.140	-0.720	39.216	38.496	-7.504	46.000		
819.580	2.730	35.435	38.165	-7.835	46.000		
968.960	3.740	30.884	34.624	-19.376	54.000		

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. Measurement Level = Reading Level + Correct Factor.

5. Correct Factor = Antenna factor + Cable loss – Amplifier gain.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11ac-40BW-15Mbps) (5710MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
214.300	-10.488	45.648	35.159	-8.341	43.500		
367.560	0.484	36.970	37.453	-8.547	46.000		
501.420	1.837	36.224	38.061	-7.939	46.000		
646.920	1.327	37.691	39.018	-6.982	46.000		
790.480	6.131	32.412	38.543	-7.457	46.000		
945.680	6.700	25.916	32.616	-13.384	46.000		
Vertical							
<b>Peak Detector</b>							
222.060	-6.626	41.891	35.264	-10.736	46.000		
375.320	0.286	38.009	38.294	-7.706	46.000		
503.360	-0.270	37.427	37.157	-8.843	46.000		
639.160	-1.540	39.237	37.697	-8.303	46.000		
809.880	2.770	35.614	38.384	-7.616	46.000		
965.080	3.638	32.638	36.276	-17.724	54.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5210MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
210.420	-10.586	42.464	31.879	-11.621	43.500		
404.420	0.811	36.748	37.559	-8.441	46.000		
520.820	3.006	34.512	37.517	-8.483	46.000		
650.800	1.730	36.160	37.890	-8.110	46.000		
788.540	5.914	32.054	37.968	-8.032	46.000		
937.920	6.527	29.184	35.711	-10.289	46.000		
Vertical							
<b>Peak Detector</b>							
214.300	-6.018	40.135	34.116	-9.384	43.500		
369.500	-0.530	38.000	37.470	-8.530	46.000		
485.900	-2.500	39.323	36.823	-9.177	46.000		
648.860	-3.306	39.817	36.511	-9.489	46.000		
790.480	2.461	34.245	36.706	-9.294	46.000		
928.220	3.400	28.415	31.815	-14.185	46.000		
N							

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5290MHz)</li> </ul>						
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
224.000	-10.210	43.987	33.777	-12.223	46.000		
394.720	0.600	37.715	38.315	-7.685	46.000		
526.640	2.920	35.224	38.144	-7.856	46.000		
672.140	2.020	37.115	39.135	-6.865	46.000		
804.060	6.020	29.671	35.691	-10.309	46.000		
959.260	6.440	25.307	31.747	-14.253	46.000		
Vertical							
Peak Detector							
216.240	-6.206	40.867	34.661	-11.339	46.000		
359.800	-1.440	39.510	38.071	-7.929	46.000		
485.900	-2.500	39.340	36.840	-9.160	46.000		
641.100	-2.080	40.515	38.435	-7.565	46.000		
807.940	3.109	35.286	38.395	-7.605	46.000		
968.960	3.740	31.599	35.339	-18.661	54.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> </ul>						
Test Mode	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) (5690MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
216.240	-10.426	45.686	35.260	-10.740	46.000		
369.500	0.680	36.798	37.478	-8.522	46.000		
511.120	2.990	35.661	38.651	-7.349	46.000		
660.500	1.733	36.019	37.752	-8.248	46.000		
817.640	6.450	32.196	38.646	-7.354	46.000		
972.840	6.995	25.444	32.439	-21.561	54.000		
Vertical							
<b>Peak Detector</b>							
220.120	-6.690	38.985	32.295	-13.705	46.000		
346.220	-0.670	36.891	36.220	-9.780	46.000		
456.800	-3.473	40.687	37.214	-8.786	46.000		
619.760	0.266	37.466	37.732	-8.268	46.000		
782.720	2.524	35.880	38.404	-7.596	46.000		
963.140	3.382	32.026	35.408	-18.592	54.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11a-6Mbps) (5220MHz)</li> </ul>						
Test Wiode	. 10000 2	bible D. Hunshin	(002.110 000005) (52	22010112)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
229.820	-8.137	38.219	30.082	-15.918	46.000		
355.920	-1.370	38.640	37.270	-8.730	46.000		
491.720	1.350	37.518	38.868	-7.132	46.000		
625.580	1.225	37.714	38.939	-7.061	46.000		
765.260	4.876	32.531	37.407	-8.593	46.000		
916.580	6.215	24.875	31.090	-14.910	46.000		
Vertical							
Peak Detector							
237.580	-6.670	36.636	29.966	-16.034	46.000		
369.500	-0.530	33.410	32.880	-13.120	46.000		
499.480	-0.379	37.517	37.138	-8.862	46.000		
633.340	-1.630	37.770	36.140	-9.860	46.000		
782.720	2.524	35.358	37.882	-8.118	46.000		
926.280	3.102	27.961	31.063	-14.937	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11a-6Mbps) (5300MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
208.480	-10.648	42.455	31.807	-11.693	43.500		
305.480	-4.050	40.916	36.866	-9.134	46.000		
458.740	3.150	35.674	38.824	-7.176	46.000		
627.520	1.122	36.354	37.476	-8.524	46.000		
780.780	5.028	34.300	39.328	-6.672	46.000		
934.040	6.726	29.870	36.596	-9.404	46.000		
Vertical							
<b>Peak Detector</b>							
206.540	-5.676	37.168	31.492	-12.008	43.500		
334.580	-2.414	39.539	37.125	-8.875	46.000		
458.740	-2.710	37.818	35.108	-10.892	46.000		
594.540	-0.059	37.925	37.866	-8.134	46.000		
769.140	2.339	34.331	36.670	-9.330	46.000		
932.100	3.197	28.610	31.807	-14.193	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11a-6Mbps) (5580MHz)</li> </ul>							
Frequency	Correct	Reading	Measurement	Margin	Limit			
MHz	Factor dB	Level	Level	dB	dDV/m			
	dВ	dBµV	dBµV/m	dВ	dBµV/m			
Horizontal								
Peak Detector								
225.940	-9.790	41.452	31.662	-14.338	46.000			
340.400	-3.385	38.354	34.969	-11.031	46.000			
474.260	2.130	35.257	37.387	-8.613	46.000			
633.340	1.350	34.433	35.783	-10.217	46.000			
784.660	5.292	33.083	38.375	-7.625	46.000			
947.620	6.760	25.713	32.473	-13.527	46.000			
Vertical								
<b>Peak Detector</b>								
208.480	-5.748	38.897	33.149	-10.351	43.500			
332.640	-2.421	39.519	37.098	-8.902	46.000			
450.980	-5.773	44.180	38.407	-7.593	46.000			
617.820	0.749	36.800	37.549	-8.451	46.000			
780.780	2.538	35.909	38.447	-7.553	46.000			
939.860	3.180	28.390	31.570	-14.430	46.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> </ul>						
Test Mode	: Mode 2	SISO B: Transmit	2 (802.11n-20BW 7.2)	Mbps) (5220MH	Z)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
220.120	-10.320	40.815	30.495	-15.505	46.000		
326.820	-4.671	39.111	34.440	-11.560	46.000		
468.440	3.386	35.288	38.674	-7.326	46.000		
615.880	2.603	34.732	37.335	-8.665	46.000		
798.240	6.167	31.330	37.497	-8.503	46.000		
949.560	6.824	26.047	32.871	-13.129	46.000		
Vertical							
Peak Detector							
224.000	-6.520	37.012	30.492	-15.508	46.000		
369.500	-0.530	37.868	37.338	-8.662	46.000		
511.120	0.600	37.410	38.010	-7.990	46.000		
641.100	-2.080	37.568	35.488	-10.512	46.000		
815.700	2.665	35.638	38.303	-7.697	46.000		
937.920	2.887	26.905	29.792	-16.208	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> </ul>						
Test Mode	: Mode 2	SISO B: Transmit	t (802.11n-20BW 7.2)	Mbps) (5300MH	Z)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
224.000	-10.210	42.091	31.881	-14.119	46.000		
375.320	0.816	36.268	37.083	-8.917	46.000		
522.760	2.988	35.004	37.992	-8.008	46.000		
676.020	2.675	35.074	37.749	-8.251	46.000		
829.280	7.091	29.674	36.765	-9.235	46.000		
963.140	6.822	27.180	34.002	-19.998	54.000		
Vertical							
Peak Detector							
222.060	-6.626	36.953	30.326	-15.674	46.000		
396.660	-2.120	38.026	35.905	-10.095	46.000		
542.160	1.658	34.988	36.647	-9.353	46.000		
679.900	1.058	35.960	37.018	-8.982	46.000		
800.180	2.393	33.476	35.869	-10.131	46.000		
961.200	3.110	29.600	32.710	-21.290	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
218.180	-10.376	41.536	31.160	-14.840	46.000		
371.440	0.750	33.234	33.984	-12.016	46.000		
524.700	2.950	36.038	38.988	-7.012	46.000		
670.200	1.712	37.054	38.765	-7.235	46.000		
837.040	5.720	30.469	36.189	-9.811	46.000		
984.480	7.914	24.014	31.928	-22.072	54.000		
Vertical							
<b>Peak Detector</b>							
251.160	-5.080	37.537	32.456	-13.544	46.000		
385.020	-0.535	39.659	39.124	-6.876	46.000		
515.000	-0.107	38.893	38.786	-7.214	46.000		
676.020	0.285	36.906	37.191	-8.809	46.000		
823.460	2.810	33.431	36.241	-9.759	46.000		
957.320	2.810	29.680	32.490	-13.510	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5190MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
222.060	-10.266	42.546	32.279	-13.721	46.000		
359.800	-0.350	35.490	35.141	-10.859	46.000		
489.780	1.326	37.325	38.651	-7.349	46.000		
637.220	1.400	37.631	39.030	-6.970	46.000		
790.480	6.131	31.509	37.640	-8.360	46.000		
935.980	6.530	25.274	31.804	-14.196	46.000		
Vertical							
<b>Peak Detector</b>							
212.360	-5.910	37.051	31.141	-12.359	43.500		
338.460	-1.792	37.443	35.650	-10.350	46.000		
509.180	0.616	35.068	35.685	-10.315	46.000		
662.440	-1.151	38.883	37.732	-8.268	46.000		
809.880	2.770	34.604	37.374	-8.626	46.000		
947.620	3.020	28.547	31.567	-14.433	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intel® Dual Band Wireless-AC 8260Test Item:General Radiated EmissionTest Site:No.3 OATS							
Test Mode	: Mode 2	SISO B: Transmit	(802.11n-40BW 15N	Abps) (5270MHz	)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
229.820	-8.137	39.074	30.937	-15.063	46.000		
371.440	0.750	34.737	35.487	-10.513	46.000		
513.060	3.000	34.638	37.638	-8.362	46.000		
662.440	1.729	36.803	38.532	-7.468	46.000		
788.540	5.914	31.949	37.863	-8.137	46.000		
930.160	7.291	25.076	32.367	-13.633	46.000		
Vertical							
Peak Detector							
214.300	-6.018	38.211	32.192	-11.308	43.500		
330.700	-2.408	39.864	37.456	-8.544	46.000		
476.200	-3.628	41.053	37.425	-8.575	46.000		
619.760	0.266	39.267	39.533	-6.467	46.000		
757.500	2.279	36.489	38.768	-7.232	46.000		
941.800	3.240	28.936	32.176	-13.824	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) (5550MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$		
Horizontal							
Peak Detector							
225.940	-9.790	40.124	30.334	-15.666	46.000		
357.860	-0.846	36.738	35.892	-10.108	46.000		
495.600	1.288	36.055	37.343	-8.657	46.000		
627.520	1.122	36.593	37.715	-8.285	46.000		
784.660	5.292	31.209	36.501	-9.499	46.000		
937.920	6.527	25.876	32.403	-13.597	46.000		
Vertical Peak Detector							
210.420	-5.816	34.797	28.982	-14.518	43.500		
307.420	-4.242	36.265	32.023	-13.977	46.000		
431.580	-7.820	42.622	34.802	-11.198	46.000		
598.420	0.884	37.508	38.392	-7.608	46.000		
747.800	1.457	32.836	34.293	-11.707	46.000		
914.640	-1.240	33.412	32.172	-13.828	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11ac-20BW-7.2Mbps) (5720MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	$dB\mu V/m$		
Horizontal							
Peak Detector							
204.600	-10.664	43.214	32.550	-10.950	43.500		
369.500	0.680	35.654	36.334	-9.666	46.000		
518.880	3.010	34.989	37.999	-8.001	46.000		
652.740	1.744	35.241	36.985	-9.015	46.000		
817.640	6.450	30.684	37.134	-8.866	46.000		
968.960	7.160	27.751	34.911	-19.089	54.000		
Vertical Peak Detector							
212.360	-5.910	39.065	33.155	-10.345	43.500		
336.520	-2.156	39.584	37.428	-8.572	46.000		
501.420	-0.283	38.362	38.079	-7.921	46.000		
660.500	-1.267	38.131	36.864	-9.136	46.000		
809.880	2.770	35.032	37.802	-8.198	46.000		
970.900	2.770	28.698	31.468	-22.532	54.000		

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11ac-40BW-15Mbps) (5710MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
200.720	-10.020	42.094	32.074	-11.426	43.500		
313.240	-4.836	41.260	36.424	-9.576	46.000		
437.400	0.692	38.647	39.339	-6.661	46.000		
590.660	3.100	35.280	38.380	-7.620	46.000		
755.560	4.833	32.645	37.478	-8.522	46.000		
930.160	7.291	24.939	32.230	-13.770	46.000		
Vertical							
<b>Peak Detector</b>							
202.660	-5.748	40.943	35.196	-8.304	43.500		
334.580	-2.414	40.538	38.124	-7.876	46.000		
472.320	-3.670	42.403	38.733	-7.267	46.000		
608.120	1.950	37.529	39.479	-6.521	46.000		
780.780	2.538	36.852	39.390	-6.610	46.000		
949.560	2.944	28.172	31.116	-14.884	46.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA			5Mbps) (5210M	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector</b>					
214.300	-10.488	43.461	32.972	-10.528	43.500
371.440	0.750	37.539	38.289	-7.711	46.000
489.780	1.326	37.002	38.328	-7.672	46.000
610.060	3.433	34.624	38.057	-7.943	46.000
786.600	5.594	32.204	37.799	-8.201	46.000
957.320	6.410	29.591	36.001	-9.999	46.000
Vertical					
<b>Peak Detector</b>					
206.540	-5.676	38.492	32.816	-10.684	43.500
332.640	-2.421	40.563	38.142	-7.858	46.000
526.640	0.960	36.078	37.038	-8.962	46.000
658.560	-1.934	39.230	37.296	-8.704	46.000
813.760	2.620	34.163	36.783	-9.217	46.000
967.020	3.695	28.252	31.947	-22.053	54.000
NI-4-					

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) (5290MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
204.600	-10.664	47.092	36.428	-7.072	43.500		
394.720	0.600	34.776	35.376	-10.624	46.000		
507.240	2.340	35.516	37.856	-8.144	46.000		
639.160	0.880	35.676	36.556	-9.444	46.000		
780.780	5.028	32.502	37.530	-8.470	46.000		
943.740	6.630	26.518	33.148	-12.852	46.000		
Vertical							
Peak Detector	<b>5 7</b> 40	20.650	22.012	10,500	12 500		
202.660	-5.748	38.659	32.912	-10.588	43.500		
342.340	-1.080	38.812	37.732	-8.268	46.000		
515.000	-0.107	37.911	37.804	-8.196	46.000		
662.440	-1.151	39.211	38.060	-7.940	46.000		
790.480	2.461	35.162	37.623	-8.377	46.000		
941.800	3.240	27.728	30.968	-15.032	46.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) (5690MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
227.880	-8.908	45.183	36.276	-9.724	46.000		
361.740	-0.126	39.007	38.881	-7.119	46.000		
478.140	1.769	34.994	36.763	-9.237	46.000		
631.400	1.085	35.435	36.520	-9.480	46.000		
774.960	4.928	34.002	38.930	-7.070	46.000		
947.620	6.760	25.602	32.362	-13.638	46.000		
Vertical Peak Detector							
198.780	-5.880	40.806	34.926	-8.574	43.500		
369.500	-0.530	38.470	37.940	-8.060	46.000		
511.120	0.600	36.543	37.143	-8.857	46.000		
666.320	-1.110	39.345	38.235	-7.765	46.000		
802.120	2.720	34.176	36.896	-9.104	46.000		
955.380	2.750	30.574	33.324	-12.676	46.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5220MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
214.300	-10.488	40.806	30.317	-13.183	43.500		
350.100	-1.432	36.047	34.615	-11.385	46.000		
482.020	1.492	35.636	37.128	-8.872	46.000		
648.860	1.584	35.126	36.710	-9.290	46.000		
794.360	6.150	31.792	37.942	-8.058	46.000		
959.260	6.440	28.214	34.654	-11.346	46.000		
Vertical							
<b>Peak Detector</b>							
216.240	-6.206	38.314	32.108	-13.892	46.000		
338.460	-1.792	36.977	35.184	-10.816	46.000		
452.920	-5.006	43.254	38.248	-7.752	46.000		
588.720	-2.430	39.673	37.243	-8.757	46.000		
747.800	1.457	36.279	37.736	-8.264	46.000		
932.100	3.197	29.501	32.698	-13.302	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5300MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
204.600	-10.664	37.307	26.643	-16.857	43.500		
305.480	-4.050	40.898	36.848	-9.152	46.000		
410.240	-0.210	39.551	39.341	-6.659	46.000		
592.600	3.204	34.240	37.444	-8.556	46.000		
773.020	4.922	33.085	38.007	-7.993	46.000		
908.820	6.060	29.707	35.767	-10.233	46.000		
Vertical							
<b>Peak Detector</b>							
175.500	-1.990	32.011	30.021	-13.479	43.500		
305.480	-4.230	37.025	32.795	-13.205	46.000		
474.260	-3.650	40.614	36.964	-9.036	46.000		
664.380	-1.134	39.705	38.571	-7.429	46.000		
821.520	2.765	36.114	38.879	-7.121	46.000		
961.200	3.110	30.361	33.471	-20.529	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5580MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
231.760	-8.351	40.501	32.150	-13.850	46.000		
348.160	-1.459	38.990	37.531	-8.469	46.000		
474.260	2.130	35.745	37.875	-8.125	46.000		
625.580	1.225	37.563	38.788	-7.212	46.000		
767.200	4.882	34.877	39.759	-6.241	46.000		
922.400	6.425	27.085	33.510	-12.490	46.000		
Vertical							
<b>Peak Detector</b>							
212.360	-5.910	38.223	32.313	-11.187	43.500		
352.040	-1.422	35.395	33.974	-12.026	46.000		
524.700	0.940	35.686	36.626	-9.374	46.000		
652.740	-3.256	40.430	37.174	-8.826	46.000		
788.540	2.484	33.105	35.589	-10.411	46.000		
951.500	2.873	29.506	32.379	-13.621	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5190MHz)</li> </ul>						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
216.240	-10.426	39.321	28.895	-17.105	46.000		
330.700	-4.448	38.460	34.012	-11.988	46.000		
454.860	1.611	38.256	39.867	-6.133	46.000		
590.660	3.100	36.563	39.663	-6.337	46.000		
724.520	3.650	34.701	38.351	-7.649	46.000		
924.340	6.349	24.435	30.784	-15.216	46.000		
Vertical							
Peak Detector							
212.360	-5.910	40.262	34.352	-9.148	43.500		
336.520	-2.156	36.714	34.558	-11.442	46.000		
456.800	-3.473	40.297	36.824	-9.176	46.000		
612.000	1.720	37.041	38.761	-7.239	46.000		
773.020	2.182	36.776	38.958	-7.042	46.000		
934.040	2.756	31.890	34.646	-11.354	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> </ul>						
Test Site Test Mode	<ul> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5270MHz)</li> </ul>						
Test Wide	. Whole 5	WIIWO. Hanshit	(002.1111-401) 10 501	10ps) (527010112)	,		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
206.540	-10.696	42.032	31.336	-12.164	43.500		
313.240	-4.836	40.596	35.760	-10.240	46.000		
421.880	-0.360	39.885	39.525	-6.475	46.000		
608.120	3.700	34.172	37.872	-8.128	46.000		
757.500	4.899	32.964	37.863	-8.137	46.000		
934.040	6.726	24.908	31.634	-14.366	46.000		
Vertical							
<b>Peak Detector</b>							
202.660	-5.748	39.570	33.823	-9.677	43.500		
352.040	-1.422	38.054	36.633	-9.367	46.000		
534.400	1.078	36.726	37.804	-8.196	46.000		
687.660	2.124	37.846	39.970	-6.030	46.000		
807.940	3.109	34.403	37.512	-8.488	46.000		
947.620	3.020	31.358	34.378	-11.622	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) (5550MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
210.420	-10.586	42.398	31.813	-11.687	43.500		
328.760	-4.644	38.946	34.302	-11.698	46.000		
452.920	1.144	36.056	37.200	-8.800	46.000		
579.020	3.199	34.951	38.150	-7.850	46.000		
722.580	3.640	33.506	37.146	-8.854	46.000		
885.540	6.251	26.545	32.796	-13.204	46.000		
Vertical							
<b>Peak Detector</b>							
206.540	-5.676	35.387	29.711	-13.789	43.500		
353.980	-1.250	32.663	31.413	-14.587	46.000		
503.360	-0.270	37.187	36.917	-9.083	46.000		
639.160	-1.540	38.270	36.730	-9.270	46.000		
771.080	2.545	34.668	37.213	-8.787	46.000		
930.160	3.591	28.085	31.676	-14.324	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> </ul>					
Test Mode	: Mode 3	MIMO: Transmit	(802.11ac-20BW-14.	4Mbps) (5720Ml	Hz)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
<b>Peak Detector</b>						
220.120	-10.320	43.315	32.995	-13.005	46.000	
365.620	0.270	35.884	36.154	-9.846	46.000	
516.940	3.010	34.038	37.048	-8.952	46.000	
650.800	1.730	36.629	38.359	-7.641	46.000	
809.880	6.010	30.192	36.202	-9.798	46.000	
943.740	6.630	25.699	32.329	-13.671	46.000	
Vertical						
<b>Peak Detector</b>						
225.940	-6.410	39.533	33.123	-12.877	46.000	
365.620	0.170	37.325	37.495	-8.505	46.000	
499.480	-0.379	38.532	38.153	-7.847	46.000	
641.100	-2.080	39.091	37.011	-8.989	46.000	
786.600	2.494	35.951	38.446	-7.554	46.000	
949.560	2.944	29.547	32.491	-13.509	46.000	

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11ac-40BW-30Mbps) (5710MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
210.420	-10.586	42.952	32.367	-11.133	43.500		
332.640	-4.061	40.513	36.452	-9.548	46.000		
497.540	1.520	36.178	37.698	-8.302	46.000		
633.340	1.350	35.934	37.284	-8.716	46.000		
796.300	6.150	31.423	37.573	-8.427	46.000		
955.380	6.390	25.763	32.153	-13.847	46.000		
Vertical							
<b>Peak Detector</b>							
204.600	-5.644	38.398	32.754	-10.746	43.500		
353.980	-1.250	39.706	38.456	-7.544	46.000		
511.120	0.600	37.121	37.721	-8.279	46.000		
652.740	-3.256	41.025	37.769	-8.231	46.000		
809.880	2.770	34.818	37.588	-8.412	46.000		
951.500	2.873	30.101	32.974	-13.026	46.000		

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. Measurement Level = Reading Level + Correct Factor.

5. Correct Factor = Antenna factor + Cable loss – Amplifier gain.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) (5210MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
198.780	-10.130	41.323	31.193	-12.307	43.500		
334.580	-3.684	37.279	33.595	-12.405	46.000		
458.740	3.150	34.405	37.555	-8.445	46.000		
615.880	2.603	36.319	38.922	-7.078	46.000		
794.360	6.150	31.462	37.612	-8.388	46.000		
937.920	6.527	26.492	33.019	-12.981	46.000		
Vertical							
<b>Peak Detector</b>							
214.300	-6.018	38.553	32.534	-10.966	43.500		
330.700	-2.408	38.390	35.982	-10.018	46.000		
462.620	-2.723	40.262	37.539	-8.461	46.000		
608.120	1.950	34.467	36.417	-9.583	46.000		
773.020	2.182	35.421	37.603	-8.397	46.000		
963.140	3.382	29.046	32.428	-21.572	54.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) (5290MHz)</li> </ul>						
Test Mode	: Mode 3	willyiO. Transmit	(802.11ac-80B w-031	(5290MH2	2)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
196.840	-10.490	41.822	31.332	-12.168	43.500		
307.420	-4.332	42.979	38.647	-7.353	46.000		
449.040	0.241	38.774	39.015	-6.985	46.000		
606.180	3.970	34.603	38.573	-7.427	46.000		
778.840	4.951	32.027	36.978	-9.022	46.000		
957.320	6.410	30.567	36.977	-9.023	46.000		
Vertical							
<b>Peak Detector</b>							
202.660	-5.748	37.119	31.372	-12.128	43.500		
328.760	-2.574	38.795	36.221	-9.779	46.000		
458.740	-2.710	39.942	37.232	-8.768	46.000		
625.580	0.105	36.341	36.446	-9.554	46.000		
782.720	2.524	36.012	38.536	-7.464	46.000		
943.740	3.170	29.225	32.395	-13.605	46.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) (5690MHz)</li> </ul>						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
216.240	-10.426	44.319	33.893	-12.107	46.000		
371.440	0.750	36.214	36.964	-9.036	46.000		
542.160	3.728	34.995	38.724	-7.276	46.000		
674.080	2.550	34.903	37.453	-8.547	46.000		
811.820	6.020	32.708	38.728	-7.272	46.000		
963.140	6.822	24.489	31.311	-22.689	54.000		
Vertical							
<b>Peak Detector</b>							
212.360	-5.910	39.325	33.415	-10.085	43.500		
334.580	-2.414	38.147	35.733	-10.267	46.000		
483.960	-2.812	40.614	37.802	-8.198	46.000		
639.160	-1.540	38.661	37.121	-8.879	46.000		
811.820	2.590	34.718	37.308	-8.692	46.000		
957.320	2.810	28.763	31.573	-14.427	46.000		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Intel® Dual Band Wireless-AC 8260						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 4	Beamforming: Tra	ansmit (802.11n-20B	W 14.4Mbps) (52	20MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
<b>Peak Detector</b>							
200.720	-10.020	41.479	31.459	-12.041	43.500		
361.740	-0.126	35.389	35.263	-10.737	46.000		
485.900	1.140	38.214	39.354	-6.646	46.000		
635.280	1.620	37.319	38.939	-7.061	46.000		
769.140	4.899	32.984	37.883	-8.117	46.000		
916.580	6.215	24.006	30.221	-15.779	46.000		
Vertical							
<b>Peak Detector</b>							
210.420	-5.816	38.382	32.567	-10.933	43.500		
383.080	0.099	34.483	34.582	-11.418	46.000		
528.580	0.970	35.143	36.113	-9.887	46.000		
679.900	1.058	36.715	37.773	-8.227	46.000		
792.420	2.447	34.687	37.134	-8.866	46.000		
943.740	3.170	30.180	33.350	-12.650	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> </ul>						
Test Mode	: Mode 4	Beamforming: Tra	ansmit (802.11n-20B	W 14.4Mbps) (53	300MHz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
220.120	-10.320	40.186	29.866	-16.134	46.000		
353.980	-1.400	35.631	34.231	-11.769	46.000		
482.020	1.492	38.312	39.804	-6.196	46.000		
619.760	1.866	37.358	39.224	-6.776	46.000		
778.840	4.951	34.189	39.140	-6.860	46.000		
920.460	6.542	26.520	33.062	-12.938	46.000		
Vertical							
<b>Peak Detector</b>							
179.380	-0.980	32.300	31.320	-12.180	43.500		
342.340	-1.080	35.970	34.890	-11.110	46.000		
516.940	0.190	39.518	39.708	-6.292	46.000		
693.480	1.574	37.592	39.166	-6.834	46.000		
837.040	1.310	37.198	38.508	-7.492	46.000		
968.960	3.740	31.487	35.227	-18.773	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) (5580MHz)</li> </ul>				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
210.420	-10.586	38.479	27.894	-15.606	43.500
369.500	0.680	32.524	33.204	-12.796	46.000
487.840	1.224	37.204	38.427	-7.573	46.000
619.760	1.866	36.920	38.786	-7.214	46.000
788.540	5.914	32.503	38.417	-7.583	46.000
934.040	6.726	25.437	32.163	-13.837	46.000
Vertical					
<b>Peak Detector</b>					
214.300	-6.018	37.423	31.404	-12.096	43.500
369.500	-0.530	36.540	36.010	-9.990	46.000
501.420	-0.283	39.942	39.659	-6.341	46.000
660.500	-1.267	38.006	36.739	-9.261	46.000
809.880	2.770	34.685	37.455	-8.545	46.000
961.200	3.110	28.505	31.615	-22.385	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5190MHz)</li> </ul>				
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
262.800	-5.620	36.976	31.356	-14.644	46.000
400.540	0.868	35.939	36.807	-9.193	46.000
524.700	2.950	36.183	39.133	-6.867	46.000
637.220	1.400	37.017	38.416	-7.584	46.000
788.540	5.914	32.995	38.909	-7.091	46.000
926.280	6.592	24.162	30.754	-15.246	46.000
Vertical					
<b>Peak Detector</b>					
229.820	-6.277	40.062	33.785	-12.215	46.000
350.100	-1.412	38.622	37.210	-8.790	46.000
487.840	-2.466	42.052	39.585	-6.415	46.000
625.580	0.105	38.862	38.967	-7.033	46.000
804.060	3.120	34.444	37.564	-8.436	46.000
939.860	3.180	29.679	32.859	-13.141	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> </ul>				
Test Mode	: Mode 4	Beamforming: Tra	ansmit (802.11n-40B	W 30Mbps) (527	0MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector</b>					
208.480	-10.648	38.839	28.191	-15.309	43.500
340.400	-3.385	37.368	33.983	-12.017	46.000
454.860	1.611	36.846	38.457	-7.543	46.000
590.660	3.100	35.240	38.340	-7.660	46.000
782.720	5.154	30.856	36.010	-9.990	46.000
906.880	5.880	26.924	32.804	-13.196	46.000
Vertical					
<b>Peak Detector</b>					
214.300	-6.018	37.877	31.858	-11.642	43.500
353.980	-1.250	36.401	35.151	-10.849	46.000
493.660	-1.829	37.348	35.519	-10.481	46.000
668.260	-1.090	38.718	37.628	-8.372	46.000
821.520	2.765	35.399	38.164	-7.836	46.000
968.960	3.740	32.218	35.958	-18.042	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) (5550MHz)</li> </ul>				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
214.300	-10.488	42.882	32.393	-11.107	43.500
367.560	0.484	34.951	35.434	-10.566	46.000
485.900	1.140	37.196	38.336	-7.664	46.000
606.180	3.970	34.969	38.939	-7.061	46.000
747.800	3.707	34.577	38.284	-7.716	46.000
910.760	6.220	26.632	32.852	-13.148	46.000
Vertical					
<b>Peak Detector</b>					
210.420	-5.816	37.546	31.731	-11.769	43.500
348.160	-1.029	38.246	37.217	-8.783	46.000
501.420	-0.283	38.819	38.536	-7.464	46.000
648.860	-3.306	41.310	38.004	-7.996	46.000
825.400	2.740	35.487	38.227	-7.773	46.000
963.140	3.382	27.889	31.271	-22.729	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-20BW-14.4Mbps) (5720MHz)</li> </ul>				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
198.780	-10.130	43.649	33.519	-9.981	43.500
311.300	-4.853	40.769	35.916	-10.084	46.000
452.920	1.144	37.845	38.989	-7.011	46.000
610.060	3.433	35.530	38.963	-7.037	46.000
782.720	5.154	33.410	38.564	-7.436	46.000
951.500	6.783	25.946	32.729	-13.271	46.000
Vertical					
<b>Peak Detector</b>					
222.060	-6.626	39.620	32.993	-13.007	46.000
357.860	-1.366	38.088	36.722	-9.278	46.000
495.600	-1.412	38.415	37.003	-8.997	46.000
633.340	-1.630	38.165	36.535	-9.465	46.000
800.180	2.393	34.559	36.952	-9.048	46.000
943.740	3.170	28.648	31.818	-14.182	46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-40BW-30Mbps) (5710MHz)</li> </ul>				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector</b>					
212.360	-10.540	42.095	31.555	-11.945	43.500
330.700	-4.448	41.581	37.133	-8.867	46.000
435.460	0.750	37.311	38.061	-7.939	46.000
592.600	3.204	34.708	37.912	-8.088	46.000
755.560	4.833	33.265	38.098	-7.902	46.000
922.400	6.425	24.624	31.049	-14.951	46.000
Vertical					
<b>Peak Detector</b>					
212.360	-5.910	40.217	34.307	-9.193	43.500
336.520	-2.156	39.412	37.256	-8.744	46.000
480.080	-3.560	41.486	37.926	-8.074	46.000
600.360	1.070	36.502	37.572	-8.428	46.000
753.620	2.522	35.016	37.539	-8.461	46.000
930.160	3.591	28.881	32.472	-13.528	46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) (5210MHz)</li> </ul>				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
<b>Peak Detector</b>					
206.540	-10.696	42.311	31.615	-11.885	43.500
379.200	1.206	36.952	38.158	-7.842	46.000
503.360	1.810	34.038	35.848	-10.152	46.000
654.680	1.740	36.690	38.430	-7.570	46.000
790.480	6.131	32.824	38.955	-7.045	46.000
939.860	6.530	25.024	31.554	-14.446	46.000
Vertical					
<b>Peak Detector</b>					
214.300	-6.018	39.540	33.521	-9.979	43.500
353.980	-1.250	38.575	37.325	-8.675	46.000
485.900	-2.500	38.832	36.332	-9.668	46.000
643.040	-2.776	40.552	37.776	-8.224	46.000
807.940	3.109	34.016	37.125	-8.875	46.000
959.260	2.900	28.229	31.129	-14.871	46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) (5290MHz)</li> </ul>				
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
<b>Peak Detector</b>					
225.940	-9.790	44.040	34.250	-11.750	46.000
357.860	-0.846	37.593	36.747	-9.253	46.000
482.020	1.492	36.660	38.152	-7.848	46.000
617.820	2.229	35.982	38.211	-7.789	46.000
773.020	4.922	33.872	38.794	-7.206	46.000
935.980	6.530	24.822	31.352	-14.648	46.000
Vertical					
<b>Peak Detector</b>					
206.540	-5.676	38.362	32.686	-10.814	43.500
330.700	-2.408	39.223	36.815	-9.185	46.000
485.900	-2.500	39.089	36.589	-9.411	46.000
600.360	1.070	37.178	38.248	-7.752	46.000
776.900	1.840	36.615	38.455	-7.545	46.000
930.160	3.591	27.451	31.042	-14.958	46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	<ul> <li>Intel® Dual Band Wireless-AC 8260</li> <li>General Radiated Emission</li> <li>No.3 OATS</li> <li>Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) (5690MHz)</li> </ul>				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
177.440	-10.990	40.842	29.852	-13.648	43.500
307.420	-4.332	39.828	35.496	-10.504	46.000
412.180	-0.263	38.026	37.763	-8.237	46.000
580.960	3.240	35.183	38.423	-7.577	46.000
765.260	4.876	33.695	38.571	-7.429	46.000
943.740	6.630	23.054	29.684	-16.316	46.000
Vertical					
<b>Peak Detector</b>					
177.440	-1.400	36.442	35.042	-8.458	43.500
288.020	-5.671	44.339	38.668	-7.332	46.000
472.320	-3.670	40.836	37.166	-8.834	46.000
627.520	-0.518	38.955	38.437	-7.563	46.000
809.880	2.770	36.124	38.894	-7.106	46.000
965.080	3.638	27.942	31.580	-22.420	54.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

# 6. Band Edge

# 6.1. Test Equipment

# **RF** Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note:

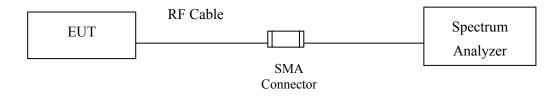
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

# **RF Radiated Measurement:**

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2015
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2014

Note:


1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.




# 6.2. Test Setup

# **RF** Conducted Measurement:



### **RF Radiated Measurement:**



# 6.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	uV/m@3m dBµV/m@3					
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks : 1. RF Voltage  $(dB\mu V) = 20 \log RF$  Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

# 6.4. Test Procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2009 on radiated measurement.

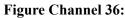
The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2009; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10: 2009; tested to NII test procedure of FCC KDB-789033 section H.)5.) and section H.)6.) for compliance to FCC 47CFR Subpart E requirements.

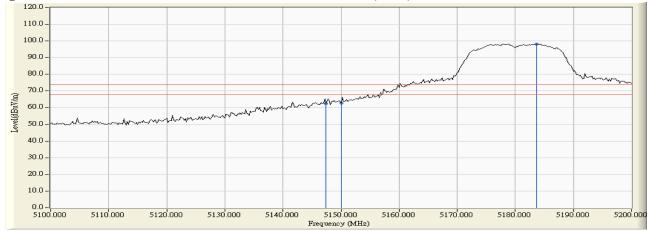


# 6.5. Uncertainty

- $\pm$  3.8 dB below 1GHz
- $\pm$  3.9 dB above 1GHz

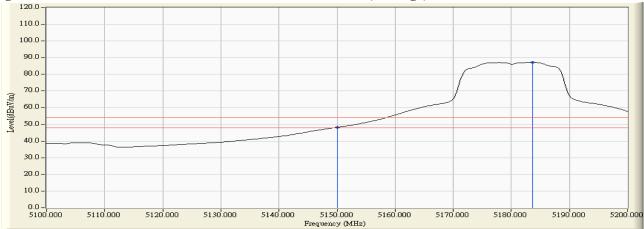



# 6.6. Test Result of Band Edge


Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps)-Channel 36

# **RF Radiated Measurement (Horizontal):**

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
36 (Peak)	5147.400	3.350	59.171	62.521	74.00	54.00	Pass
36 (Peak)	5150.000	3.340	59.320	62.660	74.00	54.00	Pass
36 (Peak)	5183.600	3.221	95.002	98.223			
36 (Average)			44.914	48.254	74.00	54.00	Pass
36 (Average)	5183.600	3.221	83.940	87.161			




Horizontal (Peak)



#### Figure Channel 36:

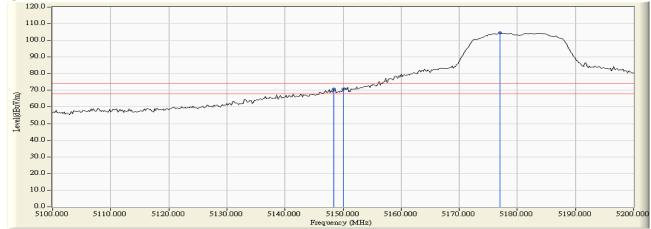
Horizontal (Average)

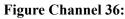


Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Mbps)-Channel 36


## **RF Radiated Measurement (Vertical):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5148.400	5.256	65.643	70.899	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	65.570	70.830	74.00	54.00	Pass
36 (Peak)	5177.000	5.335	99.123	104.457			
36 (Average)	5150.000	5.260	47.579	52.839	74.00	54.00	Pass
36 (Average)	5183.800	5.352	87.799	93.151			

#### Figure Channel 36:

#### Vertical (Peak)



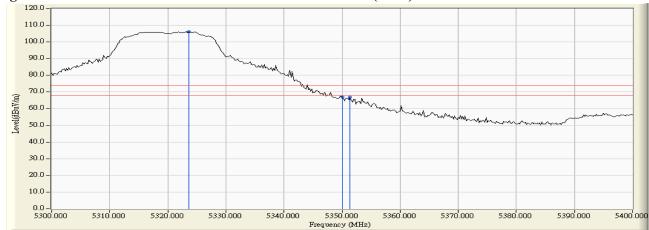


### Vertical (Average)



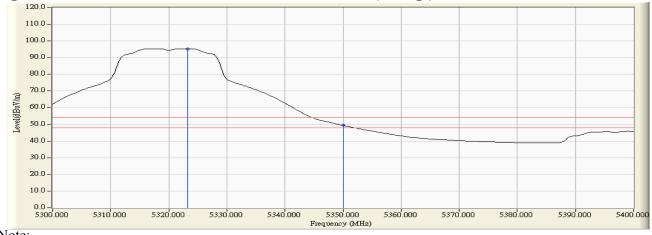
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) -Channel 64

# **RF Radiated Measurement (Horizontal):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	(dBµV/m)	Result
64 (Peak)	5323.600	3.801	102.318	106.119			
64 (Peak)	5350.000	3.716	63.129	66.846	74.00	54.00	Pass
64 (Peak)	5351.400	3.712	63.313	67.025	74.00	54.00	Pass
64 (Average)	5323.200	3.802	91.499	95.301			
64 (Average)	5350.000	3.716	45.686	49.403	74.00	54.00	Pass


### **Figure Channel 64:**

#### Horizontal (Peak)



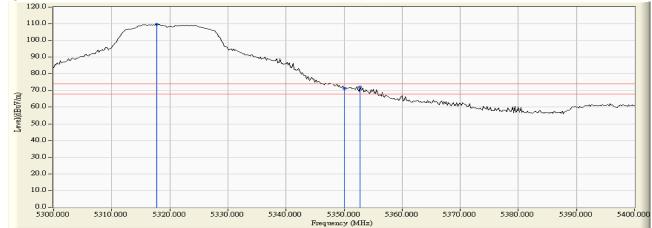


**Horizontal** (Average)



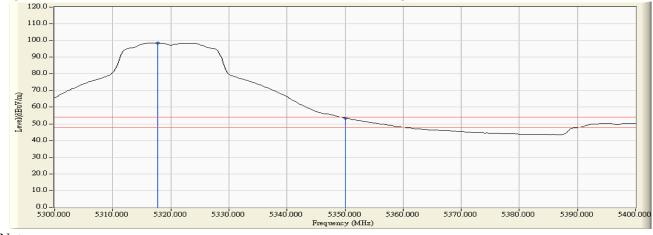
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 1.
- 2. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.




:	Intel® Dual Band Wireless-AC 8260
:	Band Edge Data
:	No.3 OATS
:	Mode 1 SISO A: Transmit (802.11a-6Mbps) -Channel 64
	:

## **RF Radiated Measurement (Vertical):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5317.800	5.732	104.112	109.844			
64 (Peak)	5350.000	5.691	65.250	70.942	74.00	54.00	Pass
64 (Peak)	5352.800	5.688	66.220	71.908	74.00	54.00	Pass
64 (Average)	5317.800	5.732	92.617	98.349			
64 (Average)	5350.000	5.691	47.824	53.516	74.00	54.00	Pass


#### **Figure Channel 64:**

# Vertical (Peak)



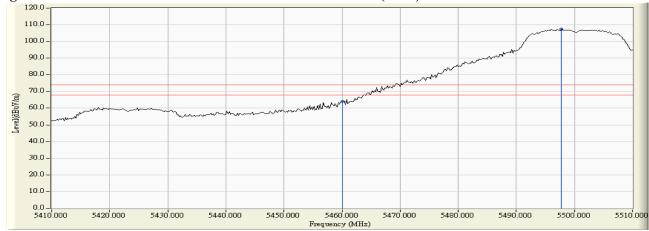


# Vertical (Average)



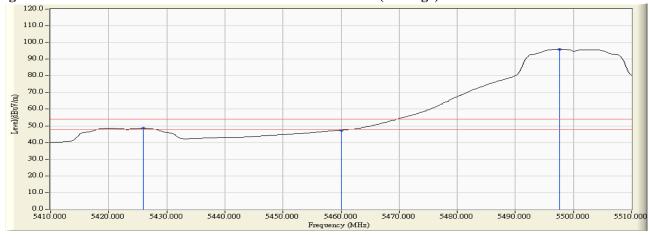
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) -Channel 100

# **RF Radiated Measurement (Horizontal):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	4.354	59.685	64.039	74.00	54.00	Pass
100 (Peak)	5497.800	4.799	102.614	107.413			
100 (Average)	5426.000	3.902	44.559	48.461	74.00	54.00	Pass
100 (Average)	5460.000	4.354	42.973	47.327	74.00	54.00	Pass
100 (Average)	5497.600	4.798	90.975	95.773			


### Figure Channel 100:

#### Horizontal (Peak)



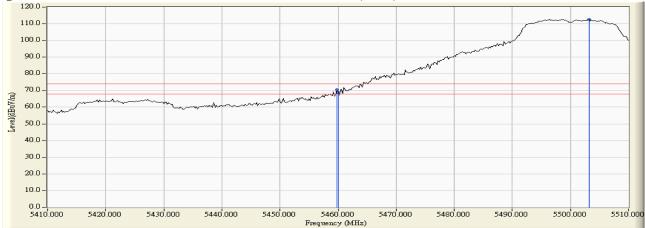
#### **Figure Channel 100:**

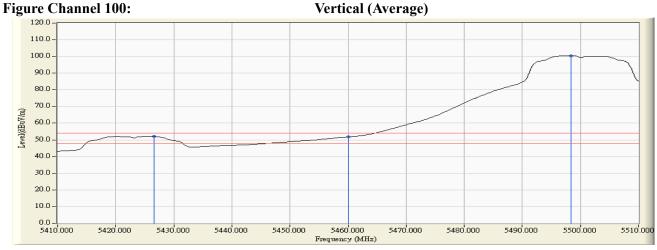
#### Horizontal (Average)



- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 1.
- 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- "*", means this data is the worst emission level. 4.
- Measurement Level = Reading Level + Correct Factor. 5.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) -Channel 100


# **RF Radiated Measurement (Vertical):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
100 (Peak)	5459.800	6.040	64.300	70.339	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	62.958	68.999	74.00	54.00	Pass
100 (Peak)	5503.200	6.284	106.402	112.687			
100 (Average)	5426.600	5.810	46.199	52.010	74.00	54.00	Pass
100 (Average)	5460.000	6.041	45.655	51.696	74.00	54.00	Pass
100 (Average)	5498.400	6.270	94.044	100.314			

### Figure Channel 100:

#### Vertical (Peak)





- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) -Channel 100

# **RF Radiated Measurement:**

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5470.000	4.488	60.285	64.773	-3.447	68.220	Pass
Horizontal	5497.400	4.797	105.021	109.817	41.597	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5470.000	6.112	58.147	64.258	-3.962	68.220	Pass
Vertical	5497.400	6.267	101.165	107.432	39.212	68.220	Pass



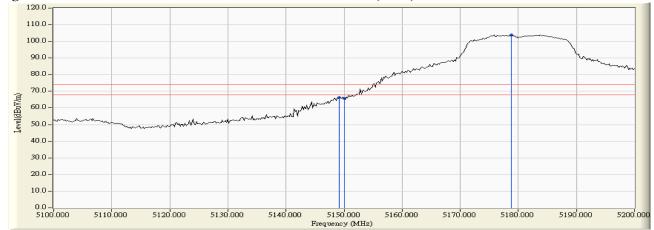
Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11a-6Mbps) -Channel 140

# **RF Radiated Measurement:**

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5702.000	4.632	101.253	105.885	37.665	68.220	Pass
Horizontal	5725.000	4.654	63.359	68.013	-0.207	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5696.600	5.978	97.690	103.668	35.448	68.220	Pass
Vertical	5725.000	5.992	59.387	65.380	-2.840	68.220	Pass




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 36

# **RF Radiated Measurement (Horizontal):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5149.200	3.343	62.946	66.289	74.00	54.00	Pass
36 (Peak)	5150.000	3.340	62.141	65.481	74.00	54.00	Pass
36 (Peak)	5178.800	3.238	100.615	103.853			
36 (Average)	5150.000	3.340	42.969	46.309	74.00	54.00	Pass
36 (Average)	5178.400	3.240	89.477	92.717			

### **Figure Channel 36:**

### Horizontal (Peak)





5140,000

#### Note:

50.0 -40.0 -30.0 -20.0 -10.0 -5100.000

5110,000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

5150.000 Frequency (MHz)

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

5130,000

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

5120,000

- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

5160,000

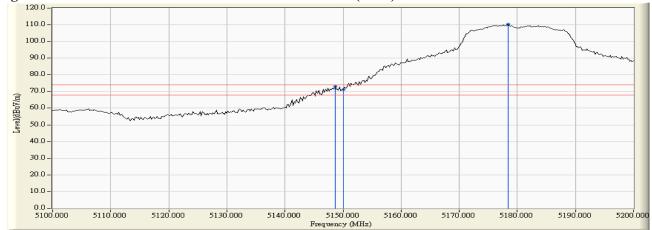
5170,000

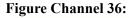
5180.000

5190.000

5200.000




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 36


# **RF Radiated Measurement (Vertical):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
36 (Peak)	5148.600	5.256	67.744	73.000	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	65.977	71.237	74.00	54.00	Pass
36 (Peak)	5178.400	5.337	104.909	110.246			
36 (Average)	5150.000	5.260	47.439	52.699	74.00	54.00	Pass
36 (Average)	5177.800	5.335	93.249	98.585			

# **Figure Channel 36:**

# Vertical (Peak)



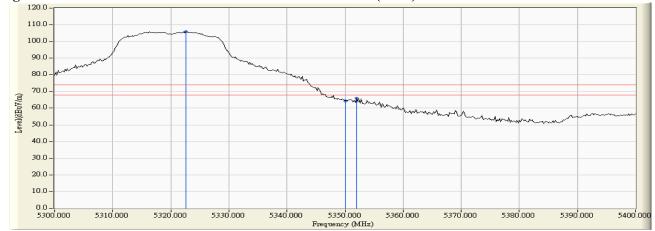


# Vertical (Average)



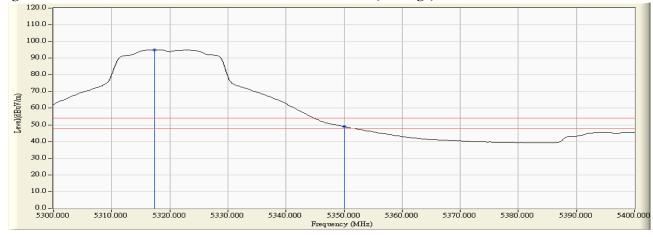
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 64

# **RF Radiated Measurement (Horizontal):**

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5322.600	3.803	102.055	105.859			
64 (Peak)	5350.000	3.716	60.667	64.384	74.00	54.00	Pass
64 (Peak)	5352.000	3.710	62.370	66.080	74.00	54.00	Pass
64 (Average)	5317.400	3.820	91.092	94.913			
64 (Average)	5350.000	3.716	45.291	49.008	74.00	54.00	Pass


# **Figure Channel 64:**

# Horizontal (Peak)

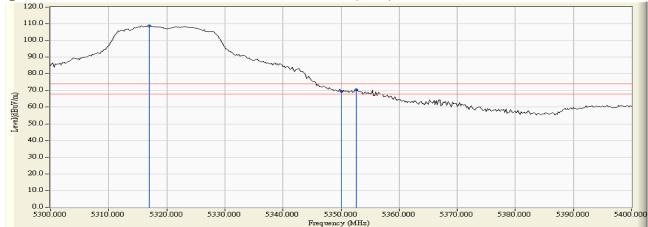


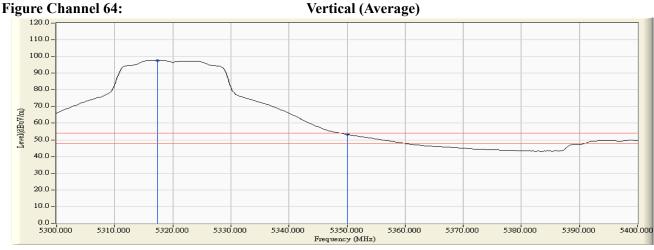


Horizontal (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5317.000	5.732	103.134	108.867			
64 (Peak)	5350.000	5.691	63.803	69.495	74.00	54.00	Pass
64 (Peak)	5352.600	5.688	64.734	70.422	74.00	54.00	Pass
64 (Average)	5317.400	5.732	91.877	97.609			
64 (Average)	5350.000	5.691	47.633	53.325	74.00	54.00	Pass

## Figure Channel 64:

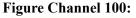
## Vertical (Peak)



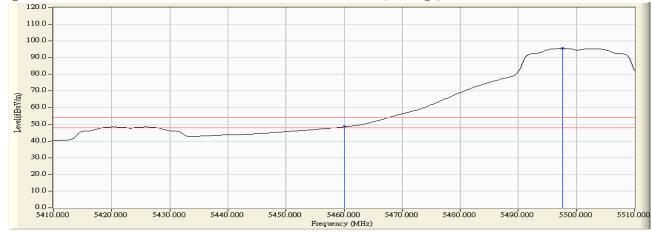


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	4.354	63.408	67.762	74.00	54.00	Pass
100 (Peak)	5495.600	4.783	101.915	106.699			
100 (Average)	5460.000	4.354	44.070	48.424	74.00	54.00	Pass
100 (Average)	5497.600	4.798	90.656	95.454			


### Figure Channel 100:

#### Horizontal (Peak)

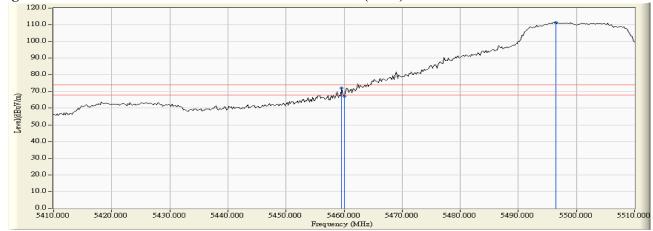




### Horizontal (Average)

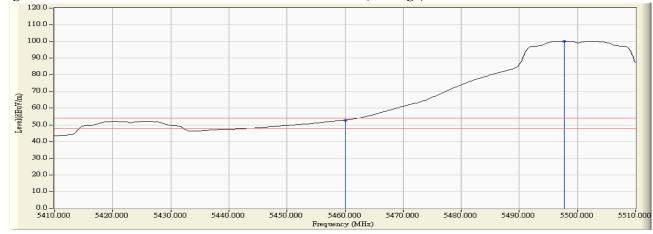


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.600	6.039	66.019	72.057	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	61.304	67.345	74.00	54.00	Pass
100 (Peak)	5496.400	6.264	105.049	111.313			
100 (Average)	5460.000	6.041	46.767	52.808	74.00	54.00	Pass
100 (Average)	5497.800	6.268	93.904	100.172			


## **Figure Channel 100:**

## Vertical (Peak)





Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	•	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 100

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5470.000	4.488	59.942	64.430	-3.790	68.220	Pass
Horizontal	5498.400	4.804	104.797	109.600	41.380	68.220	Pass

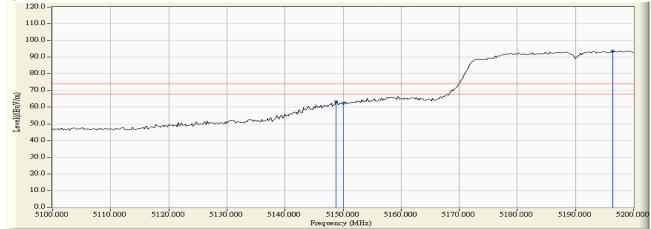
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5466.800	6.088	56.895	62.984	-5.236	68.220	Pass
Vertical	5470.000	6.112	55.478	61.589	-6.631	68.220	Pass
Vertical	5498.400	6.270	100.137	106.407	38.187	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-20BW 7.2Mbps) -Channel 140

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result	
Hori	izontal	5702.600	4.634	100.897	105.531	37.311	68.220	Pass	
Hori	zontal	5725.000	4.654	63.141	67.795	-0.425	68.220	Pass	

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5702.400	5.986	97.738	103.724	35.504	68.220	Pass
Vertical	5725.000	5.992	59.566	65.559	-2.661	68.220	Pass




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5148.800	3.345	59.975	63.320	74.00	54.00	Pass
38 (Peak)	5150.000	3.340	59.076	62.416	74.00	54.00	Pass
38 (Peak)	5196.400	3.167	90.499	93.667			
38 (Average)	5150.000	3.340	43.658	46.998	74.00	54.00	Pass
38 (Average)	5199.400	3.160	78.911	82.070			

### Figure Channel 38:

#### Horizontal (Peak)

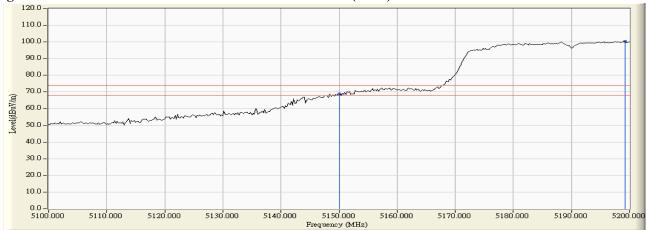




## Horizontal (Average)



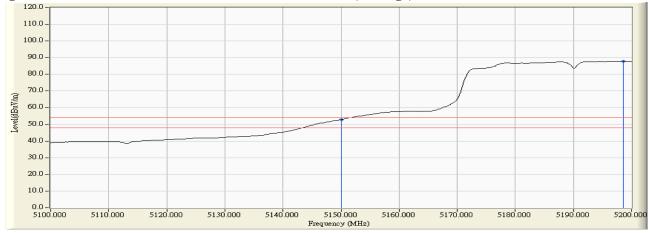
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5150.000	5.260	63.526	68.786	74.00	54.00	Pass
38 (Peak)	5199.200	5.384	95.098	100.482			
38 (Average)	5150.000	5.260	47.602	52.862	74.00	54.00	Pass
38 (Average)	5198.600	5.382	82.550	87.932			


## Figure Channel 38:

## Vertical (Peak)

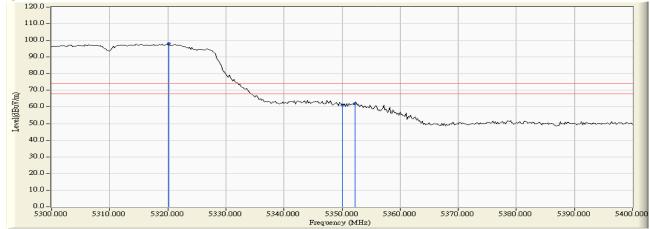




### Vertical (Average)

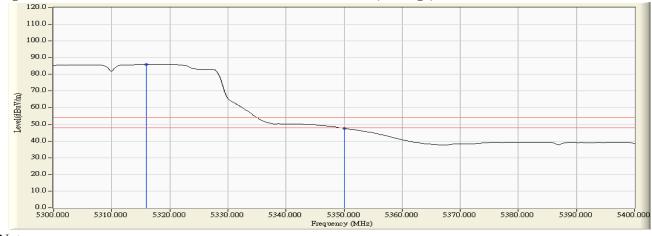


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5320.200	3.812	94.164	97.976			
62 (Peak)	5350.000	3.716	57.328	61.045	74.00	54.00	Pass
62 (Peak)	5352.200	3.710	58.310	62.019	74.00	54.00	Pass
62 (Average)	5316.000	3.824	82.104	85.929			
62 (Average)	5350.000	3.716	43.868	47.585	74.00	54.00	Pass


## Figure Channel 62:

## Horizontal (Peak)

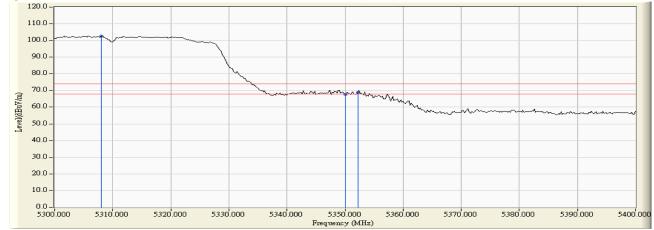


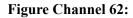


## Horizontal (Average)

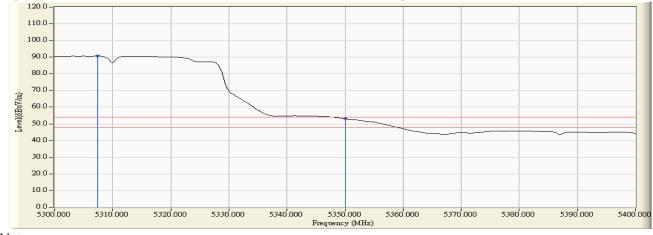


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5308.000	5.745	97.001	102.746			
62 (Peak)	5350.000	5.691	62.016	67.708	74.00	54.00	Pass
62 (Peak)	5352.200	5.689	63.222	68.911	74.00	54.00	Pass
62 (Average)	5307.400	5.745	84.893	90.638			
62 (Average)	5350.000	5.691	47.403	53.095	74.00	54.00	Pass


### Figure Channel 62:

### Vertical (Peak)

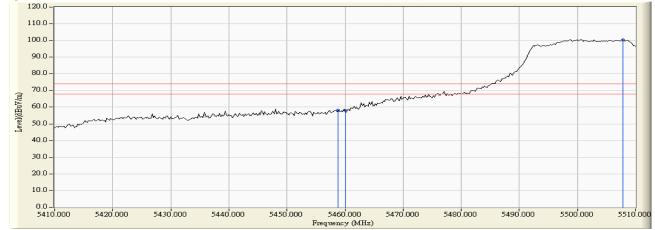


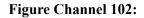


Vertical (Average)

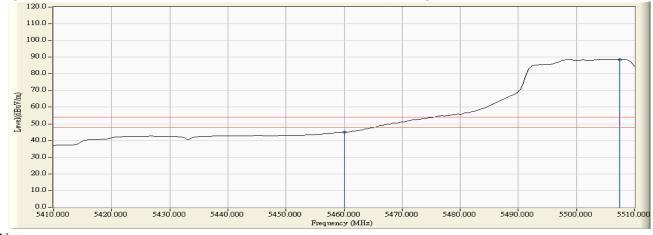


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
102 (Peak)	5458.800	4.337	53.925	58.263	74.00	54.00	Pass
102 (Peak)	5460.000	4.354	53.398	57.752	74.00	54.00	Pass
102 (Peak)	5507.800	4.826	95.656	100.483			
102 (Average)	5460.000	4.354	40.575	44.929	74.00	54.00	Pass
102 (Average)	5507.400	4.830	83.753	88.583			


### Figure Channel 102:

# Horizontal (Peak)

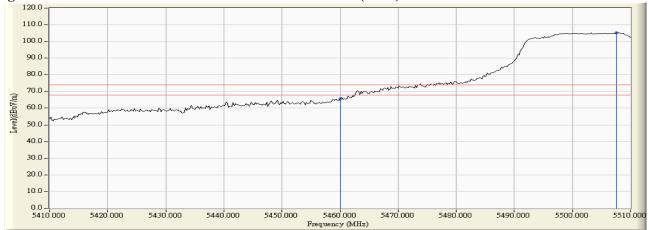




Horizontal (Average)

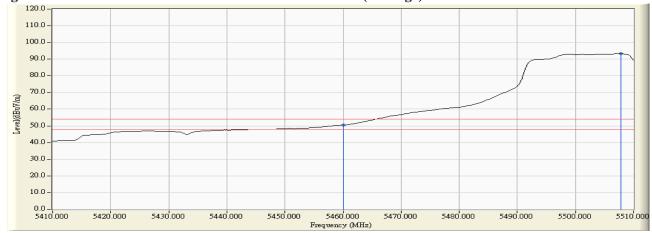


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
102 (Peak)	5460.000	6.041	59.691	65.732	74.00	54.00	Pass
102 (Peak)	5507.600	6.273	98.965	105.238			
102 (Average)	5460.000	6.041	44.377	50.418	74.00	54.00	Pass
102 (Average)	5507.800	6.272	86.986	93.258			


#### Figure Channel 102:

# Vertical (Peak)



#### **Figure Channel 102:**





- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	•	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 102

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5469.400	4.479	62.154	66.634	-1.586	68.220	Pass
Horizontal	5470.000	4.488	59.681	64.169	-4.051	68.220	Pass
Horizontal	5506.200	4.839	97.765	102.604	34.384	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5469.800	6.110	56.880	62.990	-5.230	68.220	Pass
Vertical	5470.000	6.112	55.760	61.871	-6.349	68.220	Pass
Vertical	5518.600	6.203	94.090	100.293	32.073	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11n-40BW 15Mbps) -Channel 134

# **<u>RF Radiated Measurement:</u>**

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5678.400	4.530	99.971	104.501	36.281	68.220	Pass
Horizontal	5725.000	4.654	62.375	67.029	-1.191	68.220	Pass
Horizontal	5730.600	4.655	63.479	68.134	-0.086	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5678.400	5.931	96.255	102.187	33.967	68.220	Pass
Vertical	5725.000	5.992	58.735	64.728	-3.492	68.220	Pass
Vertical	5732.400	5.991	60.673	66.664	-1.556	68.220	Pass

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-20BW-7.2Mbps) -Channel 44

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	50.661	55.625	-22.595	78.220	Pass
Horizontal	5857.600	5.008	51.771	56.780	-21.440	78.220	Pass
Horizontal	5860.000	5.023	51.194	56.217	-12.003	68.220	Pass
Horizontal	5866.200	5.059	54.377	59.436	-8.784	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	50.782	56.819	-21.401	78.220	Pass
Vertical	5858.800	6.047	50.856	56.902	-21.318	78.220	Pass
Vertical	5860.000	6.047	50.254	56.301	-11.919	68.220	Pass
Vertical	5873.400	6.063	53.749	59.811	-8.409	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-40BW-15Mbps) -Channel 42

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	56.403	61.367	-16.853	78.220	Pass
Horizontal	5852.200	4.977	57.855	62.832	-15.388	78.220	Pass
Horizontal	5860.000	5.023	57.017	62.040	-6.180	68.220	Pass
Horizontal	5865.200	5.053	57.124	62.177	-6.043	68.220	Pass

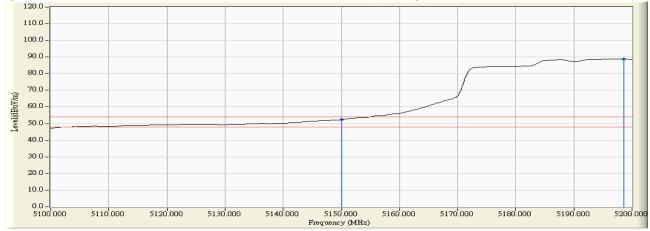
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	55.206	61.243	-16.977	78.220	Pass
Vertical	5858.000	6.046	56.223	62.268	-15.952	78.220	Pass
Vertical	5860.000	6.047	54.340	60.387	-7.833	68.220	Pass
Vertical	5864.000	6.052	55.441	61.493	-6.727	68.220	Pass





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) -Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5150.000	3.340	63.500	66.840	74.00	54.00	Pass
42 (Peak)	5197.400	3.163	98.951	102.114			
42 (Average)	5150.000	3.340	48.977	52.317	74.00	54.00	Pass
42 (Average)	5198.600	3.157	85.697	88.855			


## Figure Channel 42:

## Horizontal (Peak)

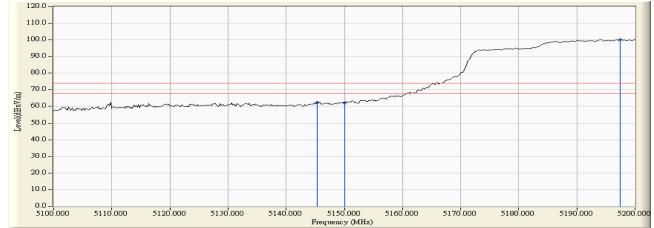




Horizontal (Average)

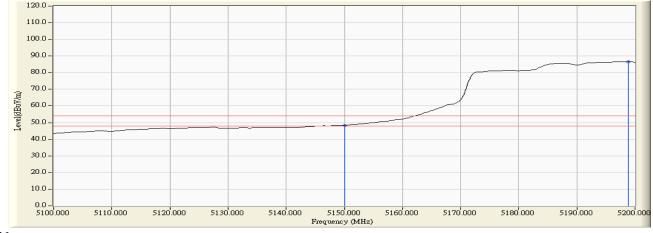


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) -Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	<b>Emission Level</b>	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5145.400	5.247	57.151	62.398	74.00	54.00	Pass
42 (Peak)	5150.000	5.260	56.814	62.074	74.00	54.00	Pass
42 (Peak)	5197.400	5.380	94.800	100.180			
42 (Average)	5150.000	5.260	42.989	48.249	74.00	54.00	Pass
42 (Average)	5198.800	5.383	81.231	86.614			


## Figure Channel 42:

## Vertical (Peak)

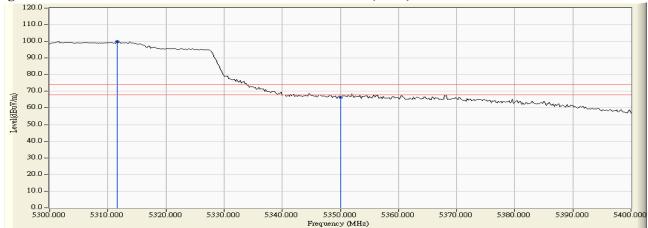


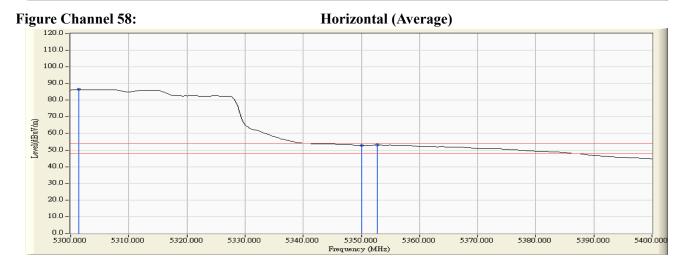


Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) -Channel 58

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
50 (D 1)					(ubµ v/m)	(uDµ v/III)	
58 (Peak)	5311.600	3.839	96.152	99.991			
58 (Peak)	5350.000	3.716	62.563	66.280	74.00	54.00	Pass
58 (Average)	5301.400	3.872	82.521	86.394			
58 (Average)	5350.000	3.716	49.047	52.764	74.00	54.00	Pass
58 (Average)	5352.800	3.707	49.288	52.995	74.00	54.00	Pass

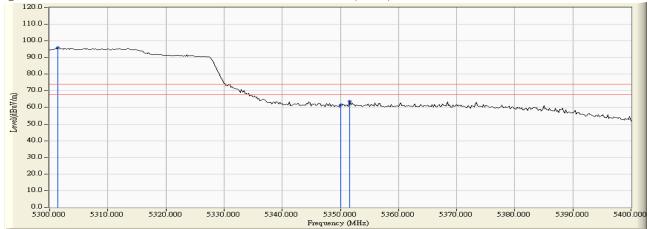
#### Figure Channel 58:

### Horizontal (Peak)



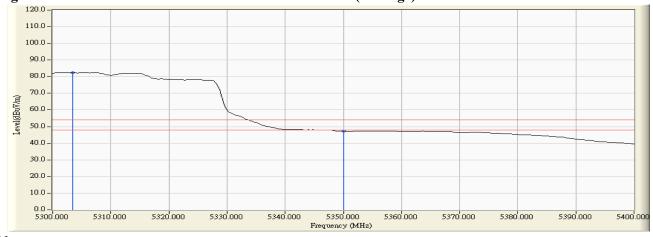


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) -Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5301.400	5.753	90.164	95.917			
58 (Peak)	5350.000	5.691	55.829	61.521	74.00	54.00	Pass
58 (Peak)	5351.600	5.689	57.876	63.566	74.00	54.00	Pass
58 (Average)	5303.400	5.751	76.664	82.415			
58 (Average)	5350.000	5.691	41.467	47.159	74.00	54.00	Pass


### Figure Channel 58:

## Vertical (Peak)

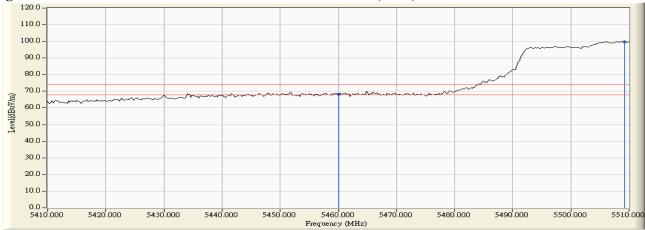


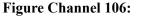


### Vertical (Average)

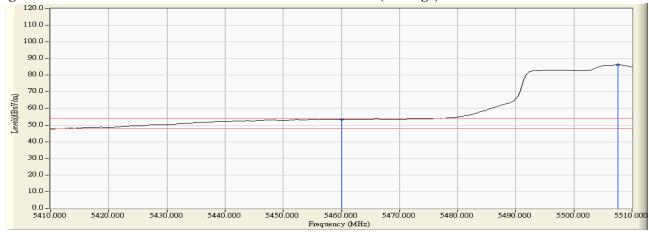


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) -Channel 106

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
106 (Peak)	5460.000	4.354	63.911	68.265	74.00	54.00	Pass
106 (Peak)	5509.200	4.816	94.947	99.762			
106 (Average)	5460.000	4.354	48.984	53.338	74.00	54.00	Pass
106 (Average)	5507.600	4.828	81.388	86.216			


## Figure Channel 106:

## Horizontal (Peak)

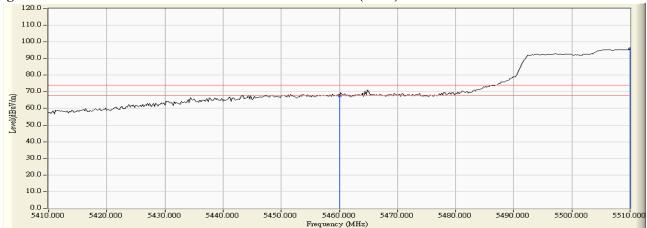




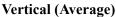
Horizontal (Average)

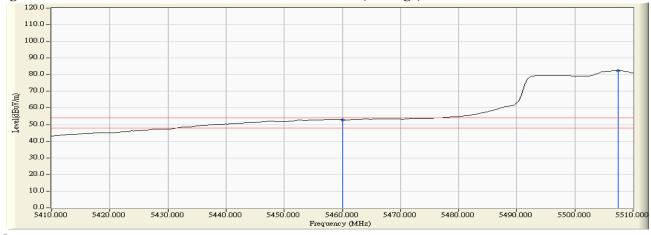


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) -Channel 106


Channel Ma	Frequency	Correct Factor	Reading Level	<b>Emission Level</b>	Peak Limit	Average Limit	D
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	$(dB\mu V/m)$	Result
106 (Peak)	5460.000	6.041	61.488	67.529	74.00	54.00	Pass
106 (Peak)	5510.000	6.258	89.458	95.716			
106 (Average)	5460.000	6.041	46.877	52.918	74.00	54.00	Pass
106 (Average)	5507.400	6.275	76.098	82.373			


### Figure Channel 106:

## Vertical (Peak)



# Figure Channel 106:





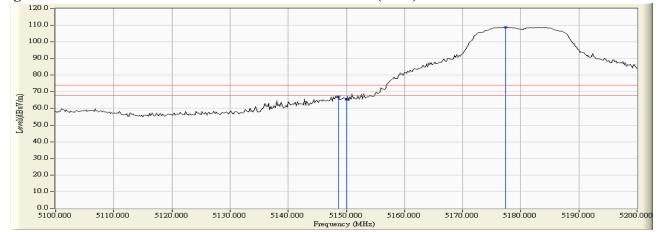
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit (802.11ac-80BW-32.5Mbps) -Channel 106

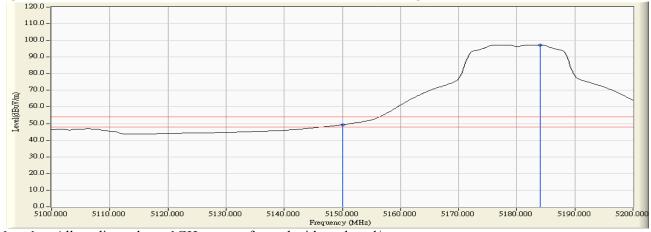
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5453.800	4.272	63.105	67.376	-0.844	68.220	Pass
Horizontal	5470.000	4.488	60.904	65.392	-2.828	68.220	Pass
Horizontal	5515.400	4.766	91.896	96.662	28.442	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5464.400	6.072	61.330	67.402	-0.818	68.220	Pass
Vertical	5470.000	6.112	59.195	65.306	-2.914	68.220	Pass
Vertical	5519.000	6.201	88.810	95.011	26.791	68.220	Pass




Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps)-Channel 36

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dBµV/m)	Kesuit
36 (Peak)	5148.600	3.345	63.960	67.305	74.00	54.00	Pass
36 (Peak)	5150.000	3.340	61.843	65.183	74.00	54.00	Pass
36 (Peak)	5177.400	3.244	105.651	108.894			
36 (Average)	5150.000	3.340	45.910	49.250	74.00	54.00	Pass
36 (Average)	5184.000	3.220	94.016	97.236			


### Figure Channel 36:

## Horizontal (Peak)



#### **Figure Channel 36:**

### Horizontal (Average)

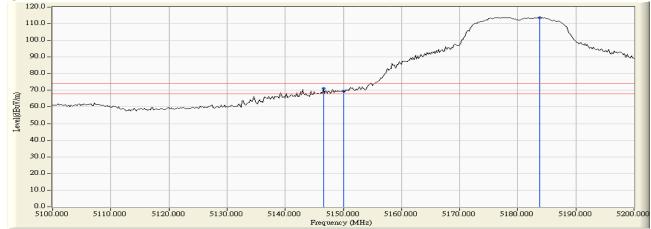


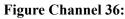
Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.

3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps)-Channel 36
Test Site	:	No.3 OATS

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5146.600	5.251	65.853	71.104	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	64.218	69.478	74.00	54.00	Pass
36 (Peak)	5183.800	5.352	108.340	113.692			
36 (Average)	5150.000	5.260	47.654	52.914	74.00	54.00	Pass
36 (Average)	5184.000	5.352	96.709	102.061			


#### Figure Channel 36:

#### Vertical (Peak)

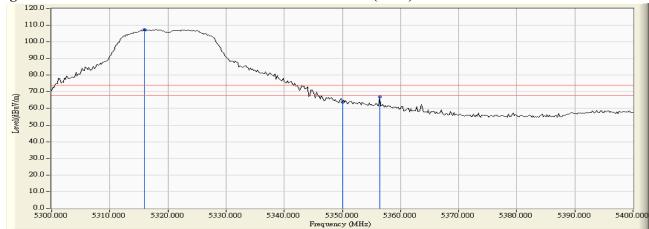




## Vertical (Average)

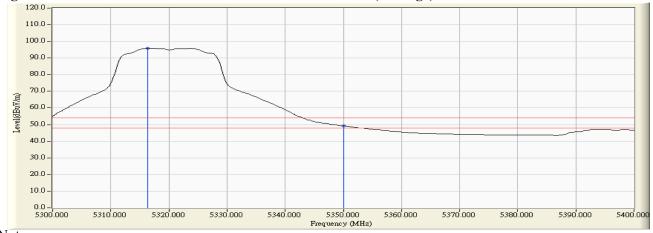


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	(dBµV/m)	Result
64 (Peak)	5316.000	3.824	103.558	107.383			
64 (Peak)	5350.000	3.716	59.895	63.612	74.00	54.00	Pass
64 (Peak)	5356.400	3.695	63.120	66.815	74.00	54.00	Pass
64 (Average)	5316.400	3.823	91.957	95.781			
64 (Average)	5350.000	3.716	45.464	49.181	74.00	54.00	Pass


## **Figure Channel 64:**

## Horizontal (Peak)

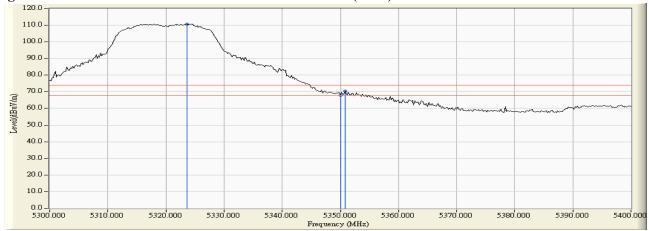




Horizontal (Average)

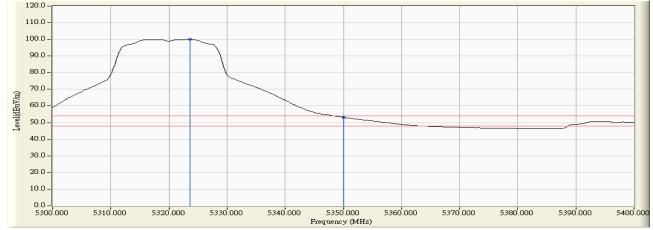


- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level.
- 1. 2. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.




Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
64 (Peak)	5323.600	5.725	105.078	110.803			
64 (Peak)	5350.000	5.691	62.161	67.853	74.00	54.00	Pass
64 (Peak)	5350.800	5.690	64.891	70.582	74.00	54.00	Pass
64 (Average)	5323.600	5.725	94.239	99.964			
64 (Average)	5350.000	5.691	47.413	53.105	74.00	54.00	Pass


#### Figure Channel 64:

## Vertical (Peak)

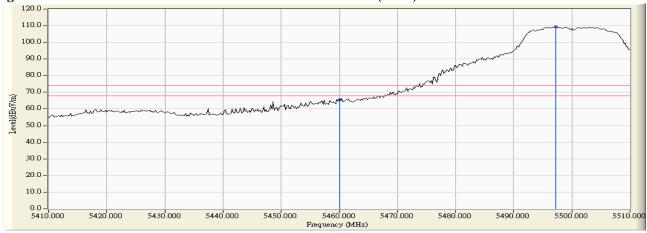




### Vertical (Average)

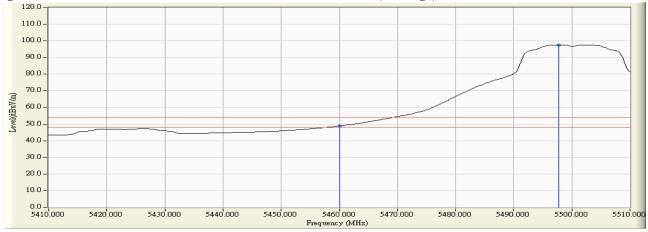


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	4.354	61.275	65.629	74.00	54.00	Pass
100 (Peak)	5497.200	4.795	104.574	109.369			
100 (Average)	5460.000	4.354	44.508	48.862	74.00	54.00	Pass
100 (Average)	5497.800	4.799	92.697	97.496			


#### **Figure Channel 100:**

### Horizontal (Peak)

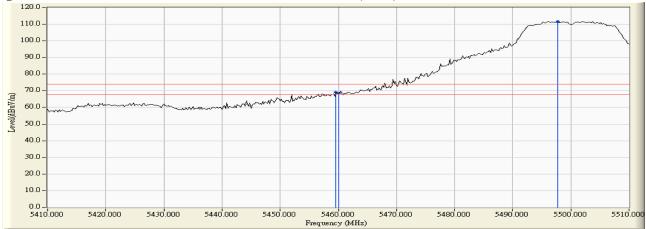


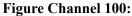


### Horizontal (Average)

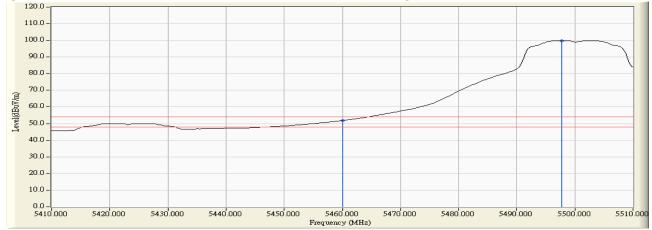


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto. 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.600	6.039	62.980	69.018	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	62.389	68.430	74.00	54.00	Pass
100 (Peak)	5497.800	6.268	105.476	111.744			
100 (Average)	5460.000	6.041	45.775	51.816	74.00	54.00	Pass
100 (Average)	5497.800	6.268	93.539	99.807			


## Figure Channel 100:

Vertical (Peak)





Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) -Channel 100

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5469.000	4.474	57.499	61.973	-6.247	68.220	Pass
Horizontal	5470.000	4.488	55.317	59.805	-8.415	68.220	Pass
Horizontal	5498.200	4.801	104.162	108.964	40.744	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5467.000	6.090	57.793	63.883	-4.337	68.220	Pass
Vertical	5470.000	6.112	56.770	62.881	-5.339	68.220	Pass
Vertical	5497.400	6.267	102.314	108.581	40.361	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11a-6Mbps) -Channel 140

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5698.200	4.622	102.901	107.523	39.303	68.220	Pass
Horizontal	5725.000	4.654	62.917	67.571	-0.649	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5695.800	5.977	101.133	107.110	38.890	68.220	Pass
Vertical	5725.000	5.992	61.607	67.600	-0.620	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 36

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5149.000	3.344	63.566	66.910	74.00	54.00	Pass
36 (Peak)	5150.000	3.340	61.497	64.837	74.00	54.00	Pass
36 (Peak)	5177.400	3.244	104.646	107.889			
36 (Average)	5150.000	3.340	45.910	49.250	74.00	54.00	Pass
36 (Average)	5184.000	3.220	94.016	97.236			

## **Figure Channel 36:**

### Horizontal (Peak)

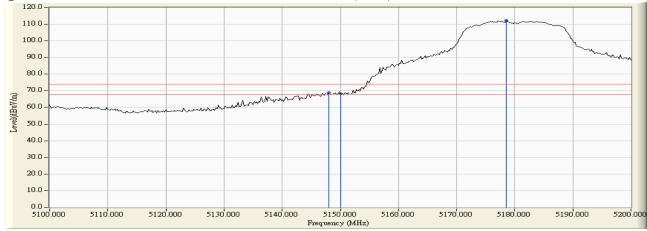


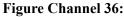


Horizontal (Average)

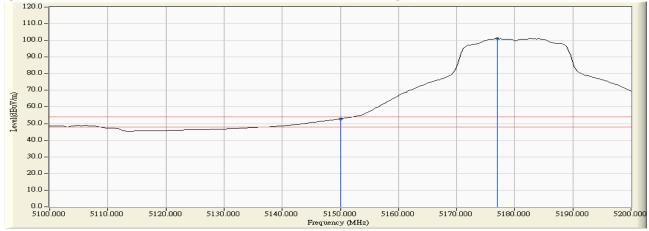


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 36

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5148.000	5.254	63.648	68.902	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	63.047	68.307	74.00	54.00	Pass
36 (Peak)	5178.600	5.337	106.981	112.319			
36 (Average)	5150.000	5.260	47.607	52.867	74.00	54.00	Pass
36 (Average)	5177.000	5.335	95.586	100.920			


### Figure Channel 36:

## Vertical (Peak)

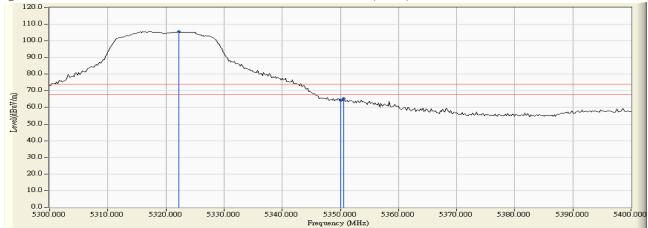


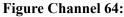


### Vertical (Average)

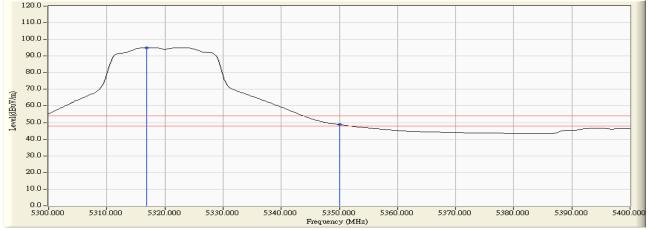


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5322.200	3.806	101.867	105.672			
64 (Peak)	5350.000	3.716	60.566	64.283	74.00	54.00	Pass
64 (Peak)	5350.600	3.714	61.572	65.287	74.00	54.00	Pass
64 (Average)	5316.800	3.823	91.134	94.956			
64 (Average)	5350.000	3.716	45.071	48.788	74.00	54.00	Pass


## Figure Channel 64:

## Horizontal (Peak)

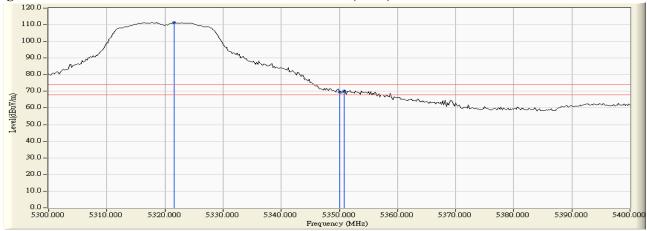


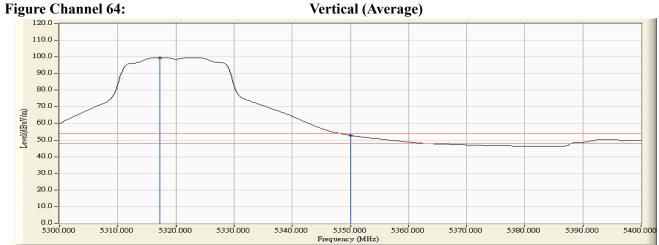


### Horizontal (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dBµV/m)	Result
64 (Peak)	5321.600	5.727	105.581	111.308			
64 (Peak)	5350.000	5.691	63.641	69.333	74.00	54.00	Pass
64 (Peak)	5350.800	5.690	64.597	70.288	74.00	54.00	Pass
64 (Average)	5317.200	5.732	93.721	99.454			
64 (Average)	5350.000	5.691	47.206	52.898	74.00	54.00	Pass

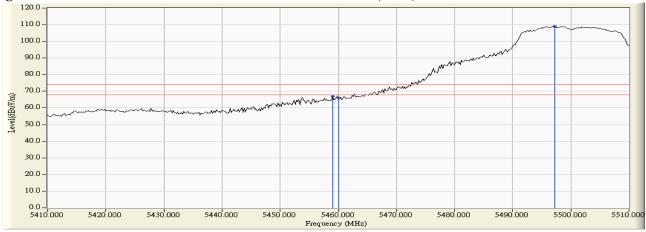


Vertical (Peak)



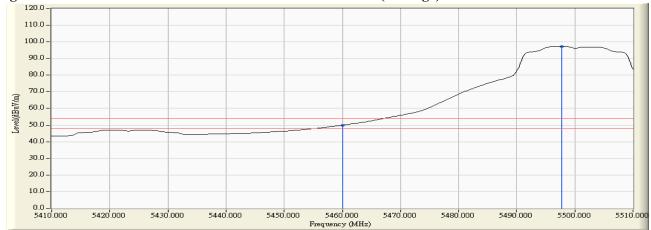


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.000	4.340	62.429	66.769	74.00	54.00	Pass
100 (Peak)	5460.000	4.354	61.697	66.051	74.00	54.00	Pass
100 (Peak)	5497.200	4.795	104.210	109.005			
100 (Average)	5460.000	4.354	45.569	49.923	74.00	54.00	Pass
100 (Average)	5497.800	4.799	92.448	97.247			


Figure Channel 100:

Horizontal (Peak)

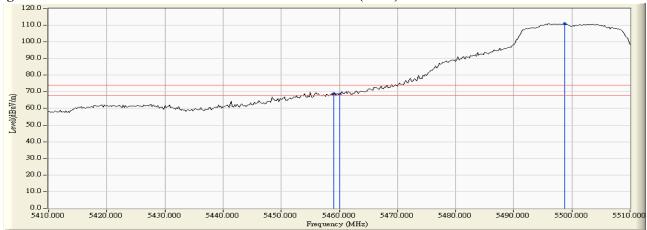




Horizontal (Average)

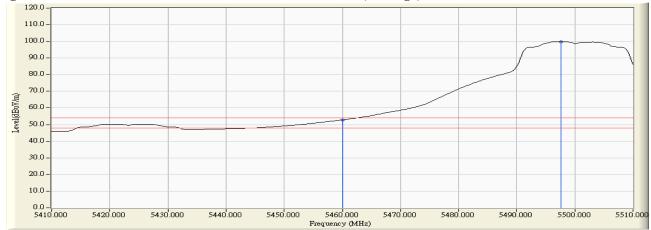


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.000	6.033	62.730	68.764	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	62.442	68.483	74.00	54.00	Pass
100 (Peak)	5498.800	6.271	104.731	111.002			
100 (Average)	5460.000	6.041	46.747	52.788	74.00	54.00	Pass
100 (Average)	5497.600	6.267	93.531	99.799			


## Figure Channel 100:

### Vertical (Peak)





Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 100

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5469.000	4.474	56.971	61.445	-6.775	68.220	Pass
Horizontal	5470.000	4.488	56.706	61.194	-7.026	68.220	Pass
Horizontal	5497.200	4.795	103.795	108.590	40.370	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5468.400	6.100	56.511	62.611	-5.609	68.220	Pass
Vertical	5470.000	6.112	55.432	61.543	-6.677	68.220	Pass
Vertical	5497.000	6.266	101.611	107.877	39.657	68.220	Pass



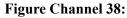
Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-20BW 7.2Mbps) -Channel 140

# **<u>RF Radiated Measurement:</u>**

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5695.800	4.616	102.481	107.097	38.877	68.220	Pass
Horizontal	5725.000	4.654	62.430	67.084	-1.136	68.220	Pass
Horizontal	5725.200	4.654	62.638	67.292	-0.928	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5697.000	5.979	100.722	106.700	38.480	68.220	Pass
Vertical	5725.000	5.992	60.729	66.722	-1.498	68.220	Pass




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5148.000	3.347	59.973	63.320	74.00	54.00	Pass
38 (Peak)	5150.000	3.340	58.289	61.629	74.00	54.00	Pass
38 (Peak)	5198.400	3.159	100.550	103.709			
38 (Average)	5150.000	3.340	45.642	48.982	74.00	54.00	Pass
38 (Average)	5197.200	3.164	88.919	92.083			


### Figure Channel 38:

#### Horizontal (Peak)

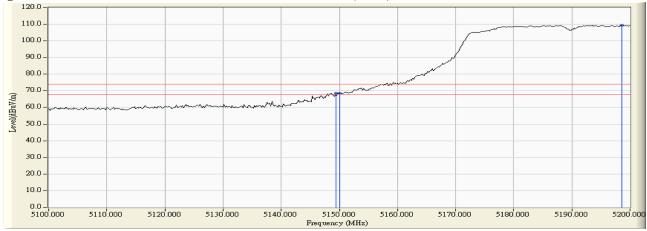


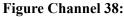


Horizontal (Average)

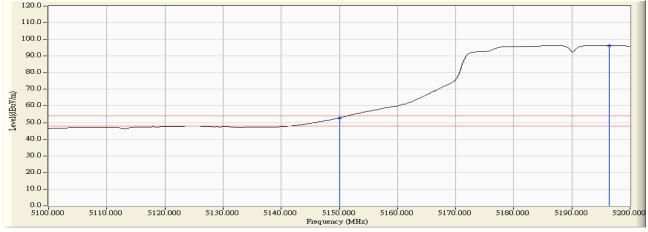


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5149.400	5.258	63.202	68.460	74.00	54.00	Pass
38 (Peak)	5150.000	5.260	63.127	68.387	74.00	54.00	Pass
38 (Peak)	5198.600	5.382	103.933	109.315			
38 (Average)	5150.000	5.260	47.456	52.716	74.00	54.00	Pass
38 (Average)	5196.400	5.378	90.873	96.251			


### Figure Channel 38:

# Vertical (Peak)

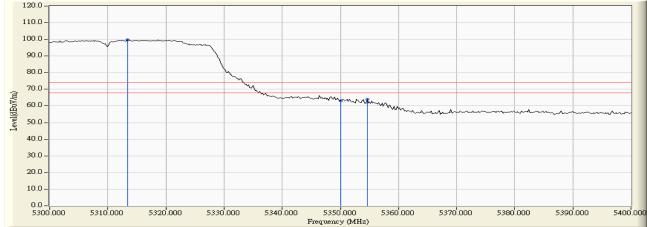




#### Vertical (Average)

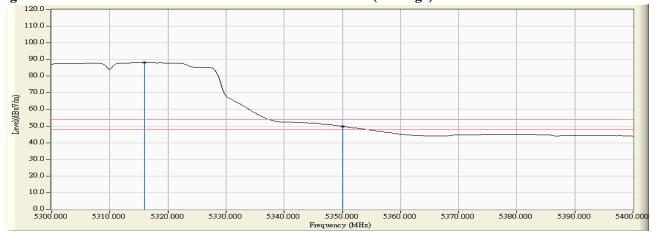


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5313.400	3.834	95.914	99.748			
62 (Peak)	5350.000	3.716	59.494	63.211	74.00	54.00	Pass
62 (Peak)	5354.600	3.702	60.452	64.153	74.00	54.00	Pass
62 (Average)	5316.000	3.824	84.315	88.140			
62 (Average)	5350.000	3.716	46.014	49.731	74.00	54.00	Pass


### Figure Channel 62:

### Horizontal (Peak)





#### Horizontal (Average)

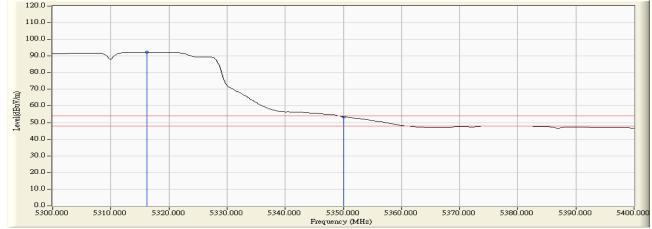


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5313.400	5.738	99.053	104.791			
62 (Peak)	5350.000	5.691	62.485	68.177	74.00	54.00	Pass
62 (Peak)	5353.200	5.688	64.310	69.997	74.00	54.00	Pass
62 (Average)	5316.200	5.733	86.470	92.204			
62 (Average)	5350.000	5.691	47.828	53.520	74.00	54.00	Pass


#### Figure Channel 62:

## Vertical (Peak)

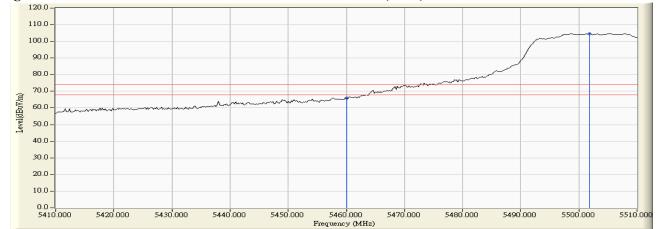


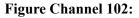


#### Vertical (Average)

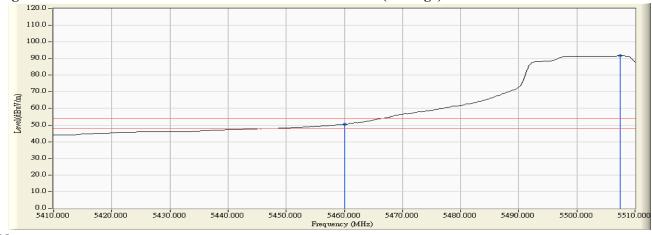


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
102 (Peak)	5460.000	4.354	61.631	65.985	74.00	54.00	Pass
102 (Peak)	5501.800	4.827	99.875	104.702			
102 (Average)	5460.000	4.354	46.026	50.380	74.00	54.00	Pass
102 (Average)	5507.400	4.830	86.788	91.618			


### Figure Channel 102:

### Horizontal (Peak)

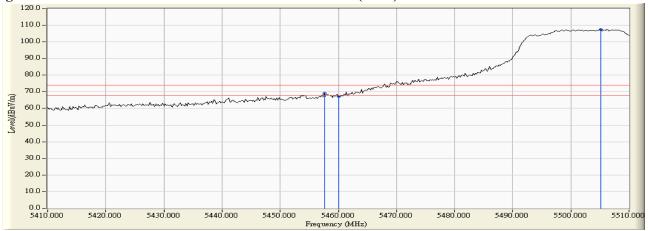




### Horizontal (Average)

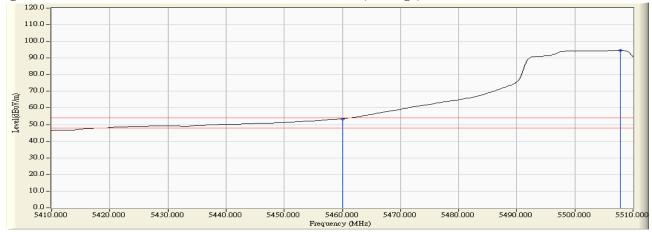


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
102 (Peak)	5457.600	6.024	63.205	69.229	74.00	54.00	Pass
102 (Peak)	5460.000	6.041	61.352	67.393	74.00	54.00	Pass
102 (Peak)	5505.200	6.289	101.050	107.339			
102 (Average)	5460.000	6.041	47.462	53.503	74.00	54.00	Pass
102 (Average)	5507.800	6.272	88.349	94.621			


### Figure Channel 102:

### Vertical (Peak)



#### Figure Channel 102:

#### Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 102

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5470.000	4.488	61.484	65.972	-2.248	68.220	Pass
Horizontal	5513.800	4.778	100.716	105.494	37.274	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5469.200	6.105	59.674	65.779	-2.441	68.220	Pass
Vertical	5470.000	6.112	59.598	65.709	-2.511	68.220	Pass
Vertical	5518.600	6.203	98.489	104.692	36.472	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11n-40BW 15Mbps) -Channel 134

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5678.400	4.530	101.071	105.601	37.381	68.220	Pass
Horizontal	5725.000	4.654	60.428	65.082	-3.138	68.220	Pass
Horizontal	5729.000	4.655	60.198	64.853	-3.367	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5679.200	5.934	99.630	105.564	37.344	68.220	Pass
Vertical	5725.000	5.992	58.898	64.891	-3.329	68.220	Pass
Vertical	5726.000	5.992	59.976	65.968	-2.252	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-20BW-7.2Mbps) -Channel 44

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	51.062	56.026	-22.194	78.220	Pass
Horizontal	5854.000	4.988	51.933	56.920	-21.300	78.220	Pass
Horizontal	5860.000	5.023	50.787	55.810	-12.410	68.220	Pass
Horizontal	5865.800	5.057	51.850	56.907	-11.313	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	52.286	58.323	-19.897	78.220	Pass
Vertical	5854.800	6.041	54.521	60.563	-17.657	78.220	Pass
Vertical	5860.000	6.047	52.961	59.008	-9.212	68.220	Pass
Vertical	5873.400	6.063	58.799	64.861	-3.359	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-40BW-15Mbps) -Channel 42

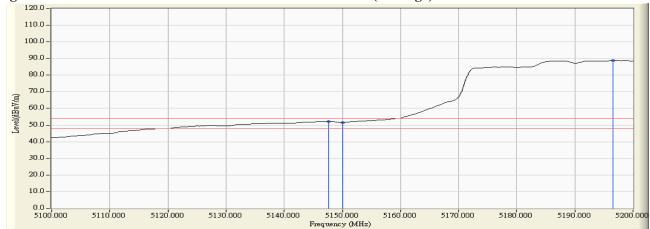
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	58.599	63.563	-14.657	78.220	Pass
Horizontal	5858.800	5.016	60.124	65.140	-13.080	78.220	Pass
Horizontal	5860.000	5.023	58.032	63.055	-5.165	68.220	Pass
Horizontal	5861.400	5.031	58.919	63.950	-4.270	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	60.559	66.596	-11.624	78.220	Pass
Vertical	5854.400	6.041	61.927	67.968	-10.252	78.220	Pass
Vertical	5860.000	6.047	60.643	66.690	-1.530	68.220	Pass
Vertical	5865.200	6.052	61.764	67.817	-0.403	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) -Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5144.800	3.358	65.746	69.105	74.00	54.00	Pass
42 (Peak)	5150.000	3.340	63.197	66.537	74.00	54.00	Pass
42 (Peak)	5190.000	3.196	99.551	102.748			
42 (Average)	5147.600	3.348	48.811	52.160	74.00	54.00	Pass
42 (Average)	5150.000	3.340	48.261	51.601	74.00	54.00	Pass
42 (Average)	5196.600	3.167	85.577	88.744			


Figure Channel 42:

#### Horizontal (Peak)

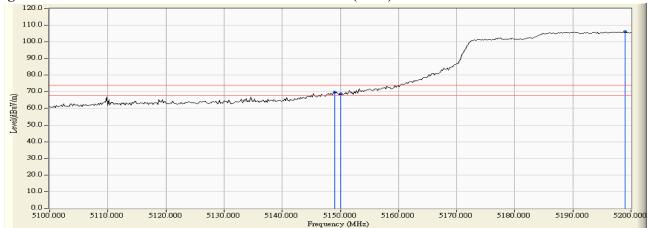


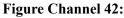


Horizontal (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) -Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel NO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dBµV/m)	Result
42 (Peak)	5149.000	5.257	64.676	69.933	74.00	54.00	Pass
42 (Peak)	5150.000	5.260	63.645	68.905	74.00	54.00	Pass
42 (Peak)	5199.000	5.383	100.714	106.097			
42 (Average)	5150.000	5.260	47.499	52.759	74.00	54.00	Pass
42 (Average)	5198.600	5.382	86.485	91.867			

### Figure Channel 42:

### Vertical (Peak)

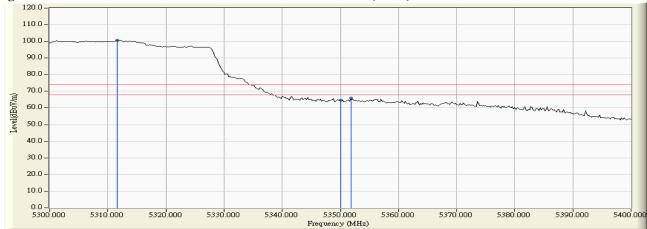




Vertical (Average)

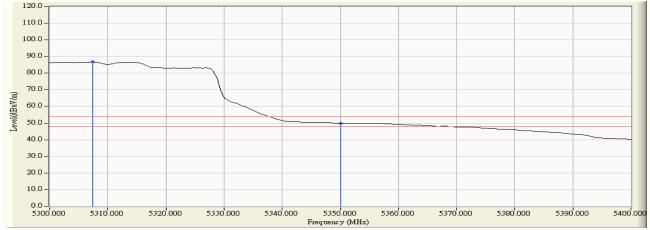


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) -Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
58 (Peak)	5311.600	3.839	96.998	100.837			
58 (Peak)	5350.000	3.716	60.907	64.624	74.00	54.00	Pass
58 (Peak)	5351.800	3.710	62.135	65.846	74.00	54.00	Pass
58 (Average)	5307.400	3.853	82.850	86.703			
58 (Average)	5350.000	3.716	46.302	50.019	74.00	54.00	Pass


#### Figure Channel 58:

#### Horizontal (Peak)

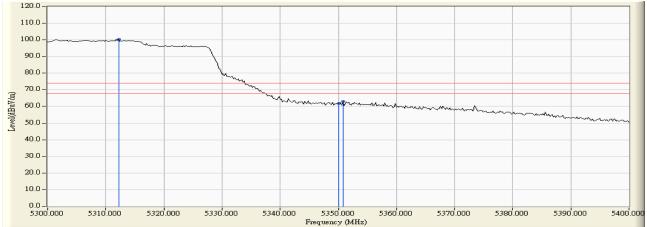




#### Horizontal (Average)

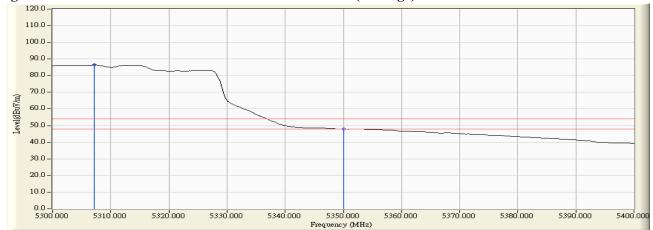


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) -Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5312.200	5.739	94.559	100.298			
58 (Peak)	5350.000	5.691	56.077	61.769	74.00	54.00	Pass
58 (Peak)	5350.800	5.690	57.226	62.917	74.00	54.00	Pass
58 (Average)	5307.200	5.746	80.687	86.433			
58 (Average)	5350.000	5.691	42.251	47.943	74.00	54.00	Pass




#### Vertical (Peak)

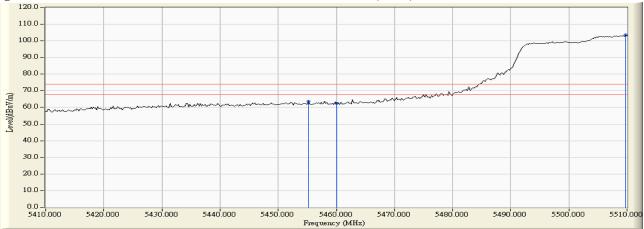




Vertical (Average)



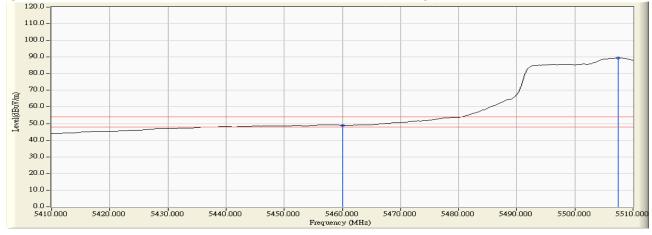
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) -Channel 106

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
106 (Peak)	5455.200	4.290	59.475	63.765	74.00	54.00	Pass
106 (Peak)	5460.000	4.354	58.018	62.372	74.00	54.00	Pass
106 (Peak)	5509.800	4.810	98.683	103.493			
106 (Average)	5460.000	4.354	44.499	48.853	74.00	54.00	Pass
106 (Average)	5507.400	4.830	84.591	89.421			


### Figure Channel 106:

### Horizontal (Peak)

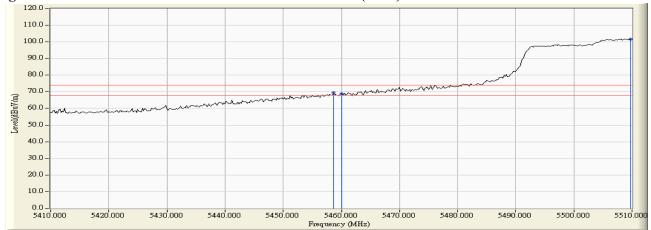




Horizontal (Average)

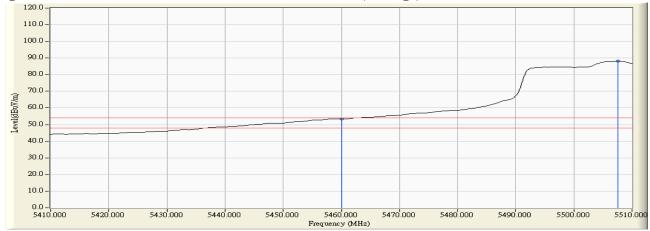


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) -Channel 106

Channel No.	Frequency	Correct Factor	Reading Level	<b>Emission Level</b>	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
106 (Peak)	5458.600	6.030	63.367	69.398	74.00	54.00	Pass
106 (Peak)	5460.000	6.041	62.688	68.729	74.00	54.00	Pass
106 (Peak)	5509.800	6.259	95.418	101.677			
106 (Average)	5460.000	6.041	47.333	53.374	74.00	54.00	Pass
106 (Average)	5507.600	6.273	81.841	88.114			


### Figure Channel 106:

### Vertical (Peak)



#### Figure Channel 106:

Vertical (Average)



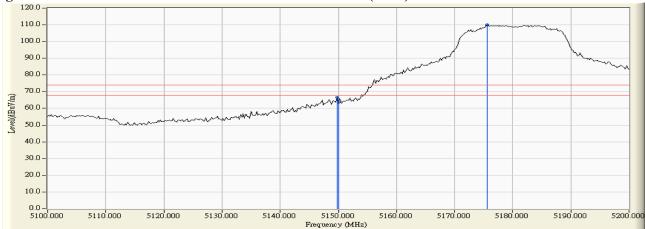
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

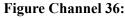


Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit (802.11ac-80BW-32.5Mbps) -Channel 106

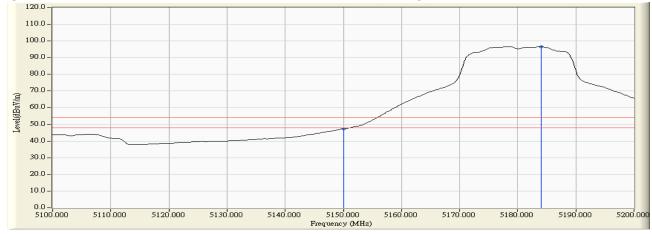
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5464.200	4.410	53.041	57.451	-10.769	68.220	Pass
Horizontal	5470.000	4.488	51.199	55.687	-12.533	68.220	Pass
Horizontal	5517.400	4.750	89.649	94.398	26.178	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5468.200	6.099	59.612	65.710	-2.510	68.220	Pass
Vertical	5470.000	6.112	58.573	64.684	-3.536	68.220	Pass
Vertical	5519.000	6.201	96.595	102.796	34.576	68.220	Pass





Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5149.800	3.342	63.123	66.464	74.00	54.00	Pass
36 (Peak)	5150.000	3.340	60.406	63.746	74.00	54.00	Pass
36 (Peak)	5175.600	3.251	106.738	109.988			
36 (Average)	5150.000	3.340	43.917	47.257	74.00	54.00	Pass
36 (Average)	5184.000	3.220	93.280	96.500			


### **Figure Channel 36:**

#### Horizontal (Peak)





Horizontal (Average)

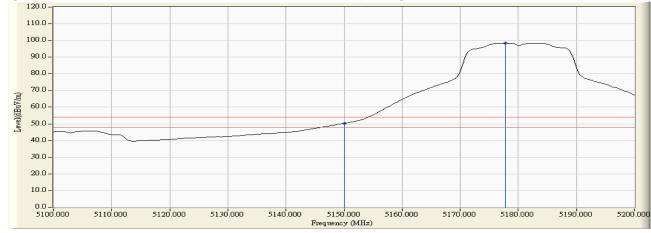


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

Channel No. 36 (Peak)	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5150.000	5.260	63.592	68.852	74.00	54.00	Pass
36 (Peak)	5183.800	5.352	106.761	112.113			
36 (Average)	5150.000	5.260	45.017	50.277	74.00	54.00	Pass
36 (Average)	5177.800	5.335	92.981	98.317			


#### Figure Channel 36:

#### Vertical (Peak)





# Vertical (Average)

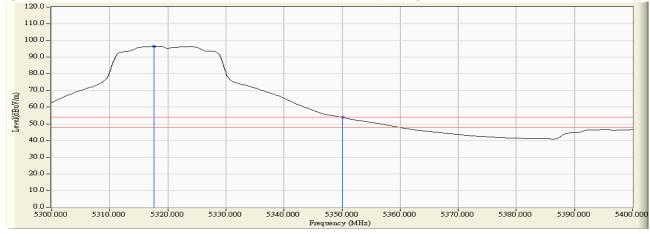


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5316.800	3.823	106.869	110.691			
64 (Peak)	5350.000	3.716	67.381	71.098	74.00	54.00	Pass
64 (Average)	5317.600	3.820	92.612	96.432			
64 (Average)	5350.000	3.716	50.244	53.961	74.00	54.00	Pass


### **Figure Channel 64:**

#### Horizontal (Peak)

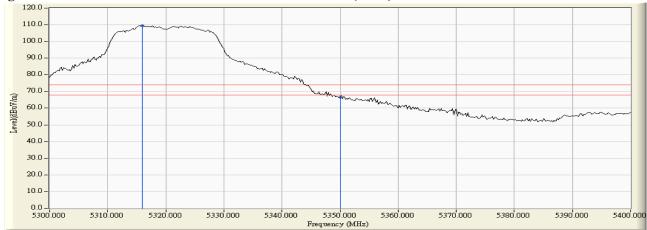


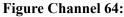


# Horizontal (Average)

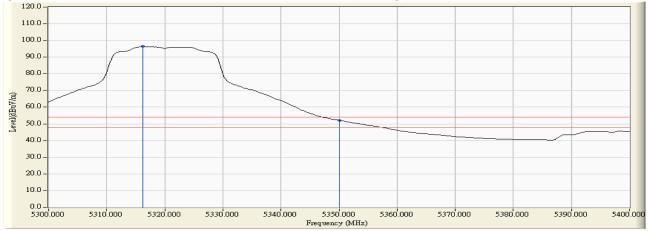


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5316.000	5.733	103.781	109.515			
64 (Peak)	5350.000	5.691	60.893	66.585	74.00	54.00	Pass
64 (Average)	5316.200	5.733	90.665	96.399			
64 (Average)	5350.000	5.691	46.417	52.109	74.00	54.00	Pass


### Figure Channel 64:

#### Vertical (Peak)

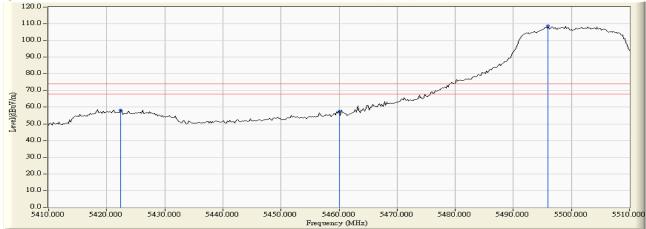


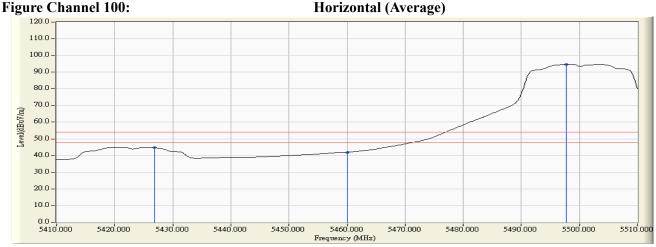


#### Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5422.400	3.854	54.426	58.280	74.00	54.00	Pass
100 (Peak)	5460.000	4.354	53.241	57.595	74.00	54.00	Pass
100 (Peak)	5496.000	4.787	103.959	108.746			
100 (Average)	5426.800	3.913	40.844	44.757	74.00	54.00	Pass
100 (Average)	5460.000	4.354	37.592	41.946	74.00	54.00	Pass
100 (Average)	5497.800	4.799	89.856	94.655			

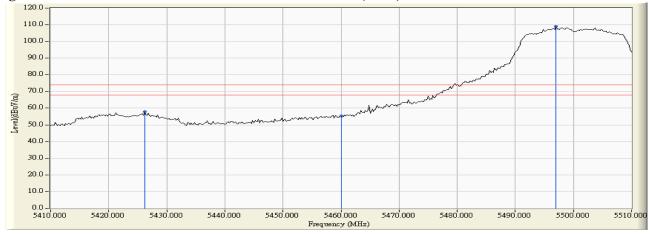
### Figure Channel 100:

#### Horizontal (Peak)





- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5426.200	5.808	51.987	57.795	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	49.158	55.199	74.00	54.00	Pass
100 (Peak)	5497.000	6.266	102.676	108.942			
100 (Average)	5425.800	5.805	38.497	44.302	74.00	54.00	Pass
100 (Average)	5460.000	6.041	35.997	42.038	74.00	54.00	Pass
100 (Average)	5497.800	6.268	88.504	94.772			

#### **Figure Channel 100:**

Vertical (Peak)



#### **Figure Channel 100:**

Vertical (Average) 120.0 110.0 100.0 90.0 80.0 70.0 Level(dBuY/m) 60.0 50.0 40.0 30.0 20.0 10.0 0.0 -5430.000 5420,000 5440.000 5450,000 5460,000 5470,000 5480,000 5490.000 5500.000 5510.000 Frequency (MHz)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. 1.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5470.000	4.488	60.753	65.241	-2.979	68.220	Pass
Horizontal	5498.400	4.804	105.773	110.576	42.356	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5470.000	6.112	59.912	66.023	-2.197	68.220	Pass
Vertical	5498.400	6.270	105.703	111.973	43.753	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-20BW 14.4Mbps) -Channel 140

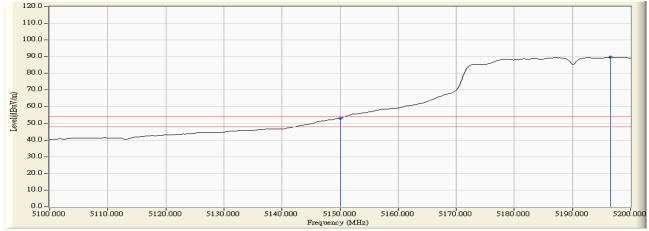
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5703.400	4.636	101.615	106.251	38.031	68.220	Pass
Horizontal	5725.000	4.654	60.574	65.228	-2.992	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5696.800	5.978	101.658	107.636	39.416	68.220	Pass
Vertical	5725.000	5.992	61.651	67.644	-0.576	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5148.200	3.347	69.477	72.824	74.00	54.00	Pass
38 (Peak)	5150.000	3.340	69.797	73.137	74.00	54.00	Pass
38 (Peak)	5197.200	3.164	104.984	108.148			
38 (Average)	5150.000	3.340	49.637	52.977	74.00	54.00	Pass
38 (Average)	5196.600	3.167	86.438	89.605			


### Figure Channel 38:

### Horizontal (Peak)





#### Horizontal (Average)

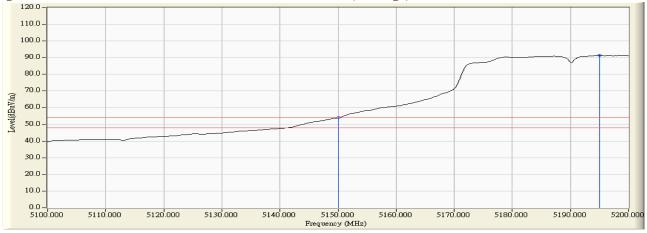


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5148.600	5.256	67.970	73.226	74.00	54.00	Pass
38 (Peak)	5150.000	5.260	67.159	72.419	74.00	54.00	Pass
38 (Peak)	5185.800	5.358	102.295	107.653			
38 (Average)	5150.000	5.260	48.677	53.937	74.00	54.00	Pass
38 (Average)	5195.000	5.375	86.061	91.437			


### Figure Channel 38:

# Vertical (Peak)

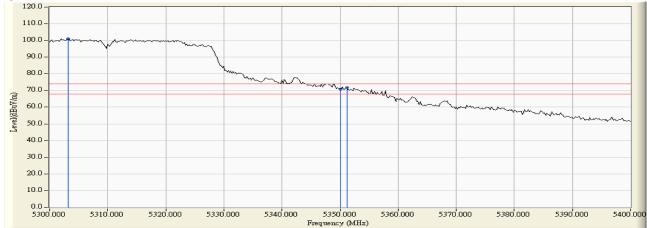


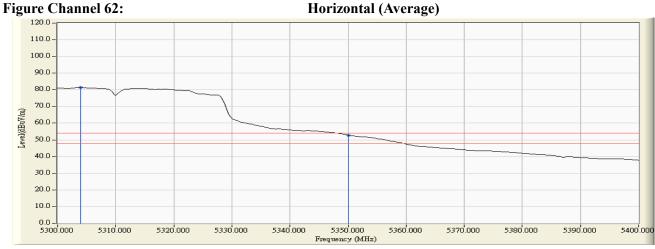


#### Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5303.200	3.867	97.210	101.077			
62 (Peak)	5350.000	3.716	67.053	70.770	74.00	54.00	Pass
62 (Peak)	5351.200	3.713	68.190	71.903	74.00	54.00	Pass
62 (Average)	5304.000	3.863	77.437	81.301			
62 (Average)	5350.000	3.716	49.000	52.717	74.00	54.00	Pass

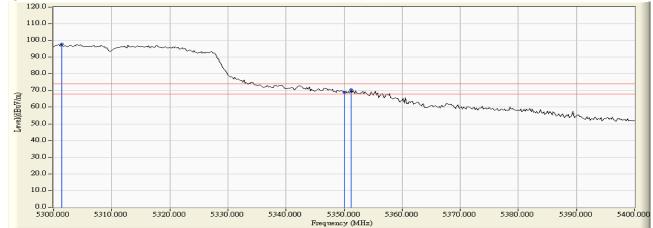
### Figure Channel 62:

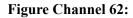
### Horizontal (Peak)



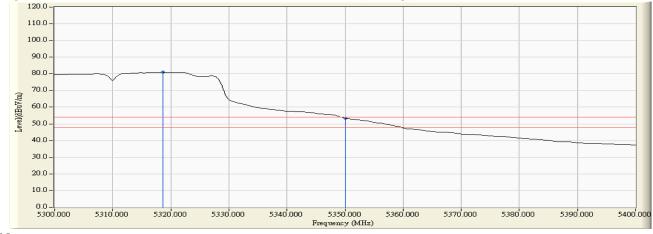


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
62 (Peak)	5301.400	5.753	92.121	97.874			
62 (Peak)	5350.000	5.691	63.302	68.994	74.00	54.00	Pass
62 (Peak)	5351.200	5.690	64.724	70.414	74.00	54.00	Pass
62 (Average)	5318.600	5.731	75.191	80.922			
62 (Average)	5350.000	5.691	47.696	53.388	74.00	54.00	Pass


#### Figure Channel 62:

### Vertical (Peak)

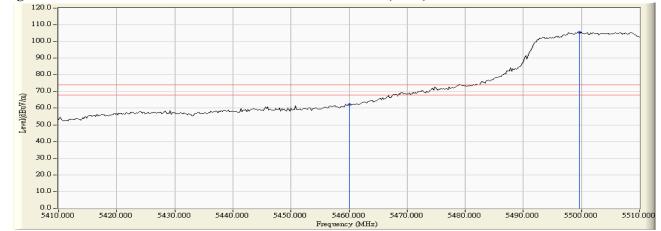


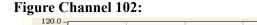


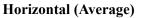
Vertical (Average)

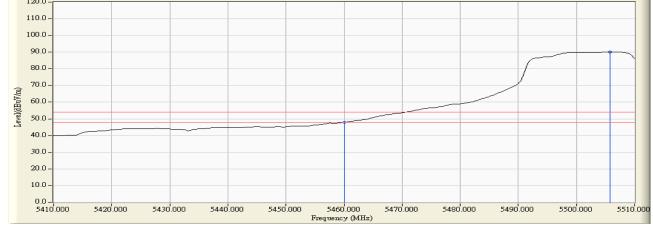


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 102


Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
102 (Peak)	5460.000	4.354	57.758	62.112	74.00	54.00	Pass
102 (Peak)	5499.600	4.812	100.737	105.549			
102 (Average)	5460.000	4.354	43.553	47.907	74.00	54.00	Pass
102 (Average)	5505.800	4.842	85.330	90.173			


### Figure Channel 102:

### Horizontal (Peak)

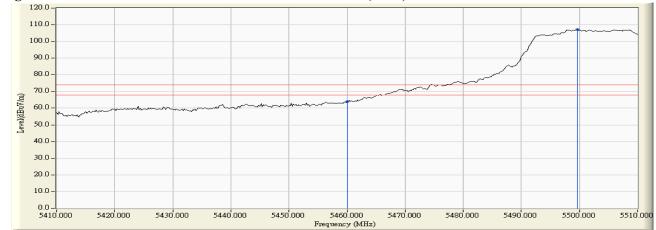


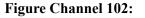




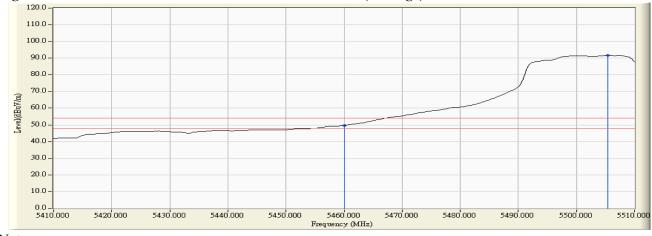


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
102 (Peak)	5460.000	6.041	58.030	64.071	74.00	54.00	Pass
102 (Peak)	5499.600	6.274	100.712	106.986			
102 (Average)	5460.000	6.041	43.664	49.705	74.00	54.00	Pass
102 (Average)	5505.400	6.287	85.356	91.643			


### Figure Channel 102:

### Vertical (Peak)





# Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Intel® Dual Band Wireless-AC 8260
Band Edge Data
No.3 OATS
Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 102

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5468.600	4.469	59.088	63.557	-4.663	68.220	Pass
Horizontal	5470.000	4.488	57.529	62.017	-6.203	68.220	Pass
Horizontal	5505.800	4.842	101.331	106.174	37.954	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5470.000	6.112	61.536	67.647	-0.573	68.220	Pass
Vertical	5509.000	6.265	101.156	107.420	39.200	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11n-40BW 30Mbps) -Channel 134

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5678.000	4.528	100.946	105.474	37.254	68.220	Pass
Horizontal	5725.000	4.654	57.085	61.739	-6.481	68.220	Pass
Horizontal	5728.400	4.655	58.716	63.371	-4.849	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5679.600	5.935	101.359	107.294	39.074	68.220	Pass
Vertical	5725.000	5.992	57.980	63.973	-4.247	68.220	Pass

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-20BW-14.4Mbps) -Channel 44

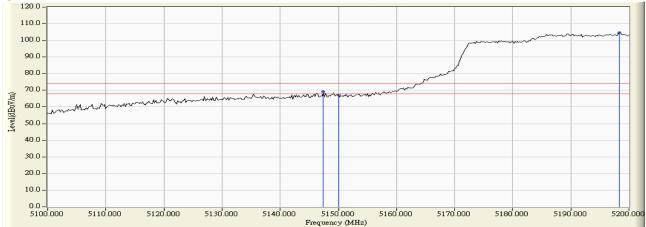
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	50.420	55.384	-22.836	78.220	Pass
Horizontal	5854.000	4.988	51.577	56.564	-21.656	78.220	Pass
Horizontal	5860.000	5.023	50.301	55.324	-12.896	68.220	Pass
Horizontal	5868.600	5.074	53.216	58.290	-9.930	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	50.892	56.929	-21.291	78.220	Pass
Vertical	5856.600	6.044	52.345	58.389	-19.831	78.220	Pass
Vertical	5860.000	6.047	51.674	57.721	-10.499	68.220	Pass
Vertical	5874.000	6.063	55.364	61.427	-6.793	68.220	Pass

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-40BW-30Mbps) -Channel 42

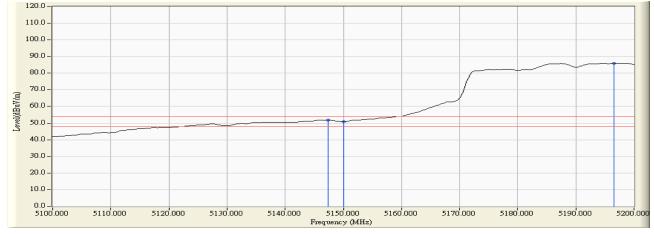
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	51.154	56.118	-22.102	78.220	Pass
Horizontal	5852.800	4.980	52.129	57.109	-21.111	78.220	Pass
Horizontal	5860.000	5.023	51.258	56.281	-11.939	68.220	Pass
Horizontal	5867.400	5.066	52.366	57.432	-10.788	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	51.595	57.632	-20.588	78.220	Pass
Vertical	5853.200	6.040	52.749	58.789	-19.431	78.220	Pass
Vertical	5860.000	6.047	52.129	58.176	-10.044	68.220	Pass
Vertical	5870.600	6.059	52.858	58.917	-9.303	68.220	Pass




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) -Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5147.400	3.350	65.934	69.284	74.00	54.00	Pass
42 (Peak)	5150.000	3.340	63.932	67.272	74.00	54.00	Pass
42 (Peak)	5198.400	3.159	101.407	104.566			
42 (Average)	5147.400	3.350	48.409	51.759	74.00	54.00	Pass
42 (Average)	5150.000	3.340	47.531	50.871	74.00	54.00	Pass
42 (Average)	5196.600	3.167	82.885	86.052			


#### Figure Channel 42:

#### Horizontal (Peak)

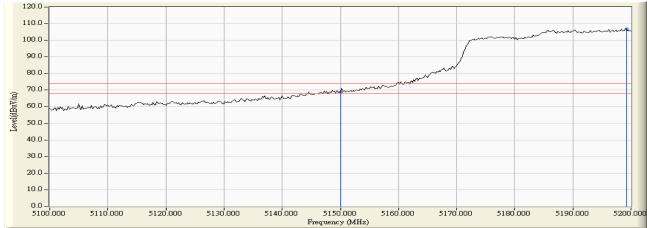


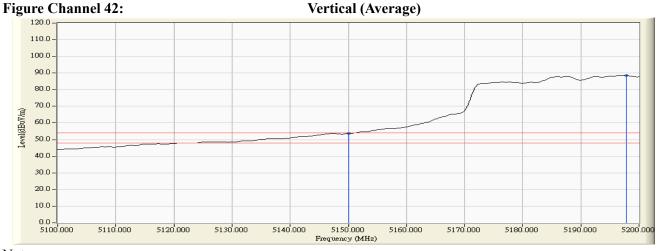


Horizontal (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) -Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5150.000	5.260	63.702	68.962	74.00	54.00	Pass
42 (Peak)	5199.200	5.384	101.546	106.930			
42 (Average)	5150.000	5.260	48.506	53.766	74.00	54.00	Pass
42 (Average)	5197.800	5.381	83.222	88.603			

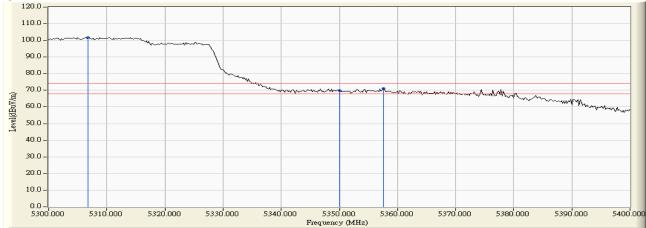
#### Figure Channel 42:

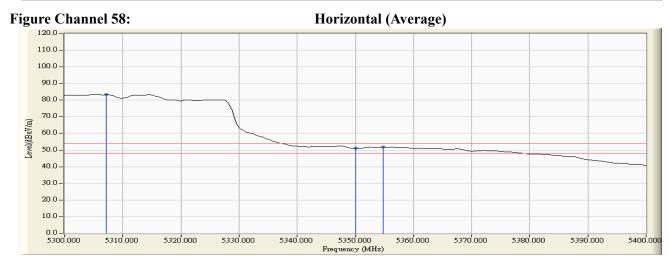
## Vertical (Peak)





- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) -Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	<b>Emission Level</b>	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5306.800	3.855	97.921	101.776			
58 (Peak)	5350.000	3.716	66.019	69.736	74.00	54.00	Pass
58 (Peak)	5357.600	3.691	67.403	71.094	74.00	54.00	Pass
58 (Average)	5307.200	3.854	79.521	83.375			
58 (Average)	5350.000	3.716	47.450	51.167	74.00	54.00	Pass
58 (Average)	5354.800	3.701	48.080	51.781	74.00	54.00	Pass

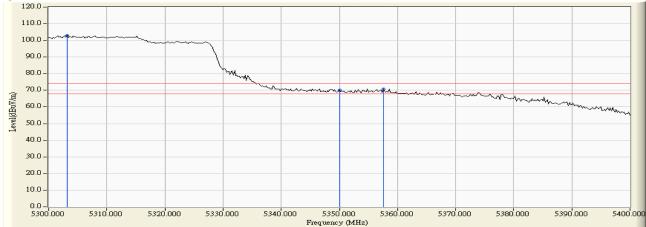
#### Figure Channel 58:

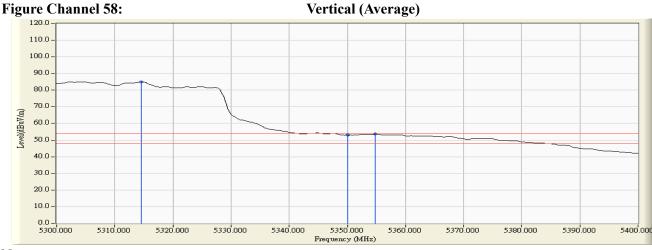
#### Horizontal (Peak)





- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) -Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5303.200	5.751	97.106	102.857			
58 (Peak)	5350.000	5.691	64.452	70.144	74.00	54.00	Pass
58 (Peak)	5357.600	5.681	64.994	70.675	74.00	54.00	Pass
58 (Average)	5314.600	5.737	79.279	85.015			
58 (Average)	5350.000	5.691	47.251	52.943	74.00	54.00	Pass
58 (Average)	5354.800	5.685	47.902	53.587	74.00	54.00	Pass

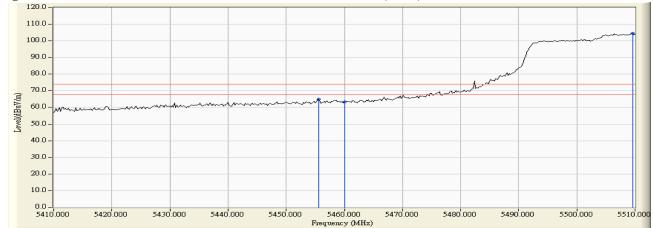
#### Figure Channel 58:

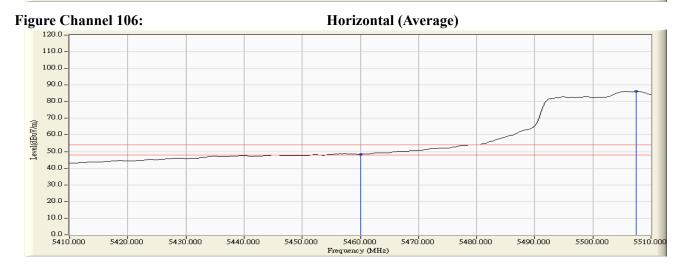
Vertical (Peak)





- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) -Channel 106

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
106 (Peak)	5455.600	4.295	60.635	64.930	74.00	54.00	Pass
106 (Peak)	5460.000	4.354	58.977	63.331	74.00	54.00	Pass
106 (Peak)	5509.600	4.812	99.749	104.561			
106 (Average)	5460.000	4.354	44.061	48.415	74.00	54.00	Pass
106 (Average)	5507.400	4.830	81.382	86.212			

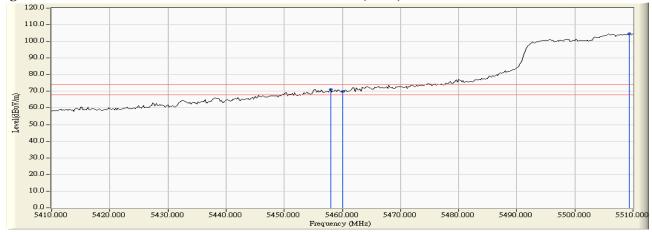
## **Figure Channel 106:**

## Horizontal (Peak)



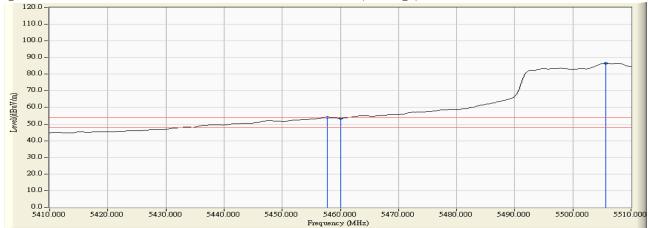


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) -Channel 106

Channel No.	1 2	Correct Factor	U	Emission Level		U	Result
Chamier 100.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
106 (Peak)	5458.000	6.027	65.127	71.154	74.00	54.00	Pass
106 (Peak)	5460.000	6.041	63.911	69.952	74.00	54.00	Pass
106 (Peak)	5509.400	6.262	98.426	104.688			
106 (Average)	5457.800	6.025	47.908	53.933	74.00	54.00	Pass
106 (Average)	5460.000	6.041	47.362	53.403	74.00	54.00	Pass
106 (Average)	5505.600	6.286	80.369	86.655			


#### **Figure Channel 106:**

#### Vertical (Peak)



## Figure Channel 106:

Vertical (Average)



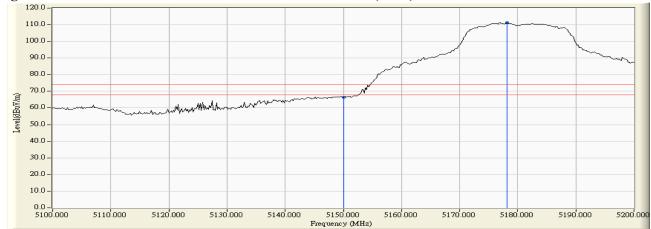
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

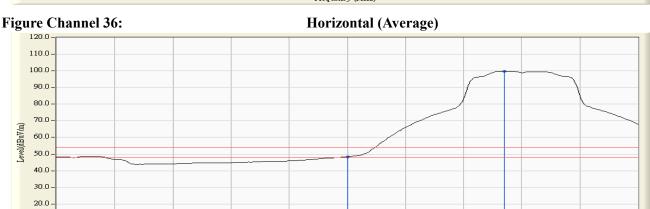


Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit (802.11ac-80BW-65Mbps) -Channel 106

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5451.600	4.242	63.020	67.262	-0.958	68.220	Pass
Horizontal	5470.000	4.488	60.915	65.403	-2.817	68.220	Pass
Horizontal	5513.400	4.781	94.906	99.688	31.468	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5467.400	6.093	61.575	67.668	-0.552	68.220	Pass
Vertical	5470.000	6.112	60.080	66.191	-2.029	68.220	Pass
Vertical	5513.600	6.235	97.380	103.615	35.395	68.220	Pass





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5150.000	3.340	62.887	66.227	74.00	54.00	Pass
36 (Peak)	5178.200	3.240	107.929	111.170			
36 (Average)	5150.000	3.340	44.992	48.332	74.00	54.00	Pass
36 (Average)	5177.000	3.246	96.598	99.843			

#### **Figure Channel 36:**

#### Horizontal (Peak)





Note:

10.0 -0.0 -5100.000

5110.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

5150,000

Frequency (MHz)

5140.000

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

5130,000

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

5120.000

- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

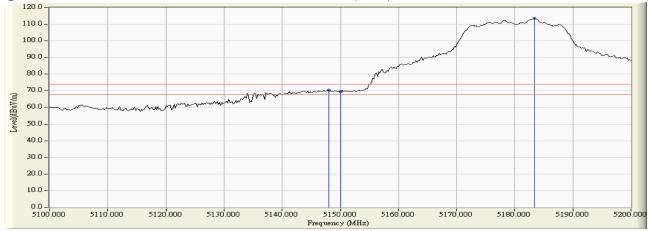
5160.000

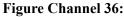
5170.000

5180.000

5190.000

5200.000





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5148.000	5.254	65.068	70.322	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	64.135	69.395	74.00	54.00	Pass
36 (Peak)	5183.400	5.351	108.071	113.422			
36 (Average)	5150.000	5.260	45.634	50.894	74.00	54.00	Pass
36 (Average)	5184.000	5.352	94.949	100.301			


#### Figure Channel 36:

#### Vertical (Peak)

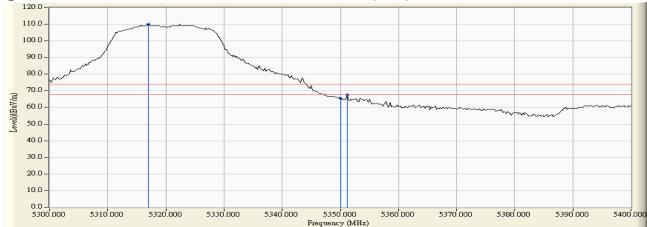


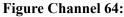


#### Vertical (Average)

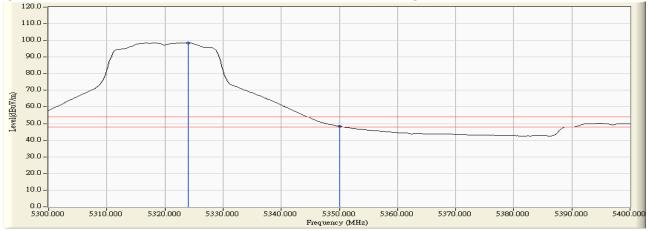


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5317.000	3.821	106.140	109.962			
64 (Peak)	5350.000	3.716	61.692	65.409	74.00	54.00	Pass
64 (Peak)	5351.200	3.713	63.893	67.606	74.00	54.00	Pass
64 (Average)	5324.000	3.799	94.639	98.439			
64 (Average)	5350.000	3.716	44.637	48.354	74.00	54.00	Pass


#### Figure Channel 64:

## Horizontal (Peak)

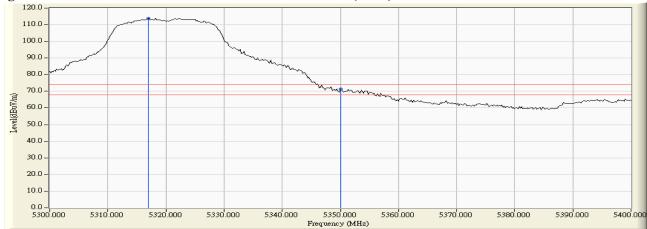




## Horizontal (Average)

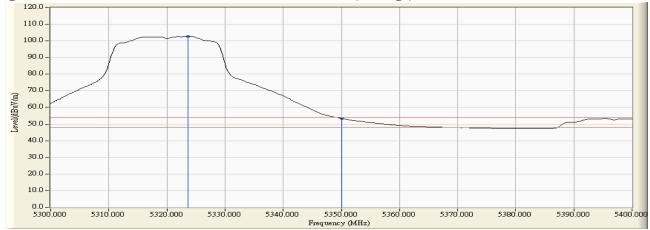


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5317.000	5.732	108.121	113.854			
64 (Peak)	5350.000	5.691	65.581	71.273	74.00	54.00	Pass
64 (Average)	5323.600	5.725	96.923	102.648			
64 (Average)	5350.000	5.691	47.656	53.348	74.00	54.00	Pass


#### Figure Channel 64:

#### Vertical (Peak)

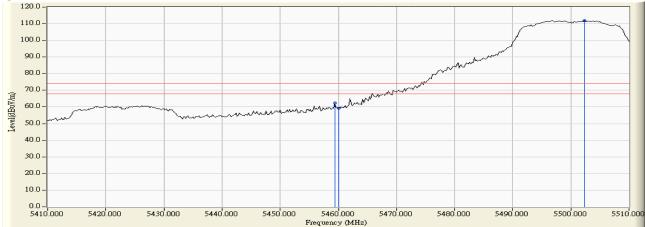


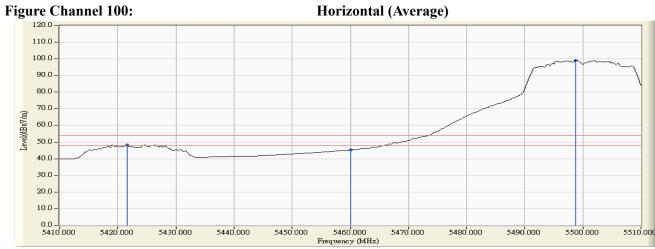


#### Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.400	4.347	58.103	62.449	74.00	54.00	Pass
100 (Peak)	5460.000	4.354	54.978	59.332	74.00	54.00	Pass
100 (Peak)	5502.400	4.831	107.064	111.895			
100 (Average)	5421.600	3.843	44.567	48.410	74.00	54.00	Pass
100 (Average)	5460.000	4.354	40.851	45.205	74.00	54.00	Pass
100 (Average)	5498.800	4.806	94.327	99.133			

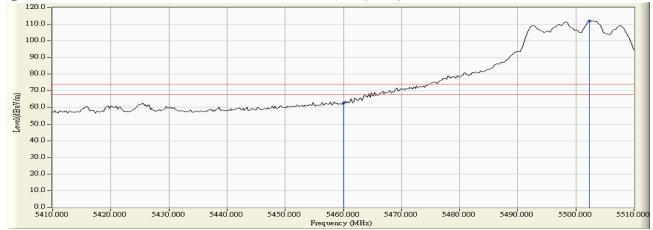
#### Figure Channel 100:

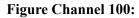
#### Horizontal (Peak)



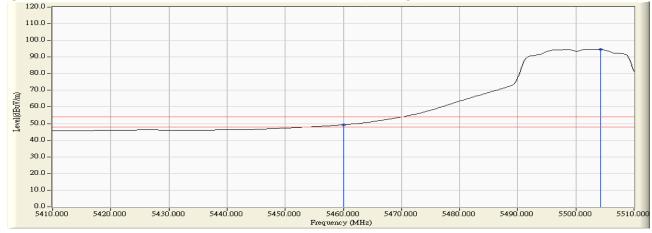


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	6.041	56.703	62.744	74.00	54.00	Pass
100 (Peak)	5502.400	6.282	105.779	112.061			
100 (Average)	5460.000	6.041	43.243	49.284	74.00	54.00	Pass
100 (Average)	5504.200	6.288	88.421	94.709			


#### **Figure Channel 100:**

#### Vertical (Peak)





Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5470.000	4.488	60.748	65.236	-2.984	68.220	Pass
Horizontal	5498.400	4.804	106.370	111.173	42.953	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5469.000	6.104	61.176	67.280	-0.940	68.220	Pass
Vertical	5470.000	6.112	60.030	66.141	-2.079	68.220	Pass
Vertical	5502.400	6.282	104.739	111.021	42.801	68.220	Pass

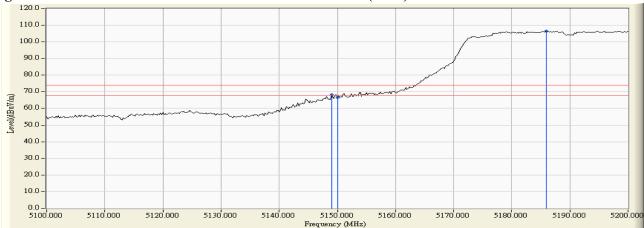


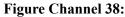
Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-20BW 14.4Mbps) -Channel 140

## **<u>RF Radiated Measurement:</u>**

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5696.800	4.618	103.254	107.872	39.652	68.220	Pass
Horizontal	5725.000	4.654	63.264	67.918	-0.302	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5696.000	5.977	103.176	109.153	40.933	68.220	Pass
Vertical	5725.000	5.992	61.027	67.020	-1.200	68.220	Pass





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5149.000	3.344	64.848	68.192	74.00	54.00	Pass
38 (Peak)	5150.000	3.340	63.108	66.448	74.00	54.00	Pass
38 (Peak)	5186.000	3.214	103.270	106.483			
38 (Average)	5150.000	3.340	47.871	51.211	74.00	54.00	Pass
38 (Average)	5187.800	3.207	90.717	93.923			

#### Figure Channel 38:

#### Horizontal (Peak)



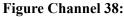


Horizontal (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5148.600	5.256	65.465	70.721	74.00	54.00	Pass
38 (Peak)	5150.000	5.260	64.430	69.690	74.00	54.00	Pass
38 (Peak)	5193.600	5.374	104.195	109.568			
38 (Average)	5150.000	5.260	48.533	53.793	74.00	54.00	Pass
38 (Average)	5195.200	5.375	91.644	97.020			

#### Figure Channel 38:

## Vertical (Peak)

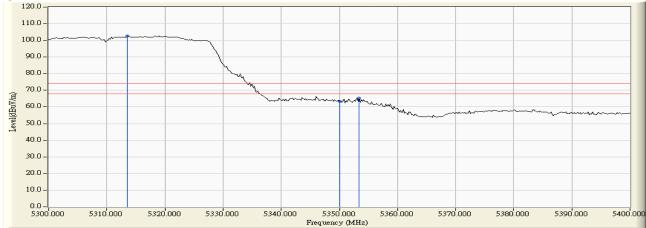


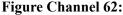


#### Vertical (Average)

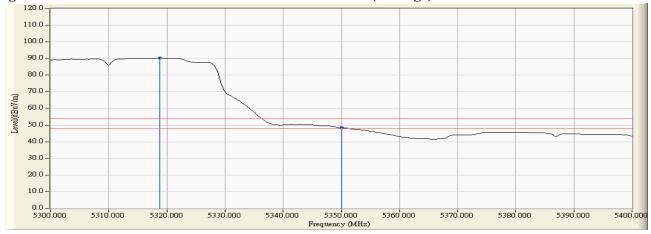


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5313.600	3.834	98.875	102.708			
62 (Peak)	5350.000	3.716	59.633	63.350	-10.650	54.00	Pass
62 (Peak)	5353.400	3.706	61.623	65.328	-8.672	54.00	Pass
62 (Average)	5318.800	3.816	86.444	90.260			
62 (Average)	5350.000	3.716	44.707	48.424	74.00	54.00	Pass


#### Figure Channel 62:

#### Horizontal (Peak)

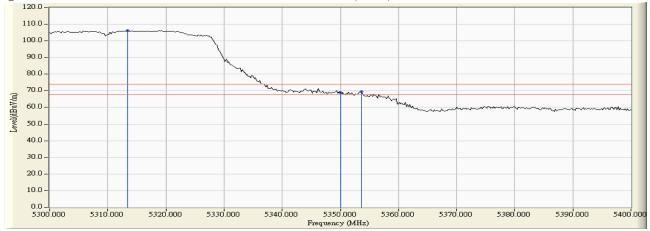




#### Horizontal (Average)

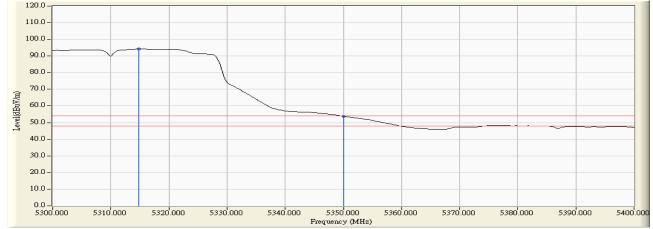


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesult
62 (Peak)	5313.400	5.738	100.482	106.220			
62 (Peak)	5350.000	5.691	63.212	68.904	74.00	54.00	Pass
62 (Peak)	5353.600	5.687	63.713	69.400	74.00	54.00	Pass
62 (Average)	5314.800	5.736	88.478	94.214			
62 (Average)	5350.000	5.691	48.122	53.814	74.00	54.00	Pass


#### Figure Channel 62:

## Vertical (Peak)

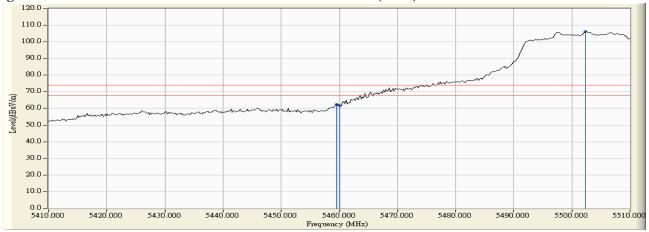


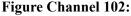
#### Figure Channel 62:

#### Vertical (Average)

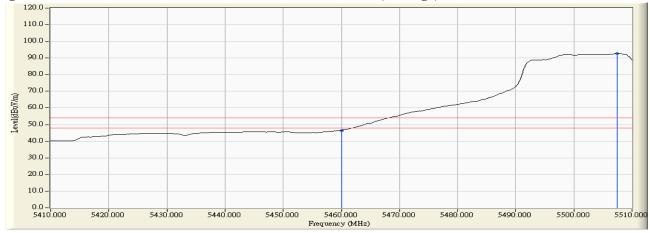


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
102 (Peak)	5459.600	4.349	58.046	62.395	74.00	54.00	Pass
102 (Peak)	5460.000	4.354	57.449	61.803	74.00	54.00	Pass
102 (Peak)	5502.400	4.831	101.215	106.046			
102 (Average)	5460.000	4.354	42.102	46.456	74.00	54.00	Pass
102 (Average)	5507.400	4.830	87.763	92.593			


#### Figure Channel 102:

#### Horizontal (Peak)

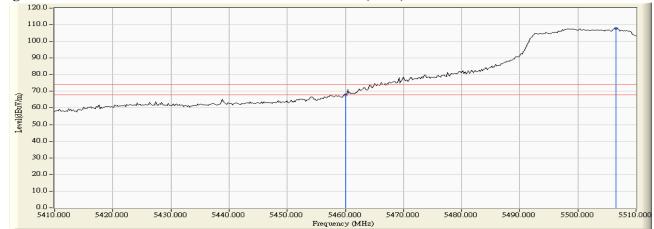




#### Horizontal (Average)

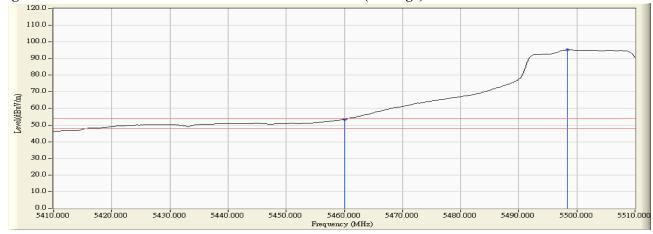


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
102 (Peak)	5460.000	6.041	61.784	67.825	74.00	54.00	Pass
102 (Peak)	5506.600	6.280	101.628	107.908			
102 (Average)	5460.000	6.041	47.298	53.339	74.00	54.00	Pass
102 (Average)	5498.400	6.270	88.840	95.110			


#### Figure Channel 102:

#### Vertical (Peak)





#### Vertical (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 102

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5469.600	4.482	56.932	61.414	-6.806	68.220	Pass
Horizontal	5470.000	4.488	56.353	60.841	-7.379	68.220	Pass
Horizontal	5513.800	4.778	101.287	106.065	37.845	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5469.200	6.105	61.861	67.966	-0.254	68.220	Pass
Vertical	5470.000	6.112	61.151	67.262	-0.958	68.220	Pass
Vertical	5517.600	6.210	99.268	105.478	37.258	68.220	Pass



Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11n-40BW 30Mbps) -Channel 134

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5677.800	4.527	100.669	105.196	36.976	68.220	Pass
Horizontal	5725.000	4.654	54.857	59.511	-8.709	68.220	Pass
Horizontal	5726.400	4.654	58.028	62.683	-5.537	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5677.400	5.929	99.081	105.010	36.790	68.220	Pass
Vertical	5725.000	5.992	58.189	64.182	-4.038	68.220	Pass
Vertical	5726.800	5.993	59.277	65.269	-2.951	68.220	Pass

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-20BW-14.4Mbps) -Channel 44

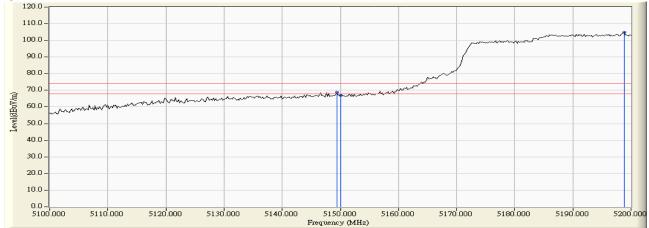
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	50.974	55.938	-22.282	78.220	Pass
Horizontal	5854.600	4.991	52.113	57.104	-21.116	78.220	Pass
Horizontal	5860.000	5.023	50.814	55.837	-12.383	68.220	Pass
Horizontal	5871.600	5.091	53.096	58.187	-10.033	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	51.786	57.823	-20.397	78.220	Pass
Vertical	5856.400	6.044	52.537	58.580	-19.640	78.220	Pass
Vertical	5860.000	6.047	51.668	57.715	-10.505	68.220	Pass
Vertical	5871.000	6.060	55.711	61.770	-6.450	68.220	Pass

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-40BW-30Mbps) -Channel 42

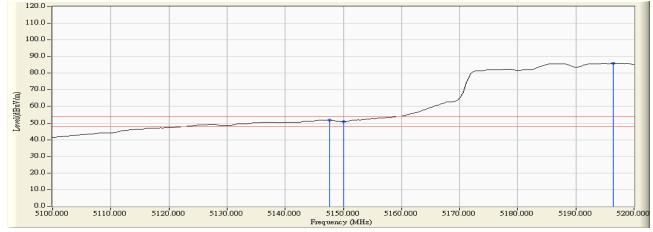
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5850.000	4.964	50.216	55.180	-23.040	78.220	Pass
Horizontal	5851.000	4.969	52.002	56.972	-21.248	78.220	Pass
Horizontal	5860.000	5.023	52.648	57.671	-10.549	68.220	Pass
Horizontal	5867.600	5.067	51.507	56.575	-11.645	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5850.000	6.037	51.102	57.139	-21.081	78.220	Pass
Vertical	5850.800	6.037	52.780	58.818	-19.402	78.220	Pass
Vertical	5860.000	6.047	51.523	57.570	-10.650	68.220	Pass
Vertical	5869.200	6.058	53.310	59.367	-8.853	68.220	Pass




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) -Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
42 (Peak)	5149.400	3.342	65.484	68.827	74.00	54.00	Pass
42 (Peak)	5150.000	3.340	63.614	66.954	74.00	54.00	Pass
42 (Peak)	5198.800	3.157	101.752	104.909			
42 (Average)	5147.600	3.348	48.409	51.758	74.00	54.00	Pass
42 (Average)	5150.000	3.340	47.542	50.882	74.00	54.00	Pass
42 (Average)	5196.400	3.167	82.817	85.985			


#### Figure Channel 42:

#### Horizontal (Peak)

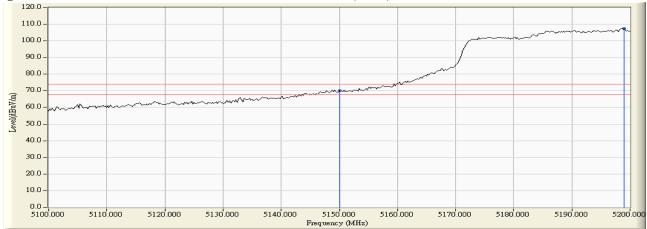


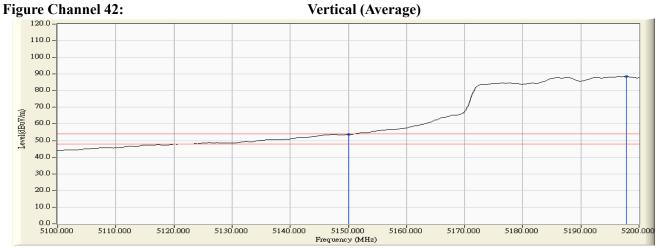


Horizontal (Average)



- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) -Channel 42

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
42 (Peak)	5150.000	5.260	65.000	70.260	74.00	54.00	Pass
42 (Peak)	5199.000	5.383	102.172	107.555			
42 (Average)	5150.000	5.260	48.546	53.806	74.00	54.00	Pass
42 (Average)	5197.800	5.381	83.238	88.619			

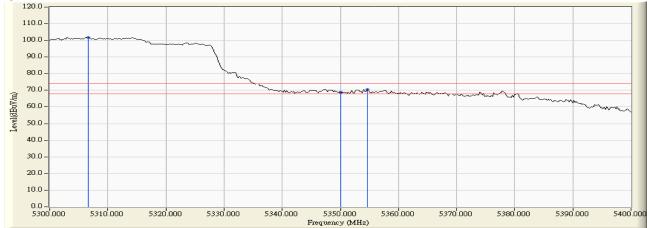
## Figure Channel 42:

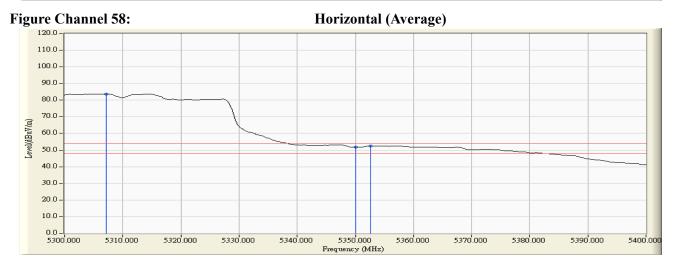
#### Vertical (Peak)





- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.





Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) -Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	<b>Emission Level</b>	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dBµV/m)	Result
58 (Peak)	5306.600	3.856	97.929	101.785			
58 (Peak)	5350.000	3.716	65.005	68.722	74.00	54.00	Pass
58 (Peak)	5354.600	3.702	66.805	70.506	74.00	54.00	Pass
58 (Average)	5307.200	3.854	79.934	83.788			
58 (Average)	5350.000	3.716	48.146	51.863	74.00	54.00	Pass
58 (Average)	5352.600	3.708	48.826	52.534	74.00	54.00	Pass

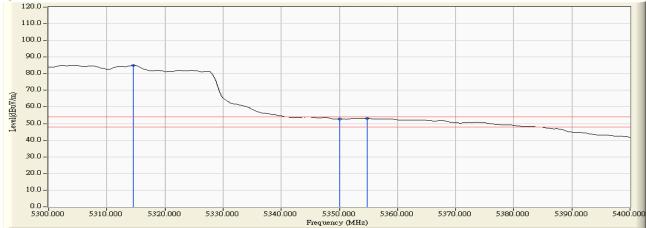
#### Figure Channel 58:

#### Horizontal (Peak)



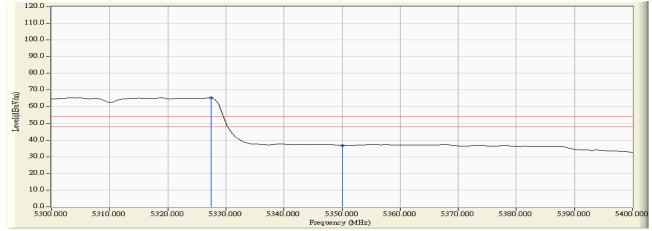


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) -Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5302.800	5.752	97.118	102.869			
58 (Peak)	5350.000	5.691	63.121	68.813	74.00	54.00	Pass
58 (Peak)	5351.800	5.689	64.245	69.934	74.00	54.00	Pass
58 (Average)	5314.600	5.737	79.202	84.938			
58 (Average)	5350.000	5.691	47.112	52.804	74.00	54.00	Pass
58 (Average)	5354.800	5.685	47.533	53.218	74.00	54.00	Pass


#### Figure Channel 58:

Vertical (Peak)

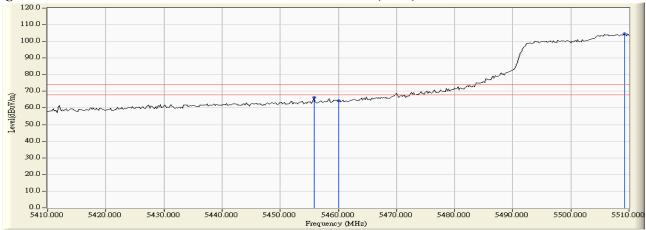


#### **Figure Channel 58:**

Vertical (Average)

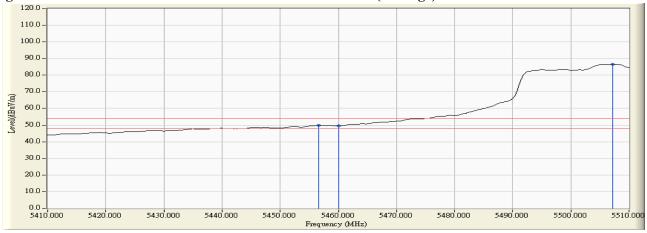


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) -Channel 106

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
106 (Peak)	5455.800	4.298	61.994	66.292	74.00	54.00	Pass
106 (Peak)	5460.000	4.354	59.867	64.221	74.00	54.00	Pass
106 (Peak)	5509.200	4.816	99.613	104.428			
106 (Average)	5456.600	4.309	45.522	49.830	74.00	54.00	Pass
106 (Average)	5460.000	4.354	45.220	49.574	74.00	54.00	Pass
106 (Average)	5507.200	4.831	81.785	86.616			


#### Figure Channel 106:

#### Horizontal (Peak)

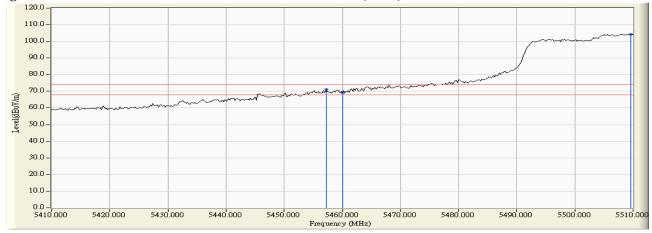




#### Horizontal (Average)

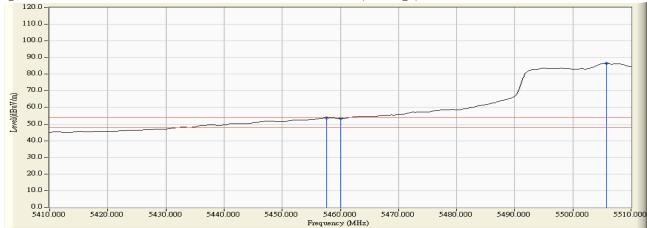


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) -Channel 106

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
106 (Peak)	5457.200	6.022	65.202	71.223	74.00	54.00	Pass
106 (Peak)	5460.000	6.041	63.118	69.159	74.00	54.00	Pass
106 (Peak)	5509.600	6.261	98.135	104.396			
106 (Average)	5457.600	6.024	47.766	53.790	74.00	54.00	Pass
106 (Average)	5460.000	6.041	47.220	53.261	74.00	54.00	Pass
106 (Average)	5505.800	6.284	80.320	86.605			


#### **Figure Channel 106:**

#### Vertical (Peak)



## Figure Channel 106:

Vertical (Average)



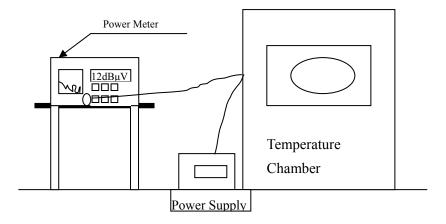
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit (802.11ac-80BW-65Mbps) -Channel 106

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Horizontal	5459.000	4.340	61.797	66.137	-2.083	68.220	Pass
Horizontal	5470.000	4.488	59.880	64.368	-3.852	68.220	Pass
Horizontal	5513.600	4.780	94.842	99.622	31.402	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Result
Vertical	5467.600	6.094	61.529	67.623	-0.597	68.220	Pass
Vertical	5470.000	6.112	59.726	65.837	-2.383	68.220	Pass
Vertical	5513.600	6.235	97.246	103.481	35.261	68.220	Pass

## 7. Frequency Stability


## 7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

## Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

## 7.2. Test Setup



## 7.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

## 7.4. Test Procedure

The EUT was tested to procedure of ANSI C63.10: 2009 Section 6.8 for compliance to FCC 47 CFR Subpart E requirements.

## 7.5. Uncertainty

 $\pm 150 \ \mathrm{Hz}$ 

# 7.6. Test Result of Frequency Stability

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave

## Chain A

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		36	5180.0000	5180.0068	-0.0068
		38	5190.0000	5190.0043	-0.0043
		44	5220.0000	5220.0082	-0.0082
		46	5230.0000	5230.0069	-0.0069
		48	5240.0000	5240.0077	-0.0077
		52	5260.0000	5260.0088	-0.0088
		54	5270.0000	5270.0081	-0.0081
т (20) С	V. (120)V.	60	5300.0000	5300.0062	-0.0062
Tnom (20) oC	Vnom (120)V	62	5310.0000	5310.0058	-0.0058
		64	5320.0000	5320.0032	-0.0032
		100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0102	-0.0102
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0095	-0.0095
		134	5670.0000	5670.0082	-0.0082
		140	5700.0000	5700.0087	-0.0087
		36	5180.0000	5180.0070	-0.0070
		38	5190.0000	5190.0040	-0.0040
		44	5220.0000	5220.0080	-0.0080
		46	5230.0000	5230.0070	-0.0070
		48	5240.0000	5240.0071	-0.0071
		52	5260.0000	5260.0083	-0.0083
		54	5270.0000	5270.0079	-0.0079
т (70) С	M (120)M	60	5300.0000	5300.0062	-0.0062
Tmax (70) oC	Vmax (138)V	62	5310.0000	5310.0088	-0.0088
		64	5320.0000	5320.0073	-0.0073
		100	5500.0000	5500.0074	-0.0074
		102	5510.0000	5510.0069	-0.0069
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0093	-0.0093
		134	5670.0000	5670.0081	-0.0081
		140	5700.0000	5700.0077	-0.0077



Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	ΔF (MHz)
		36	5180.0000	5180.0069	-0.0069
		38	5190.0000	5190.0077	-0.0077
		44	5220.0000	5220.0088	-0.0088
		46	5230.0000	5230.0074	-0.0074
		48	5240.0000	5240.0066	-0.0066
		52	5260.0000	5260.0079	-0.0079
		54	5270.0000	5270.0092	-0.0092
T (70) %		60	5300.0000	5300.0086	-0.0086
Tmax (70) °C	Vmin (102)V	62	5310.0000	5310.0061	-0.0061
		64	5320.0000	5320.0074	-0.0074
		100	5500.0000	5500.0073	-0.0073
		102	5510.0000	5510.0079	-0.0079
		110	5550.0000	5550.0099	-0.0099
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0088	-0.0088
		140	5700.0000	5700.0080	-0.0080
		36	5180.0000	5180.0064	-0.0064
		38	5190.0000	5190.0078	-0.0078
		44	5220.0000	5220.0094	-0.0094
		46	5230.0000	5230.0077	-0.0077
	Vnom (138)V	48	5240.0000	5240.0082	-0.0082
		52	5260.0000	5260.0076	-0.0076
		54	5270.0000	5270.0093	-0.0093
$T_{max}$ (10) aC		60	5300.0000	5300.0084	-0.0084
Tnom (-10) oC		62	5310.0000	5310.0097	-0.0097
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0067	-0.0067
		102	5510.0000	5510.0074	-0.0074
		110	5550.0000	5550.0088	-0.0088
		116	5580.0000	5580.0094	-0.0094
		134	5670.0000	5670.0084	-0.0084
		140	5700.0000	5700.0086	-0.0086
		36	5180.0000	5180.0064	-0.0064
		38	5190.0000	5190.0078	-0.0078
		44	5220.0000	5220.0094	-0.0094
		46	5230.0000	5230.0077	-0.0077
		48	5240.0000	5240.0082	-0.0082
		52	5260.0000	5260.0076	-0.0076
		54	5270.0000	5270.0093	-0.0093
$T_{max}(10) = C$	$V_{max}$ (102) $V$	60	5300.0000	5300.0084	-0.0084
Tmax (-10) oC	Vmax (102)V	62	5310.0000	5310.0097	-0.0097
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0067	-0.0067
		102	5510.0000	5510.0074	-0.0074
		110	5550.0000	5550.0088	-0.0088
		116	5580.0000	5580.0094	-0.0094
		134	5670.0000	5670.0084	-0.0084
		140	5700.0000	5700.0086	-0.0086

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		42	5210.0000	5210.0220	-0.0220
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0024	-0.0024
Tnom (20) °C	Vnom (120)V	122	5610.0000	5610.0054	-0.0054
	, , , , , , , , , , , , , , , , , , ,	138	5690.0000	5690.0046	-0.0046
		142	5710.0000	5710.0029	-0.0029
		144	5720.0000	5720.0064	-0.0064
		42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0016	-0.0016
Tmax (70) °C	Vmax (138)V	122	5610.0000	5610.0077	-0.0077
	× ,	138	5690.0000	5690.0064	-0.0064
		142	5710.0000	5710.0044	-0.0044
		144	5720.0000	5720.0037	-0.0037
	Vmin (102)V	42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0036	-0.0036
Tmax (70) °C		122	5610.0000	5610.0087	-0.0087
		138	5690.0000	5690.0027	-0.0027
		142	5710.0000	5710.0046	-0.0046
		144	5720.0000	5720.0033	-0.0033
		42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0025	-0.0025
Tmin (-10) °C	Vmax (138)V	122	5610.0000	5610.0082	-0.0082
	× ,	138	5690.0000	5690.0017	-0.0017
		142	5710.0000	5710.0039	-0.0039
		144	5720.0000	5720.0047	-0.0047
		42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0026	-0.0026
Tmin (-10) °C	Vmin (102)V	122	5610.0000	5610.0087	-0.0087
	, ,	138	5690.0000	5690.0021	-0.0021
		142	5710.0000	5710.0036	-0.0036
		144	5720.0000	5720.0039	-0.0039

## Chain B

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		36	5180.0000	5180.0065	-0.0065
		38	5190.0000	5190.0040	-0.0040
		44	5220.0000	5220.0077	-0.0077
		46	5230.0000	5230.0067	-0.0067
		48	5240.0000	5240.0074	-0.0074
		52	5260.0000	5260.0084	-0.0084
		54	5270.0000	5270.0077	-0.0077
T (20) C	M (120)M	60	5300.0000	5300.0059	-0.0059
Tnom (20) oC	Vnom (120)V	62	5310.0000	5310.0057	-0.0057
		64	5320.0000	5320.0030	-0.0030
		100	5500.0000	5500.0090	-0.0090
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0098	-0.0098
		116	5580.0000	5580.0098	-0.0098
		134	5670.0000	5670.0080	-0.0080
		140	5700.0000	5700.0086	-0.0086
		36	5180.0000	5180.0069	-0.0069
		38	5190.0000	5190.0041	-0.0041
		44	5220.0000	5220.0077	-0.0077
		46	5230.0000	5230.0069	-0.0069
		48	5240.0000	5240.0064	-0.0064
		52	5260.0000	5260.0078	-0.0078
		54	5270.0000	5270.0073	-0.0073
T	$V_{\rm max}$ (129) $V$	60	5300.0000	5300.0060	-0.0060
Tmax (70) oC	Vmax (138)V	62	5310.0000	5310.0080	-0.0080
		64	5320.0000	5320.0069	-0.0069
		100	5500.0000	5500.0071	-0.0071
		102	5510.0000	5510.0061	-0.0061
		110	5550.0000	5550.0097	-0.0097
		116	5580.0000	5580.0098	-0.0098
		134	5670.0000	5670.0080	-0.0080
		140	5700.0000	5700.0074	-0.0074



Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	ΔF (MHz)
		36	5180.0000	5180.0063	-0.0063
		38	5190.0000	5190.0074	-0.0074
		44	5220.0000	5220.0087	-0.0087
		46	5230.0000	5230.0070	-0.0070
		48	5240.0000	5240.0063	-0.0063
		52	5260.0000	5260.0077	-0.0077
		54	5270.0000	5270.0090	-0.0090
T (70) 00		60	5300.0000	5300.0084	-0.0084
Tmax (70) °C	Vmin (102)V	62	5310.0000	5310.0060	-0.0060
		64	5320.0000	5320.0072	-0.0072
		100	5500.0000	5500.0072	-0.0072
		102	5510.0000	5510.0077	-0.0077
		110	5550.0000	5550.0097	-0.0097
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0087	-0.0087
		140	5700.0000	5700.0079	-0.0079
		36	5180.0000	5180.0061	-0.0061
		38	5190.0000	5190.0077	-0.0077
		44	5220.0000	5220.0091	-0.0091
		46	5230.0000	5230.0077	-0.0077
	Vnom (138)V	48	5240.0000	5240.0080	-0.0080
		52	5260.0000	5260.0071	-0.0071
		54	5270.0000	5270.0090	-0.0090
T (10) C		60	5300.0000	5300.0081	-0.0081
Tnom (-10) oC		62	5310.0000	5310.0094	-0.0094
		64	5320.0000	5320.0094	-0.0094
		100	5500.0000	5500.0065	-0.0065
		102	5510.0000	5510.0071	-0.0071
		110	5550.0000	5550.0087	-0.0087
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0083	-0.0083
		140	5700.0000	5700.0085	-0.0085
		36	5180.0000	5180.6300	-0.6300
		38	5190.0000	5190.0075	-0.0075
		44	5220.0000	5220.0084	-0.0084
		46	5230.0000	5230.0080	-0.0080
		48	5240.0000	5240.0087	-0.0087
		52	5260.0000	5260.0075	-0.0075
		54	5270.0000	5270.0089	-0.0089
T (10) C	11 (100)11	60	5300.0000	5300.7700	-0.7700
Tmax (-10) oC	Vmax (102)V	62	5310.0000	5310.0090	-0.0090
		64	5320.0000	5320.0097	-0.0097
		100	5500.0000	5500.0079	-0.0079
		102	5510.0000	5510.0066	-0.0066
		110	5550.0000	5550.0074	-0.0074
		116	5580.0000	5580.0092	-0.0092
		134	5670.0000	5670.0077	-0.0077
		140	5700.0000	5700.0086	-0.0086

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		42	5210.0000	5210.0220	-0.0220
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0024	-0.0024
Tnom (20) °C	Vnom (120)V	122	5610.0000	5610.0033	-0.0033
	, , , , , , , , , , , , , , , , , , ,	138	5690.0000	5690.0046	-0.0046
		142	5710.0000	5710.0029	-0.0029
		144	5720.0000	5720.0064	-0.0064
		42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0016	-0.0016
Tmax (70) °C	Vmax (138)V	122	5610.0000	5610.0096	-0.0096
		138	5690.0000	5690.0064	-0.0064
		142	5710.0000	5710.0044	-0.0044
		144	5720.0000	5720.0037	-0.0037
	Vmin (102)V	42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0036	-0.0036
Tmax (70) °C		122	5610.0000	5610.0051	-0.0051
		138	5690.0000	5690.0027	-0.0027
		142	5710.0000	5710.0046	-0.0046
		144	5720.0000	5720.0033	-0.0033
		42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0025	-0.0025
Tmin (-10) °C	Vmax (138)V	122	5610.0000	5610.0056	-0.0056
		138	5690.0000	5690.0017	-0.0017
		142	5710.0000	5710.0039	-0.0039
		144	5720.0000	5720.0047	-0.0047
		42	5210.0000	5210.0024	-0.0024
		58	5290.0000	5290.0046	-0.0046
		106	5530.0000	5530.0026	-0.0026
Tmin (-10) °C	Vmin (102)V	122	5610.0000	5610.0028	-0.0028
		138	5690.0000	5690.0021	-0.0021
		142	5710.0000	5710.0036	-0.0036
		144	5720.0000	5720.0039	-0.0039



# 8. EMI Reduction Method During Compliance Testing

No modification was made during testing.



Attachment 1: EUT Test Photographs