

Test Report

Report No.:	MTi220804002-05E1
Date of issue:	2022-08-26
Applicant:	Shenzhen Baseus Technology Co., Ltd.
Product:	Baseus Neckband Wireless Earphones
Model(s):	Baseus Bowie U2
FCC ID:	2A482-U2

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

1. This test report shall not be partially reproduced without the written consent of the laboratory.

2. The test results in this test report are only responsible for the samples submitted

3. This test report is invalid without the seal and signature of the laboratory.

4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.

Any objection to this test report shall be submitted to the laboratory within
15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of the EUT	5
	1.2 Description of test modes	5
	1.3 Measurement uncertainty	6
2	Summary of Test Result	7
3	Test Facilities and Accreditations	8
	3.1 Test laboratory	8
4	Equipment List	9
5	Test Result	.10
	5.1 Antenna requirement	.10
	5.2 AC power line conducted emissions	.11
	5.3 20dB occupied bandwidth	
	5.4 Conducted peak output power	
	5.5 Carrier frequency separation	
	5.6 Average time of occupancy	
	5.7 Number of hopping channels	
	5.8 Conducted emissions at the band edge	.28
	5.9 Conducted spurious emissions	
	5.10 Radiated spurious emission	.35
P	notographs of the Test Setup	.46
P	notographs of the EUT	.46

Test Result Certification					
Applicant:	Shenzhen Baseus Technology Co., Ltd.				
Address:	2th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen.				
Manufacturer:	Shenzhen Baseus Technology Co., Ltd.				
Address:	2th Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen.				
Factory:	HUIZHOU JONETECH ELECTRONIC CO., LTD				
Address:	C building, Hushan Technology Park, Shiwan Twon, Boluo City, Guangdong 516127, China				
Product description	n				
Product name:	Baseus Neckband Wireless Earphones				
Trademark:	Baseus				
Model name:	Baseus Bowie U2				
Serial Model:	N/A				
Standards:	FCC 47 CFR Part 15 Subpart C				
Test method:	ANSI C63.10-2013				
Date of Test	Date of Test				
Date of test:	2022-08-18 ~ 2022-08-26				
Test result:	Pass				

Test Engineer :

Yamice Xie

(Yanice Xie)

Reviewed By: :

leor chen

(Leon Chen)

Approved By: :

Tom Kue

(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	Baseus Neckband Wireless Earphones
Model name:	Baseus Bowie U2
Series Model:	N/A
Model difference:	N/A
Electrical rating:	Input: DC 5V/250mA Battery: DC 3.7V 110mAh 0.407Wh
Hardware version:	P2 PCB V1.0
Software version:	V07
Accessories:	N/A
EUT serial number:	MTi220804002-05-S0001
RF specification:	
Bluetooth version:	V5.2
Operation frequency:	2402 MHz ~ 2480 MHz
Modulation type:	GFSK, π/4-DQPSK,8DPSK
Antenna designation:	FPC antenna, antenna Gain: 2.31 dBi
Max. peak conducted output power:	7.77 dBm

1.2 Description of test modes

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474

Report No.: MTi220804002-05E1

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

1.2.2 Test channels

Channel	Frequency
Lowest (CH0)	2402MHz
Middle (CH39)	2441MHz
Highest (CH78)	2480MHz

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

1.2.3 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
/	/	/	/		

1.3 Measurement uncertainty

Parameter	Measurement uncertainty
AC power line conducted emission (9 kHz~30 MHz)	±2.5 dB
Occupied Bandwidth	±3 %
Conducted RF output power	±0.16 dB
Conducted spurious emissions	±0.21 dB
Radiated emission (9 kHz ~ 30 MHz)	±4.0 dB
Radiated emission (30 MHz~1 GHz)	±4.2 dB
Radiated emission (above 1 GHz)	±4.3 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

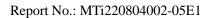
2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	N/A
3	15.247(a)(1)	20dB occupied bandwidth	Pass
4	15.247(b)(1)	Conducted peak output power	Pass
5	15.247(a)(1)	Carrier Frequencies Separation	Pass
6	15.247(a)(1)	Average time of occupancy (Dwell time)	Pass
7	15.247(a)(1)	Number of hopping channels	Pass
8	15.247(d)	Conducted emission at the band edge	Pass
9	15.247(d)	Conducted spurious emissions	Pass
10	15.247(d)	Radiated spurious emissions	Pass

Note: N/A means not applicable.

3 Test Facilities and Accreditations

3.1 Test laboratory


Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 Equipment List

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2022/05/05	2023/05/04
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2022/05/05	2023/05/04
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2022/05/05	2023/05/04
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2022/05/05	2023/05/04
MTI-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2022/05/05	2023/05/04
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2022/05/05	2023/05/04
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2022/04/15	2023/04/14
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2022/05/05	2023/05/04
MTi-E135	Horn antenna	Schwarzbeck	BBHA 9170	00987	2021/05/30	2023/05/29
MTi-E136	Pre-amplifier	Space-Dtronics	EWLAN1840G -G45	210405001	2022/05/05	2023/05/04
MTi-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2022/05/05	2023/05/04
MTi-E067	RF Control Unit	Tonscend	JS0806-1	19D8060152	2022/05/05	2023/05/04
MTi-E068	RF Control Unit	Tonscend	JS0806-2	19D8060153	2022/05/05	2023/05/04
MTi-E069	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2022/05/05	2023/05/04
MTI-E010S	EMI Measurement Software	Farad	EZ-EMC Ver. EMEC-3A1	/	/	/
MTI-E014S		Tonscend	TS®JS1120 V2.6.88.0330	/	/	/

Page 10 of 46

5 Test Result

5.1 Antenna requirement

15.203 requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the antenna of EUT

The antenna of EUT is FPC antenna (Antenna Gain: 2.31 dBi). which is no consideration of replacement.

5.2 AC power line conducted emissions

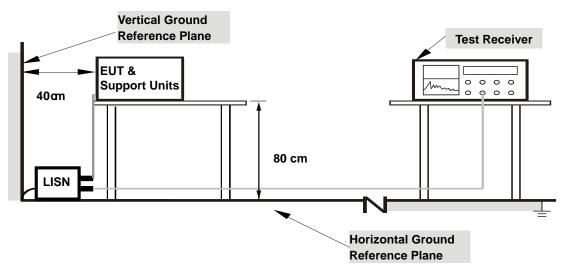
5.2.1 Limits

Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

a) The test setup is refer to the standard ANSI C63.10-2013.


b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).

c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.

d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.

e) The test data of the worst-case condition(s) was recorded.

5.2.3 Test setup

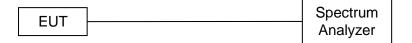
For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.2.4 Test Result

Notes: The device is doesn't TX while is charging and does not apply to conducted emissions.

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) – Limit (dB μ V)



5.3 20dB occupied bandwidth

5.3.1 Limits

None, for reporting purposes only.

5.3.2 Test setup

5.3.3 Test procedures

- a) Test method: ANSI C63.10-2013 Section 6.9.2.
- b) The transmitter output of EUT is connected to the spectrum analyzer.
- c) Spectrum analyzer setting: RBW=30 kHz, VBW=100 kHz, detector= Peak

5.3.4 Test results

Mode	Test channel	Frequency (MHz)	20dB Bandwidth (MHz)	
	CH0	2402	0.9558	
GFSK	CH39	2441	0.9604	
	CH78	2480	0.9554	
	CH0	2402	1.324	
π/4-DQPSK	CH39	2441	1.313	
	CH78	2480	1.323	
	CH0	2402	1.307	
8DPSK	CH39	2441	1.307	
	CH78	2480	1.306	

GFSK mode - 20dB occupied bandwidth

CH39

CH78

π /4-DQPSK mode - 20dB occupied bandwidth

CH39

CH78

8DPSK mode - 20dB occupied bandwidth

CH39

CH78

5.4 Conducted peak output power

5.4.1 Limits

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.4.2 Test setup

сит	Spectrum	
EUT	Analyzer	

5.4.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 7.8.5.

b) The EUT was set to continuously transmitting in the max power during the test.

c) The transmitter output of EUT is connected to the spectrum analyzer.

d) Spectrum analyzer setting: RBW > 20dB occupied bandwidth, VBW ≥ RBW, detector= Peak

5.4.4 Test results

Mode	Test channel	Frequency (MHz)	Conducted peak output power (dBm)	Limit (dBm)
	CH0	2402	4.05	≤ 20.97
GFSK	CH39	2441	4.91	≤ 20.97
	CH78	2480	5.12	≤ 20.97
	CH0	2402	6.19	≤ 20.97
π/4-DQPSK	CH39	2441	7.05	≤ 20.97
	CH78	2480	7.22	≤ 20.97
	CH0	2402	6.69	≤ 20.97
8DPSK	CH39	2441	7.47	≤ 20.97
	CH78	2480	7.77	≤ 20.97

GFSK mode - peak conducted output power

CH39

CH78

$\pi/4\text{-}DQPSK$ mode - peak conducted output power

CH39

8DPSK mode – peak conducted output power

CH39

CH78

5.5 Carrier frequency separation

5.5.1 Limits

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater

5.5.2 Test setup

сит	Spectrum
EUT	Analyzer

5.5.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.2.
- b) The EUT was set to hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum Setting: RBW = 30 kHz, VBW = 100 kHz, detector= Peak.

5.5.4 Test results

Mode	Test channel	Test Result (MHz)	Limit (MHz)	Result
GFSK	Hop-mode	1	>=0.640	Pass
π/4-DQPSK	Hop-mode	0.996	>=0.883	Pass
8DPSK	Hop-mode	1.172	>=0.871	Pass

Carrier frequency separation

π/4-DQPSK

8DPSK

5.6 Average time of occupancy

5.6.1 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.6.2 Test setup

5.6.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 7.8.4

b) The EUT was set to hopping mode during the test.

c) The tranistter output of EUT is connneted to the specturm analyzer.

d) Spectrum analyzer setting: RBW = 1MHz, VBW = 3MHz, Span = 0Hz, Detector = Peak, weep time: As necessary to capture the entire dwell time per hopping channel.

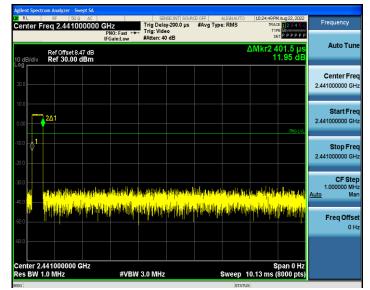
e) Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

f) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

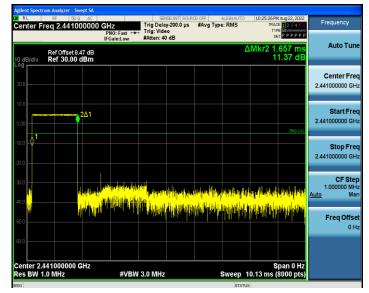
Mode	Data Packet	Frequency (MHz)	Pulse width (ms)	Number of pulses in 3.16 s	Average time of occupancy (s)	Limit (s)	Result
	DH1	2441	0.4	32	0.129	<=0.4	Pass
GFSK	DH3	2441	1.66	12	0.199	<=0.4	Pass
	DH5	2441	2.91	11	0.320	<=0.4	Pass
	2DH1	2441	0.41	33	0.136	<=0.4	Pass
π/4-DQPS K	2DH3	2441	1.66	19	0.316	<=0.4	Pass
	2DH5	2441	2.91	7	0.204	<=0.4	Pass
	3DH1	2441	0.41	32	0.131	<=0.4	Pass
8DPSK	3DH3	2441	1.66	21	0.349	<=0.4	Pass
	3DH5	2441	2.91	10	0.291	<=0.4	Pass

5.6.4 Test results

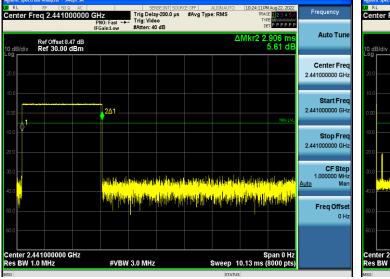
Notes:

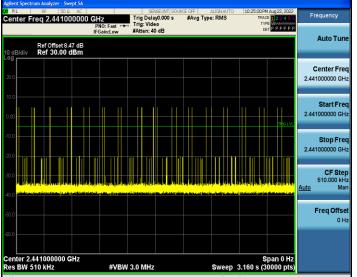

1. Period time = 0.4 (s) * 79 = 31.6(s)

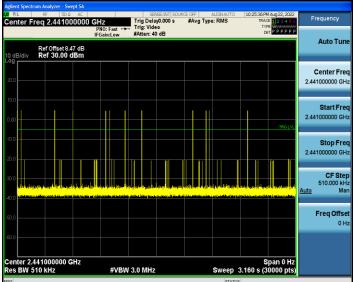
2. Average time of occupancy = Pulse width * Number of pulses in 3.16s * 10



GFSK mode - Average time of occupancy


Pulse width – DH1

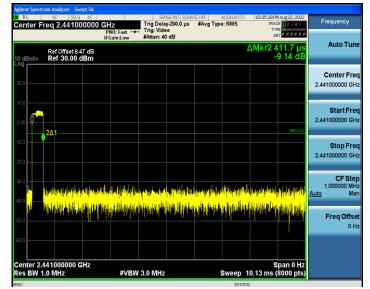

Pulse width – DH3


Pulse width – DH5

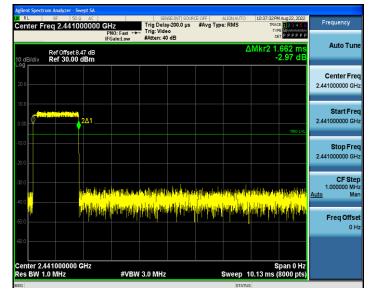
Number of pulses in 3.16 s – DH1

Number of pulses in 3.16 s – DH3

Number of pulses in 3.16 s – DH5

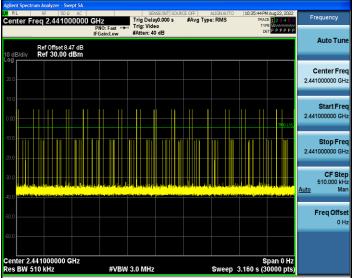


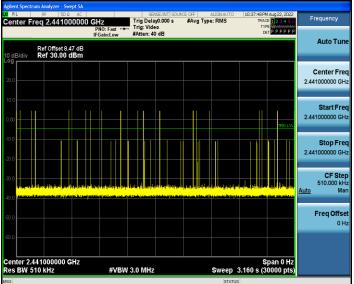
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

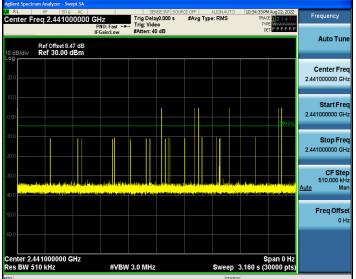


$\pi/4\text{-}D\text{QPSK}$ - Average time of occupancy

Pulse width – 2DH1

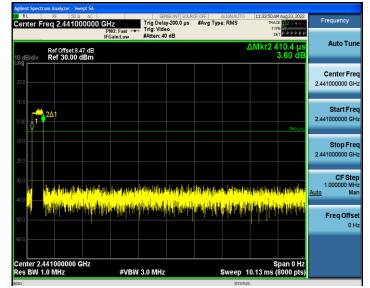

Pulse width – 2DH3


Pulse width – 2DH5

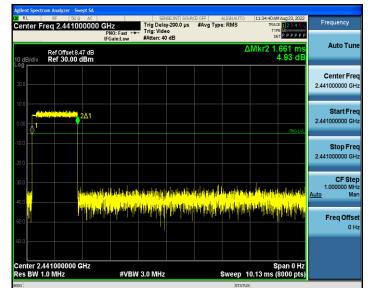

Number of pulses in 3.16 s - 2DH1

Number of pulses in 3.16 s – 2DH3

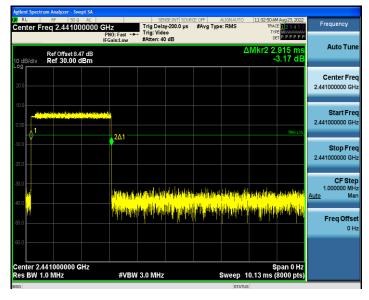
Number of pulses in 3.16 s – 2DH5

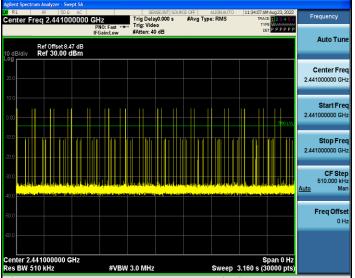


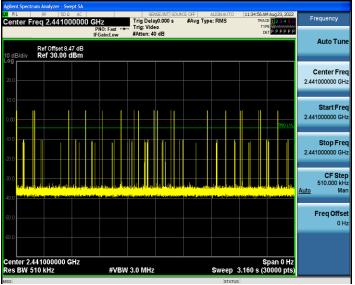
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

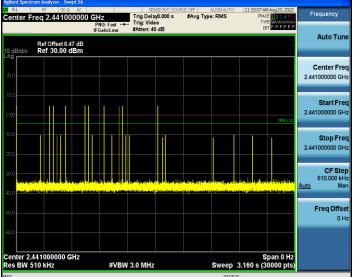


8DPSK - Average time of occupancy


Pulse width – 3DH1


Pulse width - 3DH3


Pulse width - 3DH5


Number of pulses in 3.16 s - 3DH1

Number of pulses in 3.16 s – 3DH3

Number of pulses in 3.16 s – 3DH5

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

5.7 Number of hopping channels

5.7.1 Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

5.7.2 Test setup

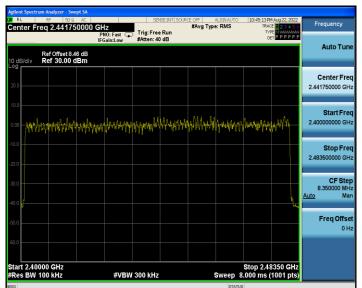
БЛТ	Spectrum
EUT	Analyzer

5.7.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.3
- b) The EUT was set to hopping mode during the test.
- c) The tranistter output of EUT is connneted to the specturm analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.7.4 Test results

Mode	Quantity of Hopping Channel	Limit	Results
GFSK	79	≥15	Pass
π/4-DQPSK	79	≥15	Pass
8DPSK	79	≥15	Pass


Number of hopping channels

π/4-DQPSK

Center F	req 2.4417	AC	IZ NO: Fast 🔾		eRun	#Avg Type	ALIGNAUTO e: RMS	TRAC	Aug 22, 2022 E 1 2 3 4 5 6 RE Minimum	Frequency
10 dB/div	Ref Offset 8.4 Ref 30.00 (IF 16 dB	Gain:Low	#Atten: 40) dB			D	PPPPP	Auto Tun
20.0										Center Fre 2.441750000 GH
10.0 0.00	mannan	MMM		nton/} h	handhig	almetraphyla	mphala	YAN HISKY	NAWA?	Start Fre 2.400000000 GH
-10.0										Stop Fre 2.483500000 GH
30.0										CF Ste 8.350000 MH <u>Auto</u> Ma
50.0										Freq Offs 0 F
-60.0										
	0000 GHz 100 kHz		#VBW	300 kHz			Sweep 8	Stop 2.43	3350 GHz 1001 pts)	

8DPSK

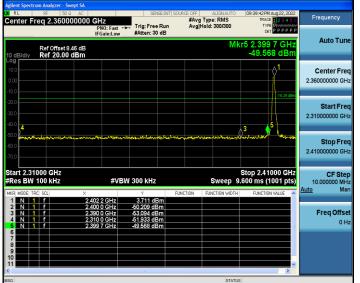
5.8 Conducted emissions at the band edge

5.8.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

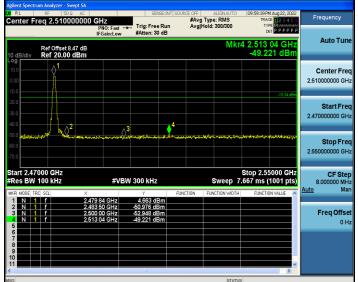
5.8.2 Test setup

5.8.3 Test procedure


- a) Test method: ANSI C63.10-2013 Section 6.10.4
- b) The EUT was set to non-hopping mode & hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.8.4 Test results

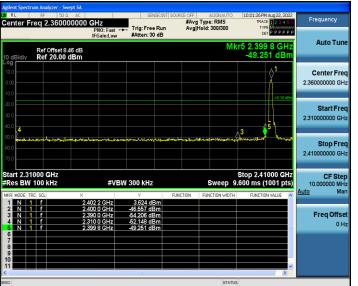
GFSK mode - conducted emissions at the band edge


Low band-edge (no-hopping mode mode)

Low band-edge (hopping mode)

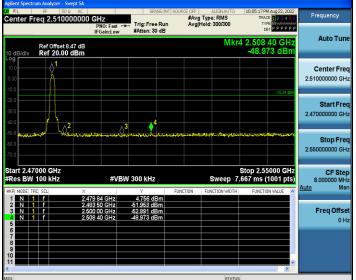
RL	RF	50 Ω AC		SENS	E:INT SOU		ALIGN AUTO		1 Aug 22, 2022	Frequency
tart Fred	2.300	000000 G	PNO: Fast	Trig: Free			ype: RMS old:>300/300	TY	E MIATATATATA	
			IFGain:Low	#Atten: 30	dB			D	PPPPP	Auto Tur
	Ref Offs	et 8.4 dB					Mkr5	2.364 9		Auto Tur
) dB/div og r		.00 dBm						-49.1	51 dBm	
0.0										Center Fre
									Ana	2.352500000 GH
										2.0020000000
0.0									-16.47 dBm	
0.0										Start Fre
										2.30000000 GH
0.0	\ <mark>4</mark>					↓ 5		\	() ²	
0.0	****		an tha an tao an ta	and the second	and the state of the	of the state of th	-Angelen and a second	-tabelerreems	autorial and	Stop Fre
0.0										2.40500000 GH
0.0										
tart 2.30		,						Stop 2.40	1500 GHz	CF Ste
Res BW			#VB	W 300 kHz			Sweep 1	0.07 ms (10.500000 Mi
KR MODE TR	CI SCLI	X		Y	FUN	CTION	FUNCTION WIDTH	FUNCTI	IN VALUE	Auto Ma
1 N 1	f		955 GHz	3.531 dB	m					
2 N 1 3 N 1	f		0000 GHz	-49.858 dBr -49.705 dBr	n n				_	Freq Offs
4 N 1 5 N 1	f	2.310	000 GHz 1995 GHz	-50.659 dBr -49.151 dBr	n					. 01
6		2.304	+ 335 GHZ	43.131 uBi						
8										
9										
0									~	
				Ш					>	
G							STATU	S		

High band-edge (non-hopping mode)


High band-edge (hopping mode)

Agilent Spectrum Analyzer - Swept SA						
Mart Freq 2.470000000 G		SENSE:INT S	URCE OFF ALIGNAI #Avg Type: RMS Avg Hold>300/3	TRACE	Aug 22, 2022	Frequency
Ref Offset 8.47 dB 10 dB/div Ref 20.00 dBm		Atten: 30 dB	-	Det //kr4 2.525 4	PPPPP	Auto Tune
Log 10.0 0.00 4.0.1.4.0.0.0.1 -10.0					-15.55 dBm	Center Freq 2.51000000 GHz
-30.0			4-			Start Fred 2.470000000 GHz
-50.0 but the second s	arganingtoning Standing		anagangkananan daga sang		utrolphone.	Stop Freq 2.55000000 GHz
Start 2.47000 GHz #Res BW 100 kHz	#VBW 30		Swee	Stop 2.55 p 7.667 ms (1	001 pts)	CF Step 8.000000 MHz Auto Mar
2 N 1 f 2.48 3 N 1 f 2.50 4 N 1 f 2.52 5	I3 50 GHz -50 I0 00 GHz -51	4.449 dBm 0.979 dBm 1.476 dBm 7.970 dBm				Freq Offset 0 Hz
6 7 8 9 10						
K MSG		ш	s	TATUS	>	

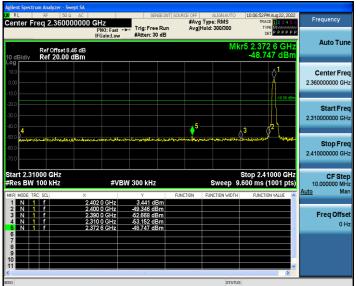
π /4-DQPSK mode - conducted emissions at the band edge


Low band-edge (non-hopping mode)

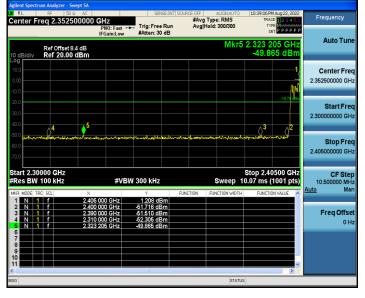
Low band-edge (hopping mode)

RL		50 Q AC	11-	SEV	SE:INT SOU		ALIGN AUTO Type: RMS		M Aug 22, 2022	Frequency
art⊩re	q 2.3000	100000 G	PNO: Fast	Trig: Free			Hold:>300/300	T		
			IFGain:Low	#Atten: 30	dB					Auto Tur
dB/div	Ref Offs Ref 20.	et8.4 dB 00 dBm					Mkr	5 2.342 s -49.7	340 GHz '60 dBm	
0.0									1,	Center Fre
									H	2.352500000 GH
1.0									-19.00 dBm	
1.0										Start Fre
				_						2.30000000 Gł
	∆ <mark>4</mark>			♦ ⁵				03	0 ²	
1.0	สาขางสาขา		antona antana anta	Ang Shiper you and a short	anti-tant appendie	and a second	na staan a an a	ure-dert-detter	ي مورياني مالي مورياني	Stop Fre
1.0										2.40500000 G
	000 GHz 100 kHz		#VE	W 300 kHz			Sweep	Stop 2.4 10.07 ms	0500 GHz (1001 pts)	CF Ste 10.500000 Mi
RI MODEI TR	RCI SCLI	×		Y	FU	ACTION	FUNCTION WIDT		ION VALUE	Auto Ma
N 1	f		895 GHz	1.005 dE -51.894 dB						
N	f	2.390	000 GHz	-50.888 dB -52.179 dB	m					Freq Offs
N 1	f	2.342	840 GHz	-49.760 dB					-	01
7										
9										
0									~	
				Ш					>	
							STAT			

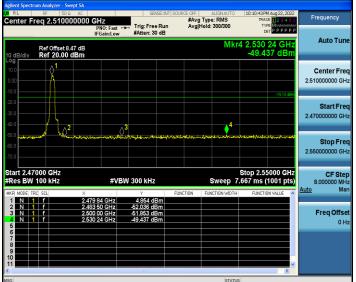
High band-edge (non-hopping mode)


High band-edge (hopping mode)

enter Fr	⊮ eq 2.5	50 Q AC 1000001	00 GHz	ast 🔸			#Avg T	ALIGNAUTO ype: RMS Id: 300/300	TRA TY	M Aug 22, 2022 CE 2 3 4 5 6 PE M M M M M M M ET P P P P P P P	Frequency
0 dB/div		set 8.47 di 1.00 dBn	3	.ow	whiten. so			Mkr		88 GHz 95 dBm	Auto Tune
	antro										Center Free 2.510000000 GH
20.0 30.0 40.0		\		3						-16.42 dBm	Start Free 2.470000000 GH
50.0 50.0 70.0		Told Same				w Materialia	nan sin	^ม ัสแหล่สุรฏณ์ _เ สระ	76°14°448°44	vanword	Stop Fre 2.550000000 GH
tart 2.47 Res BW	100 kH	2	×	¢VBW	300 kHz	FUN	CTION	Sweep 7	.667 ms (5000 GHz 1001 pts)	CF Ste 8.000000 MH <u>Auto</u> Ma
1 N 1 2 N 1 3 N 1 4 N 1 5	f f f f		2.472 88 GH 2.483 50 GH 2.500 00 GH 2.548 88 GH	z	3.577 dB 52.227 dB 52.103 dB 49.395 dB	m m m			TONCH		Freq Offse 0 H
7 8 9 0											
										>	



8DPSK mode - conducted emissions at the band edge


Low band-edge (non-hopping mode)

Low band-edge (hopping mode)

High band-edge (non-hopping mode)

High band-edge (hopping mode)

Agilent Spectrum Analyzer - Swept SA				
RL RF 50 Q AC	Hz	SOURCE OFF ALIGNAUTO #Avg Type: RMS Avg Hold>300/300	11:27:16 AM Aug 23, 2022 TRACE 2 3 4 5 6 TYPE	Frequency
Ref Offset 8.47 dB 10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	-	сетреререр 4 2.525 76 GHz -49.108 dBm	Auto Tune
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0			-17.75 dBm	Center Free 2.510000000 GH
-20.0		4	-17.75 dBM	Start Free 2.470000000 GH:
-50.0	an ang han magani sa kana na mana ana ana ana ana ana ana ana	angene group dat hatter better bet	۵۲،۰۰۰,۵۰۰,۹۰۰,۹۰۰,۹۰۰,۹۰۰,۹۰۰,۹۰۰,۹۰۰,۹۰۰,	Stop Fre 2.55000000 GH
Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz		Stop 2.55000 GHz 667 ms (1001 pts) FUNCTION VALUE	CF St ej 8.000000 MH <u>Auto</u> Ma
2 N 1 f 2.48 3 N 1 f 2.50	250 GHz 51.224 dBm 00 00 GHz 50.917 dBm 2576 GHz 49.108 dBm			Freq Offse 0 H
7 8 9 10				
K ISG	Ш	STATUS	>	

5.9 Conducted spurious emissions

5.9.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates c limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.9.2 Test setup

ompliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general

сит	Spectrum	
EUT	Analyzer	

5.9.3 Test procedure

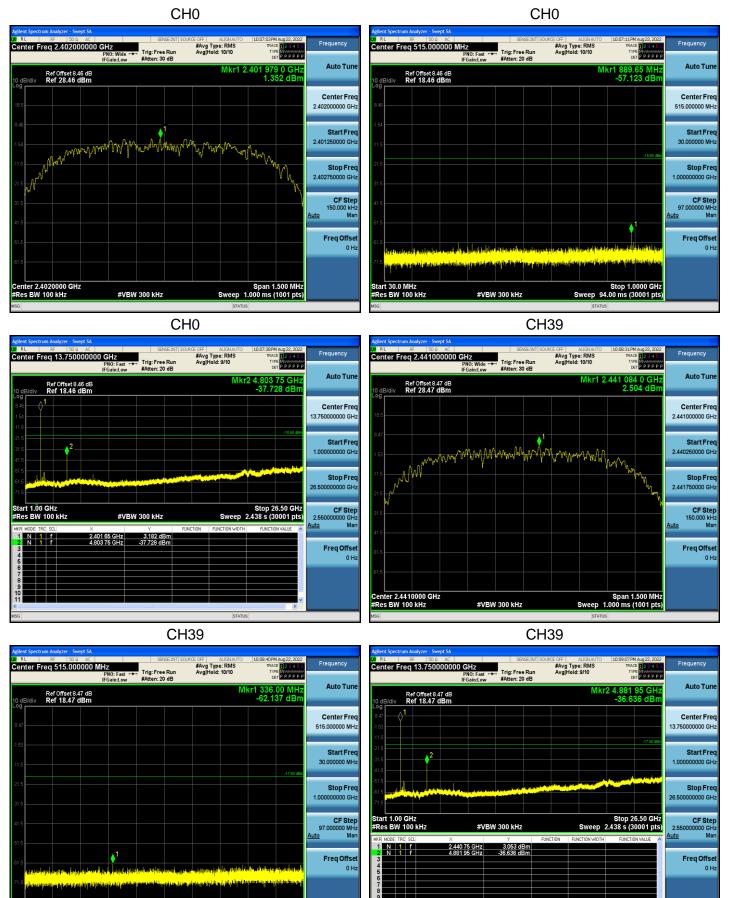
a) Test method: ANSI C63.10-2013 Section 6.10.4

b) The EUT was set to non-hopping mode & hopping mode during the test.

- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.9.4 Test results

Notes:


All modes of operation of the EUT were investigated, and only the worst-case results are reported. The worst-case mode: TX mode (8DPSK).

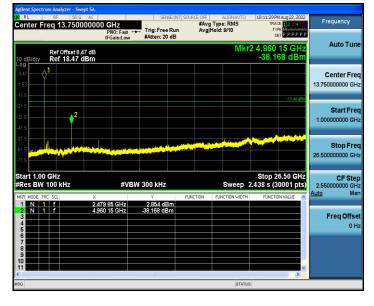
30.0 MHz BW 100 kHz

#VBW 300 kHz

Conducted spurious emissions – 8DPSK mode

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

Stop 1.0000 GHz



Conducted spurious emissions – 8DPSK mode

Frequency nter Freq 515.000000 MHz #Avg Type: RMS Avg|Hold: 10/10 Trig: Free Run #Atten: 20 dB Auto Tun Ref Offset 8.47 dB Ref 18.47 dBm 1 287.99 MI -62.349 dB Center Freq 515.000000 MH; Start Free 30.000000 MH Stop Free 1.00000000 GH CF Step 97.000000 ML Ma Freq Offse 0 H; Stop 1.0000 GHz Sweep 94.00 ms (30001 pts tart 30.0 MHz Res BW 100 kHz #VBW 300 kHz

CH78

5.10 Radiated spurious emission

5.10.1 Limits

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

§ 15.209 Radiated emission limits; general requirements.

Note 1: the tighter limit applies at the band edges.

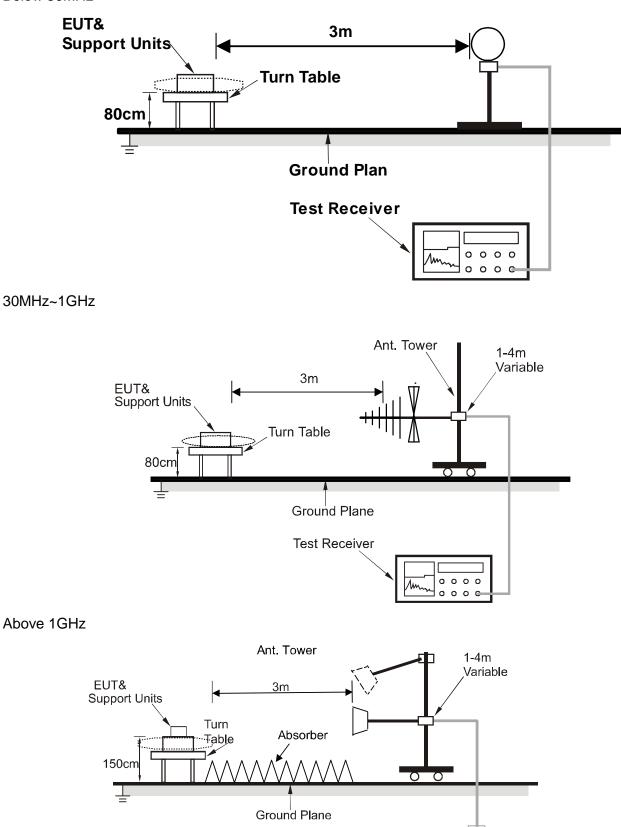
Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

According to ANSI C63.10-2013, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device


Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
	5th harmonic of the highest frequency or 40 GHz, whichever is lower

5.10.2 Test setup Below 30MHz

For the actual test configuration, please refer to the related item – Photographs of the test setup.

Spectrum analyzer

0000

0000

٩..

Pre-amplifier

5.10.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 6.3, 6.4, 6.5, 6.6, 6.10.

b) The EUT is placed on an on-conducting table 0.8 meters above the ground plane for measurement below 1GHz, 1.5 meters above the ground plane for measurement above 1GHz.

c) Emission blew 18 GHz were measured at a 3 meters test distance, above 18 GHz were measured at 1.5-meter test distance with the application of a distance correction factor

d) The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

KDB 558074 D01 15.247 Meas Guidance v05r02

The use of a duty cycle correction factor (DCCF) is permitted for calculating average radiated field strength emission levels for an FHSS device in 15.247. This DCCF can be applied when the unwanted emission limit is subject to an average field strength limit (e.g., within a Government Restricted band) and the conditions specified in Section 15.35(c) can be satisfied. The average radiated field strength is calculated by subtracting the DCCF from the maximum radiated field strength level as determined through measurement. The maximum radiated field strength level represents the worst-case (maximum amplitude) RMS measurement of the emission(s) during continuous transmission (i.e., not including any time intervals during which the transmitter is off or is transmitting at a reduced power level). It is also acceptable to apply the DCCF to a measurement performed with a peak detector instead of the specified RMS power averaging detector. Note that Section 15.35(c) specifies that the DCCF shall represent the worst-case (greatest duty cycle) over any 100 msec transmission period.

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / RBW: 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / RBW: 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / RBW: 120 kHz
Above 1 GHz	Peak / RBW: 1 MHz, VBW: 3MHz, Peak detector AVG / RBW: 1 MHz, VBW: 1/T, Peak detector

5.10.4 Test results

Notes:

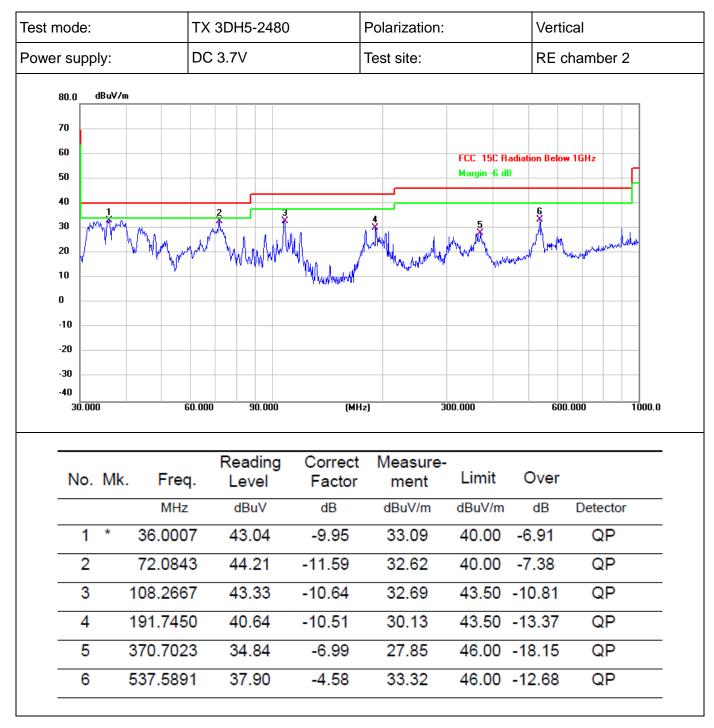
The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

There were no emissions found below 30MHz within 20dB of the limit.

Calculation formula:

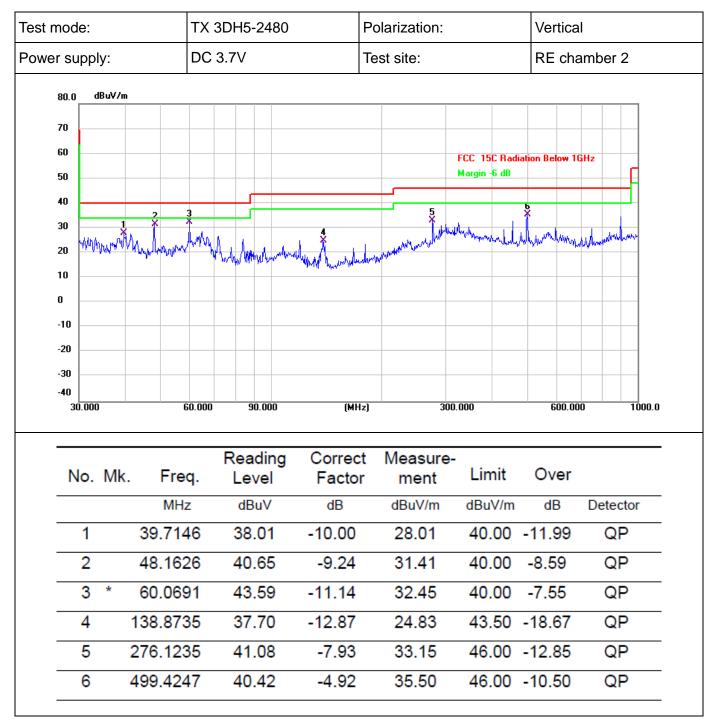
Measurement ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Correct Factor (dB/m) Over (dB) = Measurement ($dB\mu V/m$) – Limit ($dB\mu V/m$)


Radiated emissions between 30MHz – 1GHz

Left earphone:

Test mode:		TX 3DI	H5-2480	Po	larization:		Horizont	al	
Power supply	wer supply:		DC 3.7V		st site:		RE chamber 2		
80.0 dB	u∀/m								
70									
60						FCC 15C Radiat	ion Below 16H		
50						Margin -6 dB			
40				4	5		6		
30	• • • • • • • • • • • • • • • • • • •	2	<u> </u>	Julia	f May h		ΛÅ		
20	Mumumu		ANDARA	Mu n J	M. M.	V Marken	of the time	who have the server	
10	1 W 74 W	י איןייאי	Marka.	W ulutantered	.uKv.				
0									
-10									
-20									
-30									
-40 30.000		60.000	90.000	(MHz)	300	.000	600.000	1000.0	
No. N	lk Ero		eading .evel		Measure-		0		
	IK EIP			Factor	mont	Limit	Over		
110. 1				Factor	ment		Over	Dotoctor	
	MH	z (dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1	мн 35.874	z (46 3	dBuV 32.84	dB -9.96	dBuV/m 22.88	dBuV/m 40.00 -	dB 17.12	QP	
	MH	z (46 3	dBuV 32.84	dB	dBuV/m	dBuV/m 40.00 -	dB		
1	мн 35.874	z (46 3 43 4	dBu∨ 32.84 33.10	dB -9.96	dBuV/m 22.88	dBuV/m 40.00 -	dB 17.12 -8.49	QP	
1	мн 35.874 72.084	z (46 3 43 4 67 4	dBuV 32.84 3.10 5.25	dB -9.96 -11.59	dBuV/m 22.88 31.51	dBuV/m 40.00 - 40.00 - 43.50 -	dB 17.12 -8.49	QP QP	
1 2 3	мн 35.874 72.084 108.260	z (46 3 43 4 67 4 86 4	dBuV 32.84 3.10 5.25	dB -9.96 -11.59 -10.64	dBuV/m 22.88 31.51 34.61	dBuV/m 40.00 - 40.00 - 43.50 - 43.50 -	dB 17.12 -8.49 -8.89	QP QP QP	

Radiated emissions between 30MHz – 1GHz



Right earphone:

Test mode			TX 3	3DH5-24	180	Polarization:		Horiz	Horizontal RE chamber 2		
Power sup			DC :	3.7V		Test site:		RE c			
80.0	dBuV∕ı	n									
70											
60											
50							FCC 15C Rad Margin -6 dB	iation Below	1GHz		
40											
30			2		× ×		Mundant				
20		×	A.M.		molon Mar M	of the work of the	Consideration of the last	m www	When you and a film of the most of the most of the most of the second se		
10	and a second	www.	And all all	Whitem	Mar Mar Law						
0 -											
-10											
-20											
-30											
-40	000		60.000	90.0	00 (MI	1-) 3	00.000	600.	.000 1000.0		
				Poodir	a Corroct	Measure					
No	o. Mk	. Fr	eq.	Readir Level	-		Limit	Over			
		М	Hz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		
	1	47.99	940	34.18	-9.25	24.93	40.00 -	15.07	QP		
2	2 *	59.85	588	43.81	-11.11	32.70	40.00	-7.30	QP		
3	3	132.22	206	47.32	-12.78	34.54	43.50	-8.96	QP		
	4	240.83	304	40.89	-8.48	32.41	46.00 -	13.59	QP		
4											
	5	300.36	672	43.62	-8.21	35.41	46.00 -	10.59	QP		

Radiated emissions between 30MHz – 1GHz

Radiated emissions 1 GHz ~ 25 GHz

Frequency	Reading Level	Correct Factor	Measuremen t	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
		8	DPSK - 2402	MHz TX moo	de		
4804.000	40.91	0.81	41.72	74.00	-32.28	Peak	V
4804.000	34.55	0.81	35.36	54.00	-18.64	AVG	V
7206.000	40.99	5.86	46.85	74.00	-27.15	Peak	V
7206.000	34.66	5.86	40.52	54.00	-13.48	AVG	V
9608.000	42.40	6.32	48.72	74.00	-25.28	Peak	V
9608.000	36.15	6.32	42.47	54.00	-11.53	AVG	V
4804.000	39.60	0.81	40.41	74.00	-33.59	Peak	Н
4804.000	33.37	0.81	34.18	54.00	-19.82	AVG	Н
7206.000	39.00	5.86	44.86	74.00	-29.14	Peak	Н
7206.000	32.40	5.86	38.26	54.00	-15.74	AVG	Н
9608.000	40.57	6.32	46.89	74.00	-27.11	Peak	Н
9608.000	34.01	6.32	40.33	54.00	-13.67	AVG	Н
		8	DPSK - 2441	MHz TX moo	de		
4882.000	42.22	1.18	43.40	74.00	-30.60	Peak	V
4882.000	36.03	1.18	37.21	54.00	-16.79	AVG	V
7323.000	40.40	5.52	45.92	74.00	-28.08	Peak	V
7323.000	33.74	5.52	39.26	54.00	-14.74	AVG	V
9764.000	42.49	6.21	48.70	74.00	-25.30	Peak	V
9764.000	36.04	6.21	42.25	54.00	-11.75	AVG	V
4882.000	41.05	1.18	42.23	74.00	-31.77	Peak	Н
4882.000	34.96	1.18	36.14	54.00	-17.86	AVG	Н
7323.000	40.76	5.52	46.28	74.00	-27.72	Peak	Н
7323.000	34.63	5.52	40.15	54.00	-13.85	AVG	Н
9764.000	42.05	6.21	48.26	74.00	-25.74	Peak	Н
9764.000	36.02	6.21	42.23	54.00	-11.77	AVG	Н

Frequency	Reading Level	Correct Factor	Measuremen t	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
		8	DPSK- 2480	MHz TX mod	le		
4960.000	41.31	1.53	42.84	74.00	-31.16	Peak	V
4960.000	34.82	1.53	36.35	54.00	-17.65	AVG	V
7440.000	41.14	5.16	46.30	74.00	-27.70	Peak	V
7440.000	35.01	5.16	40.17	54.00	-13.83	AVG	V
9920.000	41.63	6.09	47.72	74.00	-26.28	Peak	V
9920.000	35.17	6.09	41.26	54.00	-12.74	AVG	V
4960.000	42.14	1.53	43.67	74.00	-30.33	Peak	Н
4960.000	35.62	1.53	37.15	54.00	-16.85	AVG	Н
7440.000	40.25	5.16	45.41	74.00	-28.59	Peak	Н
7440.000	34.05	5.16	39.21	54.00	-14.79	AVG	Н
9920.000	42.06	6.09	48.15	74.00	-25.85	Peak	Н
9920.000	36.02	6.09	42.11	54.00	-11.89	AVG	Н

Radiated emissions at band edge

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
8DPSK – Low band-edge							
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
2310.000	47.42	-8.20	39.22	74.00	-34.78	Peak	V
2310.000	37.54	-8.20	29.34	54.00	-24.66	AVG	V
2390.000	49.25	-7.83	41.42	74.00	-32.58	Peak	V
2390.000	37.93	-7.83	30.10	54.00	-23.90	AVG	V
2310.000	48.03	-8.20	39.83	74.00	-34.17	Peak	н
2310.000	37.55	-8.20	29.35	54.00	-24.65	AVG	н
2390.000	48.40	-7.83	40.57	74.00	-33.43	Peak	н
2390.000	37.76	-7.83	29.93	54.00	-24.07	AVG	н
8DPSK – High band-edge							
2483.500	48.91	-7.39	41.52	74.00	-32.48	Peak	V
2483.500	37.91	-7.39	30.52	54.00	-23.48	AVG	V
2500.000	48.41	-7.32	41.09	74.00	-32.91	Peak	V
2500.000	38.07	-7.32	30.75	54.00	-23.25	AVG	V
2483.500	48.58	-7.39	41.19	74.00	-32.81	Peak	н
2483.500	37.81	-7.39	30.42	54.00	-23.58	AVG	н
2500.000	48.33	-7.32	41.01	74.00	-32.99	Peak	н
2500.000	37.99	-7.32	30.67	54.00	-23.33	AVG	Н

Photographs of the Test Setup

See the appendix – Test Setup Photos.

Photographs of the EUT

See the appendix - EUT Photos.

----End of Report----