

TEST REPORT

No.24T04N001372-005-RF WCDMA

for

HMD Global Oy

Mobile Phone

Model Name: TA-1667

FCC ID: 2AJOTTA-1667

with

Hardware Version: FF646-MB-V0.2

Software Version: 0.2422.11.01

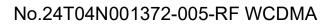
Issued Date: 2024-07-26

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology


Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
24T04N001372-005-RF WCDMA	Rev.0	1st edition	2024-07-26

CONTENTS

1.	SUMMARY OF TEST REPORT4
1.1.	TEST ITEMS4
1.2.	TEST STANDARDS4
1.3.	TEST RESULT4
1.4.	TESTING LOCATION4
1.5.	PROJECT DATA4
1.6.	SIGNATURE4
2.	CLIENT INFORMATION
2.1.	APPLICANT INFORMATION
2.2.	MANUFACTURER INFORMATION
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)6
3.1.	ABOUT EUT6
3.2.	INTERNAL IDENTIFICATION OF EUT
3.3.	INTERNAL IDENTIFICATION OF AE6
3.4.	GENERAL DESCRIPTION
4.	REFERENCE DOCUMENTS
5.	LABORATORY ENVIRONMENT
6.	SUMMARY OF TEST RESULTS9
7.	STATEMENT11
8.	TEST EQUIPMENTS UTILIZED12
ANN	IEX A: MEASUREMENT RESULTS13
A.	1 OUTPUT POWER
A.	2 FIELD STRENGTH OF SPURIOUS RADIATION
A.	3 FREQUENCY STABILITY
A.	4 OCCUPIED BANDWIDTH
	5 EMISSION BANDWIDTH
	6 BAND EDGE COMPLIANCE
	7 CONDUCTED SPURIOUS EMISSION
Α.	8 PEAK-TO-AVERAGE POWER RATIO
ANN	IEX B: ACCREDITATION CERTIFICATE
ANN	IEX C: CERTIFICATE OF BRAND AUTHORIZATION82

1. SUMMARY OF TEST REPORT

1.1. Test Items

Description	Mobile Phone
Model Name	TA-1667
Brand Name	Nokia
Applicant's name	HMD Global Oy
Manufacturer's Name	HMD Global Oy

1.2. Test Standards

FCC Part 2/22/24/27	10-1-23 Edition
ANSI C63.26	2015
KDB971168 D01	v03r01

1.3. Test Result

All test items are pass. Please refer to "6 Summary of Test Results" for detail.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project Data

Testing Start Date: 2024-06-27

Testing End Date: 2024-07-20

1.6. Signature

Wang Ping (Prepared this test report)

Zhang Hao (Approved this test report)

菌和欲

Huang Qiuqin (Reviewed this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name:	HMD Global Oy
Address /Post:	Bertel Jungin aukio 9,02600 Espoo, Finland
Contact Person:	reza.serafat
Contact Email	reza.serafat@hmdglobal.com
Telephone:	+491735287964
Fax:	/

2.2. Manufacturer Information

Company Name:	HMD Global Oy	
Address /Post:	Bertel Jungin aukio 9,02600 Espoo, Finland	
Contact Person:	reza.serafat	
Contact Email	reza.serafat@hmdglobal.com	
Telephone:	+491735287964	
Fax:	/	

3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT

<u>(AE)</u>

3.1. About EUT

Description	Mobile Phone
Model Name	TA-1667
FCC ID	2AJOTTA-1667
Frequency Bands	WCDMA FDD II/4/5
Antenna	Integrated
Extreme vol. Limits	3.60V to 4.20V (nominal: 3.70V)
Condition of EUT as received	No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of SAICT.

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT09aa 3	51368850001351	FF646-MB-V0.2	0.2422.11.01	2024-06-27
UT04aa 3	51368850001575	FF646-MB-V0.2	0.2422.11.01	2024-06-27
*=!			· · <i>·</i> ·	

*EUT ID: is used to identify the test sample in the lab internally.

UT09aa are used for conduction test, UT04aa is used for radiation test.

3.3. Internal Identification of AE

Descripti	ion
Battery	
	BA-L4M
rer	Guangdong Fenghua New Energy Co.,Ltd FENG HUA NEW ENERGY PRIVATE LIMITED
	1450mAh
oltage	3.7V
	BA-L4M
rer	SHENZHEN UTILITY ENERGYCO.,LTD. FENG HUA NEW ENERGY PRIVATE LIMITED
	1450mAh
oltage	3.7V
	Battery rer oltage rer

*AE ID: is used to identify the test sample in the lab internally.

AE: ancillary equipment

3.4. General Description

The Equipment Under Test (EUT) is a model Mobile Phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

4. <u>REFERENCE DOCUMENTS</u>

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-23 Edition
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS	10-1-23 Edition
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-23 Edition
FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	10-1-23 Edition
ANSI C63.26	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services	2015
KDB971168 D01	Power Meas License Digital Systems	v03r01

5. LABORATORY ENVIRONMENT

Shielded room did not exceed following limits along the RF testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz>60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	>2 MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
	Р	Pass
Verdict Column	F	Fail
	NA	Not applicable
	NM	Not measured

WCDMA FDD II

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/24.232	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/24.238	A.2	Р
3	Frequency Stability	2.1055/24.235	A.3	Р
4	Occupied Bandwidth	2.1049/24.238	A.4	Р
5	Emission Bandwidth	2.1049/24.238	A.5	Р
6	Band Edge Compliance	2.1051/24.238	A.6	Р
7	Conducted Spurious Emission	2.1051/24.238	A.7	Р
8	Peak-to-Average Power Ratio	24.232/KDB971168 D01	A.8	Р

WCDMA FDD IV

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/27.50(d)	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/27.53(h)	A.2	Р
3	Frequency Stability	2.1055/27.54	A.3	Р
4	Occupied Bandwidth	2.1049/27.53(g)	A.4	Р
5	Emission Bandwidth	2.1049/27.53(g)	A.5	Р
6	Band Edge Compliance	2.1051/27.53(h)	A.6	Р
7	Conducted Spurious Emission	2.1051/27.53(h)	A.7	Р
8	Peak-to-Average Power Ratio	27.50(d) /KDB971168 D01	A.8	Р

WCDMA FDD V

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/22.913	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/22.917	A.2	Р
3	Frequency Stability	2.1055/22.355	A.3	Р
4	Occupied Bandwidth	2.1049/22.917	A.4	Р
5	Emission Bandwidth	2.1049/22.917	A.5	Р
6	Band Edge Compliance	2.1051/22.917	A.6	Р
7	Conducted Spurious Emission	2.1051/22.917	A.7	Р
8	Peak-to-Average Power Ratio	KDB971168 D01	A.8	Р

7. STATEMENT

Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information.

This report takes measured values as criterion of test conclusion. The test conclusion meets the limit requirements.

8. TEST EQUIPMENTS UTILIZED

No.	Description	Туре	Manufacture	Series Number	Cal Due Date
1	Test Receiver	ESR7	R&S	101676	2024-11-22
2	Hybrid antenna	VULB 9163	Schwarzbeck	330	2027-04-21
3	Horn Antenna	3117	ETS-Lindgren	00066577	2025-04-17
4	Horn Antenna	QSH-SL-18- 26-S-20	Q-par	17013	2026-02-01
5	Antenna	BBHA 9120D	Schwarzbeck	1593	2025-10-24
6	Antenna	QWH-SL-18- 40-K-SG	Q-par	15979	2026-01-30
7	preamplifier	83017A	Agilent	MY39501110	/
8	Signal Generator	SMB100A	R&S	179725	2024-11-22
9	Fully Anechoic Chamber	FACT3-2.0	ETS-Lindgren	1285	2025-05-28
10	Spectrum Analyzer	FSV40	R&S	101192	2025-01-10
11	Universal Radio Communication Tester	CMU200	R&S	114545	2025-01-10
12	Universal Radio Communication Tester	CMW500	R&S	168719	2025-03-22
13	Power Supply	HMC8042	R&S	103284	2025-05-07
14	Universal Radio Communication Tester	CMW500	R&S	129146	2025-04-10
15	Spectrum Analyzer	FSW26	R&S	102197	2025-05-07
16	Temperature Chamber	SH-241	ESPEC	92007516	2024-10-15

Test software

Item	Name	Version
Radiated	EMC32	V10.50.40

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

Reference

FCC: CFR Part 2.1046, 22.913, 24.232, 27.50(d)

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation.

This result contains max output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA FDD II;826.4MHz, 836.6MHz and 846.6MHz for WCDMA FDD V and 1712.4MHz, 1732.4MHz and 1752.6MHz for WCDMA FDD IV (bottom, middle and top of operational frequency range).

Limit According to FCC Part 2.1046

WCDMA FDD II

A.1.2.2 Measurement result

QPSK

	СН	Frequency(MHz)	output power(dBm)
WCDMA	9262	1852.4	23.26
(FDD II)	9400	1880.0	23.23
	9538	1907.6	23.25

16QAM

	СН	Frequency(MHz)	output power(dBm)
WCDMA	9262	1852.4	21.94
(FDD II)	9400	1880.0	22.41
	9538	1907.6	22.40

WCDMA FDD IV

Measurement result

QPSK

	СН	Frequency(MHz)	output power(dBm)
WCDMA	1312	1712.4	23.02
(FDD IV)	1412	1732.4	23.15
	1513	1752.6	23.24

16QAM

	СН	Frequency(MHz)	output power(dBm)
WCDMA	1312	1712.4	22.30
(FDD IV)	1412	1732.4	22.46
	1513	1752.6	22.41

WCDMA FDD V

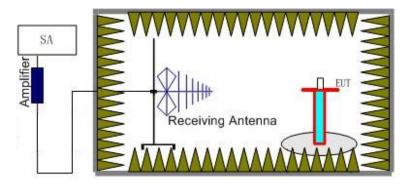
Measurement result

QPSK

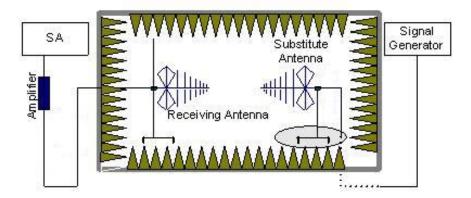
	СН	Frequency(MHz)	output power(dBm)	
WCDMA	4132	826.4	22.89	
(FDD V)	4183	836.6	22.83	
	4233	846.6	22.93	
16QAM	16QAM			
	СН	Frequency(MHz)	output power(dBm)	
WCDMA	4132	826.4	22.10	
(FDD V)	4183	836.6	22.06	
	4233	846.6	22.05	

Note: Expanded measurement uncertainty is U = 0.49dB, k = 1.96

A.1.3 Radiated


A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.


Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.1.3.2 Method of Measurement

1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

 A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain(dBi) (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea} - P_{Ag} - P_{cl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

WCDMA FDD II-EIRP

Limits

	Burst Peak EIRP (dBm)	
WCDMA FDD II	≤33dBm (2W)	

Measurement result WCDMA FDD II QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization			
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	FUIAIIZALIUTI			
1852.40	-16.89	-29.30	8.10	20.51	33.00	Н			
1880.00	-16.54	-29.40	8.10	20.96	33.00	Н			
1907.60	-15.53	-29.30	8.10	21.88	33.00	Н			

WCDMA FDD II 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1852.40	-17.34	-29.30	8.10	20.06	33.00	Н
1880.00	-17.23	-29.40	8.10	20.26	33.00	Н
1907.60	-16.35	-29.30	8.10	21.05	33.00	Н

ANALYZER SETTINGS: RBW = VBW = 5MHz

WCDMA FDD IV-EIRP

Limits

	Burst Peak EIRP (dBm)
WCDMA FDD IV	≤30.00dBm

Measurement result

WCDMA FDD IV QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-17.19	-29.60	8.10	20.51	30.00	Н
1732.60	-16.78	-29.50	8.10	20.82	30.00	Н
1752.60	-16.32	-29.50	8.10	21.28	30.00	Н

WCDMA FDD IV 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-17.97	-29.60	8.10	19.73	30.00	Н
1732.60	-17.66	-29.50	8.10	19.94	30.00	Н
1752.60	-17.12	-29.50	8.10	20.47	30.00	Н

ANALYZER SETTINGS: RBW = VBW = 5MHz

WCDMA FDD V-ERP

Limits

	Burst Peak ERP (dBm)
WCDMA FDD V	≤38.45dBm

Measurement result WCDMA FDD V QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polarization
826.40	-8.57	-33.60	-0.84	2.15	22.04	38.45	V
836.60	-9.06	-33.50	-0.74	2.15	21.55	38.45	V
846.60	-8.88	-33.50	-0.73	2.15	21.74	38.45	V

WCDMA FDD V 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Delorization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polarization
826.40	-9.32	-33.60	-0.84	2.15	21.29	38.45	V
836.60	-9.87	-33.50	-0.74	2.15	20.75	38.45	V
846.60	-9.63	-33.50	-0.73	2.15	20.99	38.45	V

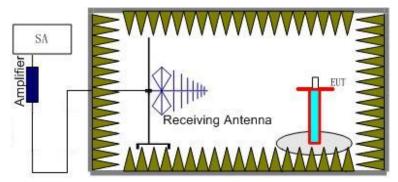
ANALYZER SETTINGS: RBW = VBW = 5MHz

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.82dB(30MHz-3GHz)/3.06dB(3GHz-18GHz)/2.40dB(18GHz-40GHz), k = 2

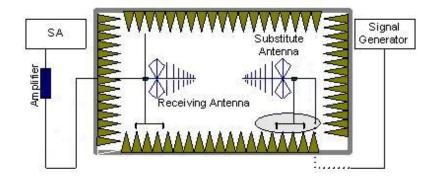
Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report.

A.2 FIELD STRENGTH OF SPURIOUS RADIATION

Reference


FCC: CFR 2.1053, 22.917, 24.238, 27.53(h).

A.2.1 Measurement Method


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238, Part 22.917 and Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA FDD II, WCDMA FDD V and WCDMA FDD IV.

The procedure of radiated spurious emissions is as follows:

1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the

reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain(dBi) (G_a) should be recorded after test.
 A amplifier should be connected in for the test.
 The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.
 The measurement results are obtained as described below:
 Power(EIRP)=P_{Mea} P_{pl} + G_a
- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.2.2 Measurement Limit

Part 24.238, Part 22.917 and Part 27.50 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of WCDMA FDD II (1852.4 MHz, 1880.0MHz and 1907.6MHz), WCDMA FDD V(826.4MHz, 836.6MHz and 846.6MHz) and WCDMA FDD IV (1712.4MHz, 1732.4MHz and 1752.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA FDD II,WCDMA FDD V and WCDMA FDD IV into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
	Low	30MHz-10GHz	Pass
WCDMA FDD V	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
	Low	30MHz-20GHz	Pass
WCDMA FDD II	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass
	Low	30MHz-20GHz	Pass
WCDMA FDD IV	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
WCDMA FDD V	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
WCDMA FDD II	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
WCDMA FDD IV	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	3

			Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16910.50	-45.69	2.90	16.50	-32.09	-13.00	Н
16930.50	-44.75	2.90	16.50	-31.15	-13.00	Н
17294.50	-42.02	3.20	14.50	-30.72	-13.00	Н
17427.50	-41.28	2.90	14.50	-29.68	-13.00	Н
17616.50	-38.38	3.30	12.80	-28.88	-13.00	Н
17832.00	-39.45	3.60	12.80	-30.25	-13.00	Н

WCDMA FDD II Mode Channel 9662/1932.4MHz (QPSK)

WCDMA FDD II Mode Channel 9800/1960MHz(QPSK)

		Path	Antenna	Peak	Limit	Polarization			
Frequency(MHz)	P _{Mea} (ubiii)	r _{Mea} (ubiii)	P _{Mea} (UDIII)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16983.00	-45.02	2.90	16.50	-31.42	-13.00	Н			
17103.00	-43.54	2.90	14.50	-31.94	-13.00	Н			
17355.50	-42.17	3.20	14.50	-30.87	-13.00	Н			
17505.00	-39.48	2.90	12.80	-29.58	-13.00	Н			
17527.00	-39.71	2.90	12.80	-29.81	-13.00	Н			
17820.00	-39.37	3.60	12.80	-30.17	-13.00	Н			

WCDMA FDD II Mode Channel 9938/1987.6MHz(QPSK)

Eroguopov(MHz)	y(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization		
Frequency(MHz)			F Mea(UDIII)	r _{Mea} (ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)
16472.50	-46.49	2.70	17.40	-31.79	-13.00	Н		
16966.50	-43.82	2.90	16.50	-30.22	-13.00	Н		
17270.00	-42.44	3.20	14.50	-31.14	-13.00	Н		
17483.50	-41.17	2.90	14.50	-29.57	-13.00	Н		
17576.00	-38.37	3.30	12.80	-28.87	-13.00	Н		
17818.00	-39.26	3.60	12.80	-30.06	-13.00	Н		

Frequency(MHz) P _{Mea} (c	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(IVIHZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16979.00	-44.62	2.90	16.50	-31.02	-13.00	Н
17193.50	-42.54	2.90	14.50	-30.94	-13.00	Н
17343.00	-41.96	3.20	14.50	-30.66	-13.00	Н
17457.50	-40.84	2.90	14.50	-29.24	-13.00	Н
17560.50	-39.30	2.90	12.80	-29.40	-13.00	Н
17824.50	-39.49	3.60	12.80	-30.29	-13.00	Н

WCDMA FDD II Mode Channel 9662/1932.4MHz(16QAM)

WCDMA FDD II Mode Channel 9800/1960MHz(16QAM)

	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16973.50	-43.95	2.90	16.50	-30.35	-13.00	Н
17139.00	-42.77	2.90	14.50	-31.17	-13.00	Н
17363.00	-42.25	3.20	14.50	-30.95	-13.00	Н
17459.50	-41.21	2.90	14.50	-29.61	-13.00	Н
17621.50	-38.97	3.30	12.80	-29.47	-13.00	Н
17831.50	-39.18	3.60	12.80	-29.98	-13.00	Н

WCDMA FDD II Mode Channel 9938/1987.6MHz(16QAM)

Eroquopov(MHz)	z) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization	
Frequency(MHz)			Z) F _{Mea} (UBIII)	loss	Gain(dBi)	EIRP(dBm)	(dBm)
16966.00	-43.91	2.90	16.50	-30.31	-13.00	Н	
17165.50	-43.53	2.90	14.50	-31.93	-13.00	Н	
17233.50	-42.59	3.20	14.50	-31.29	-13.00	Н	
17449.00	-41.36	2.90	14.50	-29.76	-13.00	Н	
17591.50	-39.18	3.30	12.80	-29.68	-13.00	Н	
17813.50	-39.97	3.60	12.80	-30.77	-13.00	Н	

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16959.50	-44.83	2.90	16.50	-31.23	-13.00	Н
17206.50	-43.25	2.90	14.50	-31.65	-13.00	Н
17303.50	-42.37	3.20	14.50	-31.07	-13.00	Н
17504.50	-39.47	2.90	12.80	-29.57	-13.00	Н
17579.50	-38.75	3.30	12.80	-29.25	-13.00	Н
17840.00	-39.54	3.60	12.80	-30.34	-13.00	Н

WCDMA FDD IV Mode Channel 1537/1712.4MHz(QPSK)

WCDMA FDD IV Mode Channel 1638/1732.6MHz(QPSK)

Frequency(MHz) P _{Mea} (dB		Path	Antenna	Peak	Limit	Polarization
	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16936.50	-44.41	2.90	16.50	-30.81	-13.00	Н
17173.50	-43.05	2.90	14.50	-31.45	-13.00	Н
17354.50	-42.93	3.20	14.50	-31.63	-13.00	Н
17449.00	-41.01	2.90	14.50	-29.41	-13.00	Н
17618.00	-39.51	3.30	12.80	-30.01	-13.00	Н
17839.00	-39.18	3.60	12.80	-29.98	-13.00	Н

WCDMA FDD IV Mode Channel 1738/1752.6MHz(QPSK)

Eroguopov(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16958.00	-44.81	2.90	16.50	-31.21	-13.00	Н
17182.50	-43.37	2.90	14.50	-31.77	-13.00	Н
17234.00	-42.52	3.20	14.50	-31.22	-13.00	Н
17462.50	-41.16	2.90	14.50	-29.56	-13.00	Н
17529.00	-39.10	2.90	12.80	-29.20	-13.00	Н
17823.00	-39.63	3.60	12.80	-30.43	-13.00	Н

Frequency(MHz) P _{Mea} (df	P _{Mea} (dBm) Path loss	Path	Antenna	Peak	Limit	Polarization
Frequency(MHZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16956.50	-44.30	2.90	16.50	-30.70	-13.00	Н
17121.00	-43.20	2.90	14.50	-31.60	-13.00	Н
17271.00	-42.54	3.20	14.50	-31.24	-13.00	Н
17416.50	-40.59	2.90	14.50	-28.99	-13.00	Н
17568.50	-39.13	3.30	12.80	-29.63	-13.00	Н
17835.00	-39.90	3.60	12.80	-30.70	-13.00	Н

WCDMA FDD IV Mode Channel 1537/1712.4MHz(16QAM)

WCDMA FDD IV Mode Channel 1638/1732.6MHz(16QAM)

	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16969.00	-44.50	2.90	16.50	-30.90	-13.00	Н
17187.00	-43.15	2.90	14.50	-31.55	-13.00	Н
17309.50	-42.81	3.20	14.50	-31.51	-13.00	Н
17483.50	-40.94	2.90	14.50	-29.34	-13.00	Н
17625.50	-38.89	3.30	12.80	-29.39	-13.00	Н
17704.00	-40.16	3.30	12.80	-30.66	-13.00	Н

WCDMA FDD IV Mode Channel 1738/1752.6MHz(16QAM)

Frequency(MHz)	Iz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(IVIEZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	FUIATIZATION
16997.50	-44.69	2.90	16.50	-31.09	-13.00	Н
17200.50	-43.42	2.90	14.50	-31.82	-13.00	Н
17311.00	-42.39	3.20	14.50	-31.09	-13.00	Н
17439.50	-41.09	2.90	14.50	-29.49	-13.00	Н
17624.00	-38.89	3.30	12.80	-29.39	-13.00	Н
17808.00	-39.86	3.60	12.80	-30.66	-13.00	Н

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHZ)		loss	Gain(dBi)	ERP(dBm)	(dBm)	Polanzation
2475.42	-45.01	0.90	9.80	-38.26	-13.00	V
9099.25	-51.74	2.20	11.60	-44.49	-13.00	Н
9223.75	-51.45	2.10	11.60	-44.10	-13.00	Н
9301.00	-50.41	2.00	11.60	-42.96	-13.00	Н
9427.50	-51.65	2.10	11.60	-44.30	-13.00	Н
9478.00	-50.37	2.10	11.60	-43.02	-13.00	V

WCDMA FDD V Mode Channel 4357/871.4MHz(QPSK)

WCDMA FDD V Mode Channel 4408/881.6MHz(QPSK)

	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polanzation
9095.50	-52.16	2.20	11.60	-44.91	-13.00	Н
9150.50	-52.14	2.10	11.60	-44.79	-13.00	Н
9220.50	-50.96	2.10	11.60	-43.61	-13.00	Н
9303.00	-50.54	2.00	11.60	-43.09	-13.00	Н
9418.50	-52.08	2.10	11.60	-44.73	-13.00	Н
9473.75	-51.54	2.10	11.60	-44.19	-13.00	V

WCDMA FDD V Mode Channel 4458/891.6MHz(QPSK)

Frequency(MHz)		Path	Antenna	Peak	Limit	Polarization
Frequency(MHZ)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	FUIdHZatiUH
9098.00	-51.87	2.20	11.60	-44.62	-13.00	Н
9151.25	-52.26	2.10	11.60	-44.91	-13.00	Н
9225.00	-51.00	2.10	11.60	-43.65	-13.00	Н
9303.00	-51.28	2.00	11.60	-43.83	-13.00	Н
9420.50	-51.30	2.10	11.60	-43.95	-13.00	Н
9475.25	-51.73	2.10	11.60	-44.38	-13.00	V

Eroguopov/(MHz)	D. (dPm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polanzation
8438.75	-51.59	1.80	11.30	-44.24	-13.00	Н
9153.25	-51.59	2.10	11.60	-44.24	-13.00	Н
9225.50	-50.09	2.10	11.60	-42.74	-13.00	Н
9302.00	-50.56	2.00	11.60	-43.11	-13.00	Н
9475.25	-50.33	2.10	11.60	-42.98	-13.00	V
9740.50	-51.22	2.20	11.20	-44.37	-13.00	Н

WCDMA FDD V Mode Channel 4357/871.4MHz(16QAM)

WCDMA FDD V Mode Channel 4408/881.6MHz(16QAM)

Eroguopov(MHz)	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
9104.25	-50.90	2.20	11.60	-43.65	-13.00	Н
9224.50	-50.23	2.10	11.60	-42.88	-13.00	Н
9301.00	-50.25	2.00	11.60	-42.80	-13.00	Н
9422.00	-50.95	2.10	11.60	-43.60	-13.00	Н
9474.25	-51.03	2.10	11.60	-43.68	-13.00	V
9786.25	-50.69	2.30	11.20	-43.94	-13.00	V

WCDMA FDD V Mode Channel 4458/891.6MHz(16QAM)

		Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
8743.00	-52.48	2.00	12.00	-44.63	-13.00	V
9091.00	-51.32	2.20	11.60	-44.07	-13.00	Н
9222.25	-50.19	2.10	11.60	-42.84	-13.00	Н
9304.00	-51.17	2.00	11.60	-43.72	-13.00	Н
9475.00	-51.16	2.10	11.60	-43.81	-13.00	V
9734.75	-51.02	2.20	11.20	-44.17	-13.00	Н

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.82dB(30MHz-3GHz)/3.06dB(3GHz-18GHz)/2.40dB(18GHz-40GHz), k = 2

A.3 FREQUENCY STABILITY

Reference

FCC: CFR Part 2.1055, 22.355, 24.235, 27.54

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on mid channel of each band, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10°C increments from +50°C to -30°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of the lower, higher and nominal voltage. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

A.3.2 Measurement results

WCDMA FDD II

Frequency Error vs Voltage

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	
20					Frequency error(ppm)
50				-2.09	0.0022
40	3.70			0.20	0.0002
30		1850.060	1909.940	-0.06	0.0001
10				-0.06	0.0001
0				-1.55	0.0017
-10				1.23	0.0013
-20				3.53	0.0038
-30				-2.17	0.0023

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	1950.060	1000 040	-1.06	0.0011
4.20	20	1850.060	1909.940	2.32	0.0025

WCDMA FDD IV

Frequency Error vs Voltage-QPSK

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	
20					Frequency error(ppm)
50				-4.89	0.0056
40	3.70			3.15	0.0036
30		1710.060	1754.940	3.66	0.0042
10				6.58	0.0076
0				1.45	0.0017
-10				2.07	0.0024
-20				3.35	0.0039
-30				3.68	0.0043
	s Voltago				

Frequency Error vs Voltage Voltage(V) Temperature(°C) FL(MHz) FH(MHz) Offset(Hz) Frequency error(ppm) 0.0014 3.60 1.20 20 1710.060 1754.940 4.20 0.0039 -3.35

WCDMA FDD V

Frequency Error vs Voltage-QPSK

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
20				Olisel(HZ)	Frequency error(ppm)
50				-2.11	0.0050
40				-0.71	0.0017
30				-2.90	0.0069
10	3.70	824.060	848.940	-4.87	0.0116
0	1			-0.42	0.0010
-10				-2.12	0.0051
-20				-1.51	0.0036
-30				-2.83	0.0068

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	924.060	040.040	-4.95	0.0118
4.20	20	824.060	848.940	-3.31	0.0079

Expanded measurement uncertainty is 10Hz, k = 2

A.4 OCCUPIED BANDWIDTH

Reference

FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g).

A.4.1 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

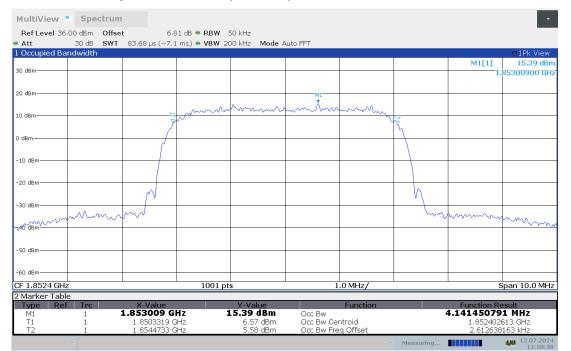
a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

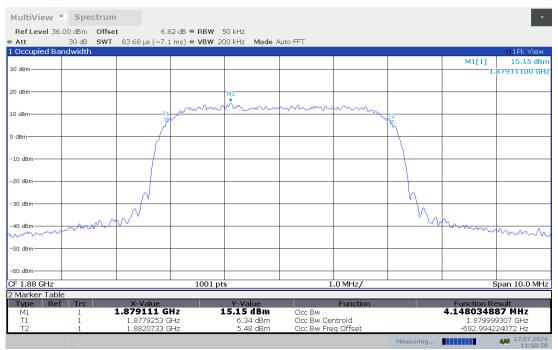
c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

e) Set the detection mode to peak, and the trace mode to max hold.

d) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

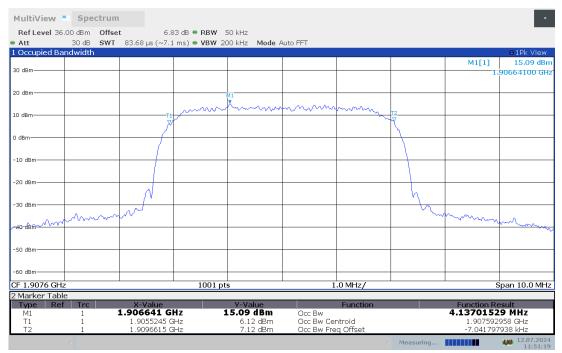


WCDMA FDD II (99%)-QPSK


Frequency (MHz)	Occupied Bandwidth (99%) (MHz)
1852.4	4.141
1880	4.148
1907.6	4.137

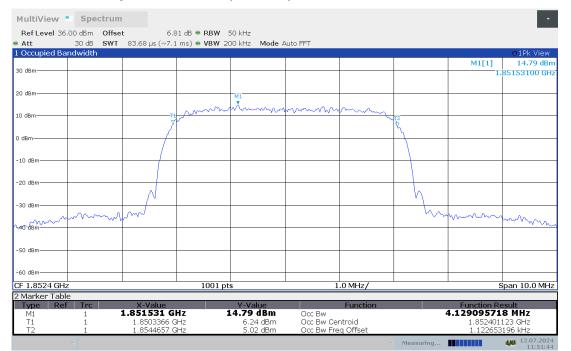
WCDMA FDD II (99%)

Channel 9262-Occupied Bandwidth (99% BW)

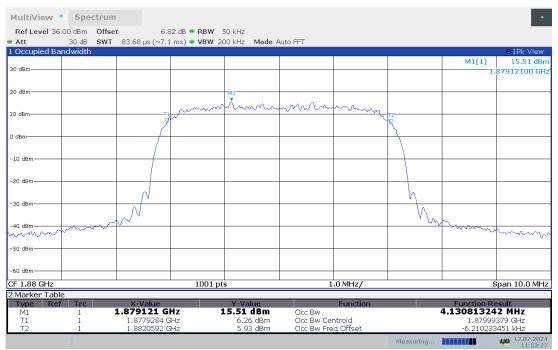


Channel 9400-Occupied Bandwidth (99% BW)

Channel 9538-Occupied Bandwidth (99% BW)

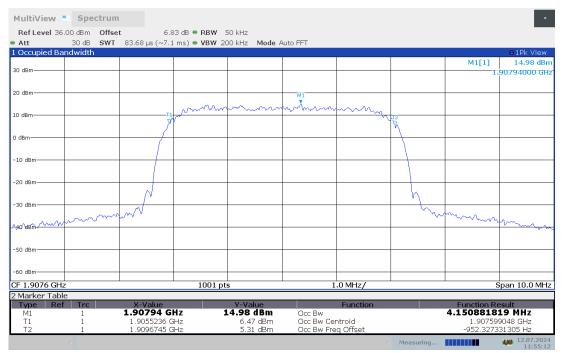


WCDMA FDD II (99%)-16QAM


Frequency (MHz)	Occupied Bandwidth (99%) (MHz)
1852.4	4.129
1880	4.131
1907.6	4.151

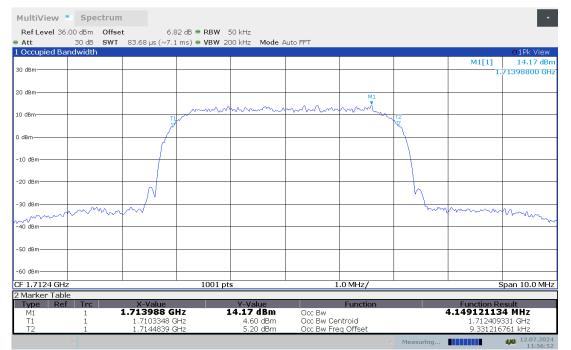
WCDMA FDD II (99%)

Channel 9262-Occupied Bandwidth (99% BW)

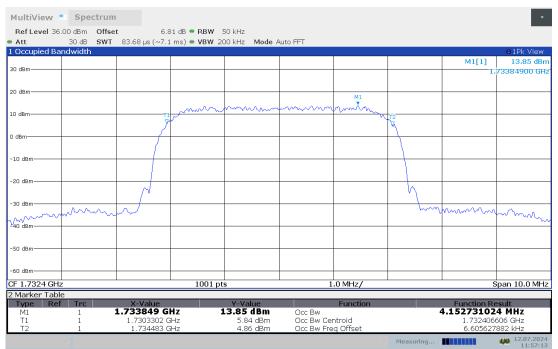


Channel 9400-Occupied Bandwidth (99% BW)

Channel 9538-Occupied Bandwidth (99% BW)

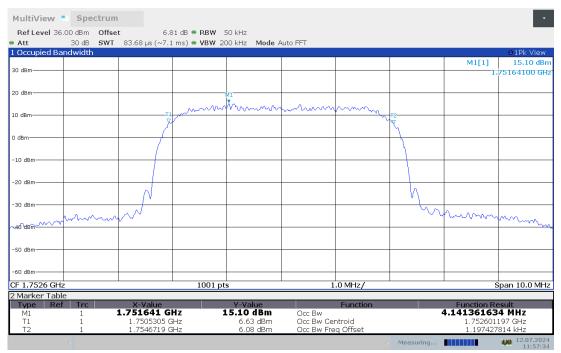


WCDMA FDD IV (99%)-QPSK


Frequency (MHz)	Occupied Bandwidth (99%) (MHz)
1712.4	4.149
1732.4	4.153
1752.6	4.141

WCDMA FDD IV (99%)

Channel 1312-Occupied Bandwidth (99% BW)



Channel 1412-Occupied Bandwidth (99% BW)

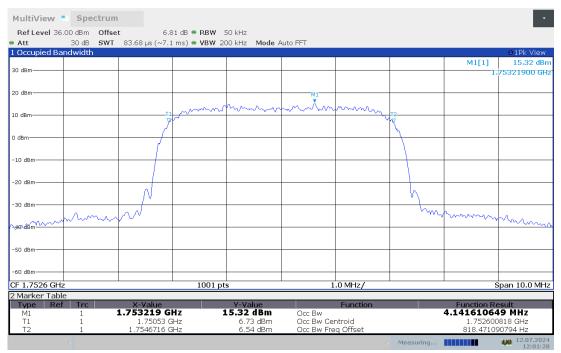
Channel 1513-Occupied Bandwidth (99% BW)

WCDMA FDD IV (99%)-16QAM

Frequency (MHz)	Occupied Bandwidth (99%) (MHz)
1712.4	4.158
1732.4	4.152
1752.6	4.142

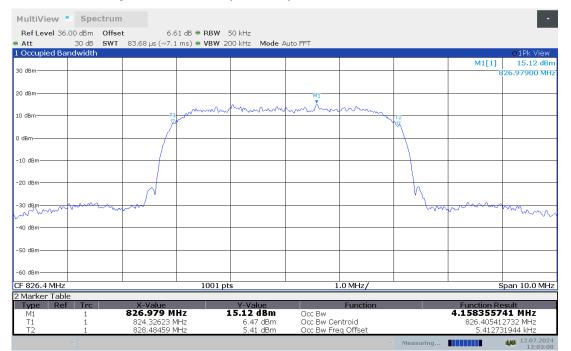
WCDMA FDD IV (99%)

Channel 1312-Occupied Bandwidth (99% BW)

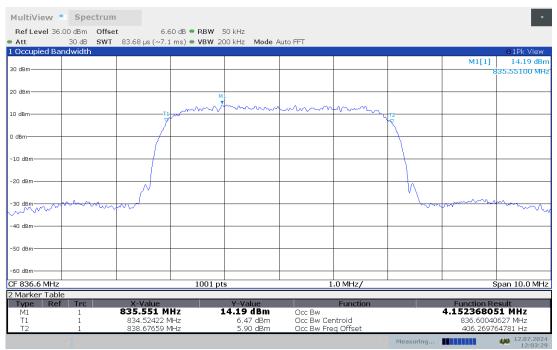


Channel 1412-Occupied Bandwidth (99% BW)

Channel 1513-Occupied Bandwidth (99% BW)

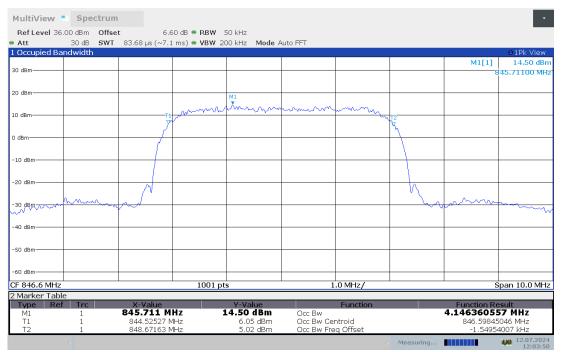


WCDMA FDD V (99%)-QPSK


Frequency (MHz)	Occupied Bandwidth (99%) (MHz)
826.4	4.158
836.6	4.152
846.6	4.146

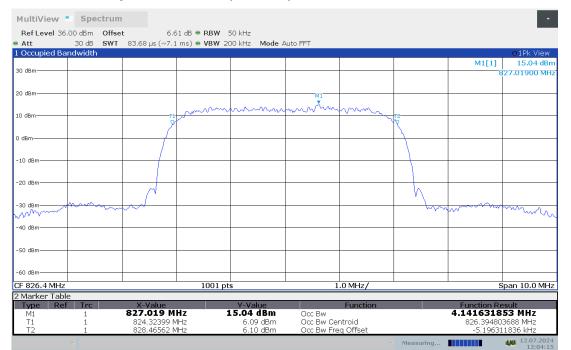
WCDMA FDD V (99%)

Channel 4132-Occupied Bandwidth (99% BW)

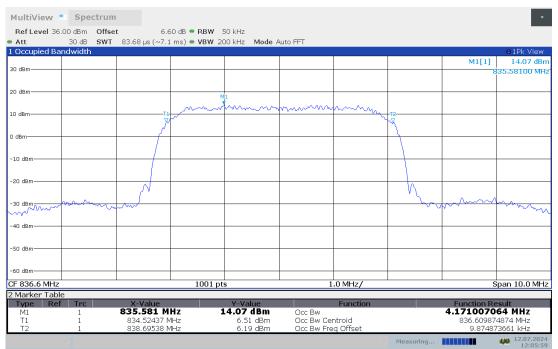


Channel 4183-Occupied Bandwidth (99% BW)

Channel 4233-Occupied Bandwidth (99% BW)



WCDMA FDD V (99%)-16QAM


Frequency (MHz)	Occupied Bandwidth (99%) (MHz)
826.4	4.142
836.6	4.171
846.6	4.145

WCDMA FDD V (99%)

Channel 4132-Occupied Bandwidth (99% BW)

Channel 4183-Occupied Bandwidth (99% BW)

MultiView - Spectrum Ref Level 36.00 dBm Offset 6.60 dB 🖷 RBW 50 kHz Att 30 db SWT 83.68 µs (~7.1 ms) VBW 200 kHz Mode Auto FFT 1 Occupied Bandwidth 50 kHz 50 kH 1Pk View M1[1] 14.31 dBn 30 dBm 7.38900 MHz 20 dBm м1 人 10 dBi 0 dBn -10 dBm -20 dBm V -30 dBm-----40 dBm -50 dBm -60 dBm CF 846.6 MHz 1001 pts 1.0 MHz/ Span 10.0 MHz 2 Marker Table Ref Trc X-Value 847.389 MHz Y-Value 14.31 dBm Eupot Function Result 4.144929044 MHz M1 T1 Occ Bw Occ Bw Centroid Occ Bw Freq Offset 846.604188036 MHz 4.188036059 kHz 844.53172 MHz 848.67665 MHz 5.84 dBm 5.89 dBm Τ2 12.07.2024 12:07:44 Measuring...

Channel 4233-Occupied Bandwidth (99% BW)

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

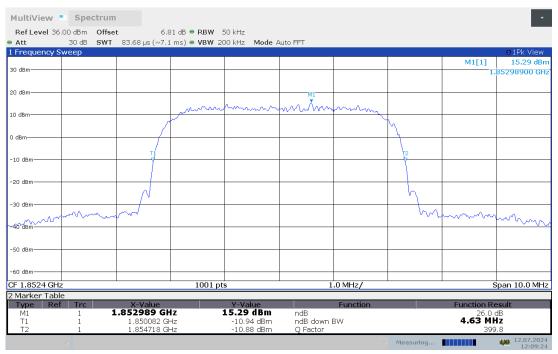
A.5 EMISSION BANDWIDTH

Reference

FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g).

A.5.1Emission Bandwidth Results

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.


Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

WCDMA FDD II (-26dBc)-QPSK

Frequency (MHz)	Emission Bandwidth (-26dBc)(MHz)
1852.4	4.635
1880	4.635
1907.6	4.635

WCDMA FDD II (-26dBc)

Channel 9262-Emission Bandwidth (-26dBc BW)

MultiView 🝨 Spectrum Ref Level 36.00 dBm Offset 6.82 dB 🖷 RBW 50 kHz Att 1 Frequency S 30 dB SWT 83.68 µs (~7.1 ms) • VBW 200 kHz Mode Auto FFT 1Pk View M1[1] 15.44 dBn 30 dBm 7912100 GHz 20 dBm mm 10 dB 0 dBn -10 dBn -20 dBn -30 dBr 40 dBm nn $\sim \sim \sim$ -50 dBm -60 dBm CF 1.88 GHz 1001 pts 1.0 MHz, Span 10.0 MHz 2 Marker Table Eunction Result Ref Trc Y-Value 15.44 dBm 1.879121 GHz M1 T1 ndB ndB down BW 4.63 MHz -10.03 dBm -10.71 dBm 1.877682 GHz 1.882318 GHz T2 Q Facto 12:07:202

Channel 9400-Emission Bandwidth (-26dBc BW)

Channel 9538-Emission Bandwidth (-26dBc BW)

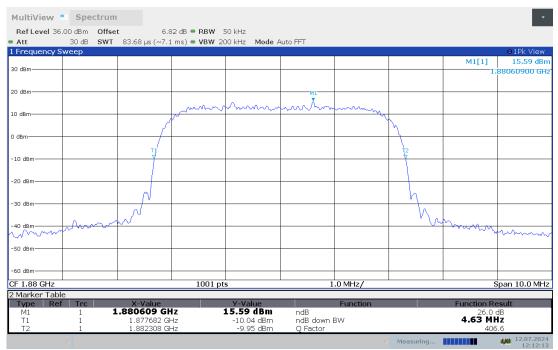
-10 dBm		4					12 2		
-10 UBM									
-20 dBm									
20 00.0		N							
-30 dBm		/`					· · /		
~40 dBm		m						home	monor
-40 dBm	Source of the second se	v						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon
-50 dBm									
So ubili									
-60 dBm									
CF 1.9076 GHz			1001 pt	S	1	.0 MHz/			Span 10.0 MHz
2 Marker Table									
Type Ref	Trc	X-Value		Y-Value		Function		Function	
M1	1 1	.906711 Gł		15.90 dBm	ndB				.0 dB
Τ1	1	1.905282 G		-9.89 dBm	ndB down I	BW		4.63	
T2	1	1.909918 G	Ηz	-10.72 dBm	Q Factor			4	411.3
							Measuring		12.07.2024 12:10:05

1Pk

15.90 dBm 90671100 GHz

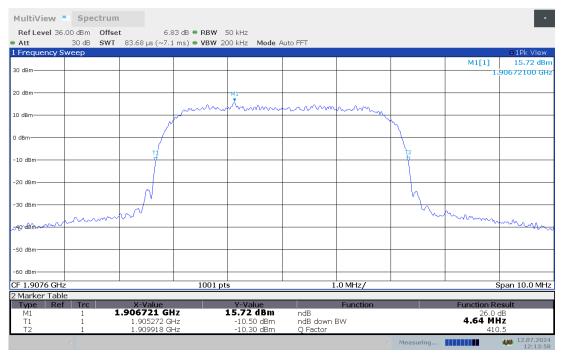


WCDMA FDD II (-26dBc)-16QAM


Frequency (MHz)	Emission Bandwidth (-26dBc)(MHz)
1852.4	4.645
1880	4.625
1907.6	4.645

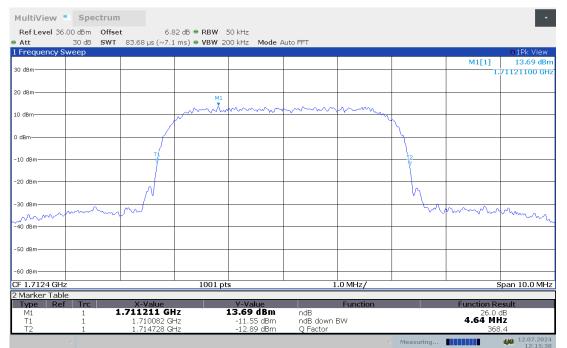
WCDMA FDD II (-26dBc)

Channel 9262-Emission Bandwidth (-26dBc BW)

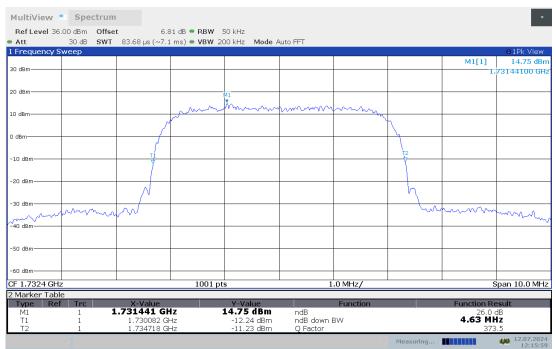


Channel 9400-Emission Bandwidth (-26dBc BW)

Channel 9538-Emission Bandwidth (-26dBc BW)

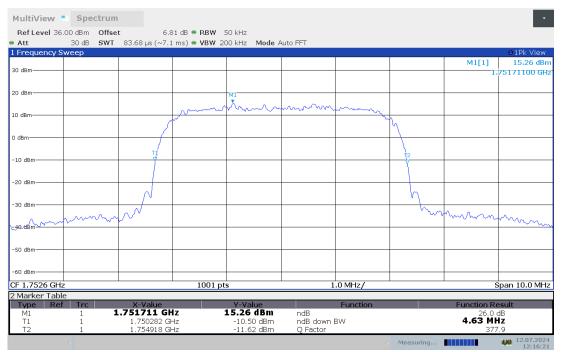


WCDMA FDD IV (-26dBc)-QPSK


Frequency (MHz)	Emission Bandwidth (-26dBc)(MHz)
1712.4	4.645
1732.4	4.635
1752.6	4.635

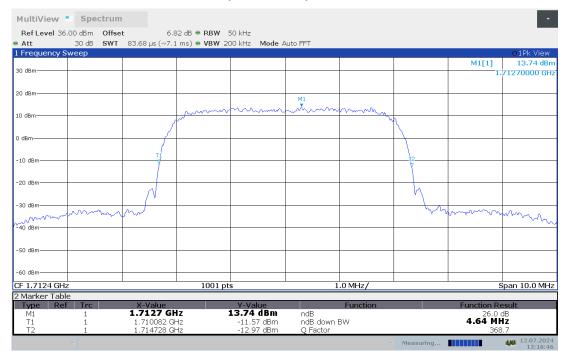
WCDMA FDD IV (-26dBc)

Channel 1312-Emission Bandwidth (-26dBc BW)

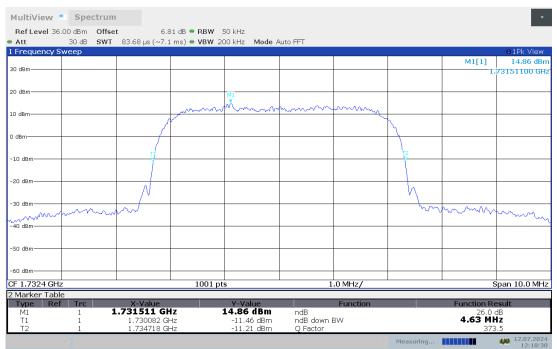


Channel 1412-Emission Bandwidth (-26dBc BW)

Channel 1513-Emission Bandwidth (-26dBc BW)

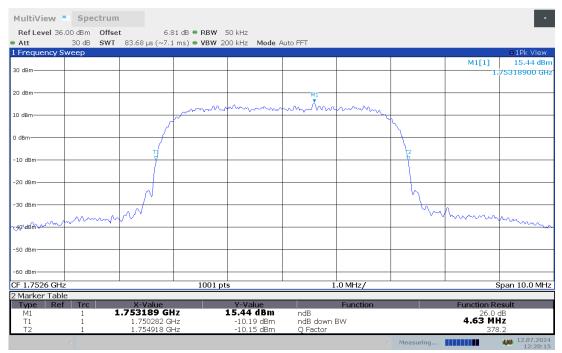


WCDMA FDD IV (-26dBc)-16QAM


Frequency (MHz)	Emission Bandwidth (-26dBc)(MHz)
1712.4	4.645
1732.4	4.635
1752.6	4.635

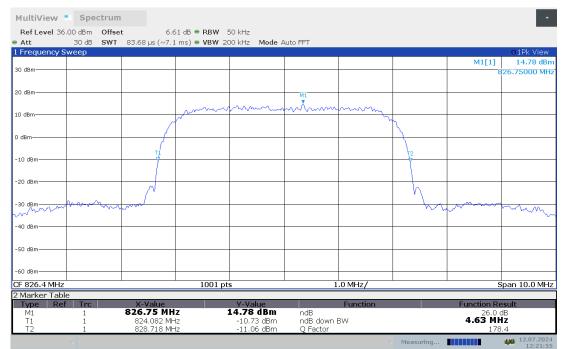
WCDMA FDD IV (-26dBc)

Channel 1312-Emission Bandwidth (-26dBc BW)

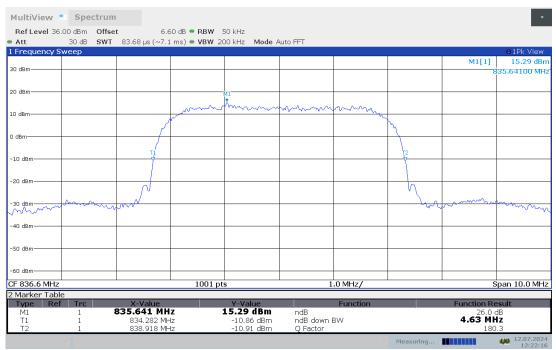


Channel 1412-Emission Bandwidth (-26dBc BW)

Channel 1513-Emission Bandwidth (-26dBc BW)

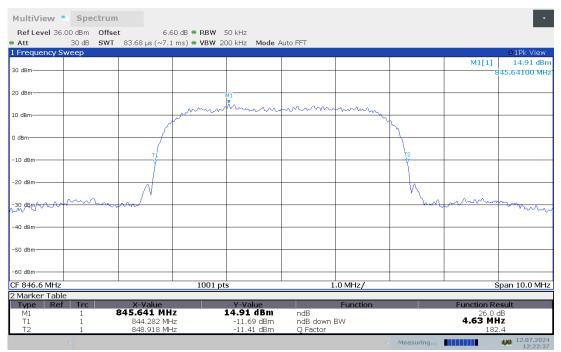


WCDMA FDD V (-26dBc)-QPSK


Frequency (MHz)	Emission Bandwidth (-26dBc)(MHz)
826.4	4.635
836.6	4.635
846.6	4.635

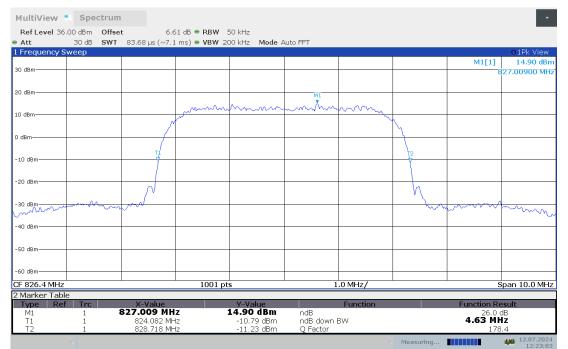
WCDMA FDD V (-26dBc)

Channel 4132-Emission Bandwidth (-26dBc BW)



Channel 4183-Emission Bandwidth (-26dBc BW)

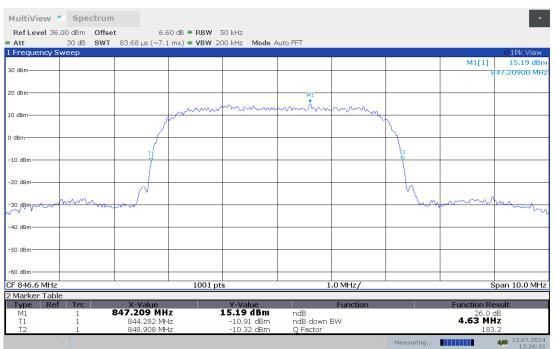
Channel 4233-Emission Bandwidth (-26dBc BW)



WCDMA FDD V (-26dBc)-16QAM

Frequency (MHz)	Emission Bandwidth (-26dBc)(MHz)
826.4	4.635
836.6	4.635
846.6	4.625

WCDMA FDD V (-26dBc)


Channel 4132-Emission Bandwidth (-26dBc BW)

Channel 4183-Emission Bandwidth (-26dBc BW)

Channel 4233-Emission Bandwidth (-26dBc BW)

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

A.6 BAND EDGE COMPLIANCE

Reference

FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h).

A.6.1 Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. A relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

A.6.2 Measurement result

Only worst case result is given below

WCDMA FDD II-QPSK

Channel 9262

Att 30 dB TDF "1" Frequency Sweep	● SWT 50 ms ●	1011 200 KHZ 101						Count 100/10 01Rm Ma
Trequency Sweep							M1[1]	-27.59 dB
							1	.84996000 G
20 dBm								
0 dBm						mmm	mon	m
				Mar				
dBm								
10 dBm								
nit1_for_trace1								
20 dBm				1				
			M1	/				
-30 dBm			<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>	/				
40 dBm	monther man	And www.mark	mon					
www.w.w.								
50 dBm								
60 dBm								
			s	2				
1 F 1.85 GHz					0.0 kHz/			Span 5.0 MI

	m Offset 1.40 de dB • SWT 50 m	3 • RBW 50 kHz s • VBW 200 kHz N	Iode Auto Sweep					GL Count 100/100
Frequency Sweep)			1				O 1Rm Max
							M1[1]	-29.64 dBi
0 dBm							1	191007000 GF
o ubiii								
o								
100mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	mon how	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm						
			my					
dBm								
			1					
10 dBm			<u>\</u>					-
hit1_for_trace1								
20 dBm								-
				М1				
30 dBm								
				ling				
40 dBm				~~~	mont	man		
							m	man
50 dBm								
60 dBm								
								9
			9	5 <u>1</u>				

WCDMA FDD II-Q16

Channel 9262

TDF "1"	● SWT 50 ms ●							ount 100/10
l Frequency Sweep					1		M1[1]	01Rm Ma: -27,59 dB
								84996000 G
0 dBm								
0 dBm						0	horman	-
				MAN				
dBm				- Nu				
10 dBm								
hit1_for_trace1								
20 dBm				1				
			M1					
30 dBm			M	/				
40 dBm	and the second	And www.www.	man					
40 dBm Marthan		- I - I						
50 dBm								
60 dBm								L
			s	2				
1								

Frequency Sweep								• 1Rm Max
							M1[1]	-29.64 dBi 91007000 GH
0 dBm							1	91007000 GF
	mmmm	a mar ha wa ha da						
		radion with	m					
dBm			- M					
			<u> </u>					
10 dBm								
nit1_for_trace1								
20 dBm								
				M1				
30 dBm				V'Y				
				long	mm			
40 dBm					manne	mmmm	mm	man .
50 dBm								w
							1	
50 dBm								

WCDMA FDD IV-QPSK

Channel 1312

Att 30 dB TDF "1" Frequency Sweep	• SWT 50 ms ● 1							ount 100/10
							M1[1]	-27.23 dE
0 dBm								
0 dBm				~	mm	man	Marchan	uhm
I dBm				- mar				
10 dBm								
nit1_for_trace1 20 dBm								
			M1	{				
30 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	J				
19 vdBm								
50 dBm								
50 dBm								
			S	2				

TDF "1"	30 dB 🖷 SWT		3W 50 kHz 3W 200 kHz M	ode Auto Sweep					GL Count 100/100
Frequency Sw	еер								●1Rm Max
								M1[1]	-28.02 dBi 75508000 GF
0 dBm									
0 dBm									
mon	mon	mmm	www.w						
dBm				and the					
abiii				Y					
10 dBm									
20 dBm									
					M1				
30 dBm					r Y				
					ham				
40 dBm					VV~	www.www.wh	Say and the second second	mmmh	mmun
									υγ
50 dBm									
60 dBm									
				s	1				e
F 1.755 GHz			501 pts)0.0 kHz/			Span 5.0 M⊢

WCDMA FDD IV-Q16

Channel 1312

Att 30 dB TDF "1" Frequency Sweep	• SWT 50 ms ● 1							ount 100/10
							M1[1]	-27.23 dE
0 dBm								
0 dBm				~	mm	man	Marchan	uhm
I dBm				- mar				
10 dBm								
nit1_for_trace1 20 dBm								
			M1	{				
30 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	J				
19 vdBm								
50 dBm								
50 dBm								
			S	2				

TDF "1"	30 dB 🖷 SWT		SW 50 kHz SW 200 kHz M	ode Auto Sweep					GL Count 100/100
Frequency Sw	eep		1						o1Rm Max
								M1[1]	-28.02 dBr 75508000 GH
0 dBm									
0 dBm									
mon	mon	mmm	manner	w					
dBm				my					
abiii				Ý					
10 dBm									
hit1_for_trace1									
20 dBm				1					
20 0811					M1				
30 dBm					×				
30 UBM					r 4				
40 dBm					Lan	mm.			
40 dBm						www.www.wh	A CONTRACTOR	manda	mon
50 dBm									
60 dBm									<u> </u>
				s	1				S
F 1.755 GHz		1	501 pts	[50	0.0 kHz/		1	Span 5.0 MH

WCDMA FDD V-QPSK

Channel 4132

TDF "1" Frequency Swe	en								●1Rm Ma:
	00							M1[1]	-26.63 dE
) dBm									
dBm							mmuhh	h	
					M	harmon	WWW WWWW	man	mun
dBm					N				
0 dBm									
0 dBm					/				_
				M1					
O dBm	mm	myhh-rm	mmmm	mar mar					
0/dBh/									
0 dBm									
0 dBm									

TDF "1" Frequency Swee	en .	50 ms 🗢 🕫	200 KHZ M	ode Auto Sweep					Count 100/100
	-12							M1[1]	-26.24 dB
									849.03000 MH
) dBm									
d d m									
) dBm	mmm	man	month						
dBm			v	MM					
ubiii				M.					
LO dBm									
it1_for_trace1									
20 dBm				1					
					M1				
30 dBm				\	Δ				
					hum	mmm	mmont	mm	man Ann
40 dBm									ware should
50 dBm									
50 dBm									

WCDMA FDD V-Q16

Channel 4132

Att 30 d TDF "1" Frequency Sweep	B ●SWT 50 ms ●		ode Auto oweep					Count 100/10
rrequercy oweep							M1[1]	-26.63 dE 823.94000 M
) dBm								
) dBm				M	hamm	mmyshik	hanna	mmm
dBm				N				
LO dBm				-{				
20 dBm			M1	/				
30 dBm	1 482 14-4 mm		^	/				
Aden www.w	manana	······································	~~~~~					
50 dBm								
0 dBm								+

Channel 4233

Ref Level 30.	00 dBm Offs	et 1.20 dB 🖷 RE	SW 50 kHz					5	SGL
Att TDF "1"	30 dB 🖷 SWT	50 ms 🖷 VE	W 200 kHz M	ode Auto Sweep				(Count 100/100
Frequency S	weep								•1Rm Max
								M1[1]	-26.24 dB 849.03000 MF
0 dBm									
Q dBm									
mun	www.w	munga	monen	Mr					
I dBm				My					
10 dBm				\rightarrow					
hit1_for_trace1				h					
20 dBm					м1 Ж				
30 dBm				\	him	hanne	mm	mmm	
40 dBm									
50 dBm									<u> </u>
60 dBm									
ьи авт				s	1				
F 849.0 MHz			501 pts	-	Ē	0.0 kHz/			Span 5.0 MH

Note: Expanded measurement uncertainty is U = 0.49 dB(100 KHz-2 GHz)/1.21 dB(2 GHz-26.5 GHz), k = 1.96

A.7 CONDUCTED SPURIOUS EMISSION

Reference

FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h).

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1051 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

WCDMA Band II Transmitter

Channel	Frequency (MHz)
9262	1852.4
9400	1880.0
9538	1907.6

WCDMA Band V Transmitter

Channel	Frequency (MHz)
4132	826.4
4183	836.6
4233	846.6

WCDMA FDD IV Transmitter

Channel	Frequency (MHz)
1312	1712.4
1412	1732.4
1513	1752.6

A.7.2 Measurement Limit

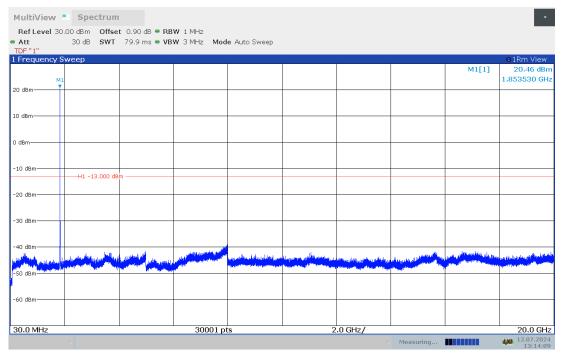
Part 24.238, Part 22.917 and Part 27.53(h) specify that the power of any emission outside of the authorized

operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.7.3 Measurement result

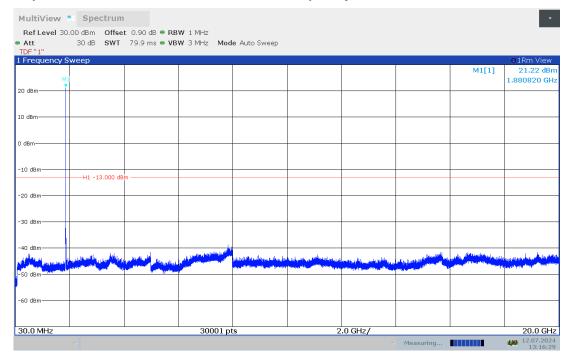
Only worst case result is given below



WCDMA FDD II

Channel 9262: 30MHz –19.1GHz

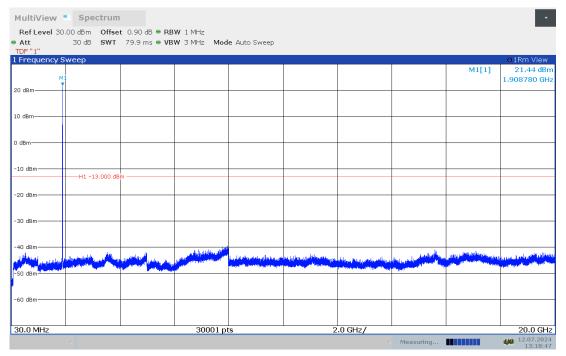
Spurious emission limit –13dBm.

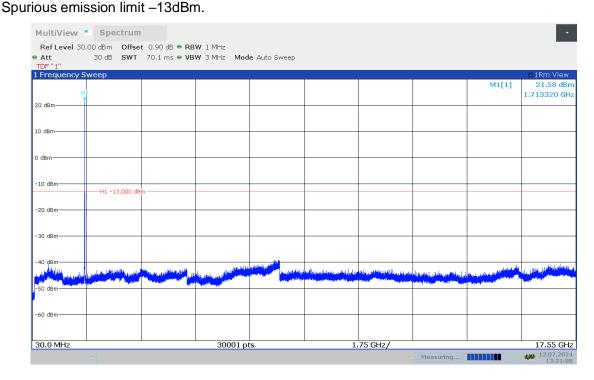

NOTE: peak above the limit line is the carrier frequency.

Channel 9400: 30MHz –19.1GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

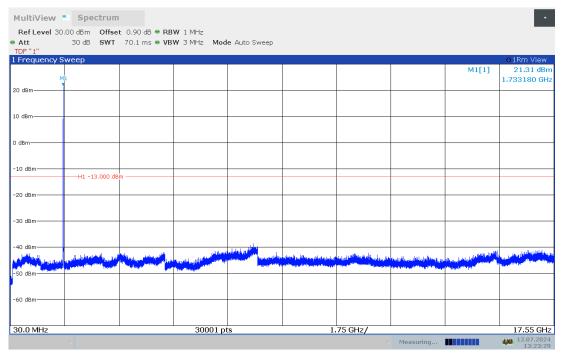



Channel 9538: 30MHz –19.1GHz

Spurious emission limit -13dBm.

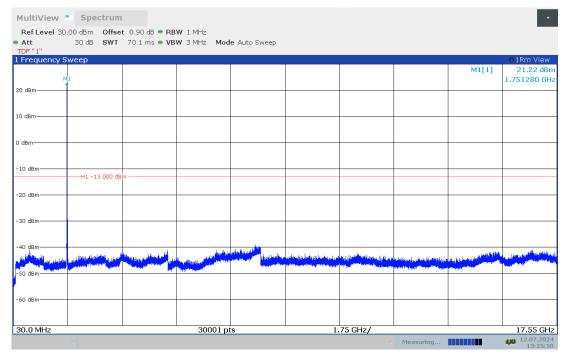
NOTE: peak above the limit line is the carrier frequency.

WCDMA FDD IV Channel 1312: 30MHz –17.55GHz



Channel 1412: 30MHz –17.55GHz

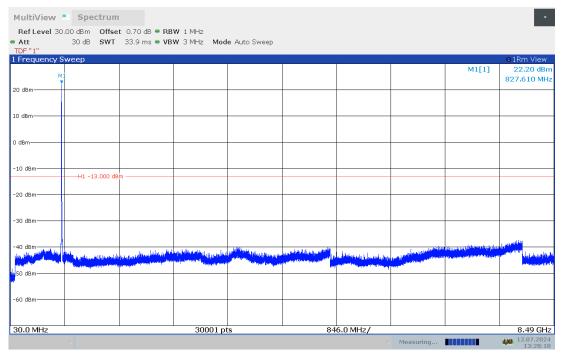
Spurious emission limit -13dBm.


NOTE: peak above the limit line is the carrier frequency.

Channel 1513: 30MHz –17.55GHz

Spurious emission limit -13dBm.

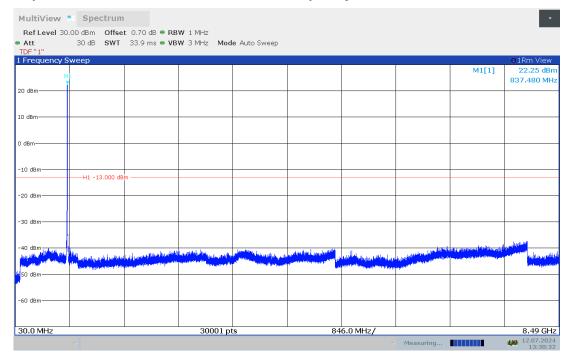
NOTE: peak above the limit line is the carrier frequency.



WCDMA FDD V

Channel 4132: 30MHz –8.49GHz

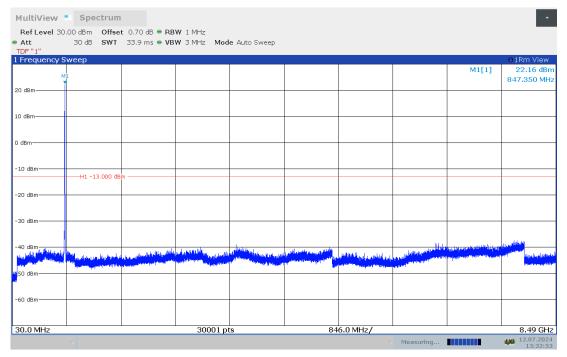
Spurious emission limit -13dBm.


NOTE: peak above the limit line is the carrier frequency.

Channel 4183: 30MHz -8.49GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.



Channel 4233: 30MHz -8.49GHz

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96

A.8 PEAK-TO-AVERAGE POWER RATIO

Reference

FCC: CFR Part 24.232, 27.50(d), KDB971168 D01.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Set the measurement interval to 1 ms

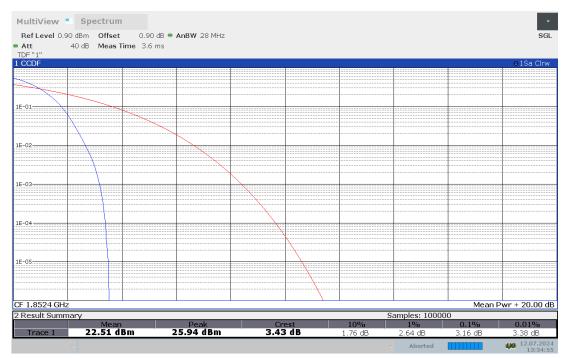
e)Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

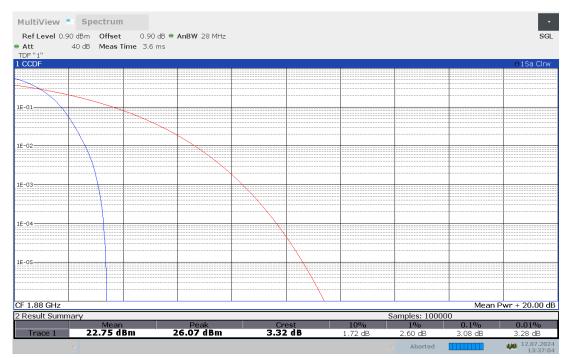
not exceed 13 dB

A.8.2 Measurement results

Only worst case result is given below

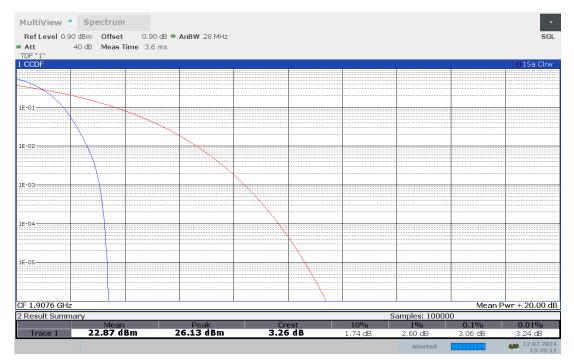


WCDMA FDD II-QPSK


Measurement result

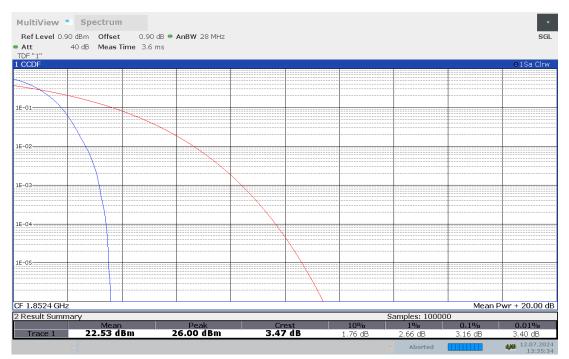
СН	Frequency (MHz)	PAPR (dB)
9262	1852.4	3.16
9400	1880	3.08
9538	1907.6	3.06

Channel 9262-1852.4MHz

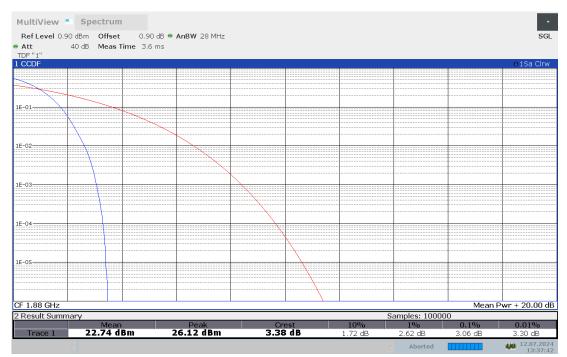


Channel 9400-1880MHz

Channel 9538-1907.6MHz

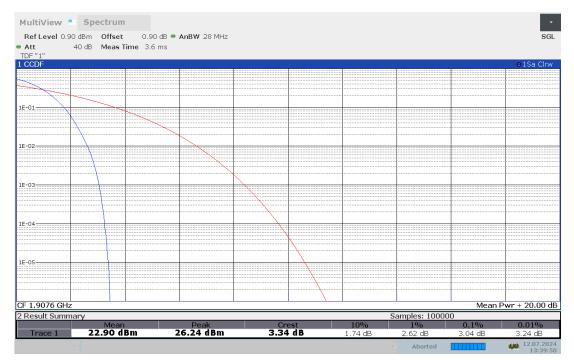


WCDMA FDD II-16QAM


Measurement result

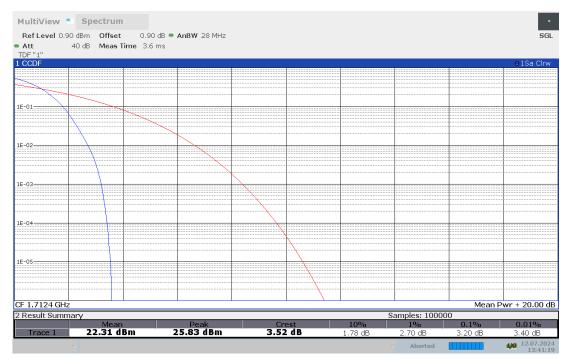
СН	Frequency (MHz)	PAPR (dB)
9262	1852.4	3.16
9400	1880	3.06
9538	1907.6	3.04

Channel 9262-1852.4MHz



Channel 9400-1880MHz

Channel 9538-1907.6MHz

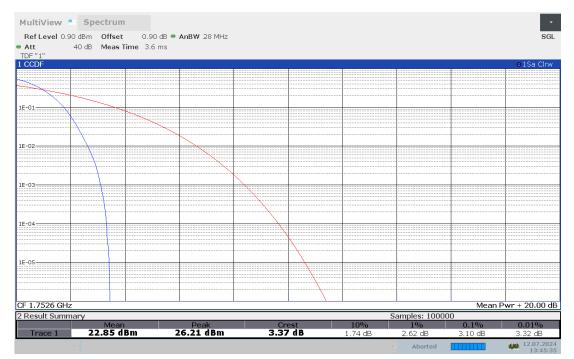


WCDMA FDD IV-QPSK


Measurement result

СН	Frequency (MHz)	PAPR (dB)
1312	1712.4	3.20
1412	1732.4	3.18
1513	1752.6	3.10

Channel 1312-1712.4MHz



Channel 1412-1732.4MHz

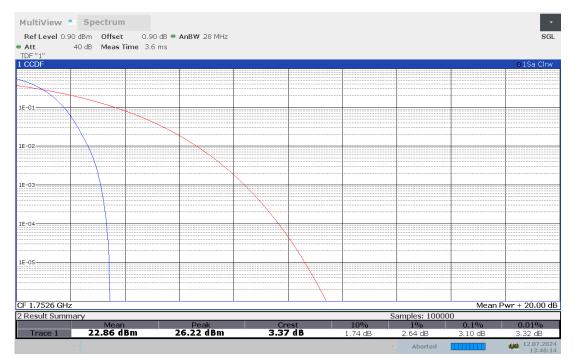
Channel 1513-1752.6MHz

WCDMA FDD IV-16QAM


Measurement result

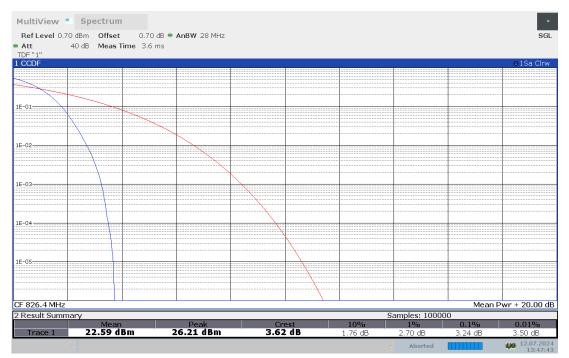
СН	Frequency (MHz)	PAPR (dB)
1312	1712.4	3.22
1412	1732.4	3.16
1513	1752.6	3.10

Channel 1312-1712.4MHz

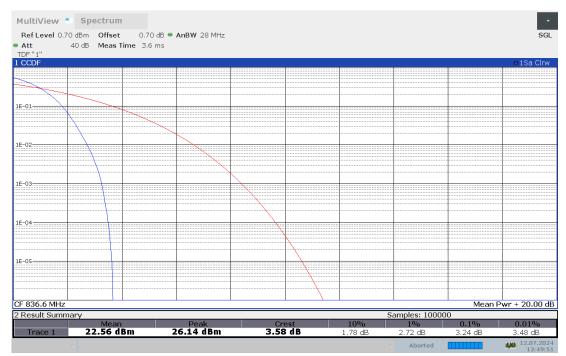


Channel 1412-1732.4MHz

Channel 1513-1752.6MHz

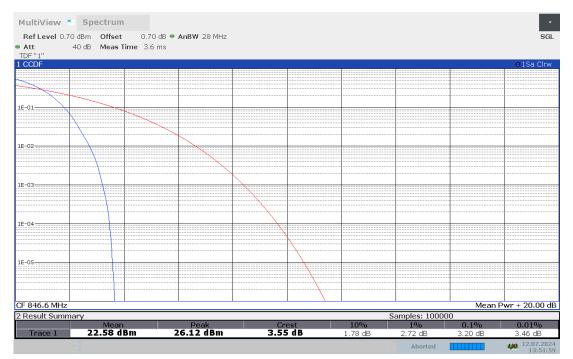


WCDMA FDD V-QPSK


Measurement result

СН	Frequency (MHz)	PAPR (dB)
4132	826.4	3.24
4183	836.6	3.24
4233	846.6	3.20

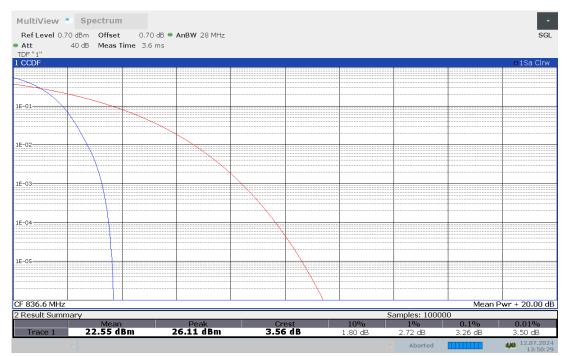
Channel 4132-826.4MHz



Channel 4183-836.6MHz

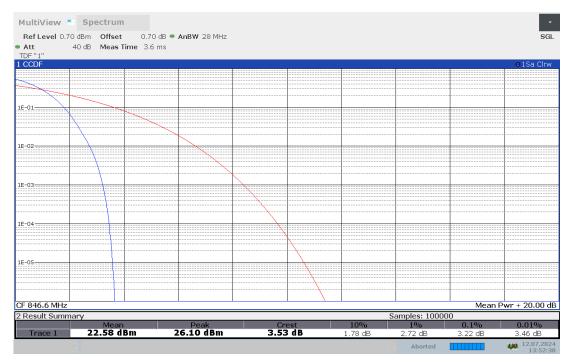
Channel 4233-846.6MHz

WCDMA FDD V-16QAM

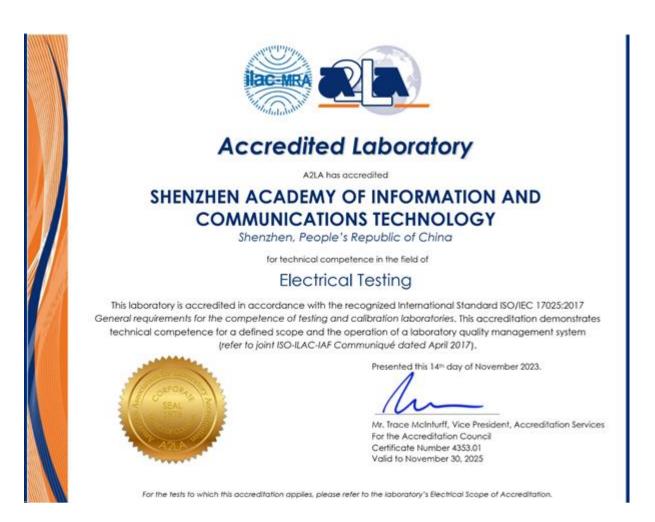

Measurement result

СН	Frequency (MHz)	PAPR (dB)
4132	826.4	3.22
4183	836.6	3.26
4233	846.6	3.22

Channel 4132-826.4MHz



Channel 4183-836.6MHz


Channel 4233-846.6MHz

Note: Expanded measurement uncertainty is U = 0.48 dB, k = 2

ANNEX B: Accreditation Certificate

ANNEX C: Certificate of Brand Authorization

END OF REPORT