

FCC Radio Test Report

FCC ID: 2AIMRRN09

Report No. Equipment Model Name Brand Name Applicant Address	BTL-FCCP-1-2410C004 Xiaomi Mesh System BE3600 Pro RN09 Xiaomi Beijing Xiaomi Electronics Co., Ltd. Room 802, Floor 8, Building 5, No.15 KeChuang 10th Road, Beijing Economic and Technological Development Zone, Beijing City, China.	
Manufacturer Address Factory Address	Beijing Xiaomi Electronics Co., Ltd. Room 802, Floor 8, Building 5, No.15 KeChuang 10th Road, Beijing Economic and Technological Development Zone, Beijing City, China. AZROAD (Zhongshan) Technology Company Limited (Factory Building 2), No.39 Jinchang Industrial Road, West District,	
Radio Function	Zhongshan City,Guangdong Province, China Bluetooth Low Energy	
FCC Rule Part(s) Measurement Procedure(s)	FCC CFR Title 47, Part 15, Subpart C (15.247) ANSI C63.10-2013	
Date of Receipt Date of Test Issued Date	2024/12/11 2024/12/11 ~ 2025/1/17 2025/1/23	

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Poken Hump

Prepared by

Poken Huang, Engineer

Approved by

Peter Chen, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	ION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	12
3	AC POWER LINE CONDUCTED EMISSIONS TEST	13
3.1	LIMIT	13
3.2	TEST PROCEDURE	13
3.3	DEVIATION FROM TEST STANDARD	13
3.4	TEST SETUP	14
3.5	TEST RESULT	14
4	RADIATED EMISSIONS TEST	15
4.1	LIMIT	15
4.2	TEST PROCEDURE	16
4.3	DEVIATION FROM TEST STANDARD	16
4.4	TEST SETUP	17
4.5	EUT OPERATING CONDITIONS	18
4.6	TEST RESULT – BELOW 30 MHZ	18
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	18
4.8	TEST RESULT – ABOVE 1 GHZ	18
5	BANDWIDTH TEST	19
5.1	APPLIED PROCEDURES / LIMIT	19
5.2	TEST PROCEDURE	19
5.3	DEVIATION FROM STANDARD	19
5.4	TEST SETUP	19
5.5	EUT OPERATION CONDITIONS	19
5.6	TEST RESULTS	19
6	OUTPUT POWER TEST	20
6.1	APPLIED PROCEDURES / LIMIT	20
6.2	TEST PROCEDURE	20
6.3	DEVIATION FROM STANDARD	20
6.4	TEST SETUP	20
6.5	EUT OPERATION CONDITIONS	20
6.6		20
7	POWER SPECTRAL DENSITY TEST	21
7.1	APPLIED PROCEDURES / LIMIT	21
7.2		21
7.3	DEVIATION FROM STANDARD	21
7.4		21
7.5	EUT OPERATION CONDITIONS	21
7.6	TEST RESULTS	21

8	ANTENN	A CONDUCTED SPURIOUS EMISSION	22
8.1	APPLI	ED PROCEDURES / LIMIT	22
8.2	TEST	PROCEDURE	22
8.3	DEVIA	ATION FROM STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT C	PERATION CONDITIONS	22
8.6	TEST	RESULTS	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TES	ЭТ РНОТО	25
11	EUT PHO	DTOS	25
APPEND		AC POWER LINE CONDUCTED EMISSIONS	26
		RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	20 31
APPEND		RADIATED EMISSIONS - ABOVE 1 GHZ	34
			• •
APPEND	D XIC	BANDWIDTH	53
APPEND	IX E	OUTPUT POWER	56
APPEND	IX F	POWER SPECTRAL DENSITY TEST	58
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSION	60

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-3-2410C004	R00	Original Report.	2025/1/23	Valid

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.407(b)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	APPENDIX D	Pass	
15.247(b)(3)	Output Power	APPENDIX E	Pass	
15.247(e)	Power Spectral Density	APPENDIX F	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass	
15.203	Antenna Requirement		Pass	NOTE (3)

NOTE:

"N/A" denotes test is not applicable in this Test Report.
The report format version is TP.1.1.1.

(3) The device what use replaceable antennas with non-standard interfaces are considered sufficient to com ply with the provisions of 15.203.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: (FCC DN: TW0659) No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

 \boxtimes CB20 \boxtimes TR01 \boxtimes C01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C01	CISPR	150 kHz ~ 30MHz	2.4498

B. Radiated emissions test:

Measurement Frequency Range	U,(dB)		
0.03 GHz ~ 0.2 GHz	4.17		
0.2 GHz ~ 1 GHz	4.72		
1 GHz ~ 6 GHz	5.20		
6 GHz ~ 18 GHz	5.50		
18 GHz ~ 26 GHz	3.69		
26 GHz ~ 40 GHz	4.23		
	Range 0.03 GHz ~ 0.2 GHz 0.2 GHz ~ 1 GHz 1 GHz ~ 6 GHz 6 GHz ~ 18 GHz 18 GHz ~ 26 GHz		

C. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.83 %
Output power	0.8909 dB
Power Spectral Density	0.8903 dB
Conducted Spurious emissions	1.8304 dB
Conducted Band edges	1.8338 dB

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120 V	Benny Cao
Radiated emissions below 1 GHz	25°C, 65%	AC 120 V	Benny Cao
Radiated emissions above 1 GHz	25°C, 65%	AC 120 V	Benny Cao
Bandwidth	25°C, 55%	AC 120 V	Cheng Tsai
Output Power	25°C, 55%	AC 120 V	Cheng Tsai
Power Spectral Density	25°C, 55%	AC 120 V	Cheng Tsai
Antenna conducted Spurious Emission	25°C, 55%	AC 120 V	Cheng Tsai

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	EMI_Test_Tool 1.0.0.0			
Modulation Mode	2402 MHz 2440 MHz 2480 MHz Data Rate			
1 Mbps	9.5	9.5	8.9	1 Mbps
2 Mbps	9.5	9.5	11.3	2 Mbps

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Xiaomi Mesh System BE3600 Pro	Xiaomi Mesh System BE3600 Pro	
Brand Name	Xiaomi		
Model Name	RN09		
Model Difference(s)	N/A		
Hardware Version	1.0		
Software Version	1.0.1		
Power Source	DC Voltage supplied from AC adapter. Model: ADS-18MC-1212018EPCU		
Power Rating	I/P:100-240V ~ 50/60Hz 0.6A O/P:12.0V 1.5A	/P:100-240V ~ 50/60Hz 0.6A O/P:12.0V 1.5A	
Operation Band	2400 MHz ~ 2483.5 MHz	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz	2402 MHz ~ 2480 MHz	
Modulation Technology	GFSK		
Transfer Rate	1 Mbps, 2 Mbps		
Output Power Max.	2 Mbps: 7.24 dBm (0.0053 W)		
Test Model	RN09		
Sample Status	Engineering Sample		
EUT Modification(s)	N/A		

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

(3) Table for Filed Antenna:

Ant.	Brand Name	Model Name	Туре	Connector	Gain (dBi)
1	South star	NR01	PCB	IPEX	5.56

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

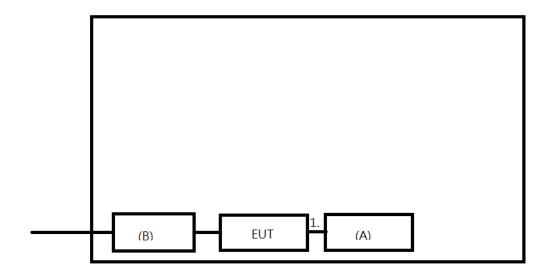
Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	2 Mbps	39	-
Transmitter Radiated Emissions	1/2 Mbps	00/39	Bandedge
(above 1GHz)	1/2 Mbps	00/19/39	Harmonic
Transmitter Radiated Emissions (above 18GHz)	2 Mbps	39	-
Bandwidth	1/2 Mbps	00/19/39	-
Output Power	1/2 Mbps	00/19/39	-
Power Spectral Density	1/2 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1/2 Mbps	00/19/39	-

NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.

(2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

(3) For radiated emissions below 1 GHz test, the 2 Mbps channel 39 is found to be the worst case and recorded.


(4) The electric field intensity signal emitted at 9 kHz kHz - 30 MHz is too weak (20 dB below the limit), so the measured value is not recorded in this report.

(5) For radiated emission Harmonic above 18GHz test, only tested the worst case and recorded.

<u>3ĩL</u>

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand		Model No.	Series No.	Remarks
Α	Notebook	Lenovo	Thin	kBook 14 G4 IAP	MP28KHAH	Furnished by test lab.
В	Adapter	Xiaomi	ADS	S-18MC-1212018 EPCU	N/A	Supplied by test requester.
Item	Shielded	Ferrite Co	re	Length	Cable Type	Remarks

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	RJ45 Cable	N	1m	Ν	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ш	-18.33

The following table is the setting of the receiver.

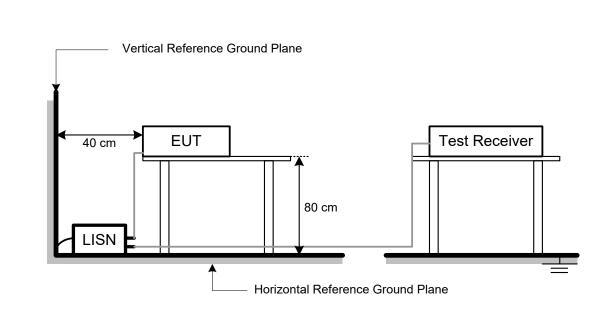
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Yeak Average Yeak	Frequency (MHz)	Radiated I (dBu		Measurement Distance (meters)
Above 1000 74 54 2		Peak	Average	(illeters)
Above 1000 74 54 5	Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

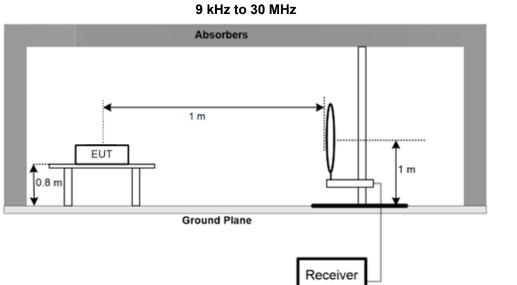
Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	=	33.55

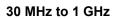
Measurement Value		Limit Value		Margin Level
33.55	-	43.50	Ш	-9.95

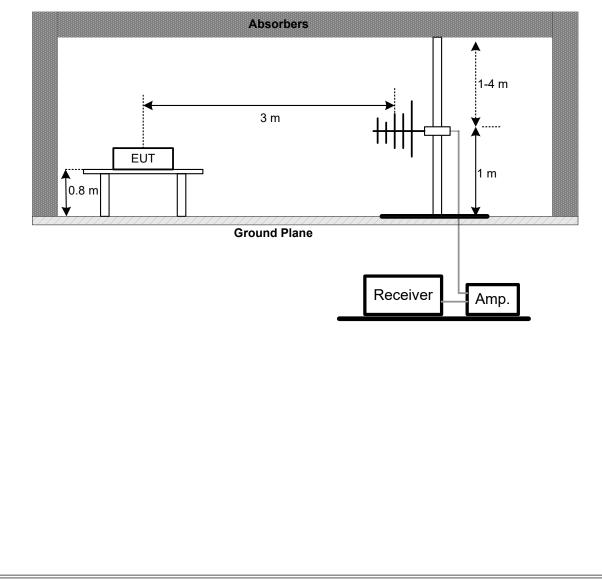
Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1MHz / 3MHz for Peak,	
(Emission in restricted band)	1MHz / 1/T for Average	

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

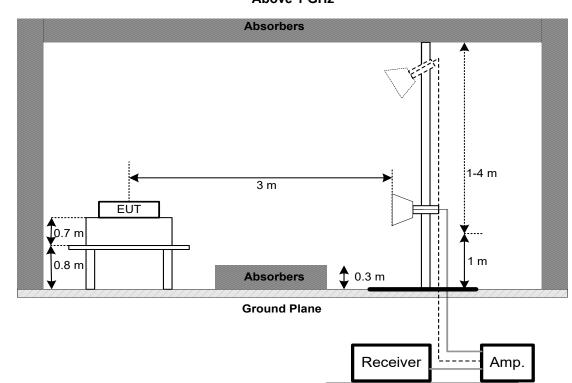
4.2 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX BB.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX CC.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section Test Item Limit Frequency Range (MHz)					
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX DD.

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item Limit Frequency Range (MHz)						
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX EE.

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item		Limit Frequency Range (MHz)		Result		
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX FF.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX GG.

9 LIST OF MEASURING EQUIPMENTS

AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Two-Line V-Network	R&S	ENV216	101051	2024/6/26	2025/6/25
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2024/12/10	2025/12/9
3	EMC Receiver	Keysight	N9038A	MY54130009	2024/6/27	2025/6/26
4	Measurement Software	Farad	EZ_EMC (Ver. NB-03A1-01)	N/A	N/A	N/A
			Radiated Emissio	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Pre-Amplifier	EMCI	EMC184045SE	980512	2024/12/10	2025/12/9
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	340	2024/6/27	2025/6/26
3	Test Cable	EMCI	EMC102-KM-KM- 1000	220328	2024/12/10	2025/12/9
4	Test Cable	EMCI	EMC101G-KM-K M-3000	220330	2024/12/10	2025/12/9
5	Broad-Band Horn Antenna	RFSPIN	DRH18-E	210109A18E	2024/1/10	2025/1/9
6	Pre-Amplifier	EMCI	EMC051845SE EMC105-SM-SM-	980779	2024/12/10	2025/12/9
7	Test Cable	EMCI	1000 EMC105-SM-SM-	210119	2024/12/10	2025/12/9
8	Test Cable	EMCI	3000	210118	2024/12/10	2025/12/9
9	Test Cable	EMCI	EMC105-SM-SM- 7000	210117	2024/12/10	2025/12/9
10	EXA Spectrum Analyzer	keysight	N9020B	MY59050137	2024/11/24	2025/11/25
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	01207	2024/12/4	2025/12/3
12	EMC Receiver	Keysight	N9038A	MY54130009	2024/6/27	2025/6/26
13	Pre-Amplifier	EMCI	EMC001330-202 01222	980807	2024/12/9	2025/12/8
14	Test Cable	EMCI	EMC-8D-NM-NM -5000	150106	2024/12/9	2025/12/8
15	Test Cable	EMCI	EMC-CFD-400-N M-NM-8000	200348	2024/12/9	2025/12/8
16	Test Cable	EMCI	EMC-CFD-400-N M-NM-3300	200343	2024/12/9	2025/12/8
17	Loop Ant.	Electro-Metrics	EMCI-LPA600	274	2024/7/5	2025/7/4
18 19	EMC Receiver	Keysight EMCI	N9038A EMC001340	MY54130009 980555	2024/6/27 2024/12/1	2025/6/26
19	Pre-Amplifler			900000	2024/12/1	2025/11/30
			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26
2	10dbAttenuator	INMET	AHC-10dB	1	2024/11/26	2025/11/25
3	BTL-ConducredT est	BTL	1247788684	N/A	N/A	N/A

	Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	USB Peak Power Sensor	Anritsu	MA24408A	12589	2024/10/25	2025/10/24	
2	10dbAttenuator	INMET	AHC-10dB	1	2024/11/26	2025/11/25	
3	Measurement Software	Anritsu	MA2440A Peak Power analyzer(Ver1.1.0 .0)	N/A	N/A	N/A	

	Power Spectral Density							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26		
2	10dbAttenuator	INMET	AHC-10dB	1	2024/11/26	2025/11/25		
3	BTL-ConducredT est	BTL	1247788684	N/A	N/A	N/A		

	Antenna conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 30	100854	2024/6/27	2025/6/26	
2	10dbAttenuator	INMET	AHC-10dB	1	2024/11/26	2025/11/25	
3	BTL-ConducredT est	BTL	1247788684	N/A	N/A	N/A	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

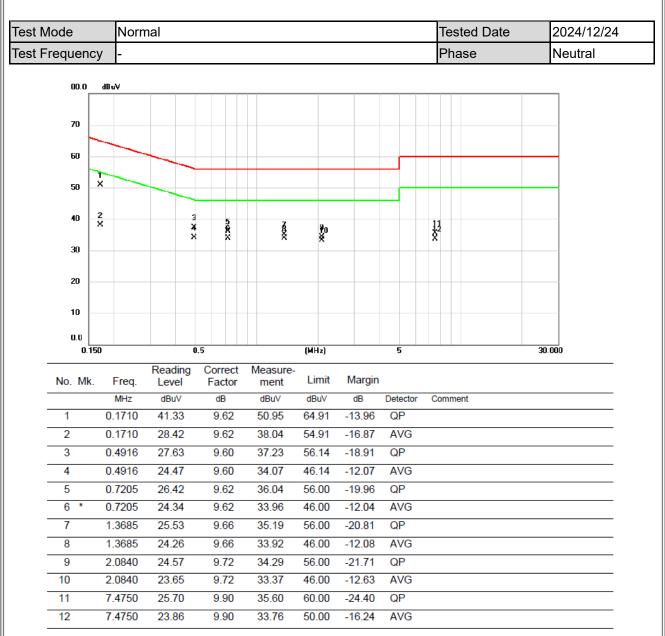
10 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2410C004-FCCP-1 (APPENDIX-TEST PHOTOS).

11 EUT PHOTOS

Please refer to document Appendix No.: EP-2410C004-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS



REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

REMARKS:

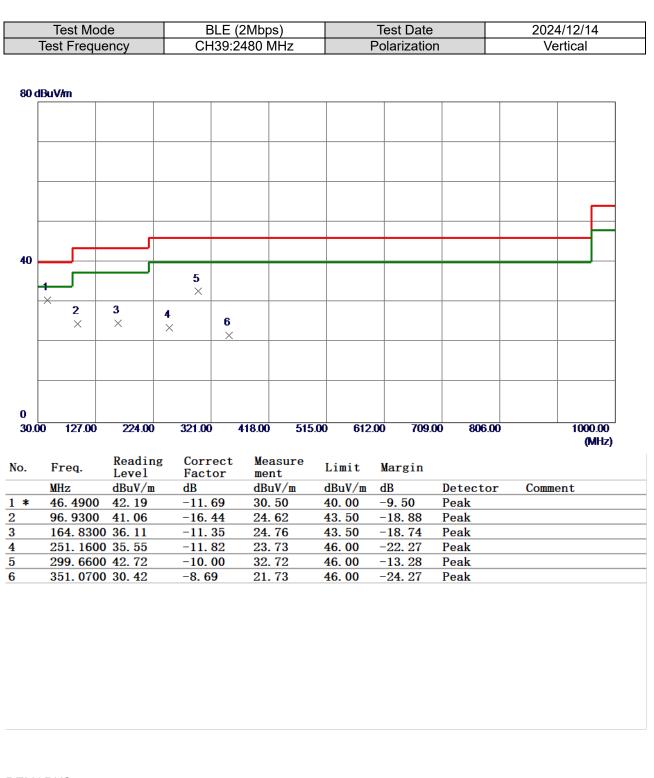
(1) Measurement Value = Reading Level + Correct Factor.


BIL

REMARKS:

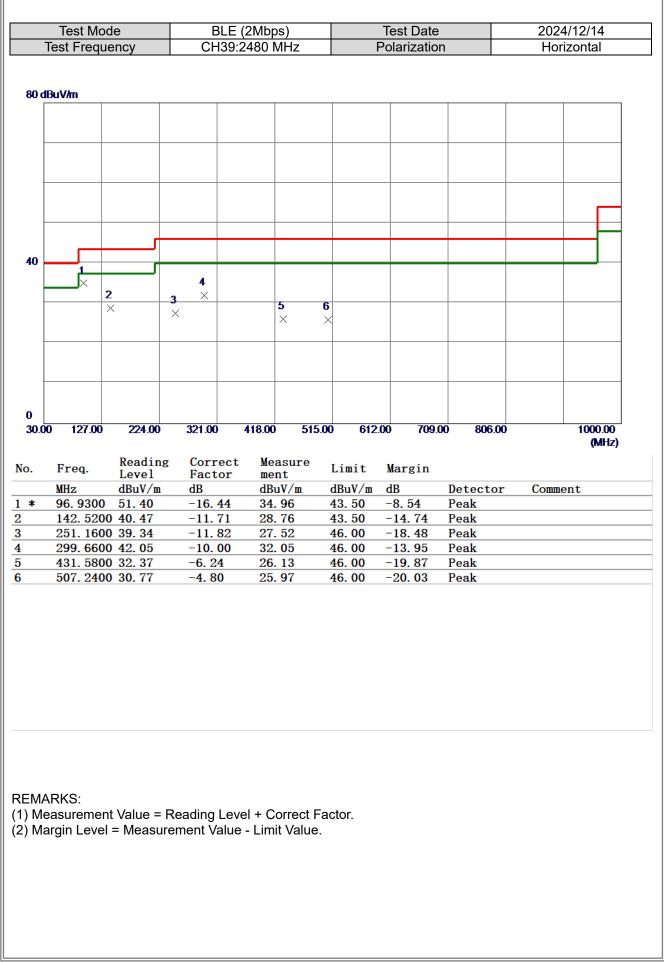
(1) Measurement Value = Reading Level + Correct Factor.

BIL


REMARKS:

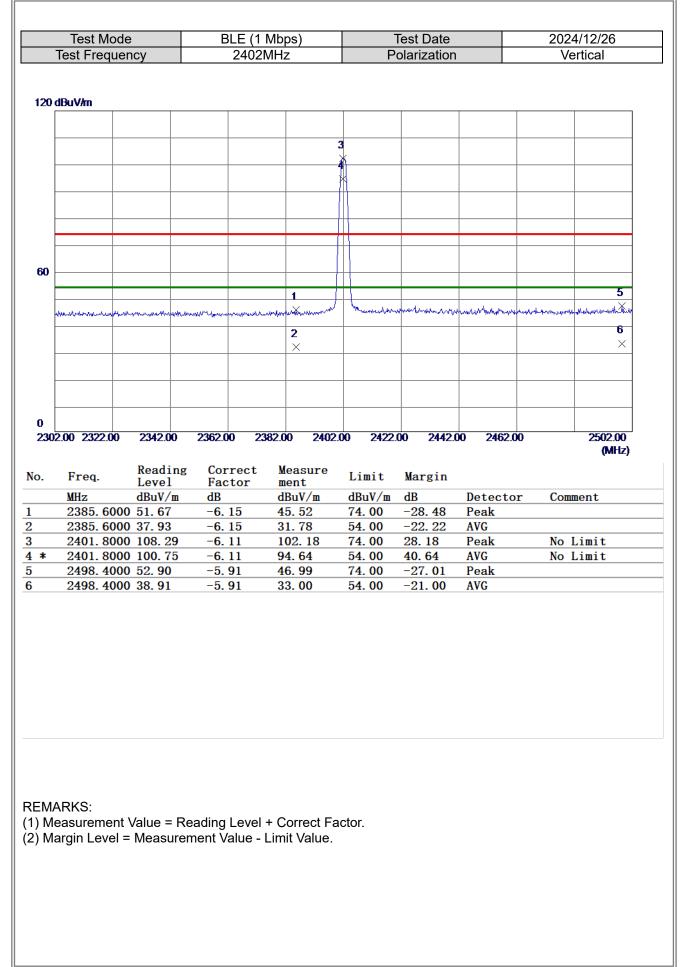
(1) Measurement Value = Reading Level + Correct Factor.

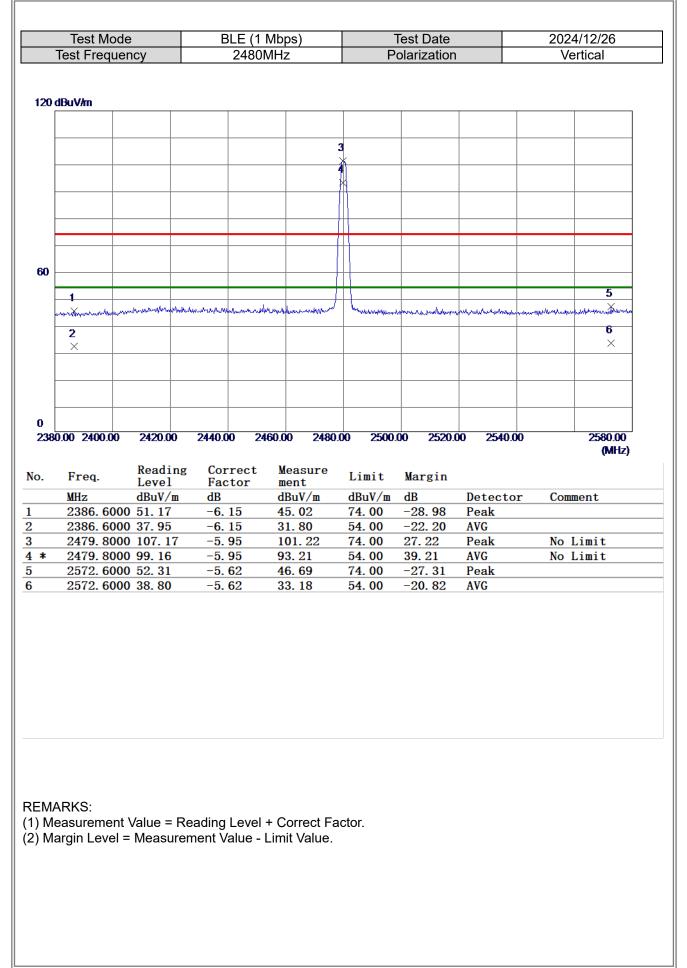
APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


BIL

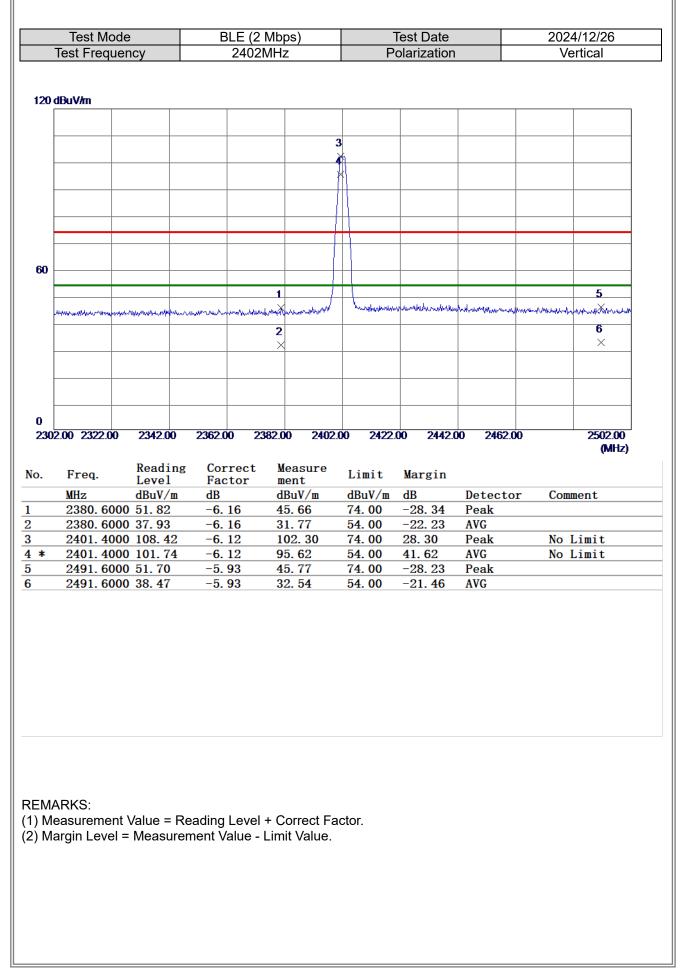
REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.


3โL



APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ


<u>3ĩL</u>

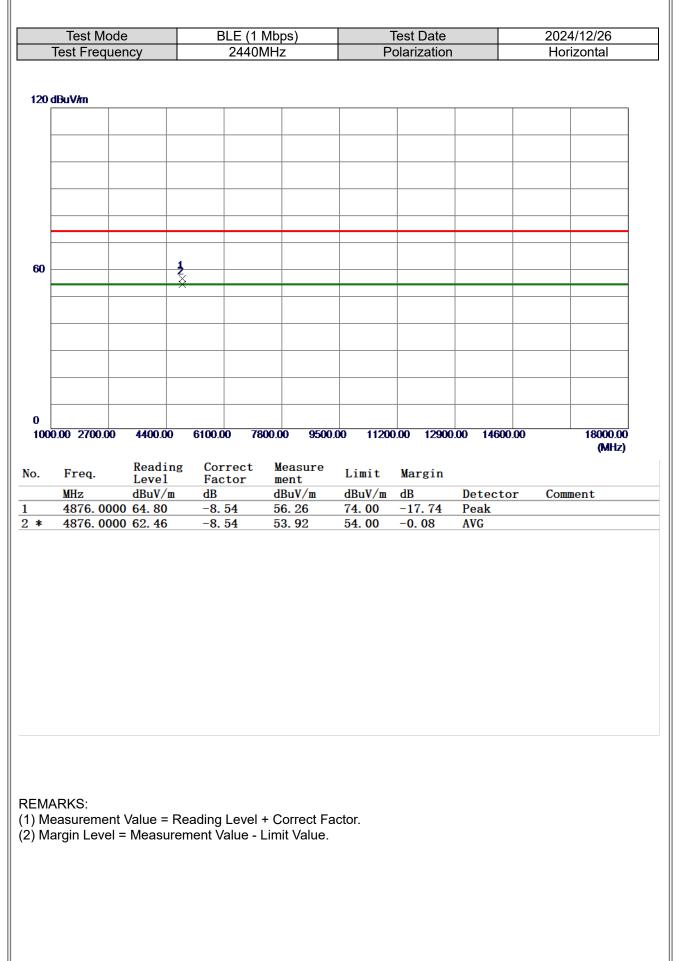
<u>3ĩL</u>

<u>3ĩL</u>

<u>3TL</u>

7	Test Mo Test Frequ				2480	<u>Mbps)</u> MHz			Test Date Polarization			24/12/26 /ertical
20 d	lBuV/m											
-								5				
-							A					
-												
_												
-												
0							[5				
	1							6				
4	hand reality have a way	ymanhlunn	yn yn helder de lander	rol Marcha	www.hundh	sense and a second s	warden and	Xulmandad	munduland	non-bilduruman	Appennikanak	and an and a second
	2 ×											
							0.100		0.00			0500.00
380	0.00 2400.0	U 24	420.00	2440.0	10 24	460.00	2480.	00 250	0.00 2520.0	00 2540.	00	2580.00 (MHz)
	Freq.		eading evel		rect	Mea men	sure t	Limit	Margin			
	MHz 2388.60	dB	BuV/m	dB -6.		dBu 45. 3		dBuV/m 74.00	dB -28.64	Detecto Peak	or Co	mment
	2388.60	00 37	7.92	-6.	14	31.	78	54.00	-22. 22	AVG		
•	2479.40 2479.40			-5. -5.		103. 96.		74.00 54.00	29. 52 42. 51	Peak AVG		Limit Limit
	2483.40 2483.50	00 59	9. 77	-5. -5.	94	53. 8 45. 3	83	74.00 54.00	-20. 17 -8. 66	Peak AVG		
	RKS:	nt \ /_ !	uo – P		ا مینوا		oot E-	otor				
N / -	easureme argin Leve							CLOF.				

MHz dBuV/m dB dBuV/m		Test Mo Test Frequ				<u>LE (1 </u> 2402N		/		Test Date olarization			2024/12/26 Vertical
1 1	20 (dBuV/m											
1 1													
1 1													
1 1													
1 1													
1 1													
1 1													
1 1	_												
Image: State of the state	U			1									
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Level Factor ment HHz dBuV/m dB dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG				+Ŷ-									
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Level Factor ment HHz dBuV/m dB dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG													
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Level Factor ment HHz dBuV/m dB dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG													
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Level Factor ment HHz dBuV/m dB dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG													
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Level Factor ment HHz dBuV/m dB dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG													
KMłtz) Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG													
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG	00	0.00 2700.0	0 4400.	00	6100.0	0 78	00.00	9500	.00 11200	0.00 12900	.00 14600	.00	
Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG													fian rs
4808.0000 61.37 -8.68 52.69 74.00 -21.31 Peak 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG			Read	ing	Cor	rect	Mea	sure		. .			
* 4808.0000 58.06 -8.68 49.38 54.00 -4.62 AVG			Leve	1	Fac		men	t			D 4 4		0
		MHz	Leve dBuV	1 /m	Fac dB	tor	men dBu	t V/m	dBuV/m	dB		or	Comment
		MHz 4808.00	Leve dBuV 000 61.3	1 /m 7	Fac dB -8. (tor 68	men dBu 52.	t V/m 69	dBuV/m 74. 00	dB -21. 31	Peak	or	Comment



	Test Mo Test Frequ				E (1 M 2440M				Test Date olarization			2024/12/26 Vertical
20 (dBuV/m											
0												
Ĭ			2									
	0.00 2700.0	0 4400.	00 6	6100.00	780	0.00	9500.0	0 11200	0.00 12900	.00 14600	0.00	18000.00
												(MHz)
			1									
	Freq.	Read Leve	1 ng 1	Corr Fact	ect or	Meas ment		Limit	Margin			
	MHz	Leve dBuV	1 /m	Fact dB	or	ment dBuV	/m	dBuV/m	dB	Detecto	or	Comment
	MHz 4876.00	Leve dBuV 000 62. 0	1 /m 5	Fact dB -8.54	or 1	ment dBuV 53.5	/m 1	dBuV/m 74. 00	dB -20. 49	Peak	or	Comment
k	MHz 4876.00	Leve dBuV	1 /m 5	Fact dB	or 1	ment dBuV	/m 1	dBuV/m	dB		or	Comment
	MHz 4876.00	Leve dBuV 000 62. 0	1 /m 5	Fact dB -8.54	or 1	ment dBuV 53.5	/m 1	dBuV/m 74. 00	dB -20. 49	Peak	pr	Comment
	MHz 4876.00	Leve dBuV 000 62. 0	1 /m 5	Fact dB -8.54	or 1	ment dBuV 53.5	/m 1	dBuV/m 74. 00	dB -20. 49	Peak	pr	Comment
	MHz 4876.00	Leve dBuV 000 62. 0	1 /m 5	Fact dB -8.54	or 1	ment dBuV 53.5	/m 1	dBuV/m 74. 00	dB -20. 49	Peak	pr	Comment
⊧	MHz 4876.00 4876.00	Leve dBuV, 000 62. 0 000 59. 3	1 /m 5 3	Facto dB -8.54 -8.54	or 4 4	ment dBuV 53.5 50.7	/m 1 9	dBuV/m 74.00 54.00	dB -20. 49	Peak	pr	Comment
⊧ M4	MHz 4876.00 4876.00	Leve dBuV, 000 62. 0 000 59. 3	1 / <u>m</u> 5 3	Facto dB -8. 54 -8. 54	evel +	ment dBuV 53.5 50.7	/m 1 9	dBuV/m 74.00 54.00	dB -20. 49	Peak	pr	Comment
⊧ MÆ	MHz 4876.00 4876.00	Leve dBuV, 000 62. 0 000 59. 3	1 / <u>m</u> 5 3	Facto dB -8. 54 -8. 54	evel +	ment dBuV 53.5 50.7	/m 1 9	dBuV/m 74.00 54.00	dB -20. 49	Peak	pr	Comment
	MHz 4876.00 4876.00	Leve dBuV, 000 62. 0 000 59. 3	1 / <u>m</u> 5 3	Facto dB -8. 54 -8. 54	evel +	ment dBuV 53.5 50.7	/m 1 9	dBuV/m 74.00 54.00	dB -20. 49	Peak	pr	Comment

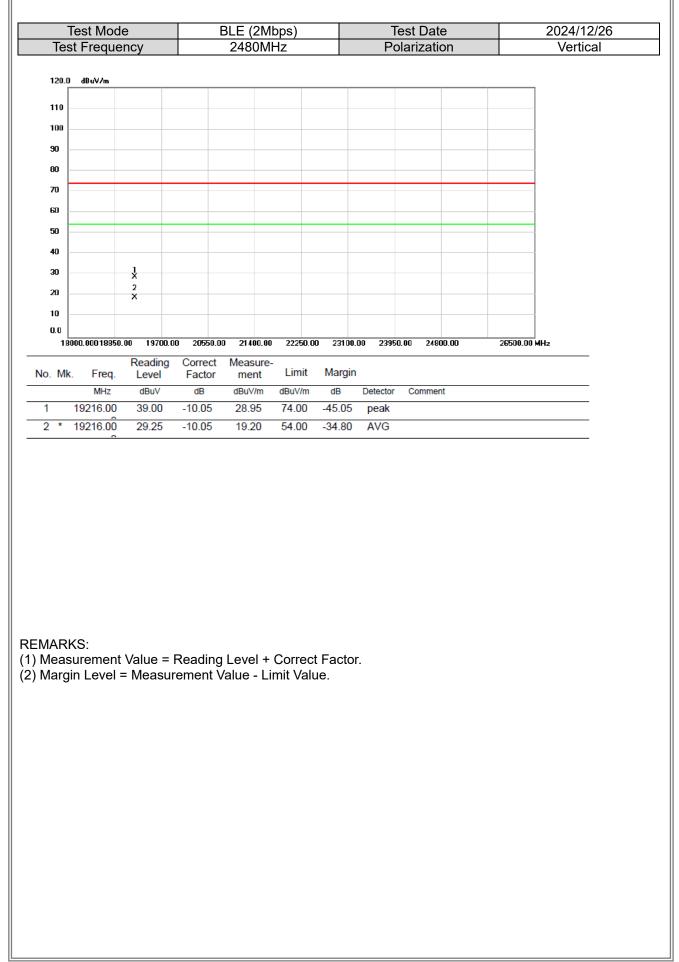
	Test Mod Test Freque			3LE (1 Mt 2480MF			lest Date olarization			24/12/26 /ertical
~~	15 LU									
20 (dBuV/m									
0										
			2 ×							
			×							
 00	0.00 2700.00	4400.0	0 6100.	00 7800	.00 9500.	00 11200).00 12900	.00 14600	0.00	18000.00
										(MHz)
	Freq.	Readi Level	ng Co Fa		Measure ment	Limit	Margin			
	MHz	dBuV/	m dB	(dBuV/m	dBuV/m	dB	Detecto	or Con	ment
•	4960.000 4960.000				48.76 46.02	74.00 54.00	-25. 24 -7. 98	Peak AVG		

st Freque			2402N			olarization			rtical
		1							
		ž ×							
2700.00	4400.0	0 6100	00 78	00.00 0500	00 11200	00 12000	00 14600.0	0	18000.00
2100.00				JU.UU 3340		12,500			(MHz)
Freq.	Level	. Fa		Measure ment	Limit	Margin			
(Hz 1808 0000				dBuV/m	dBuV/m 74 00	dB -21 75		Comm	ent
				46. 23	54.00	-7.77	AVG		
KS: surement jin Level =	Value = = Measu	Readin Irement	g Level - Value - L	+ Correct Fa _imit Value.	ictor.				
	Hz 808. 0000 808. 0000	Treq. Readi Hz dBuV/ 808.0000 60.93 808.0000 54.91	Reading Constraint Ireq. Level Fa Hz dBuV/m dB 808.0000 60.93 -8 808.0000 54.91 -8 808.0000 54.91 -8	Reading Correct Hz dBuV/m dB 808.0000 60.93 -8.68 808.0000 54.91 -8.68 808.0000 54.91 -8.68	Greq. Reading Level Correct Factor Measure ment Hz dBuV/m dB dBuV/m 808.0000 60.93 -8.68 52.25 808.0000 54.91 -8.68 46.23	Kreq. Reading Level Correct Factor Measure ment Limit Hz dBuV/m dB dBuV/m dBuV/m 808.0000 60.93 -8.68 52.25 74.00 808.0000 54.91 -8.68 46.23 54.00	Breq. Reading Level Correct Factor Measure ment Limit Margin Hz dBuV/m dB dBuV/m dBuV/m dB 808.0000 60.93 -8.68 52.25 74.00 -21.75 808.0000 54.91 -8.68 46.23 54.00 -7.77	Preq. Reading Level Correct Factor Measure ment Limit Margin Hz dBuV/m dB dBuV/m dB Detector 808.0000 60.93 -8.68 52.25 74.00 -21.75 Peak 808.0000 54.91 -8.68 46.23 54.00 -7.77 AVG	Preq. Reading Level Correct Factor Measure ment Limit Margin Hz dBuV/m dB dBuV/m dB Detector Comm 808.0000 60.93 -8.68 52.25 74.00 -21.75 Peak 808.0000 54.91 -8.68 46.23 54.00 -7.77 AVG

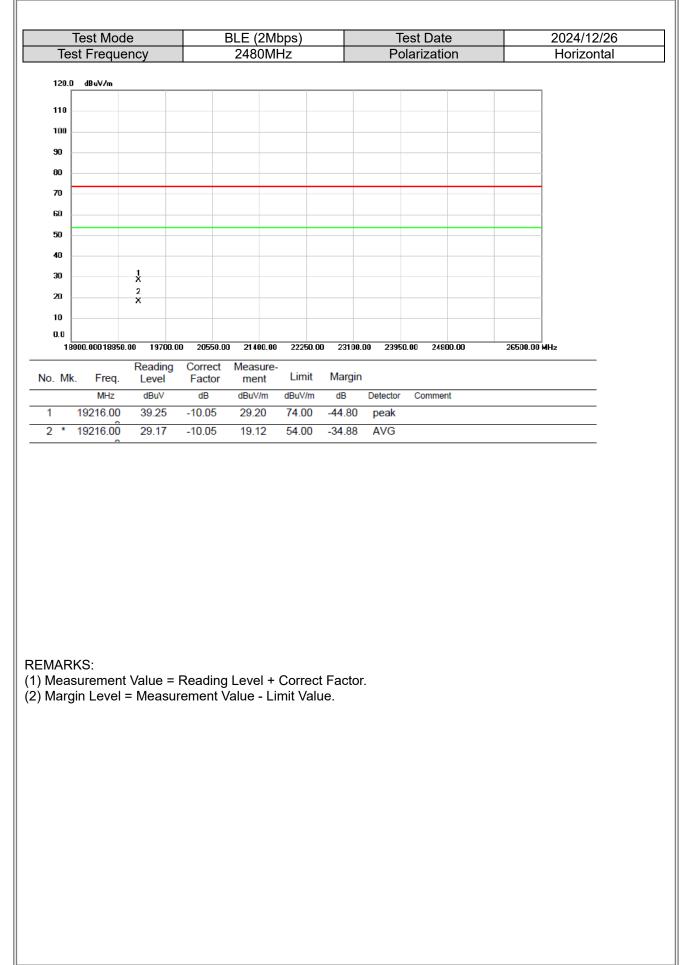
			-											
20 g	dBuV/m										1			
									-					
			1											
0			2											
-			X						-					
									_					
									\rightarrow					
	0.00 2700.00	0 4400.0	00	6100.00) 78	00.00	9500	00 112	00.0	00 12900	.00 14	600.00)	18000.00
														(MHz)
	Freq.	Readi Level	ing l	Cori Fact		Mea men	sure t	Limit		Margin				
	MHz	dBuV/	m	dB		dBu	V/m	dBuV/n		dB	Dete		Со	mment
	4808.00	00 67 10)	-8.6	58	58.	51	74 00		-15. 49	Peak			
¢		00 61.16		-8.6	68	52.		74.00 54.00		-1. 52	AVG			
F					58									

	Test Mo Test Frequ			BLE (2 2440			Test Date olarization			4/12/26 ertical
20 (dBuV/m									
0										
			1 2⁄							
			×							
00	0.00 2700.00) 4400.0	0 6100	.00 78	00.00 9500	.00 11200).00 12900	.00 14600	.00	18000.00
			-							(MHz)
	Freq.	Readi Level	ng Co Fa	orrect actor	Measure ment	Limit	Margin			
	MHz	dBuV/			dBuV/m	dBuV/m	dB	Detecto	or Com	ment
		00 61.69		. 54 . 54	53.15 46.85	74.00 54.00	-20.85 -7.15	Peak AVG		
<u>د</u>	4876.00	00 55.39					1.15			
	4876.00	00 55.39					7.10			
:	4876.00	00 55.39					1.15			
<u>د</u>	4876.00	00 55.39					1.15			
	4876.00	00 55. 39					1.13			
2	4876.00	00 55.39					1.13			
2	4876.00	00 55.39					1.13			
2	4876.00	00 55.39					1.13			
2	4876.00	00 55.39					1.13			
	4876.00	00 55.39					1.13			
د	4876.00	00 55.39					1.13			
¢	4876.00	00 55.39					1.13			
		00 55.39					1.13			
MA	ARKS:				+ Correct Ec		1.13			
MA	ARKS: easuremer	nt Value =	Readin	g Level Value - I	+ Correct Fa Limit Value.		1.13			
MA	ARKS: easuremer	nt Value =	Readin	g Level Value - I	+ Correct Fa Limit Value.		1.13			
MA Ma	ARKS: easuremer	nt Value =	Readin	g Level Value - I	+ Correct Fa Limit Value.		1.13			
MA Me	ARKS: easuremer	nt Value =	Readin	g Level Value - I	+ Correct Fa Limit Value.		1.13			

	Test Mo Test Frequ				LE (2 2440	MHz				Test Dat olarizati					/12/26 zontal
20.4	dBuV/m														
201															
											-				
_			1												
0			2× ×												
											\dashv				
											-				
											_				
								_			_				
	0.000 0700 0			040000			05.04		44000			0 44000			40000.00
UU	0.00 2700.00) 4400.0	JU	6100.0	U 78	300.00	9500	00	11200	0.00 12	900.0	00 14600	00.00		18000.00 (MHz)
	Freq.	Read Leve	ing 1	Cor: Fac	rect	Mea mer	asure	Lin	nit	Margi	n				
	MHz	dBuV/		dB			iV/m	dBu	ıV∕m	dB		Detecto	or	Comm	ent
k		00 67.37 00 61.27		-8. 8 -8. 8		58. 52.			00	-15. 17 -1. 27	7	Peak AVG			
*								74.	00	-15.17	7				

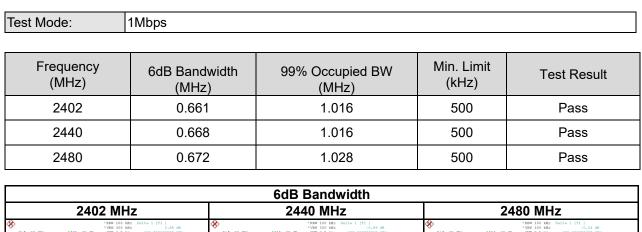


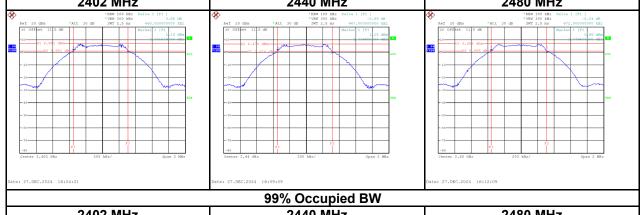
	Test Mod Test Freque			BLE (2 M 2480N			Test Date olarization		2024/12/26 Vertical	,
20.4	dBuV/m									
2010										
0										
			1 2 [×]							
			×							
										-
00(0.00 2700.00	4400.0	0 6100	0.00 780	00.00 9500.	00 11200	0.00 12900	00 14600		0.00 IHz)
	Freq.	Readi	ng Co	orrect	Measure	Limit	Margin			
	MHz	Level dBuV/		actor	ment dBuV/m	dBuV/m	dB	Detecto	or Comment	
			ш <u>ч</u>		иви / ш	ubuv/ш	ab	Detecto		
	4961.000	0 60.81	-8	3. 37	52.44	74.00	-21. 56	Peak		
5	4961.000 4961.000	0 60.81	-8							
⊧	4961.000	0 60.81	-8	3. 37	52.44	74.00	-21. 56	Peak		
MA	4961. 000	0 60. 81 0 54. 33	E	g Level 1	52. 44 45. 96 + Correct Fa	74.00 54.00	-21. 56	Peak		

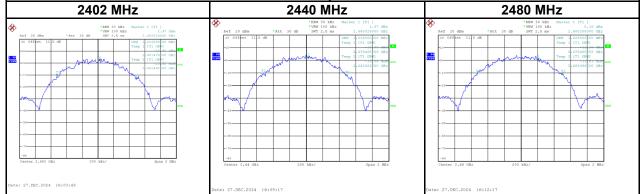


	Test Moo Fest Frequ				LE (2 2480I		-			Test Date olarizatio					/12/26 zontal
ю. а	lBuV/m														
:0 a															
+															
-															
			1												
0			2× ×												
╞															
╞															
+											_				
											_				
	00.0700.00	1100 (040000			0500		44000	100 400		0 44000			40000.00
JUU	0.00 2700.00	4400.0	0	6100.0	<i>3</i> 78	300.00	9500	00.00	11200	00 129	00.0	0 14600	00.		18000.00 (MHz)
	Freq.	Read Leve	ing 1	Cor: Fac	rect	Mea mer	asure	Liı	nit	Margin	ι				
	MHz	dBuV/		dB	.01		ıV/m			-		Detecto	r	Comm	ent
									1V/m	dB			/1	COLLIN	
:	4961.000 4961.000	00 66. 92	2	-8. 3 -8. 3		58. 52.	55	74.	<u>1V/m</u> 00 00	dB -15. 45 -1. 10		Peak AVG			
:		00 66. 92	2	-8.3		58.	55	74.	00	-15.45		Peak			

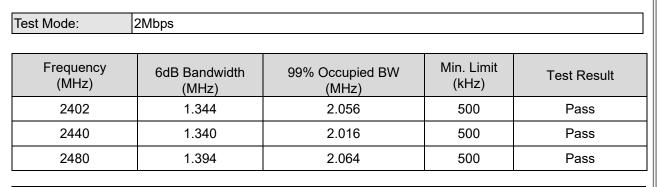
BIL

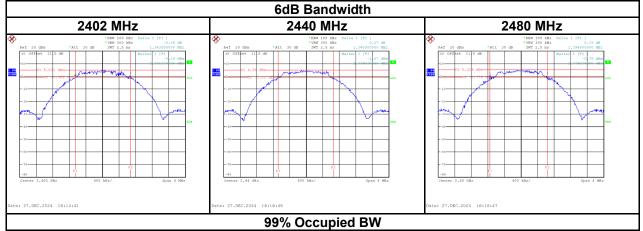

BIL

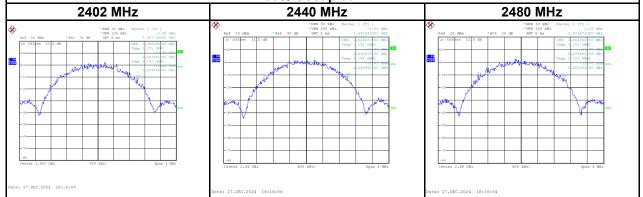




APPENDIX D BANDWIDTH







APPENDIX E OUTPUT POWER

BIL

Test Mode :	1Mbps		т	ested Date 2	025/1/15
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	7.06	0.0051	30.00	1.0000	Pass
2440	6.98	0.0050	30.00	1.0000	Pass
2480	7.18	0.0052	30.00	1.0000	Pass

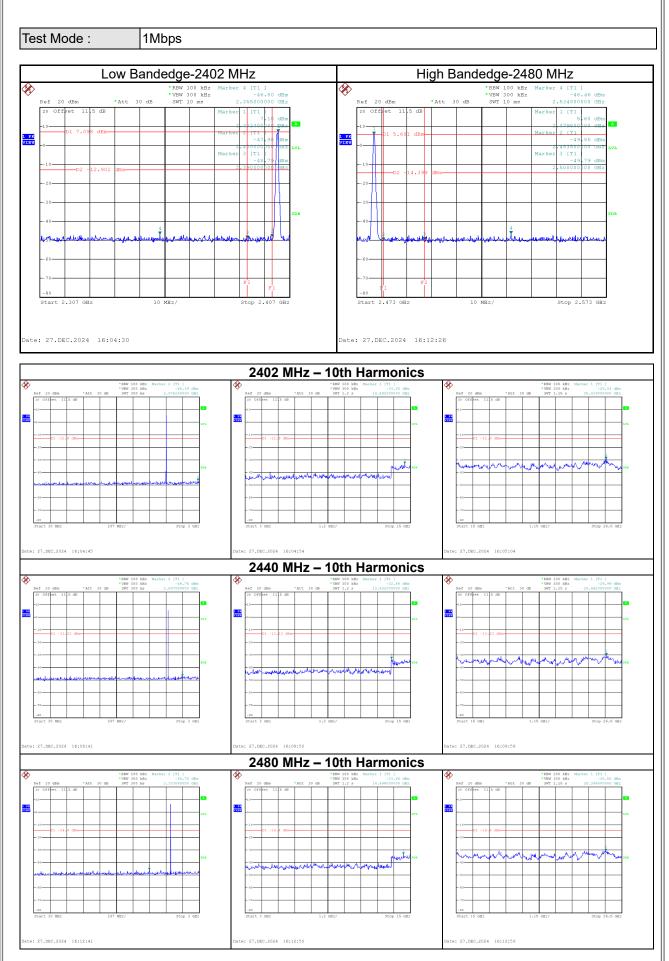
Test Mode :

2Mbps

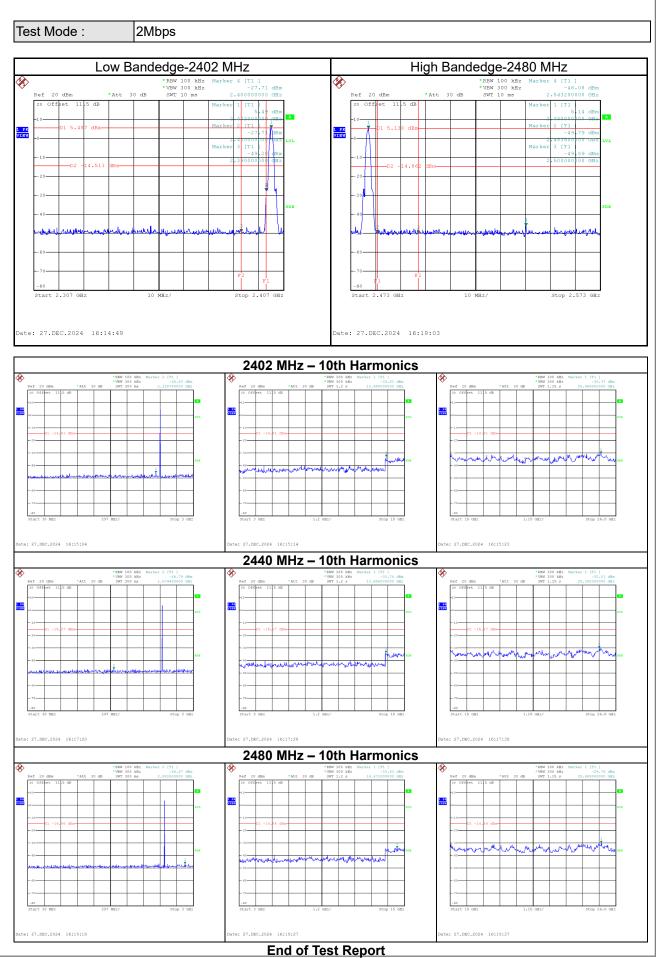
Tested Date 2025/1/15

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	7.13	0.0052	30.00	1.0000	Pass
2440	7.02	0.0050	30.00	1.0000	Pass
2480	7.24	0.0053	30.00	1.0000	Pass

APPENDIX F POWER SPECTRAL DENSITY TEST



est Mode : 1Mbp	<u>}</u>		
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-5.21	8	Pass
2440	-3.40	8	Pass
2480	-4.09	8	Pass
2402 MHz	2440) MHz	2480 MHz
est Mode : 2Mbps	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-8.47	8	Pass
2440	-4.21	8	Pass
2480	-5.85	8	Pass
	2440	2440 MHz	
2402 MHz *584 3 kHz Karker 1 (7 hef 20 dBm *Att 30 dB \$974 60 ma 2.4017	1] *P	RBN 3 kHz Marker 1 (T1) VEN 10 kHz -4.21 dBm SWT 450 ms 2.440032000 GHz Ref 20 dBm	*RBW 3 kHz Marker 1 (T1) *VEW 10 kHz -5.85 dBm *Att 30 dB SWT 450 ms 2.480072000 GHz


APPENDIX G ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2410C004

Project No.: 2410C004